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Abstract

We perform a large-scale empirical analysis of the question whether model-based
forecasts can be improved by adding expert knowledge. We consider a huge database
of a pharmaceutical company where the head office uses a statistical model to
generate monthly sales forecasts at various horizons for various products in seven
categories across thirty-five countries and where local managers can modify those
model-based forecasts. To sensibly compare realizations and forecasts we develop a
useful statistical methodology. Our main finding is that on average the model-based
forecasts are about equally good with or without added expertise. We examine the
possibility that the expert puts too much weight on his or her own contribution and we
obtain strong evidence that this is the case.
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1. Introduction

It frequently occurs that model-based forecasts are adjusted by experts who have
domain knowledge of the specific forecast situation at hand. Experts may know that
institutions will change, that events have a specific impact that is not included in the
model, or that a variable that is difficult to measure is missing in the model. There is
scattered evidence that added expertise may yield better forecasts, see Blattberg and
Hoch (1990) and Mathews and Diamantopoulos (1986, 1992) for early accounts, but
most of this evidence concerns specific and detailed cases. In this paper we aim to
shed light on this matter by examining a huge database containing model-based
forecasts, expert-adjusted forecasts and realizations for monthly sales of
pharmaceutical products, concerning thirty-five countries and seven product
categories. An analysis of this enormous amount of information allows us to draw
some generalizing statements on the relative contribution of expert on top of models.
The outline of our papers is as follows. First, in Section 2, we develop a useful
and reliable statistical methodology to compare model-based forecasts and expert-
adjusted forecasts. We need to do so, as it can easily be understood that expert-
adjusted forecasts somehow nest the pure model-based forecasts, and hence the
techniques in Clark and McCracken (2001, 2005) need to be implemented. Basically,
other (and elsewhere already employed) methods would give biased results, in this
case in favour of the model-based forecasts. Additionally, as we find those experts’
adjustment shows strong autoregressive dynamics, all methods need to account for
this. In Section 3, we apply our methodology to our large database. We test whether
experts add knowledge in a systematic and significant manner, and next we examine
if this would also lead to better forecast accuracy. We find that experts do matter, and
that added knowledge and model balance each other on a 50-50 basis, but that
forecast gain is not large. In fact, when experts do worse, they do seriously worse. On
the positive side, when they do better it can be largely attributed to their adjustment.
This finding seems to holds across forecast horizons, countries and categories. In
Section 4 we examine the possibility that perhaps the experts exercise too much
impact on the final forecasts, and we find overwhelming evidence for this hypothesis.

In Section 5 we conclude with a summary of potential implications of our findings.



2. Methodology

In this paper we examine the accuracy of statistical model-based forecasts and of
expert forecasts, where the expert has adjusted the model-based forecasts. We first
deal with one-step-ahead forecasts and then with multi-step-ahead forecasts. We
propose two statistical tests to examine if experts add knowledge that is relevant and

whether it improves the quality of the forecasts.
2.1 One-step-ahead forecasts
In this study we examine whether experts make model-based forecasts better by

adding domain knowledge. We first restrict our focus to one-step ahead forecasts. We

consider the following variables

MFy model-based forecast (made from origin ¢)
EF, expert forecast(made from origin ¢)
St+1: realization at time ¢ +1

The variable S denotes sales here.

The model-based forecast is a linear function of past sales, where the weights
are updated each month. We thus consider a recursive forecasting scheme. We can
write
(1) MF,, =i+ PSS, + P2+ P38 5 + e
The recursive scheme means that the parameters are estimated for R in-sample data,
and then a one-step-ahead forecast is made. Next, the sample is enlarged to R+1,
parameters are re-estimated and again a one-step-ahead forecast is made. The number
of forecasts thus obtained is denoted as P.

The expert receives the statistical model-based forecasts and quite often makes
an adjustment. Franses and Legerstee (2007) show that part of that adjustment is

based on past sales (again) and on other domain-specific variables, say X;. Note that

the inclusion of past sales in expert adjustment implies that there is some form of



double-counting as the recursive scheme for the model-based forecasts already allows
for additional impact of exceptional past sales data. In sum, the expert-adjusted

forecast can be written as

(2) EF,, =1, +0,S,+0,5_,+0,8, +...+ BX, +...

As the expert did not write down how he or she modified the forecast, we do not have
any specific information on X;. Comparing (2) with (1) we see that the forecasting
scheme of the expert nests the forecasting scheme of the model. If we were to call (2)
the model used by the expert, then model (2) nests model (1). This observation is
quite important as it has strong implications for the statistical methodology to be used
below for testing whether (2) is better than (1) in terms of forecast accuracy.

There are two ways of defining the added contribution of the expert to the
model-based forecast. The first is simply EF,.; - MF;.;, which assumes that both
forecasts are independent and that the expert takes the model-based forecasts as given

and adds his or her expertise. The second is by computing

(3) ADt+1:EFt+1 - WF[+1,

where A gets estimated from a linear regression, as it is recommended in Blattberg and

Hoch (1990). In what follows below, we will use this second definition.

Does the expert’s added value matter?

The first question that needs to be answered when comparing expert-adjusted and
model-based forecasts is whether the added value of the expert actually matters (and
this can be either in a positive or a negative way). This question can be answered by
considering the following auxiliary test regression

@) S, =a+ fMF,

t+1

+ 7ADt+1 + ut+l

When the expert adds something that is relevant, the contribution of 4D;:; in (4)

should be non-zero. Hence, a first relevant test is whether y = 0 in (4).



