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Abstract—Ultrasound in the presence of gas-filled microbub-
bles can be used to enhance local uptake of drugs and genes. To
study the drug delivery potential and its underlying physical
and biological mechanisms, an in vitro vessel model should
ideally include 3D cell culture, perfusion flow, and membrane-
free soft boundaries. Here, we propose an organ-on-a-chip mi-
crofluidic platform to study ultrasound-mediated drug delivery:
the OrganoPlate. The acoustic propagation into the OrganoPlate
was determined to assess the feasibility of controlled microbubble
actuation, which is required to study the microbubble-cell inter-
action for drug delivery. The pressure field in the OrganoPlate
was characterized non-invasively by studying experimentally the
well-known response of microbubbles and by simulating the
acoustic wave propagation in the system. Microbubble dynamics
in the OrganoPlate were recorded with the Brandaris 128 ultra-
high speed camera (17 Mfps) and a control experiment was per-
formed in an OptiCell, an in vitro monolayer cell culture chamber
that is conventionally used to study ultrasound-mediated drug
delivery. When insonified at frequencies between 1 and 2 MHz,
microbubbles in the OrganoPlate experienced larger oscillation
amplitudes resulting from higher local pressures. Microbubbles
responded similarly in both systems when insonified at frequen-
cies between 2 and 4 MHz. Numerical simulations performed
with a 3D finite element model of ultrasound propagation into
the OrganoPlate and the OptiCell showed the same frequency
dependent behavior. The predictable and homogeneous pressure
field in the OrganoPlate demonstrates its potential to develop an
in vitro 3D cell culture model, well-suited to study ultrasound-
mediated drug delivery.

Index Terms—Acoustic characterization, acoustic wave mod-
eling, drug delivery, microfluidics, organ-on-a-chip, ultrasound
contrast agents.
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I. INTRODUCTION

LTRASOUND contrast agents consist of coated gas

microbubbles with diameters ranging from 1-10 ym and
are widely used to improve the contrast of organ perfusion
in diagnostic ultrasound imaging. Upon ultrasound insonifica-
tion, microbubbles compress and expand due to the acoustic
pressure wave. This oscillatory behavior is the characteristic
microbubble response which provides contrast enhancement
for imaging. Recent studies also demonstrate the potential
of oscillating microbubbles to locally enhance vascular drug
delivery [1], [2]. Although the exact mechanism of delivery
is unknown at present, there are three known pathways for
ultrasound-mediated drug delivery [1]: 1) formation of pores in
the cell membrane, termed sonoporation [2], [3]; 2) stimulation
of endocytosis [4]; and 3) opening of cell-cell junctions
into the extravascular tissue [5]. To study these pathways
and elucidate the mechanisms, the in vitro endothelial cell
model ideally includes 3D cell culture, perfusion flow, and
soft boundaries in the absence of rigid membranes. Since
microbubble behavior strongly depends on the underlying
substrate [6]—[8], the soft boundaries of an in vivo blood vessel
need to be optimally reproduced. To achieve physiological
relevant cell behavior, 3D cell culture and flow are required
to mimic microcirculation, lumen architecture, and spatial
distribution [9]-[11].

Ultrasound-mediated drug delivery studies commonly use
an OptiCell (Nunc, Thermo Fisher Scientific, Wiesbaden,
Germany) [12]-[18]. This parallel plate chamber limits cell
culture to conventional monolayers on rigid boundaries and
static conditions. In order to incorporate flow, others have used
a commercially available microchannel flow set-up (u-Slide,
Ibidi GmbH, Munich, Germany) [19], [20]. Additionally, a
biologically and acoustically compatible device was developed
by Carugo et al. [21] for monolayer cell culture under flow. So
far, these in vitro models may include physiological relevant
flow, but are unfortunately still limited to cell monolayers and
rigid boundaries. Vessel-on-a-chip cell culture in a microfluidic
device better reproduces the in vivo physical architecture
of a vessel [22]. Ideally, a high throughput is desired, cell
culture biocompatible materials, a standardized manufacturing
process, and optical and chemical access to both the apical
and basolateral side of the vessel. To add functionality for
ultrasound-mediated drug delivery, we propose to use the
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OrganoPlate® [23] (Mimetas B.V., Leiden, the Netherlands)
to study the drug delivery pathways enhanced by microbubbles
upon ultrasound insonification.

