HOOFDSTUK 3.
ENKELE MEDISCHE ACHTERGRONDEN

3.1. INLEIDING

In dit hoofdstuk wordt een aantal medische achtergronden beschreven van nierfuntievervangende behandelingenmethoden. Uiteraard wordt niet gepretendeerd om een bijdrage te leveren aan de medische kennis op dit terrein. De bedoeling is slechts om de niet-medische lezer achtergrondinformatie te verschaffen over de behandelingen, die voorkomen in het nierfunktievervangingsprogramma. Eerst wordt in paragraaf 2 getracht de functie van de nieren en de betekenis van nierfunktievervangende therapie bij terminale nierinsufficiëntie te beschrijven. De haemodialyse wordt in paragraaf 3 behandeld. Continue Ambulante Peritoneale Dialyse (CAPD) staat centraal in paragraaf 4. Transplantatie is het onderwerp van paragraaf 5.

Voor een uitgebreide beschrijving van de medische aspecten van nierfunktievervangende therapeutieën en van recente ontwikkelingen daarin, wordt verwezen naar het recente rapport van de Gezondheidsraad (Gezondheidsraad, 1986).

3.2. FUNKTIE VAN DE NIEREN EN BETEKenis VAN NIERFunktIEVERVANGENDE THERAPIE

Terminale nierinsufficiëntie is een ziekte waarbij de nieren zo slecht functioneren, dat de patiënt op korte termijn zou overlijden als geen nierfunktievervangende therapie wordt toegestaan. Teneinde de ernst van de ziekte enigszins toe te lichten wordt summier ingegaan op de functie van de nieren en op de ziekteverschijnselen, die ontstaan wanneer de nieren hun functie niet goed vervullen. Aan het eind van de paragraaf worden de belangrijkste nierfunktieverbangende therapeutieën vermeld.

In het rapport "De Graeff" worden de voornaamste functies van de nieren uiteengezet (Gezondheidsraad, 1972). Deze zijn:
- verwijdering van in water oplosbare afvalstoffen van de stofwisseling,
- verwijdering van overtollige of schadelijke door het lichaam opgenomen stoffen,
- regeling van de grootte van en de verhouding tussen de lichaamscompartimenten voor wat betreft de vochtbalans en daarmee van de bloedhoeveelheid en de bloeddruk,
- afscheiding van enkele belangrijke hormonen.

De nieren maken de urine aan. Zij zorgen ervoor dat water aan het bloed wordt onttrokken en dat een aantal afvalstoffen, die oplosbaar zijn in water, uit het bloed wordt verwijderd. De mate waarin de nieren water aan het bloed onttrekken, is mede bepalend voor het bloedvolume in het lichaam en daarmee voor de bloeddruk. Afvalstoffen van de stofwisseling, zoals ureum, kreatinine, urinozuur, kalium en fosfaten, worden door de nieren uit het bloed verwijderd. Deze stoffen komen via de ureter in de blaas van de patiënt terecht en verlaten het lichaam na een kortere of langere periode
als de patiënt plast. Hetzelfde geldt voor sommige giftige stoffen, drugs of de stofwisselingsprodukten daarvan. Ook deze kunnen, soms nadat zij door de lever zijn transformeerd van in vet oplosbare naar in water oplosbare stoffen, via de nieren uit het bloed worden verwijderd.

De hormonale functie van de nieren betreft met name twee hormonen, nl. renine en erythropoietine, die door de nieren worden geproduceerd. Renine vormt een onderdeel van het renine-angiotensine systeem, dat het bloedvolume regelt, waarop hiervoor werd ingegaan. Erythropoietine is een stof, die een rol speelt bij de aanmaak en verspreiding van rode bloedlichaampjes. Via de rode bloedlichaampjes wordt zuurstof getransporteerd van de longen naar de cellen van het lichaam (Cheigh & Rubin, p. 280 - 281). Bij een tekort aan erythropoietine ontstaat bloedarmoede en mist het lichaam op allerlei plaatsen zuurstof die noodzakelijk is om lichaamsfuncties te kunnen vervullen. Voor erythropoietine is nog geen synthetisch alternatief op de markt gebracht. De zuurstofhuishouding van het lichaam blijft daardoor altijd afhankelijk van een tenminste deels functionerende biologische nier.

De nieren hebben een grote functionele overcapaciteit. De nierfunctie kan tot 10 @ 20% van haar normale waarde zakken voordat ernstige symptomen optreden (Cheigh & Rubin, p. 271). Wanneer de nierfunctie verder daalt, ontstaat nierinsufficiëntie ofwel uremia.