A second question that is of interest is whether the contribution of the model
and that of the expert are in balance, that is, does the 50% model — 50% manager rule
(as advocated in Blattberg and Hoch, 1990) hold? It should be stressed here that there
can be some discussion as to whether this 50%-50% rule concerns the forecast of the
manager EF,.; or the added value AD,;; of the manager? We believe it should be the
added value, and this then makes (4) the proper equation to consider. Indeed, if one

were to consider the test regression

(5) S, =a+pMF, , +6EF, +u

t+1 t+1 t+1°

one should be aware that this means

(6) S, =a+(f+6A)MF,

t+1

+04D,,, +u,,,

t+1

In other words, if one were to find a 50%-50% balance between EF;+; and MF;y;
using model (5), then this would not be informative for the balance between AD,.; and
MF,4,, as this depends on the value of A that has to be estimated too. So, we prefer to
directly look at (4) and, based on this test regression, we examine the second
interesting hypothesis that f = y. In sum, we first consider the 50%-50% rule for the
model versus added value of the expert. In Section 4 we will also consider another

rule.

Is the RMSPE of the expert significantly lower than that of the model?

To test the null hypothesis that the root mean squared prediction error of the expert is
equal to that of the model against the alternative hypothesis that the expert is better,
we need to take account of the fact that model (2) nests model (1). As is convincingly
explained in Clark and McCracken (2001), due to this nesting property the relevant
test statistic does not have a standard normal distribution.

We follow the recommendation in Clark and McCracken (2001) and we will
use the following procedure. We have R in-sample data, where in our cases below R
concerns 5 years of monthly data, so R = 60. We have P recursively created out-of-

sample forecasts, with P = 25. Hence, the fraction of forecasts over in-sample data is



7r=£=0.4
R

We need this value of & for the non-standard critical values of the upcoming test.

As said, we assume that model (2) nests model (1). We do not know how
many variables are included in the additional set of regressors X;, but for convenience
we set that number £, equal to 2. Based on simulations concerning empirical size and
power, Clark and McCracken recommend using the so-called ENC-NEW test, defined
by

1

P Z (“12,z+1 - “1,z+1”2,z+1)
(7 ENC - NEW =P

1
F Z u22,t+]

The summation runs for the P one-step-ahead forecasts, and u; ,+; denotes the forecast
errors for model-based forecasts (scheme (1)), and u;,,+; concerns the expert forecasts
(scheme (2), which nests scheme (1)). The 5% critical values are given in Table 1 of
Clark-McCracken (2001, page 92). For = = 0.4 and k, = 2 it is 1.481. Note that this
test is a one-sided test of the null hypothesis that model (2) is equally good as model
(1) against the alternative hypothesis that model (2) is better. So, the outcome of the

test is whether the expert yields better forecasts or not.

2.2 Multi-step-ahead forecasts

When there is an interest in examining whether experts do better than models when it

comes to A-step-ahead forecasts, we consider the variables

MF, . model-based forecast (made from origin )
EF iy expert forecast(made from origin #)
Sth: realization at t+h

Based on discussions with the relevant managers of our data provider, we will focus

on the case where 4 = 6 in our empirical work.



As in the case of one-step-ahead forecasts we consider the test regression

®) S,y =+ MF,

t+h

+yAD,,, +u

t+h>

and we test the hypotheses that y = 0 and that § = .

We can also compute the test statistic as in (7), but now a complication arises
in terms of the asymptotic distribution of that test. For multi-step-ahead forecasts it is
well known that the forecast errors are correlated, and this correlation needs to be
included in the distribution. Clark and McCracken (2005) outline in detail how to do
this in case the variables in X, are known. One can then use bootstrap techniques to
compute critical values for each particular situation at hand. In our case we face the
problem that these variables, which are the additional variables used by the expert, are
unknown. Fortunately, Clark and McCracken (2005, page 390) note that standard
normal critical values would lead to reliable inference, provided that the forecast
horizon is relatively short and m is also rather small. Our empirical work below seems

to meet these requirements, so we will compute

1

P Z (u12,t+/1 - ul,t+hu2,t+h)
)  ENC—NEW, = P

1
; Z u22,t+h

and we consider a one-sided test with a 5% critical value equal to 1.645.
In the next section we will use the methodology outlined in this section to see
if experts’ added expertise matters, whether it leads to better forecasts, and whether

perhaps a little less added expertise would even do better.

3. Empirical results

We have data concerning products i within category j for country c. The data concern
monthly sales for October 2004 to October 2006 of pharmaceutical products. The
headquarters’ office creates model-based forecasts and sends these to the local

managers in each of the countries. Each country has its own expert dealing with all



forecasts, so within a country we expect the same skills across products and
categories. An expert is allowed to modify the model-based forecasts in a way he or
she sees fit. We consider 35 countries and there are 7 product categories. We do not
have all data for all categories for all countries. Also, within a category there are
different numbers of products. In Table 1 we give a summary table of the amount of

products within each category for each of the countries.

Insert Table 1 here

3.1. Preliminaries

When we run the regressions as in (4) for our one-step-ahead forecasts, we observe
that the error term obeys AR(2)-type dynamics. Hence, we assume that the error term

in (4) becomes

(1- p1L - p2L2 )um =&

where L is the familiar lag operator.

We have access to a maximum of 25 monthly observations for each product,
and when we allow AR(2) dynamics the effective sample reduces to 23 observations.
This is quite small, and it seriously reduces the power of the tests on the parameters of
interest. A simple solution is to pool the estimates for (4) across the products within a

category. That is, we look at (3) per product per category, but we modify (4) into

(10) S, =a, +BMF,,,, + D, +u,,,
Sz,r+1 =a, + :BMFz,m + 7AD2,t+1 Uy,
Sn,t+1 = an + IBMF;z,t+1 + 7ADn,t+l + un,H—l >

where n denotes the number of products within a category. The o parameter differs
per product, but the § and y parameters are common across products within a country-

category combination. The model in (10) assumes independent equations with cross-



equation parameter restrictions. For the sake of computational simplicity, we assume
the errors as independent.
Finally, the ENC-NEW and ENC-NEWj, tests are computed for each product

in each category for each country.