The OrganoPlate is an organ-on-a-chip platform with up to
96 microfluidic channel networks incorporated into a standard
384-well microtiter plate (Fig. 1). The 4003400B OrganoPlate
used here contains 40 microfluidic networks, consisting of
three adjacent microchannels allowing for 3D cell culture,
perfusion, soft boundaries, and co-culture. The adjacent mi-
crochannels are separated by phaseguides: capillary pressure
barriers that are used to guide fluid flow and pattern extracel-
lular matrices. The diffusion distances are shortened through
the use of capillary pressure barriers instead of membranes
or walls and allows for direct cell-cell interactions [24].
Intricate cell models can be developed in the OrganoPlate;
such as 3D neuronal networks [25], intestinal epithelium tubes
[26], and a functional hepatocyte liver model [27]. In this
paper, we propose to use the OrganoPlate in combination
with ultrasound for the first time. Since the microchannels
are incorporated between two glass plates and separated by
polymer walls, here we investigate how ultrasound propagates
into the OrganoPlate.

The aim of this study was to assess whether controlled
microbubble oscillation is feasible in the OrganoPlate. Since
microbubble response is dictated directly by the ultrasound
pressure wave, the acoustic propagation into the OrganoPlate
was characterized. Because of the small dimensions of the
microchannels, the pressure field inside the OrganoPlate could
not be measured using a hydrophone without altering the
ultrasound field. To characterize the pressure in situ and non-
invasively, microbubbles were used as pressure sensors. The
pressure was determined from the well-known microbubble
response upon insonification, which requires characterization
of the microbubble shell parameters. Since these microbubble
shell parameters depend on the pressure itself [28], [29], a new
iterative method was introduced that both determined the pres-
sure field to which the microbubbles were exposed and their
corresponding shell parameters. In order to do so, individual
microbubbles in the OrganoPlate were recorded during ultra-
sound insonification using the Brandaris 128 ultra-high speed
camera [30]. Microbubble spectroscopy [31] was performed
by successively insonifying each individual microbubble while
sweeping through a range of transmit frequencies, fr, from
1 to 4 MHz. To characterize the ultrasound propagation, the
pressure amplitude experienced by the microbubbles inside
the OrganoPlate was obtained from the experimental data.
The results were compared to those of control experiments
performed in a conventional OptiCell, using an identical
experimental set-up [32]. Additionally, a 3D finite element
model was developed to simulate the acoustic propagation,
to study the spatial distribution of the pressure field and to
compare it with the experimental data.

II. MATERIAL AND METHODS
A. The OrganoPlate

The OrganoPlate (Mimetas B.V., 4003400B) is a microflu-
idic system consisting of 40 chips developed for 3D cell

culture [23]. In the case of a 3-lane design, each chip con-
sists of three adjacent microchannels that can be accessed
through their corresponding in- and outlets. The adjacent
microchannels are separated by phaseguides [24], which are
100 pm x 50 pym (w x h) in size. As illustrated in Fig. 1,
cells cultured adjacent to a microchannel with extracellu-
lar matrix can grow into a 3D perfusable microvessel. The
400 pm x 200 pm x 2200 um (w x h x 1) microchannels
are incorporated between two 175 pm thick borosilicate glass
plates (Fig. 1). The three microchannels are bound between
two polymer walls (400 pum wide; Fig. 1). The OrganoPlate
was modified to ensure compatibility with our experimental
set-up. The standard wells of the 384-well microtiter plate
were cut out, leaving only a single column of wells in the
middle of the OrganoPlate, as depicted in Fig. 1. Removing
the wells allowed for visualization of the microchannels using
an upright microscope and insonification from below at a 45°
incidence angle while submersed in water, thereby minimiz-
ing the reflections of the incident ultrasound wave with the
microscope objective, as schematically depicted in Fig. 2.

B. Microbubble Preparation

Biotinylated lipid-coated microbubbles with a C4Fyg
gas core and a DSPC (1,2-distearoyl-sn-glycero-3-
phosphocholine)-based shell were made by sonication

for 10 s, as previously described [32]-[34]. The microbubbles
were passively washed by flotation in a 3 mL syringe with a
one-way tap by leaving them to stand on the lab bench. After
45 min, the subnatant was drained through the one-way tap
and the microbubbles were resuspended in 1 mL of phosphate
buffered saline (PBS) saturated with C4F;y and drained into
an Eppendorf tube. The microbubbles were diluted to a
concentration of approximately 3 - 106 microbubbles/mL in
PBS as determined by a Coulter counter Multisizer 3 (n=3)
(Beckman Coulter, Mijdrecht, the Netherlands) using a 50 pm
aperture tube, allowing for quantification of microbubble
diameters of 1-30 pm.