Nierinsufficiëntie kan worden onderscheiden in acute en chronische nierinsuf-

ficiëntie. Acute nierinsufficiëntie ontstaat in korte tijd en is meestal te behandelen, waarna de nierfunctie zich weer herstelt. Chronische nierinsuf-

ficiëntie is onomkeerbaar. Soms blijkt ook de acute nierinsufficiëntie onomkeer-

baar te zijn en wordt chronisch. In deze studie blijft de problematiek van de acute patiënt, die tijdelijk nierfunktievervanging behoeft, waarna de nierfunctie zich herstelt, buiten beschouwing.

De gevolgen van uremia worden door Wing en Magowan als volgt opgesomd (Wing A.J. & Magowan M., p. 10 );

- algemeen: uitdroging, gewichtsverlies, groeistoornissen bij kinderen,
- gebrek aan eetlust, misselijkheid, braakneiging, maagzweren, diarree,
- bloedziekten: bloedarmoede, kwetsbaarheid voor infecties,
- bloedcirculatieziekten: hoge bloeddruk, vochtophopingen (oedeem),
- hartfunktiestoornissen,
- ademhalingsstijmeling: longoedeem,
- neurologische stoornissen: epilepsie, verzwakking, stoornissen in het perifere zenuwstelsel.

Door het achterwege blijven van de verwijdering van een aantal afvalstoffen uit het lichaam wordt de voedingsopname gestoord. Door het te hoge bloedvolu-

me ontstaat hoge bloeddruk, die zover kan oplopen dat de tolerantiegrenzen van het hart worden overschreden. Het zenuwsysteem en daarmee een groot aantal motorische functies wordt gestoord. Wanneer de uremia ernstigc

vormen aanneemt - een maatstaf hiervoor is het kreatininegehalte in het bloed - treedt binnen enkele maanden de dood in, tenzij er nierfunktievervan-

gende therapie wordt toegepast (Dougherty & Sweeney, p. 384).

3.3. HAEMODIALYSE

3.3.1. Algemeen

Haemodialyse is een techniek om een aantal functies van de nier te vervangen, waarbij gebruik wordt gemaakt van een kunstnier. In de kunstnier bevindt zich een semipermeabel membraan, waar aan de ene zijde het bloed van de patiënt langs wordt geleid, terwijl zich aan de andere zijde een dialysevloeistof bevindt. Tijdens de dialyse bewegen afvalstoffen zich uit het bloed door het membraan naar de dialysevloeistof en worden zo uit het lichaam afgevoerd. Door twee of drie maal per week gedurende ca. 4 uur een dialysebehandeling te ondergaan, kan het niveau van de afvalstoffen in het bloed voldoende laag worden gehouden.

Naarmate het molecuulgewicht kleiner is, passeert een stof makkelijker het membraan. Ureum en kreatinine hebben een klein molecuulgewicht (60 en 113) en kunnen het membraan passeren, maar globuline (molecuulgewicht 150.000) niet, evenmin als rode en witte bloedlichaampjes, die nog groter en zwaarder zijn (Gutch & Stoner, p. 26).

De verbinding tussen het bloedcirculatiesysteem en de kunstnier, bestaat gewoonlijk uit een Quinton-Scribner shunt of een arterio-veneuze fistul. In het eerste geval worden twee plastic cannulae in een dichtbij elkaar liggende slagader en ader gebracht. Deze cannulae worden tijdens de dialyse aangesloten op de bloedlijnen van het dialyse-apparaat. Tussen de spoelingen in, worden de cannulae met elkaar verbonden en vormen dan een externe shunt. In het tweede geval worden door vaatchirurgie een slagader en een ader met elkaar verbonden. Daardoor ontstaat een opzwelling, de arterio-veneuze fistul, waarin naalden kunnen worden geprikt, die de bloedcirculatie van de patiënt met de kunstnier in verbinding brengen (Dougherty & Sweeney, p. 388).

Er bestaan verschillende typen kunstnieren. Genoemd worden hier de coil-kunstnier, de platenkunst en de "hollow fiber" kunstnier.

