






Figure 2. (A-C) Aortic diameter, distensibility and wall diameter in Fibulin-4R/R mice treated for 65 days 
with placebo, losartan or aliskiren vs. age-matched untreated WT mice (mean±SEM of n=6-10) (black 
bars represent 100 µm); *P<0.05 vs. placebo. Treatment did not affect aortic wall morphology (D), elas-
tic fiber fragmentation (E), extracellular matrix deposition (Alcian Blue) (F), a-smooth muscle actin 
(SMA) deposition (G), or pSmad2-signaling (H). 
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losartan improves cardiac morphology and function 

Transthoracic echocardiography in placebo-treated Fibulin-4R/R mice revealed a tripling 
of LV mass and a doubling of LV diameter versus wild-type mice (Fig. 4A-4B) at the age 
of 100 days. Ejection fraction and fractional shortening were both greatly reduced (Fig. 

Figure 3. (A) In-vivo three-dimensional FMT-CT co-registration of heart and aorta in Fibulin-4R/R mice 
treated for 65 days with placebo or losartan vs. age-matched untreated WT mice, after injection of 
MMPSense 680 to determine matrix metalloproteinase (MMP) activity. (B) MMP activity determined 
ex vivo in whole aortas, and (C) its quantification (mean±SEM of n=2). 
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4C-4D). Losartan improved all parameters, although significance was not reached for LV 
mass. Aliskiren affected none of these parameters. Data for propranolol in 100-day old 
mice could not be obtained. 

Figure 4. (A-D) Left ventricular (LV) mass, LV diameter, ejection fraction and fractional shortening de-
termined by in-vivo transthoracic echocardiography in Fibulin-4R/R mice treated for 65 days with place-
bo, losartan or aliskiren vs. age-matched untreated WT mice (mean±SEM of n=6-10). *P<0.05, **P<0.01.

losartan prevents cardiomyocyte hypertrophy and reduces canonical tGFb signaling

Cardiomyocyte area doubled in Fibulin-4R/R versus wild-type mice, and losartan (but not 
aliskiren) fully prevented this hypertrophic response (Fig. 5A-5B). As expected, changes 
in plasma BNP paralleled this pattern, although no significant differences were observed 
for this parameter (Fig. 5C). Both canonical (pSmad2) and non-canonical (pERK) TGFβ 
signaling were upregulated in hearts of Fibulin-4R/R mice, but losartan reduced only the 
former to wild-type levels (Fig. 5D-5E). Smad2 and ERK levels were identical under all 
conditions (data not shown). LV AT1aR -, AT1bR -, and AT2R expression were downregulated 
in Fibulin-4R/R mice versus wild-type mice, and losartan treatment exclusively normalized 
AT1aR expression (Fig. 5F). Unfortunately, due to scarcity of available tissue, similar data 
could not be obtained in aliskiren- or propranolol-treated mice. 
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Figure 5. (A-B) Cardiomyocyte area (n=5-12; panel A shows a representative example) and (C) plasma 
brain natriuretic peptide (BNP; n=10-18) levels in Fibulin-4R/R mice treated for 65 days with placebo, 
losartan or aliskiren vs. age-matched untreated WT mice. Data are mean±SEM, **P<0.01, ***P<0.001 vs. 
WT or placebo. (D-E) pSmad2, pERK, and β-actin protein levels in hearts of Fibulin-4R/R mice treated 
for 65 days with placebo or losartan vs. age-matched untreated WT mice (n=3-4). *P<0.05 vs. WT. (F) 
Relative gene expression of LV Ang II receptors (n=3-10). *P<0.05 vs. WT.
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losartan prevents lV and aneurysm growth rate 

We used a novel microCT method in combination with the vascular contrast agent Exia160, 
yielding longitudinal 3D data sets in which each animal serves as its own baseline control 
(Fig. 6A). At the start of treatment, both aortic volume and LV volume were not different 
in placebo- and losartan-treated Fibulin-4R/R mice (Fig. 6B-6C). Both volumes increased 

Figure 6. (A) 3D overview of CT-angiography with contrast agent Exia160. (B-C) Aortic and LV volume 
of placebo and losartan treated Fibulin-4R/R mice at baseline. (D-E) Percentage growth of ascending 
aortas and left ventricle (LV). Data are mean±SEM of n=4-6. *P<0.05, ***P<0.001 vs. placebo.
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by approximately 60% during placebo treatment, and losartan largely (aortic volume), if 
not completely (LV volume) prevented this (Fig. 6D-6E).