C. Experimental Set-up

Microbubble oscillations were studied in the OrganoPlate
replicating the ultrasound settings by van Rooij er al. [32].
Briefly, a single element broadband transducer (1-9 MHz
bandwidth, 25 mm focal distance, —6 dB beamwidth at
1 MHz of 1.3 mm, PA275, Precision Acoustics, Dorchester,
UK) was used for insonification at a 45° incidence angle
while submersed in water (Fig. 2). The transducer output was
calibrated in a separate experiment using a needle hydrophone
(1 mm diameter, PA2293, Precision Acoustics). To perform
microbubble spectroscopy measurements, we insonified single
microbubbles with transmit frequencies (fr) ranging from 1 to
4 MHz, in steps of 300 kHz, using an 8-cycle sine wave
burst. The first and last cycles were Gaussian tapered (variance
02 = 1.1/ f2). Measurements were performed at 20 kPa peak
negative pressure (PNP) in the focus, as calibrated in water.
The optical and ultrasound foci were aligned and situated just
below the upper glass plate of the OrganoPlate, where the
microbubbles were located.
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Fig. 1. The modified OrganoPlate, revealing the microfluidic structure after removing most of the wells (black plastic) of the standard 384-well microtiter plate.
The scale bar indicates the dimensions of the picture. The top view shows the three adjacent microchannels: two for medium perfusion and one for gel (i.e.
extracellular matrix), allowing for culture against soft boundaries. The arrow indicates the direction of the side view. The side view shows the microchannels
encased between two glass plates (gray), bound by polymer walls (green), and separated by polymer phaseguides (green). The meniscus-pinning effect [24]
caused by the phaseguides results in a curved gel as soft boundary. The side view also illustrates the desired 3D in vitro set-up with cultured endothelial cells
(orange) which can be perfused with microbubbles (gray spheres) and therapeutic agent (red/white). (Not drawn to scale.)
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Fig. 2. Schematic of the experimental set-up to study microbubble oscillation
upon ultrasound insonification under a 45° incidence angle. The optical
and ultrasound foci are located just beneath the upper glass plate of the
OrganoPlate. The entire set-up was submersed in water. (Not drawn to scale.)

In the present study, microbubbles were introduced into the
OrganoPlate by pipetting 6 uL. of microbubble suspension
on the inlet of a microchannel. They were insonified at
room temperature within 2 h. Their oscillation behavior was
recorded using the Brandaris 128 ultra-high speed camera at
approximately 17 million frames per second [30], using a mi-
croscope (BX-FM, Olympus, Tokyo, Japan) with a 40x water
immersion objective (LUMPIlanFl, Olympus) and a 2x lens
(Olympus). The first recording was performed in absence of
ultrasound to image the initial microbubble size, followed by
11 recordings with ultrasound sweeping through the different
transmit frequencies. The time between recordings was 80 ms.
Recorded microbubbles were separated at least 0.7 mm to
avoid multiple insonifications at the same location due to the
finite -6 dB beamwidth of the transducer. In total, data from
12 different microchannels was evaluated.

D. Experimental Data Analysis

Microbubble oscillations were quantified using custom-
designed image analysis software to determine the change in
microbubble radius as a function of time (R-t curve) [31]. The
relative excursion, z(t), was determined as R = Ry(1 + ),
with Ry the resting radius. To study the oscillations at the
transmit frequency a 3™ order Butterworth bandpass filter was
applied to x(t), centered at fr with a 500 kHz bandwidth.
The maximum amplitude of the filtered signal was defined as
the relative excursion amplitude, xo(fr).

The relationship between the relative excursion amplitude,
zo(fr), and the acoustic pressure amplitude experienced by
the microbubble, P, was determined. In principle, microbub-
bles insonified at low enough acoustic pressures behave as
linear oscillators [35], [36]. Therefore, the amplitude zq of
the relative excursion = xgsin(wrt) can be described by
the expression for a harmonic oscillator [31]:

Fy
\/(wg — w2)? + (Bwrwp)®

with wg = 27 fy where f is the eigenfrequency of the system,
wr = 27 fr with fp the transmit frequency that drives the
oscillation, and ¢ the total damping coefficient. Fy is the
amplitude of the forcing term F'(t) = Fy sin(wrt) and is given
by Fo = |P|/(pR3) [1], with p = 10® kg/m? the density of
water. The eigenfrequency f; of the system is:
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with 7 = 1.07 the ratio of specific heats for C4Fyg, Py = 10° Pa
the ambient pressure, o,, = 0.072 N/m the surface tension,
and x the elasticity of the microbubble shell as obtained
from the linearized microbubble dynamics equation [31]. The
total damping coefficient includes the sound reradiated by
the microbubble, a contribution by liquid viscosity, a thermal
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Fig. 3. Schematic of the iterative method to fit the relative excursion
amplitude (x¢) to the harmonic oscillator model (4) to determine the pressure
amplitude (P) and the microbubble shell parameters, incorporated in the
eigenfrequency (fo) and damping coefficient (§). Step 1 is repeated for
each transmit frequency (f7) and step 2 and 3 for each microbubble. The
parameters determined in each step are shown in orange.