De kunstnier kan de nierfuncties in belangrijke mate vervangen, maar niet volledig. Het volume van het bloed van de patiënt kan worden gereguleerd. Ook kunnen afvalstoffen van de stofwisseling uit het bloed worden verwijderd, maar toch iets minder volledig dan de natuurlijke nier dat zou doen. De laatste verwijdert middelgrote moleculen beter uit het bloed. Sommige farmaca, de stofwisselingsprodukten daarvan en giftige stoffen kunnen door de kunstnier uit het lichaam worden verwijderd. Wat betreft de hormonale functie: omdat nog geen synthetisch alternatief voor erythropoietine voorhanden is, houdt de
dialysepatiënt daaraan een tekort. Dit is van belang, omdat de dialysepatiënt daardoor lijdt aan bloedarmoede en de gevolgen daarvan. Ook de intermediaire rol die de nier vervult bij het stofwisselingsproces van Vitamine D en insuline-glucose blijft achterwege (Dougherty & Sweeney, p. 385).


3.3.2. Haemodialysevormen

De activiteiten, die noodzakelijk zijn voor dialyse, kunnen worden onderschei- den in de volgende categorieën:
- klaarzetten van de apparatuur, ook wel optuigen van de machine genoemd,
- aansluiten van de dialysemachine op de bloedcirculatie van patiënt,
  ook wel aanprikken genoemd,
- controle tijdens de dialyse,
- ontkoppelen van de dialysemachine en de bloedcirculatie van de patiënt,
  ook wel afsluiten genoemd,
- opruimen van de hulpmaterialen, die bij de dialyse worden gebruikt.

Optuigen en controle kunnen vaak goed door de patiënt worden uitgevoerd. Bij aanprikken is dat niet het geval, ook al omdat de shunt zich meestal in één van de armen bevindt. Afsluiten en opruimen zijn handelingen die minder gemakkelijk door de patiënt kunnen worden uitgevoerd, omdat de patiënt zich kort na de dialyse vaak minder goed voelt.

Aan de hand van de onderscheiden activiteiten, kunnen nu drie vormen van haemodialyse, te weten passieve haemodialyse in een centrum, actieve haemodialyse in een centrum en thuishaemodialyse, worden gedefinieerd:

Passieve Haemodialyse in een centrum, verder passieve haemodialyse dialyse (PHD) genoemd, is die vorm van dialyse, waarbij de patiënt voor alle facetten van de behandeling volledig afhankelijk is van hulp en toezicht door te zake geschoold personeel.
Actieve Haemodialyse in een centrum, verder actieve haemodialyse genoemd (AHD), is die vorm van dialyse waarbij de patiënt van de diverse handelingen, die voor de dialyse noodzakelijk zijn in ieder geval de volgende twee zelf uitvoert:
- klaarzetten van de apparatuur,
- controle van de apparatuur tijdens dialyse.

Thuishaemodialyse (THD) is die vorm van haemodialyse, waarbij de patiënt de handelingen die voor de dialyse noodzakelijk zijn, thuis zonder assistentie van geschoold personeel uitvoert. Uiteraard is THD een vorm van actieve dialyse.


Bij AHD is de patiënt zelfstandiger dan bij PHD en voelt zich minder een "patiënt". Omdat hij/zij in sterkere mate voor zichzelf zorgt tijdens de dialyse, is AHD ook goedkoper dan PHD**. In Diatels, wordt de patiënt ook geprivilegieerd van de ziekenhuisomgeving, hetgeen de zelfstandigheid verder bevordert. In vergelijking met THD is de vervoerstijd van en naar het centrum een nadeel, maar in een dichtbevolkt land als Nederland is de afstand van huis naar een centrum, waar de patiënt actief kan dialyseren, meestal klein en de vervoerstijd is daardoor kort. Een ander nadeel van AHD is, dat de patiënt de dialyse moet uitvoeren op vaste tijden in de week binnen het kader van het rooster van het dialysecentrum. Vergeleken met THD maakt de verpleegkundige assistentie, die in het dialysecentrum aanwezig is, de patiënt onafhankelijk van hulp door een partner of familielid.

* In augustus 1986 werd door de Dialyse Groep Nederland, de Stichting Thuis Dialyse, de Transplantatie Werkgroep Nederland en Eurotransplant de Stichting RENINE opgericht. Deze stelt zich o.m. ten doel om gegevens te verzamelen, die van belang zijn voor de planning van het nierfunktievervangingsprogramma.

