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1 Introduction

When a wide set of forecasts of some future economic event is available, decision makers

usually attempt to discover which is the best forecast, then accept this and discard the other

ones. However, the discarded forecasts may have some independent valuable information

and including them in the forecasting process may provide more accurate results. An im-

portant explanation is related to the fundamental assumption that in most cases one cannot

identify a priori the exact true economic process or the forecasting model that generates

smaller forecast errors than its competitors. An alternative reasonable assumption appears

to be one where different models may play a - possibly temporary - complementary role in

approximating the data generating process. Furthermore, perhaps due to the presence of

private information such as forecasters’ subjective judgements or differences in modelling

approaches, it may not be possible to pool the underlying information sets and construct

a ‘super’ model that nests each of the underlying forecasting models. In these situations,

forecast combinations are viewed as a simple and effective way to obtain improvements in

forecast accuracy.

Since the seminal article of Bates and Granger (1969) several papers have shown that

combinations of forecasts can outperform individual forecasts in terms of symmetric loss

functions. For example, Stock and Watson (2004) find that forecast combinations to pre-

dict output growth in seven countries generally perform better than forecasts based on

single models. Marcellino (2004) has extended this analysis to a large European data set

with broadly the same conclusion. However, several alternative combination schemes are

available and it is not clear which is the best scheme, either in a classical or a Bayesian

framework. For example, Hendry and Clements (2004) and Timmermann (2006) show that

simple combinations1 often give better performance than more sophisticated approaches.

Further, using a frequentist approach, Granger and Ramanathan (1984) propose the use of

coefficient regression methods, Hansen (2007) introduces a Mallows’ criterion, which can be

minimized to select the empirical model weights, and Terui and van Dijk (2002) generalize

the least squares model weights by reformulating the linear regression model as a state space

specification where the weights are assumed to follow a random walk process. Guidolin

and Timmermann (2007) propose a different time varying weight combination scheme where

1In this paper simple combinations are defined as combinations that do not require estimating parameters;
arithmetic averages constitute a simple example. Complex combinations are defined as combinations that
rely on estimating weights that depend on the full variance-covariance matrix and, possibly, allow for time
varying weights.
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weights have regime switching dynamics. Stock and Watson (2004) and Timmermann (2006)

use the inverse mean square prediction error (MSPE) over a set of the most recent obser-

vations to compute model weights. In a Bayesian framework, Madigan and Raftery (1994)

revitalize the concept of Bayesian model averaging (BMA) and apply it in an empirical

application dealing with Occam’s Window. Recent applications suggest its relevance for

macroeconomics (Fernández et al., 2001 and Sala-i-Martin et al., 2004). Strachan and van

Dijk (2007) compute impulse response paths and effects of policy measures using BMA in

the context of a large set of vector autoregressive models. Geweke and Whiteman (2006)

apply BMA using predictive and not marginal likelihoods.

This paper contributes to the research on forecast combinations by investigating the

relative merits of eight combination schemes in simulation exercises where the data generating

process is subject to low predictability, structural instability, in the sense that the relevance

of forecasting factors varies over time, and fat tails. Sensitivity of results with respect to

misspecification of the number of included predictors and the number of included models is

explored.

The different combination schemes are summarized as two simple schemes, which do not

require parameter estimates; two schemes that involve OLS weight regressions, and a more

advanced time varying weight scheme due to Terui and van Dijk (2002). Next, we include two

Bayesian model averaging schemes: the original one first proposed in an empirical application

by Madigan and Raftery (1994), and a more recent one in terms of predictive densities given

by Geweke and Whiteman (2006)2. Finally, we propose a new Bayesian scheme which allows

for parameter uncertainty, model uncertainty and time varying model weights simultaneously.

As in Aiolfi and Timmermann (2006) we use an adequate long out-of-sample period to

evaluate the forecasting performance of the different combination schemes.

Our results indicate that when correlation among forecasts of individual models is low,

simple and Bayesian averaging strategies using marginal likelihoods perform poorly, while

unconstrained OLS and time varying model weight schemes provide more accurate results.

Moreover, when structural instability is high, we explain asymptotically and in a simulation

experiment that the time varying combination schemes give the most accurate forecasts.

A second contribution of this paper is to provide an empirical illustration, where we

consider forecasting the returns on the S&P 500 index by combining individual forecasts

from two competing models. The first one assumes that a set of financial and macroeconomic

2Alternative BMA’s exist such as MC3, or frequentist approaches that share similar features as BACE or
thick modelling; but we omit them to simplify the analysis.
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variables have explanatory power, the second one is based on the popular market saying “Sell

in May and go away”, also known as the “Halloween indicator”, see for example Bouman

and Jacobsen (2002). Low predictability of stock market return data is well documented, see

for example Marquering and Verbeek (2004) and so is structural instability in this context,

see for example Pesaran and Timmermann (2002) and Ravazzolo et al. (2007). We confirm

these results, and show that the two models, taken individually, perform poorly and in a

differential way over time. We continue by applying model averaging and find that the two

time varying weight schemes that we apply give the best forecasts in term of symmetric

loss functions, confirming the results of the simulation exercises. Moreover, as an investor is

more interested in the economic value of a forecasting model than in its forecast accuracy,

we test our findings in an active short-term investment exercise, with an investment horizon

of one month. Again, the time-varying weight schemes provide the highest economic gains.

The contents of this paper are organized as follows. In Section 2 we describe the eight

different forecast combination schemes. In Section 3 we report results from simulation exer-

cises in predicting future values. In Section 4 we give results from an empirical application

to US stock returns and show that forecast combinations give economic gains. Section 5

concludes. In the Appendices some technical details are presented.

2 Forecast combination schemes

Two schemes are based on simple constant weights; three are frequentist approaches based

on estimated (time varying) model weights; two are “known” Bayesian averaging schemes,

the final one is a new Bayesian averaging scheme that allows for time varying weights. We

note that the vast majority of studies on forecast combination deals with point forecasts,

and we also focus on this.

We start with a brief description of the basic set up of the simulation experiments.

Suppose two time series y1 = {ys,1}S
s=1 and y2 = {ys,2}S

s=1 are generated from the following

models:

ys,1 = α1 + x
′
s,1β1 + εs,1 (1)

ys,2 = α2 + x
′
s,2β2 + εs,2 (2)

where xs,1 and xs,2 are (k1×1) and (k2×1) vectors of predictor variables respectively, where

α1, α2 are two scalar parameters and β1, β2 are (k1 × 1) and (k2 × 1) vectors of parameters,

and where εs,1 and εs,2, s = 1, ..., S, are two zero mean i.i.d. disturbances with variances σ2
1
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and σ2
2, respectively. The simulated data generating process (DGP) is a linear combination

of the previous two models:

ys = ys,1cs,1 + ys,2cs,2, (3)

where cs,1 and cs,2 are two possibly time varying scalars. We refer to cs,1 and cs,2 as DGP

weights.

Equations (1) and (2) are estimated over the sample period [1, ..., T ] with T < S to

compute two independent one-step ahead forecasts ŷT+1,1 and ŷT+1,2, combined to compute

a forecast of yT+1. We let ŷT+1 = g(ŷT+1,1, ŷT+1,2, wT+1) be the combined point forecast as a

function of the underlying single forecasts ŷT+1,1 and ŷT+1,2, the forecast combination scheme

g, and the vector of the parameters of the combination wT+1
3. The values of the optimal

combination ŵT+1 solve the problem:

min
wT+1

E[L(eT+1(wT+1))|ŷT+1,1, ŷT+1,2], (4)

where eT+1 = yT+1 − g(ŷT+1,1, ŷT+1,2, ŵT+1) is the forecast error from the combination, and

where L is the loss function, which for simplicity we assume to depend only on the forecast

error. We emphasize that the vector ŵT+1 is not necessarily an estimate of the vector

[cT+1,1, cT+1,2]
′, but refers to estimated weights that minimize the loss function. The general

class of combination schemes in (4) comprises non-linear as well as time-varying methods.