contribution assumed equal to the viscous contribution [35],

and the effect of the shell viscosity [32]:
woR 4 4k

_ wWolto | o, . H +—

c Ripwo  Rgpwo

0 3)
with ¢ = 1500 m/s the speed of sound in water, ;1 = 1073 Pa-s
the viscosity of water, and x, the microbubble shell viscosity.
Finally, the relative excursion amplitude xy in (1) can be
rewritten as a function of the acoustic pressure amplitude and
transmit frequency:

|P|/(4x%pR3)
VU = 127+ 6 fo)?

where fy and é depend on the microbubble shell as given in (2)
and (3). Hence, in the linear regime, we can predict the relative
excursion amplitude of a microbubble if we know the pressure
amplitude, the transmit frequency, and the microbubble’s rest-
ing size, shell elasticity, and shell viscosity. Equivalently, if we
know zy and Ry we can determine the pressure experienced
by the microbubble from the experimental data, either in the
OrganoPlate or in the OptiCell, when the shell elasticity and
viscosity are known.

The shell properties of DSPC-coated microbubbles were
determined by van Rooij et al. [32] by fitting microbubble
excursion to the response of a linear oscillator, at 20 kPa
PNP in an OptiCell. However, to account for the variability
among microbubble size, shell properties, and the change in
shell elasticity with pressure [28], [29], shell characterization
was incorporated in our analysis with a new iterative method
consisting of three steps, as described below and visualized
in Fig. 3.

o =

“4)

Step 0: Initial Conditions
The initial conditions for the eigenfrequency (fp) and
damping (§) of each microbubble were chosen by assuming

the general shell properties by van Rooij et al [32].
For each microbubble, f; was determined using (2), the
corresponding Ry, and x = 0.26 N/m [32]. Using (3), §
was determined with the Ry of each microbubble and a
logarithmic fit through the relationship between viscosity
and microbubble radius of log,(ks) = 0.188- Ry —8.838 [32].

Step 1: Calculate P(fr) experienced by microbubbles

With the initial conditions, Ry, and the known relative
excursion amplitudes zo(fr), the pressure amplitude
experienced by each microbubble was calculated according to
the harmonic oscillator model (4) (Step 1 in Fig. 3). This first
step was repeated for every fr from 1 to 4 MHz and resulted
in a frequency dependent pressure, P(fr), experienced by
the microbubbles. To characterize the acoustic propagation
into the system, the pressure inside the microchannel was
normalized to the applied pressure, P* = M (P)/Py, with
M(P) the median P experienced by microbubbles when
insonified at fr and the applied pressure P4 (20 kPa PNP).
When P* is represented in decibel (dB), it is defined as
20 - logyo(P*).

Step 2: Correct xq for the frequency dependent P(fr)

In order to determine the microbubble shell parameters a
standard spectroscopy dataset is required, consisting of xg
as a function of fr for each microbubble while insonified
at uniform pressure amplitude [31]. However, since the
pressure in the microchannels found in Step 1 is frequency
dependent, P*(fr), the microbubbles experienced a different
pressure at different fr. We therefore corrected the relative
excursion amplitude for the frequency dependent pressure,
Zeor = xo/P*(fr) (Step 2 of Fig. 3).

Step 3: Fit to harmonic oscillator to obtain shell properties
The corrected relative excursion amplitude, .., was fitted to
the model of a harmonic oscillator (4) by a least-mean-squares
method to determine fy and § for every microbubble (Step 3
in Fig. 3). This third step resulted in a specific fy and § for
each individual microbubble, accounting for the variability of
shell properties among them.

Using the specific properties of each individual microbub-
ble, the pressure amplitude experienced by each microbubble
was recalculated, returning to the first step of the iterative
scheme (Step 1 in Fig. 3). In total, 30 iterations were carried
out to stabilize the obtained P*, fj, and §. The same data
analysis was also performed on the R-t curves obtained by
van Rooij et al. [32] in an OptiCell (n = 30 microbubbles). All
analyses were performed using MATLAB (The MathWorks,
Natick, MA, USA).

E. Finite Element Model

A 3D wave propagation model was set up in PZFlex
(PZFlex LLC, CA, USA), a time domain finite element pack-
age. Three different models were simulated: the OrganoPlate,
the OptiCell, and the free field in water. The models are shown
in Fig. 4 and the software implementation can be found in the
Supplementary Material.
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Fig. 4. Schematics of the 3D PZFlex models (not drawn to scale) and the ultrasound insonification under a 45° incidence angle. The plane delineated in red
corresponds to the xy-plane at which the ultrasound beam was focused and the pressure (P, ) was evaluated. The dimensions are indicated in um. (a) Model
of the OrganoPlate with total dimensions of 4200 um x 2800 um X 2400 pm (z X y X 2z). The phaseguides are 4200 um X 100 pm X 50 pm (x X y X 2).
The microchannels were filled with water and the outer spacing with air. (b) Model of the OptiCell with total dimensions of 12000 pm X 8100 um X
8400 ym (x X y X 2). (c) Model of the free field (water), which was simulated for both the dimensions of (a) and (b).