dIscussIon

The present study shows that losartan, but not aliskiren or propranolol, increased survival 
in Fibulin-4R/R mice, and that this predominantly related to its capacity to improve cardiac 
function and structure. Although losartan also stabilized aortic growth, these effects were 
more modest than its effects on LV growth, and they did not result in any change in aortic 
wall morphology, TGFβ-signaling, or MMP-activity. Nevertheless, there was an improve-
ment in aortic distensibility. The larger effects on the heart most likely reflect the fact that 
the heart profits both from the local (cardiac) effects of losartan and its effects on aortic 
root remodeling. Since none of these effects were seen with aliskiren, despite the fact that 
this RAS blocker lowered blood pressure and inhibited the RAS to the same degree as 
losartan, we conclude that they are blood pressure-independent, and that losartan exerts 
effects beyond blockade of the classical Ang II-AT1R axis. This most likely concerns its 
unique capacity to induce AT2R stimulation. A second possibility would be activation of 
the angiotensin-(1-7)-Mas receptor axis. However, a study making use of Fbn1C1039G/+ mice 
(an alternative, albeit less severe, TAA model) supports the former only, since it observed 
no effect of an ACE inhibitor, although such a drug, like an AT1R blocker, activates the 
angiotensin-(1-7)-Mas receptor axis.20, 30 Our study is the first to directly compare renin 
inhibition and AT1R blockade in a mouse TAA model. 

RAS activation, both in the circulation and at the tissue level, is an established 
characteristic of Fibulin-4R/R mice.13, 31 Given the low Ang II levels in the aorta and its 
relatively small size32, we measured Ang II in renal tissue to confirm the upregulated tissue 
RAS activity in this model. Increased Ang II levels will facilitate TGFβ-signaling, which is 
known to be enhanced in patients and mice with MFS.29, 33-36 In fact, increased serum TGFβ 
levels correlated directly with aortic root dilation.33 In agreement with the causative role 
of Ang II, we showed in an earlier study that prenatal treatment with losartan successfully 
improved elastic fiber fragmentation and reduced vessel wall thickness in Fibulin-4R/R 
mice.13 Moreover, in mice that lack fibulin-4 in VSMCs (Fbln4SMKO mice), aneurysm for-
mation could be prevented completely when RAS blockade was started within a narrow 
therapeutic window during the first month of life.31 In this latter study, ACE inhibition 
with captopril and losartan treatment were equally effective. Yet, in contrast with our 
study, no cardiac phenotype was reported in Fbln4SMKO mice. 

The present study in Fibulin-4R/R mice now evaluated postnatal losartan versus 
aliskiren treatment, started on day 35, i.e., when aneurysm formation is already present. 
This is not only more clinically relevant, as treatment in TAA patients usually starts in 
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the presence of an aneurysm, but also more realistic given the fact that such blockade 
is contraindicated during pregnancy. Propranolol, a classical MFS drug, was used as a 
comparator, but exerted no effect, in agreement with its lack of effect at the same dose (50 
mg/kg p.o. per day) in Fbn1C1039G/+ mice.15 All drugs were given orally, since the fragility of 
our model, resulting in a very low survival, was not compatible with the operation required 
to implant osmotic minipumps. Although aliskiren displays a low bioavailability37, and is 
highly species-specific38, it blocks mouse renin at the same concentration range as human 
renin.39 Consequently, by applying oral doses that were over 10 times higher than those 
used in humans (62.5 mg/kg p.o. per day versus 150-300 mg/day in humans), we were able, 
as in previous studies21, 22, to achieve a degree of RAS blockade that yielded the same blood 
pressure-lowering effects as losartan at 60 mg/kg p.o. per day. Importantly, as an indication 
of RAS blockade, losartan and aliskiren increased circulating renin similarly. Probably as a 
consequence of this rise in renin release, aliskiren did not significantly decrease renal Ang 
II. Similar observations were made previously in the rat kidney.40 Yet, losartan decreased 
renal Ang II, in agreement with the fact that tissue Ang II largely reflects Ang II that is 
bound to, or has been internalized via, AT1R.41, 42 Therefore, during losartan treatment, the 
reduction in tissue Ang II is an indication of the degree of AT1R blockade. Unfortunately, we 
were unable to obtain comparable data for propranolol-treated mice, since none of these 
mice survived until the age of 100 days, i.e., the day of sacrifice for our RAS component 
measurements, at which timepoint blood pressure was measured. Nevertheless, it might 
be speculated that propranolol, given its modest renin-suppressing effects43, did reduce 
Ang II. Long-term treatment with propranolol was feasible in Fbn1C1039G/+ mice, in which 
aneurysm formation starts only at the age of 2 months.3, 44 Propranolol affected blood 
pressure in Fbn1C1039G/+ mice to the same extent as losartan.15 Even if this had also been the 
case in our model, e.g., based on Ang II reduction, this effect would have resembled that of 
aliskiren, i.e., it could not have resulted in enhanced AT2R stimulation. Thus, once TAA are 
established, both renin suppression with propranolol and renin inhibition with aliskiren 
lack the beneficial effects of losartan. In contrast, when treatment is started before the 
onset of TAA, like in the Fbln4SMKO mice model described above31, captopril yielded the 
same effects as losartan. Since captopril does not allow AT2R stimulation, these data sug-
gest that, at a very early stage of TAA, AT1R are predominant, while at a later stage AT2R 
may additionally come into play. This correlates well with the widely accepted phenom-
enon that AT2Rs normally display low-to-undetectable levels, which increase only under 
pathological conditions, e.g., post-myocardial infarction, during hypertension-induced 
remodeling, and in heart failure.45-47 Clearly, timing of treatment is of utmost importance, 
and different ages at the start of treatment (e.g. children/adolescents versus adults) may 
explain the success (or lack thereof) of different RAS blockers in clinical trials.17, 18, 48 
Moreover, when classifying FBN1 mutations into ‘haploinsufficiency’ (decreased amount 
of normal fibrillin-1), and ‘dominant negative’ (normal fibrillin-1 abundance with mutant 
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fibrillin-1 incorporated in the matrix), Franken et al. observed that Marfan patients with 
haploinsufficient FBN1 mutations were more responsive to losartan.49 Since the Fbn1C1039G/+ 
and Fibulin-4R/R TAA models closely correspond with the haploinsufficiency situation, 
it appears that the underlying mutation is an additional determinant of the success of 
AT1R blockade in Marfan patients. Taken together, simultaneous AT2R stimulation may 
not always offer an additional advantage, and thus selective AT2R agonists should not by 
definition be preferred over AT1R antagonists. 