In most cases there is no closed form solution of equation (4), but analytical results may

be computed imposing restrictions on the loss function and making distributional restrictions

on the forecast errors. Often it is simply assumed that the objective function is the mean

squared error (MSE) loss function:

L(eT+1(wT+1)) = θ(ŷT+1 − yT+1)
2 θ > 0. (5)

For this case the combined forecasts choose a combination of the individual forecasts that best

approximates the conditional expectation, E(yT+1|ŷT+1). In the five frequentist approaches

that we apply we assume the MSE loss function and we fix θ = 1. Different distributional

restrictions, for example assuming a time varying θ imply different estimation techniques in

equation (4).

As a next step we expand the sample period with the observation yT+1 and we compute

new individual and combination forecasts for the value yT+2. We repeat the procedure to

compute H forecasts where T + H = S.

3Note that wT+1 may also be a vector of constants.
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2.1 Simple combination schemes

Following Timmermann (2006) we define simple combination schemes as cases that do no re-

quire estimating (many) parameters, in particular do not require estimating the full variance-

covariance matrix. Moreover, these schemes are distinguished by the restriction that the

weight coefficients add up to unity.

The forecasts on yT+1 given by simple combination schemes can be written as:

ŷ
(j)
T+1 = ŷT+1,1ŵ

(j)
T+1,1 + ŷT+1,2ŵ

(j)
T+1,2, (6)

where (ŵ
(j)
T+1,1, ŵ

(j)
T+1,2), j = 1, 2, are computed following schemes 1 and 2 below.

Scheme 1: Equal weights

ŵ
(1)
i = 1/n (7)

where i = 1, 2. Extension to more general case with n individual models is straightforward.

Equal weights are optimal in situations when the individual forecast errors have the same

variance and identical pair-wise correlations, see Timmermann (2006).

Scheme 2: Inverse Mean Square Prediction Error (MSPE) weights

Scheme 2 derives weights from the models’ relative inverse MSPE performances computed

over a window of the previous υ periods, see Timmermann (2006). Estimation errors in

combination weights tend to be particularly large due to the difficulties in precisely esti-

mating the covariance matrix of the forecast error. One answer to this problem is to ignore

correlation across forecast errors and making combination weights that reflect performance

of each individual model relative to the performance of the average model. The MSPE at

time T over the previous υ forecasts for model i = 1, 2 is defined as:

MSPEυ
T,i =

∑υ−1
j=0 (ŷT−j,i − yT−j)

2

υ
(8)

The weights are computed as:

ŵ
(2)
T+1,i =

(1/MSPEυ
T,i)∑2

j=1(1/MSPEυ
T,j)

(9)

2.2 Estimated weight combination schemes

The next three combination schemes estimate the weights in regression form, add a constant

term, and do not impose that the weights add to 1.
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Scheme 3: Constant OLS weights

The weights are equal to the OLS estimators of the weights (w0, w1, w2) in equation:

yt = w0 + ŷt,1w1 + ŷt,2w2 + ut; ut ∼ N(0, s2) (10)

where t = 1, .., T , and w0 is a constant term4. The estimation of the weights, while attractive

in the sense of minimizing forecast errors, introduces parameter estimation errors. Therefore,

one may estimate weights for the first forecast and then fix these as constant over the

remaining out-of-sample period.

The forecast on yT+1 given by the estimated combination scheme is given as:

ŷ
(3)
T+1 = ŵ

(3)
0 + ŷT+1,1ŵ

(3)
1 + ŷT+1,2ŵ

(3)
2 (11)

where (ŵ
(3)
0 , ŵ

(3)
1 , ŵ

(3)
2 ) are the OLS estimates of the parameters (w0, w1, w2) in (10). To com-

pute the following H − 1 forecasts, the same estimated weights (ŵ
(3)
0 , ŵ

(3)
1 , ŵ

(3)
2 ) are applied.

Scheme 4: Recursive OLS weights

The estimated weights are equal to the recursive OLS estimators of the weights in (10). The

estimated weights are updated every time when a new observation becomes available.

Scheme 5: Time varying weights

When the conditional distribution of (yT+1, ŷT+1) varies over time, it may be effective to let

the combination weights also change over time. Terui and van Dijk (2002) have proposed

a method that extends the OLS weight combination. The weights satisfy the following

recursions:

yt = wt,0 + ŷt,1wt,1 + ŷt,2wt,2 + ut; ut ∼ N(0, s2) (12)

wt = wt−1 + ξt; ξt ∼ N(0, Σ) (13)

where wt = [wt,0, wt,1, wt,2]
′; t = 1, .., T ; and Σ is a diagonal matrix. The weights are time

varying and follow a random walk process. The time varying weight combination may be

interpreted as a state space model, where (12) is the measurement equation which defines the

distribution of yt, and where (13) is the state equation which defines the distribution of the

weights for every t. The Kalman filter algorithm can be applied to compute the estimators

4Granger and Ramanathan (1984) explain that the constant term must be added to avoid biased forecasts.
They also conclude that this strategy is often more accurate than restricted OLS weights.
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ŵ
(5)
t|t−1. Appendix A gives details of the computation and explains the difference with the

recursive OLS estimator.

The forecasts on yT+1 given by schemes 4 and 5 are:

ŷ
(j)
T+1 = ŵ

(j)
T+1,0 + ŷT+1,1ŵ

(j)
T+1,1 + ŷT+1,2ŵ

(j)
T+1,2 (14)

where j = 4, 5.

2.3 Bayesian model averaging

Bayesian approaches have been widely used to construct forecast combinations, see for exam-

ple Leamer (1978), Hodges (1987), Draper (1995), Min and Zellner (1993), and Strachan and

van Dijk (2007). In this approach one does not estimate regression weights and uses those

to compute forecasts, but one derives the posterior probability for any individual model and

combines these. The predictive density accounts then for model uncertainty by averaging

over the probabilities of individual models. Since the output is a complete density, point

prediction (for example by taking the mean), distribution and quantile forecasts can be easily

derived.

We choose three BMA schemes: the original one proposed in an empirical application by

Madigan and Raftery (1994), a more recent one discussed in Geweke and Whiteman (2006),

and a new one to be introduced below.

Scheme 6: BMA using marginal likelihood

The predictive density of yT+1 given the data up to time T , FT , is computed by averag-

ing over the conditional predictive densities given the individual models with the posterior

probabilities of these models as weights:

p(yT+1|FT ) =
n∑

i=1

P (mi|FT )p(yT+1|FT ,mi) (15)

where n is the number of individual models; p(yT+1|FT ,mi) is the conditional predictive

density given FT and model mi; P (mi|FT ) is the posterior probability for model mi. The

conditional predictive density given FT and model mi is defined as:

p(yT+1|FT , mi) =

∫
p(yT+1|θi, FT ,mi)p(θi|FT , mi)dθi (16)

where p(yT+1|θi, FT ,mi) is the conditional predictive density of yT+1 given FT , the model

parameters θi = (αi, βi, σ
2
i )
′, and model mi in (1) or (2); p(θi|FT ,mi) is the posterior density
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for parameter θi. The posterior probability for model mi is:

P (mi|FT ) =
p(y|mi)p(mi)∑n

j=1 p(y|mi)p(mj)
(17)

where y = {yt}T
t=1; p(mi) is the prior density for model mi; and p(y|mi) is the marginal

likelihood for model (mi) given by:

p(y|mi) =

∫
p(θi|FT ,mi)p(θi)dθi, (18)

p(θi) is the prior density for the parameter θi. The integral in equation (18) can be evaluated

analytically in the case of linear models, but not for more complex forms. Chib (1995),

for example, has derived a method to compute the expression also for nonlinear examples.