The model of the OrganoPlate included the glass plates,
polymer walls, and phaseguides separating the microchannels,
as shown in Fig. 4(a). The acoustic material properties of
PMMA were used to approximate the properties of the poly-
mer walls and phaseguides. The acoustic material properties of
borosilicate glass and PMMA are given in Table 1. To replicate
the insonification conditions of the experimental set-up, the en-
tire OrganoPlate was submersed in water and the three adjacent
lanes of the microfluidic network were filled with water. The
ultrasound pressure wave originated from a curved disk with
the same ratio of curvature radius to diameter as the PA275
transducer (25 mm curvature radius and 23 mm diameter). A
sine wave burst of 8 cycles and unit amplitude was emitted
from below at an incidence angle of 45° (Fig. 4). The transmit
frequency was varied between 1 and 4 MHz. The geometrical
focus was located in the middle of the medium channel just
beneath the surface of the glass plate, corresponding to the
location of the microbubbles during the experiment. The grid
size was at least 15 elements per wavelength. The OptiCell
was modeled by two polystyrene (Table I) parallel plates,
each with a thickness of 75 ym and separated by 2 mm [17],
see Fig. 4(b). The same insonification set-up was simulated
for the OptiCell, but now with the ultrasound focus located
just below the upper polystyrene plate. To assess the acoustic
transparency of both the OrganoPlate and the OptiCell, the
wave propagation in the free field was evaluated in the same
grid and for the same ultrasound settings [Fig. 4(c)]. For all
simulations both the longitudinal and shear wave components
of the pressure wave propagation were calculated.

The finite element model provides time domain information
on the pressure wave propagating through each element. The
simulated pressure amplitude (Py,) was defined as the median
of the rectangular windowed envelope of the time varying
pressure and evaluated in the xy-plane just below the upper
glass plate or the polystyrene membrane (Fig. 4). We defined
Py = 20log(Psim/ Prt), normalizing Pyy with respect
to the maximum pressure amplitude obtained in the free

TABLE I
ACOUSTIC MATERIAL PROPERTIES COMPILED FROM LITERATURE:
BOROSILICATE GLASS [37], [38], PMMA [39], AND POLYSTYRENE [40].

Borosilicate glass ~ PMMA Polystyrene

Density (g cm?) 2.51 1.20 1.05
Longitudinal velocity (m s™) 5710 2757 2400
Shear velocity (m s™) 3467 1400 1150

Longitudinal attenuation 02 164 03
(dB cm” MHz") 23 - ==

Shear attenuation
(dB cm MHz") 0.8 0.75 13

field (P.r), in other words, at the focus when transmitted
at the same frequency in water. In the interest of comparing
the modeled pressure wave propagation to the experimental
data, the median and interquartile range (IQR) of Pj  were
determined in a region equivalent to the field of view around
the focus (100 um x 100 pm).

III. RESULTS
A. Microbubble Oscillation Behavior

Single microbubbles with Ry from 1.4 to 3.1 ym were
insonified and recorded in the OrganoPlate (n = 29). The size
range was similar to that previously recorded in the OptiCell
(n = 30) [32]. A selection of typical frames of a recorded
microbubble in the OrganoPlate are shown in Fig. 5, for
fr = 1.6 MHz. Examples of the determined z( as a function
of Ry are shown for fr = 1.0 MHz [Fig. 6(a)], 1.6 MHz
[Fig. 6(b)], and 2.8 MHz [Fig. 6(c)]. Although variations in
response between microbubbles of similar size were observed
in the spread of the data points, at f = 1.0 and 1.6 MHz
the typical zo in the OrganoPlate was larger than that in the
OptiCell. On the other hand, at f; = 2.8 MHz, z( was similar
in both the OrganoPlate and the OptiCell.
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.... . =2 um

Fig. 5. Selected frames of a Brandaris 128 ultra-high speed camera recording of a microbubble oscillating in the OrganoPlate (Rp = 2.18 um) when insonified

at fr = 1.6 MHz and 20 kPa PNP.