3.2 One-step-ahead forecasts

We first consider the 194 country-category combination for the one-step-ahead
forecasts. The results appear in Tables 2 and 3, and a summary on the parameters in

(4) appears in Table 4.

Insert Tables 2, 3 and 4 here

From Table 2 we learn that there are 104 of the 194 cases with P-values for y
= (0 that are smaller than 0.05. This concerns 53.6% o the cases. Next, from table 3,
we can see that there are 118 of the 194 cases with P-values for 3 =y larger than 0.05,
which amounts to 60.8% of the cases. Combining the results in Tables 2 and 3, we see
that in 53 of 104 cases where the P-value for y = 0 is smaller than 0.05 we find that
the P-value for = v is larger than 0.05. In words, when the expert significantly adds
value, it holds in more than half of the cases that it obeys the 50%-50% rule. In Table
4 we give a summary of the estimated values of 3, y and B-y, and we can see that
and y are (on average) estimated to be about equally large and B-y is estimated close
to zero (on average).

Now we turn to a more detailed discussion of Tables 2 and 3. From Table 2
we see that the percentages with P-values for y = 0 smaller than 0.05 across the seven
categories are 67, 61, 42, 59, 55, 43 and 22, respectively. This means that for
categories A, B, D and E the contribution of the experts is most prominent, while
apparently for the categories C, F and G it is more difficult to add substantial expert
knowledge.

When we look at the countries in Table 2, we notice that for most countries the
experts sometimes have a relevant contribution across some (but not all) of the
categories. Notable exceptions are IX and XIII where the expert never adds anything

significant in a systematic way and XVII, XIX, XX and XXIX where the expert



always seems to contribute additional to the model. Note that this does not necessarily
mean that this contribution is positive, as y can also be significantly negative.

From Table 3 we see that the percentages with P-values for B = y larger than
0.05 across the seven categories are 39, 61, 69, 56, 52, 80, and 100, which means that
for the category A (with also the largest amount of products, see Table 1) the added
contribution of the expert is not 50-50 with the model, while for the other categories
this is more often the case.

When we look at the countries in Table 3, we notice that for most countries the
experts and the models sometimes have a 50-50 contribution. Notable exceptions are
XXII and XXVI where this balance always happens. So, again and in line with Table

2, strong and obvious differences across categories and countries do not seem to exist.

Insert Table 5 here

In Table 5 we report on the differences between RMSPE of the expert-
adjusted forecasts versus the model-based forecast, when averaged over all products
within a country-category combination. From this table we see that an average
positive difference between expert and model (so the expert does better) across the
seven categories occurs in 45, 45, 38, 56, 42, 37 and 44 per cent of the cases. This
means that there seems to be no category that concerns a much better contribution of
the expert. In other words, no category seems to be easier for an expert.

When we look at the countries in Table 5, we notice that for most countries the
experts are sometimes better and sometimes worse than the models. Notable
exceptions are XII and XXVII where the expert on average is always better and XXI
and XXXII where the expert is always worse.

In general we can conclude from Tables 2, 3 and 5 that there are no systematic
patterns across categories and countries, so we are tempted to summarize our results
across all of these 194 combinations.

Table 5 did not yet consider whether differences in RMSPE were significant,
so that is what we will do now. We therefore compute the median % improvement in
RMSPE if the ENC-NEW test is significant and positive for the products in the
category. This turns out to be 14.38%, with a minimum value of 0.05% and a
maximum value of 84.92%. When this test is not significant, we get a median

improvement (or better: deterioration) in RMSPE of -13.81%, with a minimum of -

10



324.4% and a maximum of 0.00%. These results suggest that if the expert is
significantly better, the improvement is about equally large as in cases where the
expert is not significantly better. Moreover, when the expert is not significantly better,

the added contribution can be very bad with large negative outliers.

3.3 Six-step ahead forecasts

We now turn to the results for six-step-ahead forecasts. The main results on the tests

for B and y appear in Tables 6 to 8.

Insert Tables 6, 7 and 8 here

From Table 6 we learn that there are 89 of the 189 cases with P-values for y =
0 smaller than 0.05, which is 47.1% of the cases. This is slightly smaller than the
fraction of such cases for the one-step-ahead horizon. Table 7 indicates that there are
113 of the 189 cases with P-values for B = y larger than 0.05, that is 59.8% of the
cases. Finally, in 39 of the 89 cases where the P-value for y = 0 is smaller than 0.05,
we find that the P-value for = y larger than 0.05, that is 43.8%.

When we look at the summary in Table 8, we see that on average  seems to
be larger than y. However, if we only consider the cases when y = 0 is rejected (last
row of Table 8), we observe that B-y is negative on average, and more so than in the
case of one-step-ahead forecasts. This suggests that y is then larger than 3, meaning
that for six-step-ahead forecasts the expert adds more to the model, on average, than
in the case of one-step-ahead forecasts. This finding is of course not a surprise.

Overall, we see that the results for six-step-ahead forecasts are roughly the
same as those for one-step-ahead forecasts, although now there is little less evidence
for the 50%-50% rule. There is a small tendency towards more input of the expert.