Proper priors for θi are usually applied, otherwise the Bartlett paradox may hold and models

with less parameters preferred. The point forecast is computed by taking the mean of the

predictive density in (15).

We note that an alternative Bayesian procedure to compute model weights is presented

below under scheme 8.

Scheme 7: BMA using predictive likelihood

Geweke and Whiteman (2006) propose a BMA based on the idea that a model is good as its

predictions. The predictive density of yT+1 conditional on FT has the same form as equation

(15), but the posterior density of model mi conditional on FT is now computed as:

P (mi|FT ) =
p(yT |FT−1, mi)p(mi)∑n

j=1 p(yT |FT−1,mj)p(mj)
(19)

where p(yT |FT−1, mi) is the predictive likelihood for model mi, e.g. the density derived by

substituting the realized yT in the predictive density of yT conditional on FT−1 given model

mi. We compute the predictive density for month T using information until month T−1 and

we evaluate the realized value for time T using the same density. The resulting probability

is then applied to compute the weight for model mi in constructing the forecast for T + 1

made at time T 5. Similar to scheme 6, the point forecast is computed by taking the mean

5Eklund and Karlsson (2007) evaluate the fit of the predictive density over some more observations,
by means of the predictive likelihood, and then update the probability density for the forecasts. The latter
approach results in weights which are based more on the fit of the model, even when using out-of-sample data,
than on the probability of out-of-sample realized values. Our approach incorporates the uncertainty that
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of the predictive density in (15).

Scheme 8: BMA using time varying model weights

We present a new combination scheme that extends the time varying weight scheme 5 by

adding parameter uncertainty and model uncertainty. We reformulate equations (12) and

(13) by substituting the means of the conditional predictive densities p(yT |FT−1,mi) given

models mi, i = 1, 2 for the point forecasts ŷT,i. Then we apply Bayesian inference using

Gibbs sampling to estimate wt; for details we refer to Appendix C. The result is a set of

posterior densities for the model weights given the data FT , p(wT+1,i|FT ). These posterior

densities are used to average over the conditional predictive densities given FT and model

mi

p(yT+1|FT ) = p(wT+1,0|FT ) +
n∑

i=1

p(wT+1,i|FT )p(yT |FT−1,mi) (20)

in order to derive the predictive density of yT+1 given FT . The point forecast is computed

by taking the mean of the predictive density in (20).

Scheme 8 allows for parameter uncertainty by applying Bayesian analysis to individual mod-

els mi, for model uncertainty by combining the conditional predictive densities given FT

and model mi, and for time varying patterns by assuming a pattern for model weights as in

(13). It also extends scheme 5 by providing a density forecast and not only a point forecast.

Thus, for instance, forecasting and policy measures with respect to risk management can be

performed in a more flexible way.

We emphasize that special cases of this proposed scheme may be constructed as Bayesian

versions of schemes 3 and 4. More details are presented in Appendix C.

3 Simulation exercises

In this section we describe ten simulation exercises to evaluate the eight forecast combination

schemes presented in Section 2. In exercises I-III the correlation between predictors varies

future out-of-sample values may differ from historical out-of-sample realizations. It would be more natural to
compute the predictive likelihoods as product of the predictive likelihood made for last υ successive forecasts.
Some computational problems may arise because any predictive likelihood is in the interval [0,1]. Then, it
might be difficult to work with possible small numbers, or if only one predictive value of the υ averaged is
close to zero the weight on the respective model will be zero independently by performances in the other
periods.
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from low to high; in exercises IV-VII misspecification with respect to the number of included

predictors and number of included models is explored; exercises VIII-IX deal with structural

change; finally exercise X considers the case of fat tailed generated data patterns.

Following previous notation, we simulate DGPs in a range of settings from equations

(1)-(3). We fix T = 240 and H = 120, that is the genuine out-of-sample period has 120

one-step ahead forecasts. The last 60 observations of the in-sample period (t = 181, .., 240)

are used as initial training period for the combination schemes. We repeat each exercise 1000

times. In all examples we assume that the predictor variables (x) are normally distributed

with values for the means (µ), variances (σ2) and covariances (%) that are specified in Table

1. The disturbances are assumed to be i.i.d normal (0,1). We restrict the DGP weights cs,1

and cs,2 to add to 1 for any s in order to exclude shifts in the unconditional mean of the

DGP. In exercises I-VII {cs,1}360
s=1 and {cs,2}360

s=1 are time invariant and the DGP is stationary.

In exercises VIII-X time-variation is added. In Bayesian analysis we generally use diffuse

proper priors for the model parameters.

For any simulation we compute the MSPE’s of the individual forecasts and forecast

combinations over the 120 “genuine” one-step ahead forecasts, and its decomposition in bias

and variance of the forecast errors. In Table 2 we report the average of 1000 MSPE’s, bias

and variance of the forecasts. For completeness, we also give the same statistics for the

correctly specified models (labelled as “correct” model), and the forecast combination where

the vector ŵT+1 is identical to [c1, c2] (labelled as “given” weights).

3.1 Varying correlations between predictors

In exercises I-III a stationary DGP is simulated; c1 and c2 are plotted at the top-right corner

in Figure 1: c1 is set almost two times c2. The difference in exercises relates to the degree of

correlation between the individual forecasts.

Exercise I: zero correlation between predictor variables We first give some analyt-

ical results that may help the analysis. With the parameter values from Table 1, it is easy

to derive that

ys,i = 2 + ε∗s,i with ε∗s,i ∼ iidN(0, 3)

with i = 1, 2. Then,

ys = 0.7ys,1 + 0.3ys,2 = 2 + 0.7ε∗s,1 + 0.3ε∗s,1 (21)

Accordingly, the expected value of ys is E(ys) = 2 and its variance is V (ys) = 1.74. We also
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notice that the coefficients of the variables (xs,1, xs,2) in the simulated DGP are (β1cs,1) = 0.7

and (β2cs,2) = 0.3 for any s.

By computing the probability limit of the OLS estimator β̂1 in model (1) we find that β̂1 is

a consistent estimator of (β1cs,1), its estimate is close to 0.7 for any s = 181, .., 360, and β̂2 is a

consistent estimator of (β2cs,2), its estimate is close to 0.3 for any s = 181, .., 360. Moreover,

both (α̂1 + β̂1) and (α̂2 + β̂2) add to 2 implying that the forecasts of the single models are

unbiased, since E(ys) = 2. In term of accuracy (MSPE), equation (1) does much better than

equation (2), but the difference with the correct model, in which both (x1, x2) are included,

is substantial. As the forecasts of both models are unbiased, the difference in accuracy is

only due to the variance of the prediction errors. The variance of the prediction error of

model (2) is more than double than that of the prediction error of model (1), reflecting the

choice of (c1, c2)
6.

We find that the forecasts from the individual models and frequentist combination schemes

can be approximated respectively as:

Model 1 ŷT+h,1 = 1.3 + 0.7xT+h,1

Model 2 ŷT+h,1 = 1.7 + 0.3xT+h,2

True model ŷT+h = 1 + 0.7xT+h,1 + 0.3xT+h,2

Given weights ŷ
(g)
T+h = 1.42 + 0.49xT+h,1 + 0.09xT+h,2

Case 1 ŷ
(1)
T+h = 1.5 + 0.35xT+h,1 + 0.15xT+h,2

Case 2 ŷ
(2)
T+h = 1.42 + 0.49xT+h,1 + 0.09xT+h,2

Case 3 ŷ
(3)
T+h = 1 + 0.7xT+h,1 + 0.3xT+h,2

Case 4 ŷ
(4)
T+h = 1 + 0.7xT+h,1 + 0.3xT+h,2

Case 5 ŷ
(5)
T+h = 1 + 0.7xT+h,1 + 0.3xT+h,2

where h = 1, .., 120.