By iteratively fitting x( to the harmonic oscillator model,
the microbubble shell parameters and P experienced by the
microbubbles were obtained. The normalized median pres-
sure (P*) experienced by the microbubbles is shown in
Fig. 7. The change of P* for increasing number of iterations
at fr = 1.6 MHz is shown in Fig. 7(a). The iterative
method clearly stabilizes within 30 iterations for both the
OrganoPlate and the OptiCell. The frequency dependence of
P* is shown in Fig. 7(b). The pressure transmitted into the
OrganoPlate was larger than in the OptiCell for fr from
1 to 2 MHz, with mean P* = 4.7 dB in the OrganoPlate
and P* = —5.0 dB in the OptiCell. The mean P* from
2 to 4 MHz was similar in both systems: —6.1 dB in the
OrganoPlate and —5.1 dB in the OptiCell. In contrast to the
OptiCell, the OrganoPlate showed a clear frequency dependent
behavior. The x (with IQR between brackets), obtained by
fitting fo (Fig. 8) to equation (2), was similar in both the
OrganoPlate and the OptiCell, x = 0.36 (0.35) N/m and
X = 0.32 (0.25) N/m, respectively. The median s (IQR) was
also similar, k5 = 1.1 (0.6)-10~® kg/s in the OrganoPlate and
ks = 0.7 (0.4) - 1078 kg/s in the OptiCell.

B. Finite Element Model

The acoustic pressure as a function of time was simulated in
water, in the OrganoPlate, and in the OptiCell; see examples
depicted in Fig. 9. At all fr, the acoustic pressure in water
was evaluated as a reference for the free field and showed a
clear start and end point of the pressure wave. In addition, the
peak amplitude was constant at 20 kPa PNP over all 8 cycles,
with the exception of transient behavior in the first and last
pulse.

At fr = 1.0 MHz [Fig. 9(a)], the pressure amplitude
in the OrganoPlate was larger than that in the free field,
with Py, = 26 kPa, homogeneous over all cycles, and 15%
persisted after the intended 8 cycles due to reverberations.
At fr = 1.6 MHz [Fig. 9(b)], the pressure wave in the
OrganoPlate was similar to that in water; the pressure am-
plitude was Py, = 22 kPa, homogeneous over all cycles, and
only 7% of Py, was observed after the intended pulse. At
fr = 2.8 MHz [Fig. 9(c)], the pressure amplitude in the
OrganoPlate was only Py, = 14 kPa, but maintained its
homogeneity among cycles and 6% of Py remained. On the
other hand, in the OptiCell the pressure amplitude was lower
than that in the free field for all f7. While the pressure was
maintained homogeneous over all cycles, the amount of Py,
persisting after the intended 8-cycle pulse increased from 8%
at fr = 1.0 MHz up to 30% at 2.8 MHz.
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Fig. 6. Relative excursion amplitude (xg) of 29 single microbubbles in the
OrganoPlate (solid red) and 30 single microbubbles in the OptiCell (open
blue) as a function of resting radius (Rp) when insonified at 20 kPa PNP for
(a) fr = 1.0 MHz, (b) fr = 1.6 MHz and (¢) fr = 2.8 MHz.

Fig. 10 shows examples of the distribution of P in the
free field, the OrganoPlate, and the OptiCell at fr = 1.0 MHz
[Fig. 10(e), (b), and (h)], fr = 1.6 MHz [Fig. 10(f), (c),
and (i)], and fr = 2.8 MHz [Fig. 10(g), (d), and (j)]. The
pressure wave was incident under 45° from the positive -
axis, as schematically illustrated in Fig. 10(a). The pressure
field in water had a clear elliptical focus with a smaller —6 dB
area for higher transmit frequencies [Fig. 10(e)-(g)]. Inside
the OrganoPlate the elliptical focus was clearly changed;
the redistribution of the pressure field shifted the maximum
towards the right-hand side of the intended focus (positive y-
axis). The normalized pressure amplitude when transmitting
at 1.0 MHz was 5.3 dB at the maximum and 2.3 dB in
the focus [Fig. 10(b)], while 2.9 dB at the maximum and
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Fig. 8. Eigenfrequency (fo) of microbubbles in the OrganoPlate (solid red
circles) and OptiCell (open blue circles) and the corresponding fit to (2), in
order to obtain the average shell elasticity. The fo of an uncoated microbubble
is given by x = 0 N/m (black dotted line).

0.7 dB in the focus for 1.6 MHz [Fig. 10(c)]. At 2.8 MHz,
it decreased to —0.4 dB at the maximum and —3.2 dB in
the focus [Fig. 10(d)]. Finally, the pressure distribution in the
OptiCell was only slightly more elongated in the direction of
propagation than in the free field and the pressure amplitude
was at least —2.7 dB lower than P, [Fig. 10(h)-(j)].

The frequency dependence of the simulated pressure nor-
malized to the free field is shown in Fig. 11, for both the
OrganoPlate and the OptiCell. For fp between 1 and 2 MHz,
the mean FPj in the OrganoPlate was higher than in the
OptiCell (1.6 dB and —2.8 dB respectively). For fr from 2
to 4 MHz, the mean P in both systems was similar, with
—4.0 dB in the OrganoPlate and —3.8 dB in the OptiCell. For
comparison, the P* obtained experimentally [Fig. 7(b)] is also

shown in Fig. 11.