A closer look at Table 6 indicates that the percentages with P-values for y = 0
smaller than 0.05 across the seven categories are 52, 52, 48, 53, 52, 34 and 0, which
means that for all but two categories the contribution of the experts is relevant in
about half of the cases. For F and G it seems most difficult to add substantial expert
knowledge.

When we look at the countries in Table 6, we notice that for most countries the

experts exercise some contribution across some of the categories. Notable exceptions
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are VI, IX and XX where the expert never adds anything significant and XVII where
the expert always seems to contribute additional to the model.

From Table 7 we see that the percentages with P-values for B = y larger than
0.05 across the seven categories are 61, 52, 60, 53, 64, 66, and 83, which means that
for all categories the added contribution of the expert most often is in line with the
50%-50% rule.

When we look at the countries in Table 7, we notice that for most countries the
experts and the models not always have a 50-50 contribution. Notable exceptions are
VI, XX and XXII where this balance always happens, and XIX where this never
happens. So, again, strong and obvious differences across categories and countries do

not seem to exist.

Insert Table 9 here

Finally, we turn to differences in RMSPE of experts versus model. From Table
9 we see that a positive difference between expert and model (so the expert does
better) across the seven categories occurs in 52, 58, 28, 47, 36, 31 and 29 per cent of
the cases. This means that there seems to be no category that involves a much better
contribution of the expert. Hence, again no category is easier for an expert.
Comparing the results across Tables 5 and 9, we see 44% and 42% positive signs,
respectively, suggesting that the forecast horizon does not matter much for the added
value of the expert.

When we look at the countries in Table 9, we notice that for most countries the
experts are sometimes better and sometimes worse than the models. Notable
exceptions are I and XII where the expert is most frequently better and VI, XXII and
XXXII where the expert is always worse, at least on average.

To see if the differences are significant, we resort to the ENC-NEW), test. We
compute are the median improvement in RMSPE if the ENC-NEW, test is significant
and positive for the products within the country-category combination. This turns out
to be 16.84%, with a minimum value of 0.88% and a maximum value of 91.17%.
When this test is not significant, we get a median improvement (deterioration) in
RMSPE of -18.93, with a minimum of -458.8% and a maximum of 3.72%. This again
confirms that the contribution of the manager in terms of forecast quality is not large.

Also, when improvement is negative, it is very much skewed to the left, even more so

12



than in case of one-step-ahead forecasts. In sum, the added value of the expert might
be a little larger here, but then again, when the expert forecasts are worse, they are

seriously bad.

4. Does the expert put too much weight on the own contribution?

From the results in the previous section we could learn that often the experts’ added
expertise and the model were in a 50%-50% balance. In this section we examine
whether changes in this rule would lead to better results.

But first, we zoom in on some more detailed outcomes to sketch the issue. In
Tables 10 and 11 we give the country-category combinations where the contribution
of the expert is significant (that is y is not equal to 0) and where the average
improvement (across all products) is larger in an absolute sense than the average
deterioration for one-step-ahead and six-steps-ahead forecasts, respectively. So, these

cases concern cases where the expert does best.

Insert Tables 10 and 11 here

For the one-step-ahead forecasts in Table 10, there are 40 such cases (out of
the 104 with significant y parameters). The mean value of the estimated  and y for
these cases are 0.24 and 0.49. This suggests that when the expert forecast does better,
it really is due to the added value of the expert. For the six-steps-ahead forecasts,
there are 40 (out of 89) such cases, and there the average estimated B and y parameters
are 0.35 and 0.67. So, here the same conclusion can be drawn, that is, when it is
better, it is due to the experts’ added value, which then is about twice as large as the
contribution of the model. In brief, when the expert does better, it is not a matter of
luck, it is a systematic feature.

However, when we have a look at the cases where the contribution of the
expert is significant but where the improvement is smaller than the (absolute)
deterioration (104-40= 64 and 89-40=49 cases, respectively) we see another and
perhaps more disturbing pattern. For the one-step-ahead forecasts the estimated 3 and

vy are then 0.47 and 0.39, on average, while those for the six-step-ahead forecasts are
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0.38 and 0.37. This suggests that when experts’ forecasts are not as good as model-
based forecasts, the added value of the expert is 50%.

Let us return to the test regression in (4). First, our unreported computations
show that the average value of A in the auxiliary regression (3) is about 0.4. When f§ =
vy in (4), this means for (5) that the expert-model contribution is as 1.0 to 0.6, or when
scaled to unity: 0.625 versus 0.375. So, the experts bring in quite some weight. To

explain, look again at equation (6), that is

+ 64D

t+1

S. =a+(B+0)MF

t+1 + ut+1

When in this equation the weights of f+64 and 6 are equal (as in the 50%-50% rule)
and when 4 = 0.4 (as we find on average), then we have that = 0.66. In other words,
in

S, =a+ MF

t+1

+6EF

w1 Tl
the expert’s forecast has weight 6 = 0.625 versus the model forecast with a weight f3 is
0.375. Hence, across all our cases (countries, categories) we see that the experts add
substantial value, on top of the model-based forecast, and our results in Tables 5 and 9
suggest that this added value might perhaps be too much.

To see if the added value of the expert can be improved, we then create new
combined forecasts

(11) CF,

t+1

= OMF,

t+1

+(1-0)EF,,,
with weight d is 0.5. Notice that this means that the expert (added value) versus model
contribution, given A = 0.4 becomes 0.42 (experts’ added value) versus 0.58 (model),
approximately.

For the one-step-ahead forecasts, the results can be summarized as follows.
The mean value of the numbers in Table 4 is -10.18%, with a minimum of -198.2%
and a maximum value of 47.73%. So, on average the added value of an expert is not
useful. Note that this is of course due large negative outliers, here very bad forecasts.