The estimators of β1, β2 are consistent for the products (β1cs,1), (β2cs,2). Therefore, esti-

6We compute forecasts also by applying Bayesian inference (with diffuse priors). We do not report results
because they are very similar to the previous ones.
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mating (cs,1, cs,2) both equal to 1 is the optimal solution to reduce the variance of the pre-

diction errors. Combination schemes 3, 4 and 5 are the only methods to provide estimates

of (c1, c2) equal to vectors of 1, providing the best statistics. Recursive and time-varying

weight schemes, which allow for time varying estimates of (c1, c2), do not improve results

compared to constant OLS weight scheme as (c1, c2) are time-invariant in the simulation.

Other combination approaches (given weights, case 1 and 2) provide different estimates of

(c1, c2), implying that the products (β̂1ŵ
j
1) and (β̂2ŵ

j
2) are not consistent estimator of (β1c1)

and (β2c2). The forecasts given by those combination schemes are still unbiased but the

variance of the prediction errors is higher. For example, assigning weights to single models

based on the inverse of the MSPE well approximates the variance of the noises of the single

models, ε∗s,1 and εs, 2
∗ respectively. Indeed, weight estimates of this scheme are very similar

to the original values c1 = 0.7ι where ι is a (120× 1) vector of ones and c2 = 0.3ι such as in

the given weight combination. But this is not optimal in this exercise.

To sum up, model (1) predicts the part of the DGP related to xs,1, model (2) predicts the

part of the DGP related to xs,2. Therefore, the optimal averaging strategy is adding with

weight 1 the forecasts of the individual models and inserting a constant term to avoid biases.

As Table 2 confirms, both the OLS weights and Terui and van Dijk (2002)’s time varying

extension model this providing very accurate forecasts.

The Bayesian averaging scheme using marginal likelihood requires a different explanation.

What is important in Bayesian averaging is assigning the right probability to individual

models. BMA based on marginal likelihood does not do this job well: it gives almost all

the probability to model (1) and zero probability to model (2). The problem apparently

relates to the use of un-normalized marginal likelihoods. To derive the marginal likelihood

given by the individual models we compute the log marginal likelihood. Figure 2 plots the

average of the log marginal likelihood for the two individual models for s = 181, .., 360 over

the 1000 simulations. When we take the exponential to compute posterior weights the two

numbers are not anymore comparable. And since (1) has higher log marginal likelihood all

the probability is given to it. We note that more sophisticated ways of computing marginal

likelihoods may exist, but we do not pursue this further. Instead we present a group of

“simple to compute” Bayesian schemes under scheme eight.

BMA based on predictive likelihood gives on average probabilities similar to the original

values 0.7 and 0.3. But its performance is not up to the level of estimated weight schemes.

Bayesian results depend on the priors that we apply. We assume diffuse proper priors

for model parameters, which imply parameter posterior means around OLS estimates (for
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derivation see, e.g., Koop, 2003, p. 37). The priors for (α1, α2, β1, β2), however, could be

chosen very informative around the true values 1. Then, averaging models (1) and (2) with

predictive likelihoods would provide forecasts very similar to the correct model7. We think

that it is in practice not easy to find such accurate priors and not all agents may agree on

these precise priors, therefore we have applied diffuse priors that allow direct comparison to

frequentist inference, but these diffuse priors apparently reduce forecast accuracy.

The use of diffuse priors does not reduce the forecast accuracy of scheme 8 compared to

that of schemes 3-5. In scheme 8 a Gibbs sampling procedure is applied to combine predictive

densities of individual models. This Gibbs procedure is a Bayesian extension of scheme five.

Results may be even more accurate when informative priors are applied.

Exercise II: medium correlation In the second exercise the correlation of the individual

forecasts is increased and a medium positive (0.5) correlation between xs,1 and xs,2 is assumed

for any s.

Model (1) performs better than model (2) due to the magnitude of the weights. Estimated

weight schemes and Bayesian time varying weight scheme provide again better statistics than

other averaging schemes, with results very similar to the correct model. However, simple

combination schemes and BMA based on the predictive likelihood also give quite accurate

forecasts. In this exercise model (1) and model (2) do not provide consistent estimate of

(β1cs,1) and (β2cs,2), therefore weight estimates achieve this result. BMA based on marginal

likelihood still selects only model (1).

Exercise III: high correlation In this exercise, the correlation of the individual forecasts

is substantially increased (around 0.9). As in Timmermann (2006) in this framework equal

weights are an appropriate choice. All the schemes forecast accurately and very similar to

the correct model, since the individual models (1) and (2) give accurate and highly correlated

results. Note that the time varying weight combinations are robust in this case.

3.2 Misspecification

In Exercises IV-VII the number of predictors and individual models varies. The DGP is still

assumed stationary.

7Results for this exercise are available upon request.
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Exercise IV: included irrelevant variable In exercise IV an irrelevant variable (x6) is

included as additional regressor in model (1); its coefficient β6 is given in Table 1. Due to

the long series and the number of repetitions of the simulations β6 is correctly estimated to

be zero and results are very similar to exercise I.

Exercise V: omitted relevant variable In exercise V, a new variable, xs,6, is added in

the simulation of the DGP in equation (3). This variable is excluded in both models (1) and

(2). All the forecasts are less accurate than in exercise I and the difference with the forecasts

of correct model is substantial. However, estimated weight and Bayesian time varying weight

schemes still give better statistics than individual models and other combination schemes.

Results given by simple schemes and BMA schemes 6 and 7 are marginally worse than those

of model (1).

Exercise VI-VII: 3 and 5 individual models The analysis is extended to include three

and five individual models in the simulation exercise. Individual series are combined with

weights given in Figure 3. In exercise VI c4 = {cs,4}360
s=1 and c5 = {cs,5}360

s=1 are vector of zeros.

In both examples, the estimated weight and Bayesian time varying weight schemes give

the best forecasts. These schemes provide forecasts very similar to the correct model, and

are the only ones to outperform the best individual model. Simple combination schemes do

perform worse than the best individual model and Bayesian model averaging using marginal

likelihoods. In the exercises where the misspecification of individual models is more sub-

stantial, allowing for parameter uncertainty is beneficial, even if parameter priors are not

precise.

3.3 Structural change

In the following two exercises, VIII and IX, the vectors c1 and c2 in equation (3) are subject

to instability. For exercise VIII, Figure 4 shows that a shift happens at the beginning of the

out-of-sample period. The weights assigned to models (1) and (2) are exactly reversed. In

exercise IX, two shifts are plotted in Figure 5, at different times, with one of them in the

in-sample period, and of opposite direction.

Exercise VIII: one shift The recursive OLS weight and (Bayesian) time-varying weight

schemes dramatically outperform individual models, other combination schemes, and the

correct model. The weight estimates of these three schemes capture the signal of instability,
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and react faster to it, partially reducing the inefficiency of parameter estimates of the indi-

vidual models, which do not allow for instability in estimation. Rejecting instability may

cause serious mistakes and, indeed, the correct model8 gives marginally worse statistics than

model (2). However, the instability, and therefore its signal, is quite moderate due to the

fact that we have a unique break over the full sample. As Appendix A shows, this explains

why recursive OLS and the Kalman Filter produce very similar weight estimates. Bayesian

time varying weigh scheme 8 produces results very similar or marginally superior to scheme

5 again due to the use of diffuse priors.