Given the predominant effects of losartan on the heart, we focused on canonical 
(pSmad2) and non-canonical (pERK) TGFβ signaling in cardiac tissue. Both were upregu-
lated in Fibulin-4R/R mice, comparable to their upregulation in aortic tissue in Fbln4SMKO 
and Fbn1C1039G/+ mice.20, 31 Yet, although losartan suppressed both types of signaling in aortic 
tissue in these latter models, in the hearts of our mice only the canonical signaling was 
found to be suppressed after losartan, while no pSmad2 suppression was seen in the aortic 
wall (Fig. 5E). These findings concur with the heart-specific effect of this AT1R antagonist 
in our model, and suggest that the AT2R stimulatory effects, if occurring, result in reduced 
canonical TGFβ signaling in the heart. Studies in transgenic animals support the concept 
that AT2Rs are antihypertrophic and prevent remodeling.50, 51 The lack of effect on pERK 
signaling in our Fibulin-4R/R mice is in agreement with a recent study by Cook et al.52, 
who demonstrated that ERK1/2 activation peaks at a very early stage of the disease only, 
while pSmad2 remains elevated throughout the disease. From this perspective, effects of 
losartan on pERK1/2 are no longer expected after 100 days, simply because pERK1/2 is not 
activated anymore at that stage.   

Gene expression studies in LV tissue revealed a reduction of all Ang II receptor types 
in Fibulin-4R/R mice compared to wild type mice. It should be noted that mice, unlike 
humans, display two AT1R subtypes, AT1aR and AT1bR, and that losartan blocks both AT1Rs 
equally well. AT1R downregulation is also known to occur in heart failure patients.53 It 
was not observed in the aortic arch or kidney of our Fibulin-4R/R mice13, implying that 
its downregulation was cardiac-specific. Importantly, although the raw Ct values for the 
AT1bR, the AT2R and the housekeeping genes β-actin and β2-microglobin were identical in 
LV tissue and aorta (B.S. van Thiel, data not shown), the raw Ct values for the AT1aR in the 
LV were approximately 6 cycles lower than in the aorta. This suggests that AT1aR expression 
in the heart greatly exceeds that in the aorta. Losartan treatment exclusively normalized 
cardiac AT1aR expression in Fibulin-4R/R mice. Such upregulation is a well-known physi-
ological response to receptor antagonism, once again supporting effective AT1aR blockade 
by losartan in the heart. Yet, it does not imply that AT1aR activation had now normalized 
(due to the simultaneous presence of losartan), and thus predominant AT2R stimulation 
by the elevated levels of Ang II during losartan treatment is still highly likely.

Our data are the first to show the losartan-induced stabilization of LV growth over 
time with longitudinal microCT measurements. Using each animal as its own baseline 
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control, this novel approach enabled us to conclude that the effects of losartan on LV 
growth exceeded those on aortic growth. Combined with the FMT to co-registrate MMP-
activity, this approach allows monitoring of cardiac and aortic remodeling in a unique, 
non-invasive manner. It would also reduce the required number of animals. Given the 
major limitation of our animal model, i.e. a complicated breeding scheme and a high 
death rate resulting in low n-numbers, this is an important advantage. 

In conclusion, losartan, but not aliskiren or propranolol, improved survival in 
Fibulin-4R/R mice, by simultaneously stabilizing aortic growth, reducing aortic distensibil-
ity, and improving cardiac function and structure. The absence of these effects during 
aliskiren treatment, despite a similar reduction in blood pressure and degree of RAS 
blockade, suggests that it might be due to AT2R stimulation and/or activation of the 
angiotensin-(1-7)/Mas receptor axis. Future studies, making use of AT2R/Mas receptor 
knockout animals, AT2R/Mas receptor antagonists (e.g., PD123319 and A779, respectively) 
or AT2R/Mas receptor agonists (e.g., C21 and AVE0991, respectively) may help to substanti-
ate this view. However, given the non-specific effects of the latter types of drugs54, 55, the 
possibility that AT2R heterodimerize with Mas receptors56, and the consequences of AT2R 
deletion on cardiac development and remodeling57, the results of such studies may not be 
straightforward. In addition, none of these approaches is currently feasible in humans. 
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