In case we were to apply the 50-50 rule as in (11), this mean value becomes 5.47%,

14



and the minimum and maximum values become -53.39% and 53.92%, respectively. In
case the expert forecast is worse (on average, and in 108 of the 194 cases of Table 5),
the difference between this 50-50 rule and the used rule would have a mean value of
even 25.82 (with minimum 1.59% and maximum 144.8%), while for the case the
expert forecasts were already better (194-108=86 cases) such improvement would
have a mean value of only 2.89% (minimum of -20.04% and maximum of 16.47%).

This leads to the important conclusion that the 50-50 rule in (11) leads to
much better forecasts overall and in particular in cases where the initial expert
forecast was not very good. In sum, at present the experts exercise too much weight
on the final forecasts. Would they impose less weight (downplaying it from 0.63 -
0.37 to 0.50 - 0.50), then overall forecast quality would seriously improve.

Similar results are obtained for the six-step-ahead forecasts. In case the expert
forecast is worse (on average, and in 110 of the 190 cases of Table 9), the difference
between this 50-50 rule and the used rule would have a mean value of even 28.35
(with minimum 2.25% and maximum 301.84%), while for the case the final expert
forecasts were already better (190-110=80 cases) such improvement would have a
mean value of only 1.34% (minimum of -22.79% and maximum of 15.56%).

In sum, yes, the experts seem to exercise too much weight in their final

forecasts. Giving more credit to the model would lead to serious improvement.

5. Conclusions

In this paper we have put forward an effective and reliable methodology that allows
us to investigate if experts’ added knowledge to model-based forecasts is relevant and
whether it leads to more accurate forecasts. The methodology builds on the latest
developments in testing for equal forecast accuracy. We applied our methodology to a
huge database concerning monthly sales of pharmaceutical products in various
categories and various countries. Due to the fact that we have such a large database,
we feel confident to draw some generalizing conclusions.

The first main conclusion that we can draw from our extensive analysis is that

experts’ added value frequently matters and that when it matters it also frequently
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occurs on a 50-50 basis. Note that this means that in combining model and expert the
relative weights are 0.375 versus 0.625, and hence the impact of the expert is large.

This conclusion holds across all countries, categories and even across the two
horizons, although the added value of the expert for longer term horizons is even
slightly larger. Hence, even though there are individual differences in countries and
categories which sometimes can be quite large, on average the added value of the
expert versus the model is 50-50.

The second main conclusion is that when the expert yields a significant
positive contribution to forecast quality, the final forecast’s improvement is about
equally large as the deterioration in case the expert does not significantly outperform
the model. So, the 50%-50% rule, as apparently is used, does not yield substantial
improvement.

The third main conclusion thus seems to be that experts put too much
emphasis on their own added contribution. Indeed, when we give the added value of
the expert less weight, we see strong improvement in final forecast quality.

It seems that our findings point towards one and the same major feature of
expert adjustment and that is that experts put too much emphasis on their own
judgement and too little on the model. It is perhaps misunderstood that the model
captures recent events via the updated estimates of the parameters, or perhaps out-of-
the-model events receive too much for too long a period. One implication of our
findings is that the way the model works should be better communicated to the
experts. A second is that experts should start documenting what they effectively do
when they adjust model-based forecasts. A third, and which perhaps leads to a first
immediate action, is that experts should become aware of the notion that they put too
much weight on their expertise. When it is useful, it is no problem, but when it is not,
forecasts can become dramatically bad. A case study of these exceptional forecasts

may yield a first set of insights.
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Table 1: Number of products in the categories for each country

Category
Country A B C D E F G
I 3 2 1 4 2
II 3 4 2 7 1
111 3 5 6 10 8 4 1
v 2 1 3 4 2 2
v 11 6 7 9 5 4 1
VI 2 2
VI 7 4 1 6 1 1
VIII 9 4 2 6 6 6
IX 2 1 1 2
X 1 1 6 3
XI 10 4 8 7 4
XII 7 9 4 7 8 1*
X1 2 2 2 3 3
XV 12 10 2 9 8 5
XV 23 3 6 18 4 1
XVI 32 20 1 16 10 5 1*
XVl 7 2 4 2 11 3
XVIII 12 4 2 5 8 4
XIX 10 5 3 5 8 3
XX 1 1 2 6
XXI 6 1 2 4 9 5
XX 1 1 2 6
XXII 9 5 15 10 12 4 1
XXIV 6 9 2 3 6 1
XXV 3 3 2% 1 2 2
XXVI 6 4 2 6 3 4
XXVII 11 3 7 4 8 3
XXVIII 7 2 5 3 2
XXIX 12 7 4 6 10 2
XXX 15 7 6 8 7 4 1
XXXI 15 12 3 11 9 5 1
XXX 1 3
XXXIII 8 8 13 15 12 5 1*
XXXIV 7 8 2 6 2
XXXV 2 5 2 7 3

* These cases are only available for the one-step-ahead forecasts but not for the six-
step-ahead forecasts. So, the one-step-ahead forecasts concern 194 country-category
combinations, while for the six-step-ahead forecasts there are 190 such cases.
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Table 2: P-value of the test for y = 0 in the pooled test regression (10).
The case of one-step-ahead forecasts