BMA with predictive likelihood now provides quite accurate forecasts, even though it gives

too high probability to model (2). BMA with marginal likelihood does not seem adequate

even in this exercise. It assigns all the weight to model (1).

Exercise IX: two shifts The correct model gives the most accurate forecasts. The second

shift partially correct the first one and moves the weight patterns close to their in-sample

average value. The time varying weight schemes provides the lowest statistics comparing to

individual models and other averaging schemes. The instability is higher than in exercise

VIII therefore the difference between the recursive OLS and the Kalman filter is evident,

following the derivations in Appendix A. Simple combination schemes provide less accurate

results. BMA based on predictive likelihoods copes with instability quite efficiently, but the

diffuse type of priors chosen for individual model parameters reduce the forecast accuracy.

Interestingly, the other BMA method initially assigns positive probability to both models,

but when the number of observation increases, it converges to assign all the weight to model

(1).

3.4 Fat tails

The DGP from exercise IX is changed by assuming fat tailed errors. In particular, εs,1

and εs,2 in (1)-(2) are assumed to be Student t distributed with mean, variance and ν

degree of freedom in Table 1. The DGP weights are still as in Figure 5. All forecasts are

less accurate than in exercise IX, but the results are qualitatively similar to the previous

example. Again, the time varying weight schemes provide the lowest statistics among the

averaging schemes and provides results very close to the correct model. Adding parameter

uncertainty seems beneficial as scheme 8 gives marginally superior results that scheme 5. As

8We remember that the “correct” model does not account for instability.
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in the previous case, several averaging schemes give more accurate forecasts than individual

models, confirming that averaging is in our set up of experiments a simple and attractive

way to cope with instability.

3.5 Summary of findings

The results in Table 2 indicate that it is not easy to find a general rule how to average

individual models in an optimal way, and elements as the degree of correlation of the indi-

vidual forecasts, data predictability, structural instability and model (mis)specification, play

a strategic role in the process of combining forecasts of individual models. In particular,

we find that in situations of low predictability and high noise, and almost no correlation of

a limited set of individual forecasts, combination schemes that estimate model weights and

their extension in a Bayesian framework give the most accurate forecasts. Intuitively, when

individual forecasts contain complementary information, the best averaging strategy is to

add this independent information. Simple combination schemes are not adequate schemes

as they average individual models instead of adding with weight 1 the independent informa-

tion of different models. Bayesian model averaging based on marginal likelihood has some

computational problems due to the fact of deriving un-normalized marginal likelihoods for

a relative small set of individual models. Bayesian model averaging based on predictive

likelihood assigns precise weights to individual models, but using diffuse priors in model

parameters as we do reduce the forecast accuracy.

If the DGP is also subject to structural instability, in the sense that the relevance of the

predictors varies over time, time varying weight schemes give the highest predictive gains.

Simple combination schemes and recursive OLS weight schemes do not learn (efficiently) from

the signals of instability, and therefore do not react fast to it. Bayesian model averaging

based on predictive likelihood copes better with instability, but inadequate priors can reduce

forecast accuracy. Results are qualitative similar when the distribution has fatter tails than

the standard normal case, and adding more sources of uncertainty as the Bayesian time

varying weight scheme does seems to be beneficial.

4 Empirical illustration

We extend our study by investigating the forecasting performance and economic gains ob-

tained by applying the eight forecast combination schemes to the case of US stock index

returns, defined as the discretely compounded monthly return on the S&P 500 index in

17



excess of the 1-month T-Bill rate, from January 1976 to December 2005, for a total of 360

observations; see Figure 6. We use two linear non-nested forecasting models. The first one is

based on the idea that a set of financial and macroeconomic variables are potentially relevant

factors for forecasting stock returns. Among others, Pesaran and Timmermann (1995), Cre-

mers (2002), Marquering and Verbeek (2004) have shown that such variables have predictive

power. We label this forecasting model “Leading factor” (LF). The second forecasting model

is a simple linear regression model with a constant and a dummy for November-April. It is

based on the popular market saying “Sell in May and go away”, also known as the “Hal-

loween indicator” (HI), and it based on the assumption that stock returns can be predicted

simply by deterministic time patterns. This suggests to buy stock in November and sell it

in May. Bouman and Jacobsen (2002) show that this strategy has predictive power.

4.1 Data and evaluation

The source of the S&P 500 index is the CRSP database and the 1-month T-Bill rate is

from Ibbotson and Associates. We include as predictors the S&P 500 index price-earnings

ratio (PE), the S&P 500 index dividend yield (DY ) defined as the ratio of dividends over

the previous twelve months and the current stock price, the 3-month T-Bill rate (I3), the

monthly change in the 3-month T-bill rate (DI3), the term spread (TS) defined as the

difference between the 10-year T-bond rate and the 3-month T-bill rate, the credit spread

(CS) defined as the difference between Moody’s Baa and Aaa yields, the yield spread (Y S)

defined as the difference between the Federal funds rate and the 3-month T-bill rate, the

annual inflation rate based on the producer price index (PPI) for finished goods (INF ), the

annual growth rate of industrial production (IP ), the annual growth rate of the monetary

base (MB), and the log monthly realized volatility of the S&P 500 index (LV ol). The

monthly realized volatility is computed using daily returns, where we follow French et al.

(1987) and Marquering and Verbeek (2004) by assuming that daily returns are appropriately

described by a first-order autoregressive process. In particular, we use the following estimate

for realized volatility

σ̂2
t =

Ns∑
t=1

(yi,t − ȳt)
2

[
1 +

2

Nt

Nt−1∑
j=1

(Nt − j)φ̂j
t ,

]

where yi,t is the return on day i in month t which has Nt trading days, ȳt is the average

daily return in month t, and φ̂t denotes the first-order autocorrelation estimated using daily

returns within month t. We take into account the typical publication lag of macroeconomic
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variables in order to avoid look-ahead bias. We therefore include inflation and the growth

rates of industrial production and the monetary base with a two-month lag. As the financial

variables are promptly available, these are included with a one-month lag. Finally, the

“Halloween indicator” (HI) model is specified as a simple linear regression with a constant

and a dummy for November-April.

We evaluate the statistical accuracy of the individual models and the eight forecast

combinations schemes in terms of MSPE, and its decomposition in square bias and variance of

the forecast errors. Again Bayesian predictive densities are computed for the BMA schemes.

Moreover, as an investor is more interested in the economic value of a forecasting model

than its precision, we test our conclusions in an active short-term investment exercise, with

an investment horizon of one month. The investor’s portfolio consists of a stock index and

riskfree bonds only. At the start of month T + 1, the investor decides upon the fraction of

her portfolio to be invested in stocks wp,T+1, based upon a forecast of the excess stock return

yT+1. The investor is assumed to maximize a mean-variance utility function

max
wT+1

u(ET (yp,T+1), V arT (yp,T+1)) (22)

where yp,T+1 is the return of the investor’s portfolio return at time T + 1, which is equal to

yp,T+1 = WT ((1− wp,T+1)(yf,T+1) + wp,T+1(yf,T+1 + yT+1)) (23)

where WT denotes the wealth at time T , where yT+1 is the excess returns on S&P500, and

where yf,T+1 is the riskfree rate.