IV. DISCUSSION

To the best of our knowledge, the OrganoPlate has never
been used before in combination with ultrasound. More-
over, no information was available on acoustic propagation
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Fig. 9. Acoustic pressure as a function of time at the focus in water (dotted
black line), the OrganoPlate (solid red line), and the OptiCell (dashed blue
line) simulated with the 3D finite element model transmitting 8 cycles at
(a) fr = 1.0 MHz, (b) fr = 1.6 MHz, or (¢) fr = 2.8 MHz.

into the microchannels, which is essential to understand and
predict microbubble behavior. The small dimensions of the
microchannels in the OrganoPlate do not allow direct measure-
ments of the pressure field using a hydrophone without disturb-
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Fig. 10. Normalized pressure (P ) in the xy-plane at the axial focus simulated with the 3D finite element model, obtained by normalizing the pressure

sim

amplitude (Pypy) to the maximum pressure amplitude when transmitted in water (Ppf). The -6 dB contours are indicated by the white dashed line, the
ultrasound geometrical focus by the red cross, and the phaseguides of the OrganoPlate by the white bands. (a) Schematic of the OrganoPlate illustrating the
zy-plane (delineated in red) at which P was determined and the ultrasound incidence direction. This example shows P at fr = 1.6 MHz. The Pj  in

the OrganoPlate is shown at (b) f = 1.0 MHz, (c) 1.6 MHz, and (d) 2.8 MHz; in water at (¢) fr = 1.0 MHz, (f) 1.6 MHz, and (g) 2.8 MHz; and in the

OptiCell at (h) f7 = 1.0 MHz, (i) 1.6 MHz, and (j) 2.8 MHz.

ing the ultrasound field. We therefore assessed the feasibility
of controlled microbubble behavior in the OrganoPlate by
experimentally studying microbubble oscillation and modeling
the pressure wave propagation. We found that the pressure
wave successfully propagated into the microchannels of the
OrganoPlate and resulted in a predictable microbubble oscil-
latory response.

Microbubble behavior upon ultrasound insonification was
fitted to the model of a harmonic oscillator. Measurements
were performed at 20 kPa PNP in order to keep the intrinsic
nonlinear microbubble response to a minimum [32]. However,
the viscoelastic shell parameters are pressure-dependent [28].

With our iterative method, we accounted for this nonlinear
viscoelastic behavior as the shell was characterized for each
individual microbubble. Hence, allowing for a possible change
in shell elasticity and viscosity with pressure. Nevertheless,
our method does not account for variation of shell parameters
during microbubble oscillation itself. Instead, effective shell
parameters are obtained that approximate these variations
without characterizing the different contributions. The goal of
our iterative method is to determine the pressure experienced
by the microbubbles, and the effective shell parameters allow
us to predict their behavior using the current physical models.

The spread of the z( data points (Fig. 6) indicates variations
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Fig. 11. Normalized pressure (P ) at the focus in the OrganoPlate (red solid
line) and OptiCell (blue dashed line) as a function of fr, simulated with the
3D finite element models. The shaded area represents the IQR. The dotted
lines show the mean P* obtained experimentally, as shown in Fig. 7(b).

among microbubbles: two microbubbles of the same size may
have very different relative excursions. Variations amongst
microbubbles of identical size have previously been observed
for microbubbles with equal and different coating composi-
tions [18], [32], [41], [42]. While the mean microbubble shell
properties are often used to describe microbubble dynamics
[71, [28], [31], [32], we determined fy and § specifically for
each individual microbubble. By incorporating the variation
of shell properties among microbubbles, we were able to
more accurately describe the behavior of each individual
microbubble.

In our study, the ultrasound propagation into the
OrganoPlate was compared to that of the OptiCell, since the
latter is commonly used in ultrasound-mediated drug delivery
studies. Although the OptiCell has been extensively used in
microbubble characterization and ultrasound-mediated drug
delivery studies, a thorough acoustic characterization has not
been published. Often, the OptiCell is assumed to be acous-
tically transparent [4], [28], [43], [44] despite the attenuation
that was observed in our experiments and simulations. The
main difference between the OrganoPlate and the OptiCell
was found for incidence frequencies between 1 and 2 MHz,
where the pressure amplitude in the OrganoPlate was higher.
Nevertheless, when comparing the OrganoPlate to the OptiCell
from 2 to 4 MHz, the simulations predict a root mean square
deviation (RMSD) of only 0.9 dB and the measurements a
RMSD of 1.4 dB between both systems. Considering that
our experimental data was influenced by at least a 10% error
of the tracking algorithm [31] and a 15% uncertainty of the
hydrophone for the transducer calibration, the pressure in the
OrganoPlate and OptiCell between 2 and 4 MHz was not sig-
nificantly different. Furthermore, the characteristic frequency
response of microbubbles was unchanged since f and k5 were
the same in both the OrganoPlate and the OptiCell.