Category
Country A B C D E F G
I 0.017 0.000 0.956 0.257 0.003
II 0.575 0.131 0.000 0.001 0.576
11 0.000 0.000 0.000 0.060 0.000 0.095 0.003
v 0.000 0.778 0.017 0.463 0.041 0.382
\% 0.364 0.036 0.540 0.051 0.543 0.000 0.719
VI 0.010 0.875
VIl 0.000 0.347 0.019 0.531 0.046 0.435
VIII 0.000 0.345 0.914 0.770 0.090 0.823
IX 0.293 0.361 0.095 0.171
X 0.012 0.001 0.309 0.468
XI 0.000 0.000 0.000 0.000 0.162
XII 0.000 0.000 0.022 0.631 0.108 0.432
XIII 0.157 0.431 0.274 0.609 0.395
XV 0.892 0.000 0.715 0.084 0.000 0.202
XV 0.000 0.887 0.010 0.000 0.562 0.905
XVI 0.000 0.000 0.080 0.000 0.357 0.000 0.265
XVII 0.000 0.000 0.003 0.000 0.000 0.004
XVIII 0.000 0.598 0.671 0.000 0.003 0.412
XIX 0.000 0.000 0.000 0.000 0.000 0.041
XX 0.031 0.003 0.024 0.001
XXI 0.000 0.462 0.976 0.000 0.013 0.018
XX 0.568 0.256 0.026 0.008
XXII 0.500 0.178 0.009 0.011 0.000 0.390 0.127
XXIV 0.775 0.000 0.891 0.416 0.291 0.963
XXV 0.000 0.725 0.002 0.417 0.705 0.085
XXVI 0.158 0.641 0.593 0.020 0.086 0.006
XXVII 0.012 0.001 0.078 0.475 0.321 0.001
XXV 0.063 0.045 0.000 0.699 0.006
XXIX 0.000 0.006 0.004 0.000 0.000 0.003
XXX 0.000 0.000 0.048 0.000 0.000 0.006 0.558
XXXI 0.002 0.000 0.747 0.002 0.150 0.071 0.018
XXX 0.008 0.052
XXXIII 0.641 0.006 0.548 0.000 0.000 0.109 0.069
XXXIV 0.000 0.000 0.547 0.000 0.000
XXXV 0.744 0.000 0.000 0.397 0.031
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Table 3: P-value of the test for =y in the pooled test regression (10).
The case of one-step-ahead forecasts

Category
Country A B C D E F G
I 0.122 0.820 0.761 0.193 0.015
II 0.078 0.182 0.154 0.000 0.565
11 0.000 0.052 0.127 0.370 0.702 0.484 0.267
v 0.042 0.488 0.048 0.000 0.000 0.035
\% 0.001 0.909 0.000 0.953 1.000 0.465 0.459
VI 0.000 0.687
VIl 0.000 0.031 0.045 0.034 0.501 0.989
VIII 0.000 0.250 0.070 0.071 0.035 0.178
IX 0.213 0.011 0.000 0.721
X 0.630 0.002 0.030 0.056
XI 0.007 0.000 0.632 0.000 0.756
XII 0.049 0.960 0.314 0.944 0.016 0.252
XIII 0.707 0.056 0.004 0.971 0.433
XV 0.000 0.009 0.682 0.000 0.314 0.593
XV 0.000 0.000 0.636 0.141 0.449 0.068
XVI 0.000 0.000 0.540 0.000 0.878 0.010 0.479
XVII 0.983 0.247 0.860 0.015 0.000 0.001
XVIII 0.000 0.809 0.523 0.152 0.272 0.944
XIX 0.000 0.034 0.095 0.017 0.072 0.000
XX 0.012 0.000 0.329 0.002
XXI 0.000 0.194 0.525 0.630 0.725 0.602
XX 0.515 0.525 0.869 0.417
XXII 0.501 0.003 0.477 0.776 0.179 0.392 0.703
XXIV 0.000 0.000 0.896 0.004 0.169 0.070
XXV 0.442 0.312 0.000 0.539 0.014 0.546
XXVI 0.065 0.905 0.827 0.127 0.160 0.264
XXVII 0.000 0.640 0.295 0.273 0.030 0.000
XXV 0.876 0.245 0.000 0.704 0.089
XXIX 0.000 0.788 0.000 0.000 0.611 0.608
XXX 0.145 0.001 0.388 0.501 0.007 0.000 0.512
XXXI 0.451 0.273 0.612 0.000 0.766 0.662 0.388
XXX 0.672 0.000
XXXIII 0.001 0.095 0.000 0.000 0.002 0.574 0.260
XXXIV 0.000 0.000 0.032 0.077 0.067
XXXV 0.254 0.000 0.000 0.001 0.184
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Table 4: Summary of estimation results.
The case of one-step-ahead forecasts (194 observations)

Statistics

Estimates Mean Median Maximum Minimum Stand.dev.
B 0.271 0.343 1.479 -2.173 0.537

Y 0.247 0.274 1.992 -4.843 0.594
B-v 0.024 0.067 5.178 -3.327 0.734
B-vy 0.001 0.067 1.704 -2.147 0.589
(two outliers deleted)

B-vy -0.060 0.039 1.704 -3.327 0.684

(if P-value of y = 0 is < 0.05, 104 cases)
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Table 5: Averaged difference in RMSPE of the expert forecast versus the model-

based forecast. The case of one-step-ahead forecasts

(averaged over products in categories)

A positive number means that the expert is better.