** Zie hoofdstuk 7 voor kostenberekeningen van AHD en PHD.
Thuishaemodialyse is een dialysevorm, die, zoals de term al zegt, thuis wordt uitgevoerd. In het huis van de patiënt wordt een kamer ingericht, waar de dialyse kan worden uitgevoerd. De patiënt doet dit merendeels zelf, maar assistentie door een partner of familielid wordt onontbeerlijk geacht. Voordelen van THD zijn:

- de patiënt hoeft niet naar een dialysecentrum toe om te spoelen,
- de patiënt heeft een grotere vrijheid om te bepalen, wanneer de dialyse wordt uitgevoerd,
- THD is goedkoper, ook in vergelijking met AHD in een centrum*.

Tegenover deze voordelen staan ook nadelen:

- de patiënt is voor zijn behandeling afhankelijk van een partner, hetgeen spanningen in de dagelijkse leefsituatie kan oproepen. De grote betrokkenheid van de patiënt en de partner op elkaar kan overigens ook tot een versteviging van de relatie tussen patiënt en partner leiden;
- de patiënt heeft de behandeling in huis. De uitvoering van de dialyse in huis, heeft ook externe effecten op de dagelijkse woonomgeving, bijvoorbeeld door de geur, die ontstaat door de ontsmetting van materialen.

De afweging tussen THD en AHD in een centrum is moeilijk te maken. Bij thuisdialyse is de patiënt afhankelijk van de partner, en heeft een wat grotere vrijheid. Bij AHD in een centrum wordt de afhankelijkheid van betrokkenen in de naaste leefomgeving in feite verwisseld voor afhankelijkheid van verpleegkundige assistentie en is de behandeling geïsoleerd van de leefomgeving van de patiënt. In Nederland hebben tot nu toe dialyse-artsen merendeels een voorkeur voor AHD in een centrum.

3.3.3. Aantallen haemodialysepatiënten

De verdeling van patiënten AHD, PHD in het verleden is niet bekend. Wel kan een overzicht worden gegeven van de verdeling van haemodialysepatiënten over THD, Diatel en Centrumhaemodialyse. Zie tabel 1.

* Zie voor kostenberekeningen van THD hoofdstuk 7.
Tabel 1. Verdeling van patiënten over haemodialysevormen

<table>
<thead>
<tr>
<th>jaar (1 jan)</th>
<th>(1) Thuis-</th>
<th>(2) DIATEL</th>
<th>(3) Centrum-</th>
<th>(4) Totaal haemodialyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>29</td>
<td>-</td>
<td>366</td>
<td>395</td>
</tr>
<tr>
<td>1972</td>
<td>40</td>
<td>-</td>
<td>491</td>
<td>531</td>
</tr>
<tr>
<td>1973</td>
<td>59</td>
<td>-</td>
<td>614</td>
<td>673</td>
</tr>
<tr>
<td>1974</td>
<td>82</td>
<td>-</td>
<td>718</td>
<td>800</td>
</tr>
<tr>
<td>1975</td>
<td>118</td>
<td>-</td>
<td>808</td>
<td>926</td>
</tr>
<tr>
<td>1976</td>
<td>133</td>
<td>-</td>
<td>904</td>
<td>1037</td>
</tr>
<tr>
<td>1977</td>
<td>135</td>
<td>20</td>
<td>963</td>
<td>1118</td>
</tr>
<tr>
<td>1978</td>
<td>143</td>
<td>45</td>
<td>1085</td>
<td>1273</td>
</tr>
<tr>
<td>1979</td>
<td>141</td>
<td>57</td>
<td>1162</td>
<td>1360</td>
</tr>
<tr>
<td>1980</td>
<td>169</td>
<td>59</td>
<td>1266</td>
<td>1494</td>
</tr>
<tr>
<td>1981</td>
<td>170</td>
<td>66</td>
<td>1427</td>
<td>1663</td>
</tr>
<tr>
<td>1982</td>
<td>184</td>
<td>73</td>
<td>1608</td>
<td>1865</td>
</tr>
<tr>
<td>1983</td>
<td>187</td>
<td>96</td>
<td>1715</td>
<td>1998</td>
</tr>
<tr>
<td>1984</td>
<td>186</td>
<td>113</td>
<td>1741</td>
<td>2040</td>
</tr>
<tr>
<td>1985</td>
<td>169</td>
<td>109</td>
<td>1737</td>
<td>2015</td>
</tr>
<tr>
<td>1986</td>
<td>159</td>
<td>170</td>
<td>1762</td>
<td>2091</td>
</tr>
</tbody>
</table>

Bron DGN.