Without loss of generality we set initial wealth equal to one, WT = 1. Further, we assume

the following utility function:

ET (yp,T+1)− 1

2
γV arT (yp,T+1) (24)

where γ is the coefficient of relative risk aversion. Solving the maximization problem shows

that the optimal portfolio weight for the investor is given by:

w∗
p,T+1 =

ET (yT+1)− ry,T+1

γV arT (yT+1)
. (25)

If the expected excess return on the risky asset increases, it is optimal for the investor to

increase her weight on the risky asset. The conditional variance V arT (yT+1), which represents

a measure of the risk involved, is negatively related to this weight. We forecast ET (yT+1)

with nine different approaches: two individual models, the ‘leading factor’ one (LF), and the
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‘Halloween indicator’ one (HI), and the eight averaging schemes discussed in this paper. Each

individual forecasting approach corresponds to an investment strategy which is defined in

the same way. We approximate the conditional variance with the 60-month moving window

average of the realized variances computed as above9. We also assume that short selling and

borrowing at the riskfree rate are not allowed, therefore we restrict the portfolio weights to

be between 0 and 1. For purposes of comparison we consider a passive investment strategy

where the total wealth is invested in the risky market (RW).

We evaluate the different investment strategies by computing the average return, the

standard deviation of the portfolio return, and the Sharpe ratio, defined as the ratio of the

mean excess return on the (managed) portfolio and the standard deviation of the portfolio

return. Since the Sharpe ratio overestimates risk in case of time varying volatility, we also

compute the ex post utility levels - in order to estimate the economic value of the strategy -

by substituting the realized return of the portfolios at time T + 1 in (24)

U∗
p,T+1 = yp,T+1 − 1

2
γw2

p,T+1V olT+1 (26)

where V olT+1 denotes the ex post realized volatility of the risky return on month T +1. Total

utility is then obtained as the sum of U∗
p across all H investment periods. The above approach

enables us to compare alternative investment strategies by calculating the associated average

utility levels.

Finally, as the portfolio weights in the active investment strategies change every month,

the portfolio must be rebalanced accordingly. Hence, transaction costs play a non-trivial

role and should be taken into account when evaluating the relative performance of different

strategies. Rebalancing the portfolio at the start of month T + 1 means that the weight

invested in the risky asset is changed from wT to wT+1. We assume that transaction costs

amount to a fixed percentage c on each traded dollar. Setting the initial wealth WT equal

to 1 for simplicity, transaction costs at time T + 1 are defined as equal to

cT+1 = 2c|wT+1 − wT | (27)

where the multiplication by 2 follows from the fact that the investor rebalances her invest-

ments in both stocks and bonds. The net portfolio return is then given by rT+1 − cT+1. We

9We also forecast the conditional variance V arT (yT+1) using an AR(1), an AR(12), an Heterogeneous
Autoregressive (HAR) model similar to Corsi (2004), and an EGARCH model as in Marquering and Verbeek
(2004). Results are qualitative similar. We prefer the 60-month moving window average because most
investors use similar simple schemes, in particular at beginning of our sample period.
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apply three scenarios with transaction costs of 0.1%, 0.5% and 1%10. Note that for the pas-

sive investment strategy where the total wealth is invested in the risky market the inclusion

of transaction costs matters only in setting up the portfolio at time T0.

4.2 Empirical Results

The analysis for the active investment strategies is implemented for the period from January

1996 until December 2005, involving 120 one month ahead excess stock return forecasts. The

models are estimated recursively using an expanding window of observations. The period

January 1991 to December 1995 is used to start up the forecast combination schemes. The

investment strategies are implemented for three levels of relative risk aversion, γ = 2, 5

and 10. Before we analyze the performance of the different portfolios, we summarize the

statistical accuracy of the excess return forecasts.

4.2.1 Statistical accuracy

The statistical accuracy of the individual models and forecast combination is evaluated by

MSPE, and its decomposition in square bias and variance as in Section 3. Results are

reported in Table 3. In the market column, labelled RW, we report the statistics of the

Random Walk model.

We notice that both the individual models provide much lower evaluation criteria than

the RW. In particular, the Halloween Indicator model has the lowest MSPE error and both

the mean and the variance of the forecast errors are lower than for the other individual

models. However, both series of forecasts have a quite different pattern than the very noise

excess return series in Figure 7. The HI model has a seasonal pattern given by the particular

strategy with a positive unconditional mean, and few negative forecasts only in 2002. The

LF generates forecasts which are more volatile, and in particular too low at the end of 1990’s

and at beginning of 2000, and too high in 2001. In term of sign prediction the HI strategy

performs very well in 90’s. The 60 month moving average sign hit ratios, which are the

proportions of correctly predicted signs of the excess return over the previous 60 months,

shown in Figure 8, are higher than 0.7 and close to 0.8. But after 1998, the ratios start to

deteriorate and stabilize at hit ratios around 0.5 for the final years of the sample period.

The higher percentage of positive returns in 90’s, and the almost always positive forecasts

10We think that 10 basis points is an average transaction cost to buy a 1-month future on S&P500 or a
1-month future on 1-month Treasury Bill.
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given by model HI may explain the result. The hit ratios given by the LF model are more

stable and on average just above 0.5. In term of MSPE, Figure 9 show similar predictive

patterns of the set of forecasts, but after middle of 1996 the HI model always provides lower

mean square errors than the LF model.

When averaging schemes are applied, the results are intriguing; see the top of Table 3 for

details. The MSPEs of schemes 1, 2, 3, 4, 6 are all higher than that of model HI. Moreover,

constant OLS and recursive OLS schemes have a positive bias11. The time varying weight

schemes, however, provide the best statistics. If we investigate the weight estimates, we find

that there is an indication of a break in the weight for model HI in the training period at

year 1995, moving from a lower value to values very stable around 1. At the same time, the

weight on model LF decreases and stabilizes around -0.5. This confirms ex-post instability

evidence in Figure 9 that model HI provides more accurate forecasts than the alternative

model after 1996. The dramatic boom of stock prices at the end of 90’s and well documented

lower predictability of macroeconomic and financial indicators can explain this result. It may

also indicate that strategy HI captures some seasonal stylized facts of stock index returns

and assigning weight 1 to it is beneficial in term of forecasting performance.

The BMA with predictive likelihood also gives a marginal lower MSPE than the individual

model HI. These results are similar to the ones from exercise IX, which shows that the BMA

scheme 7 copes with possible instability better than simple combination schemes.

Summarizing, the forecast statistics of the combination schemes are rather similar; the

largest difference between schemes is less than 5%. However, because predictability of stock

market is very low, small improvements in MSPE may have substantial economic value. To

investigate this we implement a portfolio exercise, reported n the next section.

4.2.2 Economic value

Panel B of Table 3 provides performance measures for the different investment strategies

based on the ten different forecasting methods presented in the previous sections. Over

the forecasting period, January 1996 to December 2005, the average return on the stock

portfolio is 10%, the standard deviation is 16%, and the Sharpe ratio is 0.12. The strategies

based on forecasting returns with one of the two individual models give lower mean returns

for a moderately risk averse (γ = 5) investor, but also lower standard deviation, which

results in a higher Sharpe ratio for the Halloween strategy. Accounting for possible time

11We emphasize that their bias is insignificant with respect to the MSPE, and it is less than 0.2% of the
unconditional mean return.
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varying volatility, and evaluating strategies with the ex-post realized utility shows that the

Halloween indicator performs better than the leading indicator and the market. The leading

factor strategy gives very low mean portfolio returns, which implies a low Sharpe ratio and

utility level.

Next, consider the strategies based on forecasting excess returns with the eight averaging

schemes. Strategy 5 and 8, based on time varying model weights, give the highest mean

returns among all the active strategies, among the lowest standard deviations, and the

highest Sharpe ratios and utility levels. In particular, the Bayesian time varying weight

scheme has marginally higher mean return but also standard deviation. Strategy 7, based

on BMA with predictive likelihood, provides also marginally superior results in terms of

portfolio measures than the strategy HI, but substantially lower than the previous strategy.