Category
Country A B C D E F G
I 443 826 -9.14 6.69 242
I -16.74 11.00 2444 -3.57 -32.35
1 -1.97 -2.36 -8.81 3.52 -32.56 -9.39 10.71
v 555 14.76 24.17 -20.28 -10.60 8.66
A% 6.10 4.61 3.83 -11.30 -98.25 -21.95 31.00
VI -27.61 -18.95
VII -59.82 -34.61 3473 0.08 7.13 143
VIII -39.42 -24.58 -97.05 -10.00 1.57 -51.50
IX -23.78 -5.81 7.59 -14.95
X -6.43  -2.40 13.59 -29.49
XI 749  -31.27 -14.91 -10.16 -4.55
XII 0.18 21.20 1.04 995 0.50 30.25
XII -20.53 -0.45 4.18 -61.37 8.07
XIv -98.79 -113.0 1.52 -28.66 9.20 6.80
XV -22.61 -43.26 10.15 830 -11.63 -31.49
XVI 12.75 13.19 0.84 -5.82 1.74 0.61 37.82
XVl -5.27 16.88 -7.71 31.77 -51.39 -39.31
XVII 14.05 -2.29 -1.96 10.65 4.13 -5.65
XIX 12.94 -48.84 -2.84 493 -14.18 -82.60
XX 8.95 -63.28 25.98 -6.09
XXI -1.42 -6.76 -30.89 -2.71 -932 -4.14
XX -79.62 -198.2 28.77 -83.69
XXIII 29.38 -1.47 4.16 091 -5.08 -1.38 -0.77
XXIV -23.26 1295 -4.64 153 239 -7.81
XXV -27.79 -15.39 -106.4 -13.79 -20.67 -87.70
XXVI 879 10.17 -3.83 10.40 11.94 -4.71
XXVII 6.62 22.14 12.62 1.66 4.17 47.73
XXVIII .11 5.72 -36.92 0.40 1.21
XXIX -229 6,51 -877 -1.56 -530 7095
XXX -8.13 -12.48 15.08 -25.41 -2.39 -8.74 -1.99
XXXI 221 -0.87 149 -21.84 -3.25 6.69 -1.09
XXX -101.4 -55.74
XXXIII 1.82  14.08 6.09 -7.42 2229 -10.07 491
XXXIV 1.57 38.40 -25.07 -12.01 13.24
XXXV -61.98 -44.84 851 -121.4 -18.25
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Table 6: P-value of the test for y = 0 in the pooled test regression (10) with (8).

The case of six-step-ahead forecasts

Category
Country A B C D E F G
I 0.459 0.720 0.299 0.003 0.000
II 0.001 0.300 0.000 0.000 0.801
11 0.550 0.000 0.002 0.206 0.000 0.815 0.792
v 0.001 0.487 0.001 0.000 0.077 0.048
\% 0.669 0.811 0.000 0.174 0.242 0.405 0.609
VI 0.308 0.772
VIl 0.830 0.009 0.001 0.321 0.307 0.608
VIII 0.000 0.029 0.974 0.000 0.124 0.253
IX 0.378 0.842 0.717 0.661
X 0.035 0.028 0.016 0.072
XI 0.000 0.000 0.185 0.000 0.010
XII 0.000 0.000 0.041 0.782 0.621
XIII 0.025 0.840 0.312 0.767 0.514
XV 0.000 0.022 0.929 0.000 0.001 0.010
XV 0.830 0.437 0.001 0.000 0.520 0.785
XVI 0.000 0.000 0.935 0.223 0.083 0.786
XVII 0.001 0.000 0.000 0.000 0.000 0.001
XVIII 0.485 0.815 0.281 0.018 0.468 0.524
XIX 0.000 0.000 0.001 0.000 0.000 0.838
XX 0.501 0.974 0.759 0.926
XXI 0.000 0.206 0.798 0.000 0.718 0.714
XX 0.833 0.086 0.306 0.001
XXII 0.001 0.105 0.000 0.496 0.715 0.281 0.550
XXIV 0.000 0.000 0.356 0.415 0.091 0.135
XXV 0.050 0.192 0.003 0.378 0.077
XXVI 0.024 0.232 0.956 0.014 0.003 0.272
XXVII 0.010 0.410 0.014 0.500 0.064 0.936
XXV 0.000 0.216 0.559 0.013 0.001
XXIX 0.184 0.026 0.001 0.000 0.000 0.001
XXX* 0.000 0.067 0.077 0.000 0.010 0.000
XXXI 0.113 0.000 0.997 0.925 0.017 0.049 0.753
XXX 0.005 0.118
XXXIII 0.509 0.095 0.006 0.000 0.002 0.002
XXXIV 0.204 0.035 0.001 0.585 0.822
XXXV 0.277 0.000 0.000 0.010 0.041

* For XXX, G, the model parameters could not be estimated due to lack of data.
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Table 7: P-value of the test for § =y in the pooled test regression (10) with (8).

The case of six-step-ahead forecasts

Category
Country A B C D E F G
I 0.055 0.034 0.075 0.000 0.118
II 0.860 0.174 0.182 0.007 0.223
11 0.863 0.000 0.306 0.986 0.861 0.202 0.355
v 0.007 0.997 0.001 0.000 0.990 0.002
\% 0.247 0.828 0.507 0.026 0.389 0.000 0.986
VI 0.686 0.673
VIl 0.085 0.001 0.000 0.003 0.017 0.615
VIII 0.774 0.078 0.403 0.053 0.024 0.006
IX 0.344 0.120 0.779 0.468
X 0.329 0.383 0.012 0.056
XI 0.000 0.000 0.023 0.019 0.130
XII 0.015 0.000 0.961 0.236 0.064
XIII 0.050 0.850 0.917 0.905 0.540
XV 0.000 0.543 0.571 0.121 0.027 0.855
XV 0.000 0.002 0.184 0.009 0.250 0.011
XVI 0.337 0.000 0.262 0.000 0.606 0.117
XVII 0.000 0.021 0.000 0.975 0.032 0.001
XVIII 0.996 0.275 0.038 0.217 0.145 0.240
XIX 0.000 0.027 0.000 0.000 0.011 0.000
XX 0.464 0.888 0.636 0.895
XXI 0.000 0.050 0.532 0.170 0.824 0.293
XX 0.222 0.216 0.148 0.074
XXIII 0.003 0.542 0.000 0.001 0.468 0.419 0.862
XXIV 0.136 0.012 0.053 0.103 0.664 0.010
XXV 0.034 0.002 0.147 0.151 0.197
XXVI 0.715 0.492 0.138 0.048 0.298 0.378
XXVII 0.065 0.652 0.012 0.196 0.454 0.929
XXV 0.160 0.475 0.007 0.469 0.007
XXIX 0.155 0.789 0.000 0.000 0.884 0.429
XXX* 0.000 0.909 0.019 0.025 0.089 0.000
XXXI 0.088 0.040 0.884 0.000 0.000 0.242 0.233
XXX 0.273 0.004
XXXIII 0.619 0.577 0.040 0.011 0.053 0.001
XXXIV 0.000 0.049 0.030 0.597 0.055
XXXV 0.283 0.969 0.000 0.017 0.214