In Nederland is de Thuishaemodialyse eigenlijk nooit goed van de grond gekomen. In een aantal landen lag het aandeel van de THD in de haemodialyse als totaal hoger. In het Verenigd Koninkrijk, West-Duitsland en Frankrijk was dit aandeel per 31 december 1980 resp. 62%, 18,4% en 17,8% (EDTA, 1980). In de Verenigde Staten was het aandeel van de THD in 1972 ca. 40 %. Daarna daalde dit aandeel, vermoedelijk onder invloed van wetgeving, die centrumdialyse stimuleerde ten kosten van de thuishaemodialyse (Jenkins, et al; Friedman, et al).

In de loop van de tijd is het aandeel van de middelste en oudere leeftijdsgroep binnen de dialysepopulatie sterk gestegen. Betrouwbare gegevens over de leeftijdsverdeling van de dialysepopulatie zijn niet beschikbaar. Een indruk van de verschuiving in leeftijd geeft tabel 2. Deze is berekend op basis van EDTA gegevens voor de jaren 1971 tot en met 1982 en op basis van DGN gegevens over de periode 1983 tot en met 1986. De EDTA gegevens betreffen de dialysepatiënten, waarover tot en met 1982 aan de EDTA werd gerapporteerd (ca. 80 % van alle patiënten). De DGN gegevens betreffen ook CAPD patiënten, maar aangenomen kan worden dat de verdeling van de CAPD patiënten niet afwijkt van die van haemodialysepatiënten.
### Tabel 2. Procentuele verdeling van dialysepatiënten over leeftijdsgroepen

<table>
<thead>
<tr>
<th>Jaar (1 jan.)</th>
<th>Leeftijd 0-44</th>
<th>Leeftijd 45-64</th>
<th>Leeftijd 65+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>76</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>1972</td>
<td>70</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>1973</td>
<td>62</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>1974</td>
<td>56</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>1975</td>
<td>56</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>1976</td>
<td>51</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>1977</td>
<td>48</td>
<td>49</td>
<td>3</td>
</tr>
<tr>
<td>1978</td>
<td>47</td>
<td>49</td>
<td>4</td>
</tr>
<tr>
<td>1979</td>
<td>43</td>
<td>51</td>
<td>6</td>
</tr>
<tr>
<td>1980</td>
<td>40</td>
<td>53</td>
<td>7</td>
</tr>
<tr>
<td>1981</td>
<td>39</td>
<td>52</td>
<td>9</td>
</tr>
<tr>
<td>1982</td>
<td>32</td>
<td>56</td>
<td>12</td>
</tr>
<tr>
<td>1983</td>
<td>30</td>
<td>52</td>
<td>18</td>
</tr>
<tr>
<td>1984</td>
<td>29</td>
<td>50</td>
<td>21</td>
</tr>
<tr>
<td>1985</td>
<td>28</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>1986</td>
<td>29</td>
<td>45</td>
<td>26</td>
</tr>
</tbody>
</table>

Bron: EDTA, DGN

Voor 1982 werden door de DGN geen gegevens verzameld over de leeftijdsvordering van de dialysepatiënten.

De cijfers in bovenstaande tabel illustreren het beleidsprobleem dat in de loop der jaren is ontstaan. In het begin van de jaren zeventig werd het beleid vooral gericht op het opvoeren van het aantal transplantaties. De groeiende aantallen dialysepatiënten in de midden en oudere leeftijdsgroep noopten tot een grotere aandacht voor de verdeling van patiënten over dialysevormen.
enigszins voorzichtig zijn met kalium-houdende voedingsstoffen.

CAPD is voor diabetici vaak te prefereren boven haemodialyse. Door insuline toe te voegen aan het dialysaat ontstaat een "kunstmatige" alvleesklier (Chan et al.).

De hoofdcomplicatie van CAPD is buikvliesontsteking ofwel peritonitis. Deze ontstaat doordat bacteriën via het catheter de buikholte van de patiënt binnendringen. Peritonitis komt vaker voor naarmate de patiënt minder discipline kan opbrengen bij de verwisseling van het dialysaat. De incidentie van peritonitis, die in de literatuur wordt gerapporteerd, verschilt. In het CAPD-programma van het Amsterdamse Binnengasthuis was de incidentie één maal per drie patiëntmaanden, en na correctie voor enkele patiënten met een zeer hoge peritonitis-frequentie één maal per 5,7 patiënt-maanden (Boeschoten et al.). Khanna et al. meldden evenwel voor het Canadese programma in Toronto een incidentie van één episode per 12,6 patiëntmaanden. In Canada wordt 23% van de dialysepopulatie met CAPD gespoeld en is ruime ervaring opgedaan met de behandeling. Kennelijk doet zich een leereffect voor.