Again, more precise priors may be chosen, but we omit this “subjective” exercise. All

other strategies have lower economic values, in particular, give lower mean portfolio returns.

Results are qualitative similar for a risk seeking investor (γ = 2) and a risk averse investor

(γ = 10). Moreover, adding transaction costs does not change the quality of the results, and

even with substantial transaction costs of 100 basis points, strategies 5 and 8 give higher

levels of utility compared to a random walk strategy of investment. We notice that their

Sharpe ratios are lower, confirming that the Sharpe ratio may overestimates risk in case of

time varying volatility.

To conclude, the results indicate than the individual models HI and LF provide different

forecasts. Moreover, instability in the relation between realized excess returns and individual

forecasts seems to be relevant. As in the simulation exercises, in the empirical example the

time varying weight schemes give the highest predictive gains both in statistical measures

and economic gains.

5 Conclusions

Investors often have a set of forecasts on asset returns available from different models. Such

investors may attempt to discover which is the best forecasting model and use it to allocate

their portfolios, or they may consider all forecasts and take decisions by averaging forecast in-

formation from the individual models. In this paper we explained in a simulation experiment

that when data is subject to low predictability, low correlation among individual forecasts,

and structural instability, the Terui and van Dijk (2002) time varying model weight scheme

and its extension in a Bayesian framework to incorporate parameter uncertainty provides
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the most accurate forecasts compared to other frequentist and Bayesian model averaging

(with diffuse priors on model parameters) schemes. We applied the different model averag-

ing schemes also to forecast the index of US stock returns. As in the simulation exercise,

stylized facts of stock index data are low predictability and possible structural instability.

We considered two forecasting models that represent different views on predicting the US

stock index. We have shown, firstly, that averaging strategies can give higher predictive gains

than selecting the best model; secondly, that time varying model weights have higher statis-

tical and economic values than other averaging schemes considered. An interesting topic for

further research is to compare our results to other time varying weight combination schemes,

such as regime switching, see e.g. Guidolin and Timmermann (2007), or schemes that care-

fully model breaks, see e.g. Ravazzolo et al. (2007). Moreover, combination schemes can be

applied to the analysis of density forecasts. Market operators, such as financial investors or

central bank decision makers, are becoming increasingly interested in knowing the complete

distribution of the assets of interests for purposes of risk management. The Bayesian time

varying weight scheme that we put forward seems particular adequate in this context.
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A Comparison of Recursive Least Squares and time

varying model weight combinations

The model weights of the OLS averaging scheme 4 can be computed by Recursive Least

Squares. Consider (10) and rewrite it as

yt = z
′
tw + ut; ut ∼ N(0, s2) (28)

where z
′
t is a (1 × q) row vector and where w is a (q × 1) vector of unknown constant

parameters. The recursive least squares estimator of the weight w is given as

b
(4)
t = b

(4)
t−1 + (Z

′
t−1Zt−1)

−1zt(z
′
t(Z

′
t−1Zt−1)

−1zt + 1)−1(yt − z
′
tb

(4)
t−1) (29)

b
(4)
t is defined recursively as equal to its previous value plus a weighted value of the prediction

error (yt−z
′
tb

(4)
t−1) times the observed value of zt. A minimum of k observations are needed to

compute a starting value for the estimator. For details of the derivation see, e.g., Ravazzolo

(2007)

The model weights of the time varying averaging scheme 5 are defined as

yt = z
′
twt + ut; ut ∼ N(0, s2) (30)

wt = wt−1 + ξt; ξt ∼ N(0, Σ) (31)

where wt is a (q×1) vector of random variables, and ut and ξt are independently and identical

distributed for t = 1, ..., T , and uncorrelated for all lags, E(ξt, uτ ) = 0 for all t and τ , t 6= τ ,

and where Σ is a diagonal matrix. We make use of the Kalman Filter technique to compute

estimators for the model weights wt. Following Harvey (1993, section 4.3), the distribution

of wt conditional on yt is multivariate normal with mean

b
(5)
t = b

(5)
t|t−1 + Pt|t−1zt(z

′
tPt|t−1zt + s2)−1(yt − z

′
tb

(5)
t|t−1) (32)

and covariance matrix

Pt = Pt|t−1 − Pt|t−1zt(z
′
tPt|t−1zt + s2)−1z

′
tPt|t−1 (33)

Thus b
(5)
t , the vector of estimated model weights in (30), is defined equal to its previous value

plus a term that is the weighted product of the prediction error (yt − z
′
tb

(5)
t|t−1), the observed

value of zt, and the prediction for the variance of the latent factor estimator Pt|t−1.
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Comparison Let Pk = (Z
′
kZk)

−1. Following (32), the weight estimates at time (k + 1)

given by the Kalman Filter, b
(5)
k+1, can be written as:

b
(5)
k+1 = b

(5)
k +

(
(Z

′
kZk)

−1

s2
+

Σ

s2

)
zk+1

(
z
′
k+1

(
(Z

′
kZk)

−1

s2
+

Σ

s2

)
zk+1 + 1

)−1

(yk+1 − z
′
k+1b

(5)
k )

(34)

where b
(5)
k+1|k = b

(5)
k , where (Pk+1|k = (Z

′
kZk)

−1 + Σ), and where s2 is a scaling parameter

bounded from (30) as 0 < s2 < V ar(y). The recursive least square estimator of w(4) at time

k + 1 is given in (29) and repeated for convenience as

b
(4)
k+1 = b

(4)
k + (Z

′
kZk)

−1zk+1(z
′
k+1(Z

′
kZk)

−1zk+1 + 1)−1(yk+1 − z
′
k+1b

(4)
k ) (35)

If Σ is a matrix of zeros and s2 = 1, the weight estimates in (34) and (35) are identical.

Otherwise, if k is sufficient large, the elements of the matrix (Z
′
kZk)

−1 are relative small.

Then by dividing for the scalar s2 they change marginally. What really matters in such

situation for comparing the two estimators in (34) and (35) is the signal to noise ratio

(SNR), that is Σ/s2.

• If the SNR is large, meaning that one or more diagonal elements of Σ are very large

comparing to s2, the weight estimates of the two schemes will differ substantially.

• If the SNR is on contrary small, meaning that s2 is large compared to the diagonal

elements of Σ, the weight estimates in the two schemes will be almost identical.

In our simulation exercise, a large SRN corresponds to large instability in the DGP weights.

Thus, our conclusion is that in cases where the data are subject to structural instability, the

time varying weight scheme is preferable to the Recursive OLS scheme.

B Graphical examples

We develop few simulation exercises to explain graphically results in Appendix A. Let assume

that a series is generated from the following DGP:

yt = 1 + ztwt,1 + ut; ut ∼ N(0, s2) (36)

wt = wt−1 + ξt; ξt ∼ N(0, σ2) (37)

where t = 1, .., T , where z = {zt}T
t=1 is a (T × 1) normally distributed vector with mean µz

and variance σz in Table 4.
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We apply the Recursive Least Squares and the Kalman Filter algorithms to estimate w =

{wt}T
t=k+1, defined as b(4) and b(5) respectively, where k are the initial observations to ini-

tialize the estimation algorithms. Precisely, we use the OLS estimate of w on the initial k

observation and Pk = (Z
′
kZk)

−1 to initialize the algorithms.

Exercise B.I: Zero SNR We fix T = 240, k = 120, s2 = 1, σ2 = 0, and β0 = 1. Results

are in Figure 10. The vector w is constant and the two estimators provide the same results.

Exercise B.II: Medium SNR In this exercise we fix s2 = 1, σ2 = 0.04, and β0 = 1.

Results are in Figure 11. The vector w has a time varying pattern. b(4) and b(5) initialize with

the same value, then b(4) is very persistent around the value 1, b(5) on contrary approximates

very precisely the pattern of w.