* For XXX, G, the model parameters could not be estimated due to lack of data
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Table 8: Summary of estimation results.

The case of six-step-ahead forecasts (189 observations)

Statistics

Estimates Mean Median Maximum Minimum Stand.dev.
B 0.351 0.231 8.457 -2.962 1.019

Y 0.263 0.192 4.428 -4.801 0.671
B-vy 0.089 -0.007 8.632 -6.800 1.205
B—vy 0.023 -0.008 2.198 -3.298 0.723
(four outliers deleted)

B-vy -0.145 -0.236 5.377 -6.800 1.139

(if P-value of y = 0 is < 0.05, 89 cases)
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Table 9: Averaged difference in RMSPE of the expert forecast versus the model-
based forecast. The case of six-step-ahead forecasts
(averaged over products in categories)

A positive number means that the expert is better.

Category
Country A B C D E F G
I 026 4.09 -35.19 456 0.41
I 18.47 0.49 24.79 -21.61 -35.41
I 345 -2.22 -11.44 -0.02 -2.85 -94.41 -1.73
v 5.78 33.57 33.27 -16.32 -3.85 24.78
A% 474 -1.60 563 -4.02 -39.56 -18.49 -21.99
VI -40.83 -13.79
VII -35.07 -320.9 56.28 -11.61 -7.38 3.72
VIII -60.37 -82.15 -180.4 -11.13 11.96 -46.15
IX -25.15 8.47 -6.24 -15.61
X -14.36 -22.34 19.25 -2.73
XI 23.08 -8.87 -3.94 7.10 6.84
XII 3.87 235 -099 11.13 446
XII 1544 -4.64 351 -19.82 14.32
XIv -46.25 -30.99 -10.06 -4.94 7.60 11.96
XV -25.61 -106.3 428 1341 2.79 -0.60
XVI 0.51 29.19 -13.55 4.44 -8.56 -9.04
XV -24.62 31.50 17.13 31.09 -62.64 -52.08
XVII 12.10 -40.76 -0.56 4.50 -13.88 -5.30
XIX 25.05 16.90 -11.34 22.69 -15.53 -70.42
XX 26.29 -16.79 29.92 -41.32
XXI 740 16.01 -55.419.12 -14.18 0.88
XX -74.25 -458.8 -33.53 -94.62
XXIII 12.89 8.67 8.77 -0.92 7.15 -324 -17.11
XXV 926 6.25 -9.64 -5.83 489 -2442
XXV -23.42 -1.81 7.25 -29.33 -45.87
XXVI -12.11 724  4.62 -1.30 1851 -34.52
XXVII -8.12 15.84 333 -29.24 -11.83 53.69
XXV 502 -1.02 -27.96 11.84 7.09
XXIX -8.52 -0.01 -2.41 4.69 -9.04 -12091
XXX 429 3242 -0.01 -22.53 -698 2.07 7.63
XXXI -59.14 1.74 8.24 -20.03 -13.27 -0.31 -39.20
XXX -45.83 -14.82
XXXIII 10.18 5.87 -2.74 -44.50 11.64 -22.61
XXXIV -10.32 42.39 -25.04 -5.82 -22.61
XXXV -116.9 -59.05 25.13 -109.1 -23.42
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Table 10: Cases where improvement in RMSPE of expert over model when ENC-
NEW test is significant AND LARGER IN ABSOLUTE SENSE THAN deterioration

in RMSPE when the test is not significant (for significant y)
The case of one-step-ahead forecasts

Country

Category
E F

II
I
v

VI

VII
VIII

IX

X

XI

X1I
XIII
X1V
XV
XVI
XVII
XVIII
XIX
XX
XXI
XXII
XXII
XXIV
XXV
XXVI
XXVII
XXVIII
XXIX
XXX
XXXI
XXXII
XXXIII
XXXIV
XXXV

<R

MR X

olle

MR R XX X

>~
ol
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Table 11: Cases where improvement in RMSPE of expert over model when ENC-
NEW,;, test is significant AND LARGER IN ABSOLUTE SENSE THAN
deterioration in RMSPE when the test is not significant (in case vy is significant)
The case of six-step-ahead forecasts

Category
Country A B C D E F G

ol

II X
I
v X X X

VI

VII X
VIII
IX
X
XI
X1I
XIII
X1V X
XV
XVI
XVII
XVIII
XIX X X
XX

XXI X

XXII X

XXIII X

XXIV X X

XXV X

XXVI X
XXVII X

XXVIII X X X
XXIX

XXX X
XXXI

XXXII

XXXIII

XXXIV X

XXXV X

el
ol
=

<X
)R XX X
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