Naast peritonitis zijn er andere complicaties van CAPD. Te noemen vallen onder meer: been- en buikkrampen, weglekken van het dialysaat uit de buikholte door inwendige breuken, constipatie en vetzucht (Khanna et al., p. 29).

Meestal wordt in de medische artikelen gemeld dat de patiënten een grote toename in hun subjectief welbevinden constateren. Maar uit het onderzoek van Khanna et al. bleek dat na zes maanden CAPD 41% van de patiënten niet in staat was om in een baan of huishouden het noodzakelijke werk te verrichten. Dit percentage steeg met de duur van de behandeling tot 65% na twee jaar CAPD.

Niet iedereen is even optimistisch over de mogelijkheid, dat CAPD haemodialyse in belangrijke mate kan vervangen. Zo schreven Chan et al. in de Lancet, dat CAPD nog geen revolutionaire ontwikkeling in de behandeling van chronische nierinsufficiëntie was (Chan et al., p. 1411). Zij meenden dat onnodige publiciteit moest worden vermeden om misleiding van patiënten te voorkomen en waarschuwden tegen een aantal complicaties.

3.4.2. Aantallen CAPD patiënten

Het aandeel van de CAPD in het totaal van de chronische dialyse is de laatste jaren sterk gestegen. Een overzicht wordt gepresenteerd in tabel 3.
3.5. NIERTRANSPLANTATIE

3.5.1. Algemeen

In deze paragraaf is de aandacht gericht op de niertransplantatie. Niertransplantatie is een alternatief voor dialyse, maar alleen voor patiënten, die jonger zijn dan ca. 65 jaar. Patiënten boven de 65 jaar kunnen in het algemeen niet worden getransplanteerd.

In uitzonderingsgevallen wordt een niertransplantatie uitgevoerd zonder voorafgaande dialyse, maar meestal gaat aan een niertransplantatie een dialyseperiode vooraf. In die overbruggingsperiode wordt onderzocht of een transplantatie mogelijk is. Als de patiënt is goedgekeurd voor transplantatie wordt deze aangemeld bij EUROTRANSPLANT. Daarna verstrijkt nog een periode waarin de patiënt wacht op een voor hem/haar geschikte nier. Na een transplantatie moet een deel van de patiënten opnieuw gaan dialyseren, omdat het transplanataat niet meer voldoende functioneert. Dan kan een tweede transplantatie volgen. In die gevallen laat de patiëntgeschiedenis de sequentie dialyse, eerste transplantatie, tweede dialyse, tweede transplantatie zien. Ook na een tweede niertransplantatie komt terugval op dialyse voor. Derde transplantaties zijn zo zeldzaam, dat daarvan bij de prognose van het nierfunktievervangingsprogramma wordt afgezien.

Niertransplantatie kan worden gedefinieerd als het inbrengen van een nier, afkomstig van een donor, in het lichaam op een zodanige manier, dat de getransplanteerde nier de nierfuntie van de patiënt kan vervullen. De donornier wordt operatief in het lichaam van de patiënt gebracht. Er worden chirurgische verbindingen tot stand gebracht tussen de donornier, het bloedcirculatiesysteem
en de blaas van de patiënt. Bij een geslaagde transplantatie gaat de donornier onmiddellijk of kort na de operatie alle nierfunkties vervullen. Hoewel de mens van nature over twee nieren beschikt, is transplantatie van één nier voldoende voor herstel van de nierfunkties.

Een niertransplantatie is een allogene transplantatie. Dit wil zeggen dat het weefsel niet afkomstig is van de patiënt zelf, zoals bijvoorbeeld bij huidtransplantatie, maar van een donor. Het lichaam van de patiënt beschouwt het getransplanteerde weefsel vrijwel altijd als lichaamsvreemd. Zonder passende voorzorgen zal het transplantaat daarom worden afgestoten. Voor een beschrijving van de transplantatie-immunologie wordt verwezen naar het recente advies van de Gezondheidsraad inzake Algemene Transplantatieproblematiek (Gezondheidsraad, 1987, p 51 ev.). Er zijn twee mogelijkheden om de kans op afstoting van de getransplanteerde nier te verkleinen. De eerste houdt in dat men poogt de overeenkomst tussen het weefseltype van het transplantaat en de patiënt zo groot mogelijk te doen zijn ('matching'). De tweede is gericht op beteugeling van de afstotingsprocessen.