Exercise B.III: High SNR In this exercise we fix s2 = 1, σ2 = 1, and β0 = 1. Results

are in Figure 12. The vector w follows a very high volatile pattern, b(5) accurately estimates

it, b(4) is on contrary a poor estimator.

C Estimation of the Bayesian time varying model weight

combinations

The model weights of the time varying weights in scheme 8 are defined as in (30) and (31)

(zt may assume different values). The parameters in (30) and (31) are the variances of the

residuals in the observation equation, s2, and the variances of the residuals in the latent

equation q2
0, . . . , q

2
i , where q2

0, . . . , q
2
i are the diagonal elements of Σ. The model parameters

are collected in the ((1 + i) × 1) vector θ = (s2, q2
0, . . . , q

2
i )
′. To facilitate the posterior

simulation we make use of diffuse or independent conjugate priors where such values of prior

parameters are chosen that we are rather diffuse. For the variance parameters we take the

inverted Gamma-2 prior

q2
j ∼ IG-2(νj, δj) for j = 0, . . . , i (38)

and

s2 ∼ IG-2(νs, δs), (39)

where νj, δj, j = 0, . . . , i, νs, and δs are parameters which can be chosen to reflect diffuse

prior beliefs about the variances and the information in the likelihood is allowed to dominate.
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Posterior results are obtained using the Gibbs sampler of Geman and Geman (1984) com-

bined with the technique of data augmentation of Tanner and Wong (1987). The latent

variables w = {wt}T
t=1 are simulated alongside the model parameters θ. The complete data

likelihood function is given by

p(y, w|z, θ) =
T∏

t=1

p(yt|zt, wt, s
2)p(wt|wt−1, q

2
0, . . . , q

2
i ) (40)

where y = (y1, . . . , yT )′ and z = (z′1, . . . , z
′
T )′. The terms p(yt|zt, wt, s

2) and p(wt|wt−1, q
2
0, . . . , q

2
i )

are normal density functions, which follows directly from (30) and (31) respectively. If we

combine (40) together with the prior density p(θ), which follows from (38)-(39), we obtain

the posterior density

p(θ, w|y, z) ∝ p(θ)p(y, w|z, θ) (41)

The sampling scheme can be summarized as follows:

1. Draw w conditional on θ.

2. Draw θ conditional on w.

The full conditional posterior density for the latent regression parameters w in step 1 is

computed using the simulation smoother as in Carter and Kohn (1994). Other simulation

smoothers can also be applied, see e.g. Harvey et al. (2006). The Kalman smoother is applied

to derive the conditional mean and variance of the latent factors; for the initial value w0 a

multivariate normal prior with mean 0 is chosen as for scheme 5. To sample the parameters θ

in step 2 we can use standard results in Bayesian inference. Hence, the variance parameters

s2 and q2
j are sampled from inverted Gamma-2 distributions.

The one-step ahead predictive density of yT+1 at time T conditional on y, z and zT+1 is given

by

p(yT+1|y, z, zT+1) =

∫∫
p(yT+1|zT+1, wT+1, s

2)p(wT+1|wT , q2
0, . . . , q

2
i )

p(θ, w|y, z)p(zT+1|zT )dwdθ (42)

Simulating yT+1 from the one-step ahead distribution (42) is in fact rather straightforward.

In each step of the Gibbs sampler, we use the simulated values of wT and (q0, . . . , q
2
i ), and

equation (31) to simulate wT+1. Equation (30) in combination with the simulated value

of wT+1, the current Gibbs draws of s2, and the simulated value of zT+1 then provide a

simulated value for yT+1.
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We emphasize that special cases of our algorithm are Bayesian versions of the OLS

schemes 3 and 4. The Bayesian version of schemes 4 is almost identical to scheme 8. The

only difference is that we make use of equation (28) (eventually partially reformulated to

account for prior information, see e.g. Koop, p. 37) instead of equation (31). We note that

the Bayesian version of schemes 3 and 4 do not longer deal with latent weights wt, but wt is

constant and just a vector of parameters of the model.
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Table 1: Simulation design of exercises I-X

EXERCISES
PARAMETERS I,VIII,IX II III IV,V VI VII X

µx1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
µx2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
µx3 - - - - 1.00 1.00 -
µx4 - - - - - 1.00 -
µx5 - - - - - 1.00
µx6 - - - 1.00 - - -
σ2

x1
2.00 2.00 2.00 2.00 2.00 2.00 2.00

σ2
x2

2.00 2.00 2.00 2.00 2.00 2.00 2.00
σ2

x3
- - - - 2.00 2.00 2.00

σ2
x4

- - - - - 2.00 -
σ2

x5
- - - - - 2.00 -

σ2
x6

- - - 2.00 - - -
%x1,x2 0.00 1.00 1.80 0.00 0.00 0.00 0.00

ν - - - - - - 4
α1, β1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
α2, β2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
α3, β3 - - - - 1.00 1.00 -
α4, β4 - - - - - 1.00 -
α5, β5 - - - - - 1.00 -

β6 - - - 1.00 - - -
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Table 5: Simulation design in exercises
BI-BIII

EXERCISES I II III
µz 0.00 0.00 0.00
µu 0.00 0.00 0.00
µξ 0.00 0.00 0.00
s2 1.00 1.00 1.00
σ2

z 1.00 1.00 1.00
σ2

ξ 0.00 0.04 1.00
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Figure 1: Exercise I (1)
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Note: The figure presents the patterns of parameters c1 (in solid line) and c2 (in dotted line) in equation
(3) in exercises I.

Figure 2: Exercise I (2)
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Note: The figure presents the log marginal likelihood given model 1 (in solid line) and the log marginal
likelihood given model 2 (in dotted line) in exercise I.

Figure 3: Exercise VI-VII
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Note: The figures present in the left panel the patterns of parameters c1 (- line), c2 (-. line), c3 (.. line) in
equation (3) in exercises VI, and in the right panel also the parameters c4 and c5 (– line) in exercise VII.
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Figure 4: Exercise VIII
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Note: The figure presents the patterns of parameters c1 (in solid line) and c2 (in dotted line) in equation
(3) in exercises VIII.

Figure 5: Exercise IX
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Note: The figure presents the patterns of parameters c1 (in solid line) and c2 (in dotted line) in equation
(3) in exercises IX.

Figure 6: S&P500 Excess returns
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Note: The figure presents the excess returns on the S&P500 over the sample 1976:1-2005:12.
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Figure 7: Individual forecasts
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Note: The figure presents the forecasts on excess returns on the S&P500 given by the individual models
‘Leading Indicator’ (in solid line) and ‘Halloween indicator’ (in dotted line) over the sample 1996:1-2005:12.

Figure 8: 60 month moving average sign hit ratios
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Note: The figure presents the 60 month moving average sign hit ratios given by the individual models
‘Leading Indicator’(in solid line) and ‘Halloween indicator’ (in dotted line).

Figure 9: 60 month moving average MSPE
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Note: The figure presents the 60 month moving average MSPE given by the individual models ‘Leading
Indicator’(in solid line) and ‘Halloween indicator’ (in dotted line).
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Figure 10: Exercise B.I
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Note: The figure presents the patterns of parameter β (in - line), and estimates β̂(4) (in -. line) and β̂(5)

(in .. line) in exercises B.I.

Figure 11: Exercise B.II
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Note: The figure presents the patterns of parameter β (in - line), and estimates β̂(4) (in -. line) and β̂(5)

(in .. line) in exercises B.II.

Figure 12: Exercise B.III
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Note: The figure presents the patterns of parameter β (in - line), and estimates β̂(4) (in -. line) and β̂(5)

(in .. line) in exercises B.III.
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