The focal region in the OrganoPlate was clearly altered
(Fig. 10) because of the reflections at the polymer walls and air
spacing outside of the microchannels. The parallel membranes
of the OptiCell, on the other hand, had a minor effect on
the shape of the focus. Nevertheless, as long as this altered

focal region is taken into account during the design of future
experiments, microbubbles in the OrganoPlate can still be
insonified in a controlled manner. To achieve reproducible
insonifications, standing waves should be avoided [45]. In
other words, we want a quick build-up and decay of the
intended 8-cycle pulse. By modeling the pressure field in the
OrganoPlate, we found no significant remaining oscillations
after the intended pulse. On the other hand, the pressure
amplitude observed in the OptiCell after the 8-cycle pulse
was slightly larger than in the OrganoPlate. Hence, energy
was transported better into and out of the OrganoPlate and no
standing wave phenomenon was observed.

When comparing the microbubble spectroscopy measure-
ments to the finite element models, the transmitted pres-
sure from 1 to 2 MHz showed the largest deviation. In
this frequency range, the RMSD between measurements and
simulations was 4.4 dB for the OrganoPlate and 3.0 dB for
the OptiCell. Although both approaches clearly showed higher
pressures in the OrganoPlate, the experimental data analysis
overestimated this effect. A possible explanation is that a sin-
gle shell elasticity value was determined for every microbubble
based on the full range of transmit frequencies. However, at
low frequencies the pressure experienced by the microbubble
in the OrganoPlate is larger and ) is overestimated, since
the effective shell elasticity should decrease with increasing
pressure [28]. An overestimation in shell elasticity implies a
stiffer shell and would thus lead to smaller relative excur-
sion amplitudes. Therefore, when fitting our measurements
to the model of a linear oscillator, the pressure amplitude
is overestimated at low transmit frequencies. Nevertheless,
when transmitting between 2 and 4 MHz, the RMSD between
the simulations and the measurements is only 2.0 dB for the
OrganoPlate and 1.4 dB for the OptiCell.

In both the measurements and simulations, the pressure
transmitted into the OrganoPlate showed a clear frequency
dependent behavior. For insonifications between 1 and 2 MHz,
the mean of the measured and simulated pressure ampli-
tude was about 3 dB larger than in the free field. Between
2 and 4 MHz, the pressure in the OrganoPlate decreased
to —5 dB. Frequency dependent behavior is expected, since
different wavelengths result in different wave interference
patterns caused by the dimensions of the OrganoPlate. In
future experiments, ultrasound insonification can be corrected
for these changes in pressure as a function of frequency. For
instance, to obtain 100 kPa inside the OrganoPlate at 1 MHz,
71 kPa needs to be transmitted, while this is 178 kPa at 3 MHz.
On the other hand, the pressure propagated into the OptiCell
showed no clear frequency dependence from 1 to 4 MHz, with
a mean normalized pressure of measurements and simulations
of —4 dB.

A limitation of this study is that only the propagation of an
8-cycle pulse was considered. Although some studies employ
short pulses to study ultrasound-mediated drug delivery [12],
[18], [46], others use much longer bursts to locally induce
drug uptake [4], [13], [15], [47]. However, the finite element
model showed minimal oscillations persisting after the 8%
cycle, suggesting that energy was easily transported out of
the OrganoPlate and therefore longer pulses are not expected
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to affect the pressure amplitude. Another shortcoming of this
study is that the pressure field was only studied in the zy-plane
just beneath the top glass plate. When targeting microbubbles
to a microvessel grown in the OrganoPlate, insonification in a
different xy-plane may be required. Since the beamwidth of
the incident ultrasound field is large with respect to the small
microchannels, the exact focal location in the OrganoPlate is
expected to only be of minor influence on the pressure field.
If required, the now validated 3D finite element model can be
employed to predict the pressure field at any location within
the OrganoPlate. Finally, when using the modified OrganoPlate
to study ultrasound-mediated drug delivery, biological aspects
such as cell culture protocols may need to be reconsidered.

V. CONCLUSION

The feasibility of controlled microbubble oscillation in the
OrganoPlate was demonstrated by microbubble spectroscopy
and finite element modeling of the acoustic pressure prop-
agation. When transmitting from 1 to 2 MHz, the pressure
amplitude inside the OrganoPlate was about 3 dB larger than
in the free field. On the other hand, when transmitting between
2 and 4 MHz the pressure amplitude was approximately —5 dB
with respect to that of the free field, similarly to —4 dB
in the OptiCell. When correcting for the known change in
pressure, controlled microbubble behavior can be achieved
in the OrganoPlate. This demonstrates the potential of the
OrganoPlate to study ultrasound-mediated drug delivery in
vitro including 3D cell culture, perfusion, and membrane-free
soft boundaries.
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