Voor het merendeel van de niertransplantaties maakt men in Nederland gebruik van nieren, die uitgenomen worden uit het stoffelijk overschat van overledenen. Men spreekt dan van postmortale orgaandonatie. Per postmortale nierdonor kunnen in beginsel twee niertransplantaties worden uitgevoerd. In de praktijk worden per postmortale nier donor ca. 1,7 niertransplantaties uitgevoerd, omdat een aantal nieren verloren gaat om logistieke redenen. Naast postmortale-donor-transplantaties worden ook transplantaties uitgevoerd, waarbij de donornier afkomstig is van een levende donor. In dat geval wordt één van de twee nieren van een levende donor uitgenomen en geïmplanteerd bij de nierpatiënt.

Om de overeenstemming tussen het weefseltype van ontvanger en donornier te maximeren wordt bij EUROTRANSPLANT een computerbestand bijgehouden met gegevens over de weefseltypering van alle potentiële niertransplantatiekandidaten in een aantal West-Europese landen*. Wanneer een postmortale donornier ter beschikking komt, worden in dit computerbestand de patiënten gezocht wier weefseltypering zo goed mogelijk overeenstemt met het weefseltype van de donornier. Door dit proces van matching wordt de kans op afstoting van het transplantaat verkleind.

Een voorwaarde voor een acceptabele nier, afkomstig van een postmortale donor, is dat de nier niet is aangetast door het ziekte- en overlijdensproces van de donor. De donor moet tot het einde van het leven een normale nierfunctie hebben gehad en vrij zijn geweest van ziekten, waarbij de nier betrokken is, zoals bloedvergiftiging, hoge bloeddruk of diabetes (Dougherty & Bannayan, p. 411). Het belang van de patiënt, wiens nieren na de dood eventueel hergebruikt zouden kunnen worden, vereist, dat zo zorgvuldig mogelijk wordt vastgesteld of het overlijdensmoment plaats heeft gevonden.

* De deelnemende landen van Eurotransplant zijn: Oostenrijk, België, Nederland, Luxemburg en de Bondsrepubliek Duitsland.
Voorheen was hartstilstand daarvoor het criterium, maar de medische ontwikkeling heeft dit onwerkbaar gemaakt. Vandaar dat nu in Nederland hersendood als doorslaggevend criterium wordt gehanteerd. Over de invulling van dit criterium bestaat overeenstemming in medische kring (Gezondheidsraad 1974 en 1987).

Transplantatie van nieren afkomstig van levende donoren vindt in Nederland in de praktijk vrijwel uitsluitend plaats ingeval van donatie door een familielid, en gebeurt in ons land in ongeveer 10% van de gevallen. De overeenkomst tussen de weefseltypering van ontvanger en donor kan bij familietransplantaties groter zijn dan bij postmortale-donor-transplantaties. In het geval van ééneiglijke tweelingen is het weefsel van donor en ontvanger identiek (iso-transplantatie). Bij transplantaties tussen ouders en kinderen is er hoogstens sprake van half-identieke combinaties. Door levende-donor-transplantaties kan een hoge overeenstemming tussen weefsel van ontvanger en donor worden bereikt. Daar staat tegenover dat er enig risico bestaat voor het donorende familielid en dat ook afhankelijkheidsrelaties kunnen ontstaan tussen het donorende en ontvangeende familielid. In veel gevallen is ook geen familielid beschikbaar, dat bereid is om als donor op te treden. Vandaar dat in Nederland in overwegende mate gebruik wordt gemaakt van nieren, afkomstig van overledenen.

Omdat het meestal niet mogelijk is om een complete match tot stand te brengen tussen het weefseltype van het transplantaat en dat van de ontvanger, ontstaan bij transplantatie vrijwel altijd afstotingsreacties. De sleutel tot succes is dan de beteugeling van dit afstotingsproces. Dit gebeurt door de reacties, die tesamen het immunologisch proces vormen, te verzwakken: immunosuppressie. Meestal wordt voor de immunosuppressie gebruik gemaakt van (combinaties van) medicijnen. Medicijnen die, al dan niet in combinatie, worden toegepast zijn: (gluco)corticosteroiden, azathioprine, ATG (antihumaan thymocyten)globuline, opgewekt bij rat, konijn, geit of paard), ciclosporine en (recent) monoclonale antistoffen (Gezondheidsraad, 1987, p. 55).

In de jaren zestig gaf men zeer hoge prioriteit aan pogingen om het transplantaat te behouden. Bij afstotingsverschijnselen werden daarom relatief hoge doses immuno-suppressiva voorgeschreven. In de loop der tijd is men zich sterker bewust geworden van de schadelijke neveneffecten van deze medicijnen. Niet alleen de afweermechanismen tegen de getransplanteerde nier worden onderdrukt. Ook de weerstand van het lichaam tegen allerlei virussen en infecties wordt verlaagd. In de literatuur werd gerapporteerd dat veertig procent van de sterfte van patiënten na transplantatie het gevolg was van infecties, die bloedvergiftiging teweeg brengen (Dougherty & Bannayan, p. 425-426). Daarom wordt sinds ca. 1972 gepoogd zo laag mogelijke doses immuno-suppressiva te geven.

De complicaties, die zich na een transplantatie voordoen, zijn niet alle toe te schrijven aan de transplantatie op zich. Sommige verschijnselen, zoals ziekte van het beendergestel en hoge bloeddruk zouden de voortzettingen kunnen zijn van de oorspronkelijke ziekteprocessen. Wel kunnen deze processen verhevigd of versneld worden door de toepassing van het immuno-suppressieve
regime (Suthanthiran & Riggio, p. 361). Aseptische necrose is een gevreesde complicatie, die zich bij transplantatiepatiënten voordoet. Ten gevolge van een niet goed functionerende calciumhuishouding treedt dan versterving en holtevorming in de botten op. Dit doet zich onder meer voor in de dijbeenderen. Als dit proces doorzet wordt de patiënt uiteindelijk tot de rolstoel veroordeeld en is dan in zijn bewegingsvrijheid nog sterker beperkt dan in zijn/haar dialyseperiode. Omdat het verkrijgen van een grotere bewegingsvrijheid juist één van de hoofddoeleinden van de transplantatie is, moet de mogelijkheid in de rolstoel te belanden zeer bedreigend zijn. In de literatuur wordt gemeld dat aseptische necrose voorkomt bij 20% van de transplantatiepatiënten (Suthanthiran & Riggio, p. 365). De ernst van de complicaties verschilt. Omdat het hier een zeer langzaam voortschrijdend proces betreft, is het moeilijk inzicht te verkrijgen in de ontwikkeling van de complicatie over een zeer lange periode.

Zoals hiervoor werd aangegeven, heeft de getransplanteerde patiënt een verhoogde kans op infecties door de immuno-suppressie. Longontsteking komt veel voor, evenals infecties aan de urinewegen. Hoge bloeddruk komt voor bij ca. 50% van de patiënten. In de literatuur wordt ook beschreven dat de kans op kanker bij transplantatiepatiënten, in het bijzonder van lymfeklierkanker, aanzienlijk groter is dan bij gezonde mensen.

3.5.2. Aantal transplantaties

In tabel 2.8 is een overzicht gegeven van de ontwikkeling van het totaal aantal transplantaties, onderscheiden naar de herkomst van de donor. Uit de tabel blijkt dat het aandeel van de transplantaties, waarbij een levende donor betrokken was steeds relatief laag was. Dit in tegenstelling tot de Verenigde Staten, waar in 40% van de transplantaties de nier verkregen werd van een levende donor (Suthanthiran & Riggio, p. 345).
<table>
<thead>
<tr>
<th>Year</th>
<th>Post-mortem donor</th>
<th>Living donor</th>
<th>Living donor transplant cases</th>
<th>Total</th>
<th>Living donor organ share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>-</td>
<td>2</td>
<td>100</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1967</td>
<td>6</td>
<td>1</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>23</td>
<td>4</td>
<td>15</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>29</td>
<td>2</td>
<td>6</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>40</td>
<td>3</td>
<td>7</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>59</td>
<td>-</td>
<td>0</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>86</td>
<td>3</td>
<td>3</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>114</td>
<td>12</td>
<td>10</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>139</td>
<td>11</td>
<td>7</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>152</td>
<td>6</td>
<td>4</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>170</td>
<td>11</td>
<td>6</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>180</td>
<td>20</td>
<td>10</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>219</td>
<td>17</td>
<td>7</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>220</td>
<td>5</td>
<td>2</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>198</td>
<td>6</td>
<td>3</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>242</td>
<td>10</td>
<td>4</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>235</td>
<td>14</td>
<td>6</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>340</td>
<td>31</td>
<td>8</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>347</td>
<td>29</td>
<td>8</td>
<td>376</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>289</td>
<td>43</td>
<td>13</td>
<td>332</td>
<td></td>
</tr>
</tbody>
</table>

Bron: EUROTRANSPLANT