This chapter is based on

2

Human osteoblast-derived extracellular matrix with high homology to bone proteome is osteopromotive

Marta Baroncelli¹*, Bram C.J van der Eerden¹, Siddharth Chatterji¹, Enrique Rull Trinidad², Yik Y. Kan¹, Marijke Koedam¹, Ingmar A.J van Hengel³, Rodrigo D.A.M Alves¹, Lidy E. Fratila-Apachitei³, Jeroen A.A Demmers⁴, Jeroen van de Peppel¹, Johannes P.T.M van Leeuwen¹

¹Department of Internal Medicine, Erasmus University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
²Department of Precision and Microsystems Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD Delft, The Netherlands
³Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD Delft, The Netherlands
⁴Proteomics Center, Erasmus University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands

In press in Tissue Engineering Part A, (TEA-2017-0448-R2)

ABSTRACT

Efficient osteogenic differentiation of mesenchymal stem cells (MSCs) is crucial to accelerate bone formation. In this context, the use of extracellular matrix (ECM) as natural 3D-framework mimicking in vivo tissue architecture is of interest. The aim of this study was to generate a devitalized human osteogenic MSC-derived ECM and to investigate its impact on MSC osteogenic differentiation to improve MSC properties in bone regeneration. The devitalized ECM significantly enhanced MSC adhesion and proliferation. Osteogenic differentiation and mineralization of MSCs on the ECM was quicker than in standard conditions. The presence of ECM promoted in vivo bone formation by MSCs in a mouse model of ectopic-calcification. We analyzed the ECM composition by mass spectrometry, detecting 846 proteins. Of these, 473 proteins were shared with the human bone proteome we previously described, demonstrating high homology to an in vivo microenvironment. Bioinformatic analysis of the 846 proteins showed involvement in adhesion and osteogenic differentiation, confirming the ECM composition as key modulator of MSC behaviour. In addition to known ECM-components, proteomic analysis revealed novel ECM functions, which could improve culture conditions. In summary, this study provides a simplified method to obtain an in vitro MSC-derived ECM that enhances osteogenic differentiation and could be applied as natural biomaterial to accelerate bone regeneration.

Key words: Mesenchymal stromal cells; extracellular matrix; bone; bone tissue engineering

INTRODUCTION

Mesenchymal stromal cells (MSCs) are promising candidates for bone regeneration, because they can differentiate towards osteoblasts and secrete trophic factors that modulate target cells [1, 2]. MSCs are combined with biomaterials for bone-tissue-engineering applications, and have been proposed to reduce skeletal defects [3].

To accelerate bone regeneration, differentiation of MSCs into bone-forming cells is critical. *In vivo*, MSC-derived osteoblasts deposit the surrounding extracellular matrix (ECM) that is subsequently mineralized [4]. The most abundant protein of the ECM is collagen type 1 (COL1A1). Together with hydroxyapatite crystals, the ECM physically supports bone cells to regulate mineral deposition. Furthermore, the bone ECM is a very dynamic tissue that contains and actively regulates the availability of growth factors (GFs) and signaling factors, such as bone morphogenic proteins (BMPs), and influences the signal transduction of these molecules. As a result, the ECM modulates MSC behavior, such as cell adhesion, proliferation and commitment [5, 6]. The specific composition of bone ECM is essential in this role. This is because proteoglycans (PGs) and enzymes such as alkaline phosphatase (ALP) and matrix metalloproteases (MMPs), enrich the ECM composition, along with the non-collagenous proteins (NCPs), such as osteonectin (SPARC), osteocalcin (BGLAP), osteopontin (OPN) and matrix gla proteins (MGP), which regulate collagen-fiber mineralization and cell-matrix adhesion [5].

Recently, the ECM has become increasingly important as a natural 3D framework, that modulates cell behavior and mimics the in vivo tissue architecture [7, 8]. Strategies combining ECM-coated scaffolds and MSCs have been proposed to improve the supportive role of scaffolds in bone regeneration [9]. In this context, in vitro cellsecreted ECMs have been produced according to several decellularization methods, and represent a suitable alternative to decellularized matrices from tissues [10]. Cell-derived ECMs have been proposed for extensive ex-vivo expansion of MSCs, as they promote proliferation and maintain the multi-lineage differentiation potential of MSCs [11-13]. Interestingly, osteoblast-derived ECM enhances the osteogenesis of MSCs [14, 15]. Although known ECM components such as collagen, fibronectin (FN), laminin, perlecan, biglycan, decorin were detected in these MSC-derived ECMs, their full composition is still under investigation [12, 16-19]. Nevertheless, the specific protein composition of ECM mediates these effects via cell-matrix interactions; for instance, COL1A1 and vitronectin (VTN) promote osteogenesis, and FN influences MSC behavior [6, 20-22]. However key ECM bioactive regulators of MSC functions have not yet been identified. The full composition of the ECM is difficult to disentangle due to its complex structure.

The aim of this study was to generate a devitalized ECM from human osteoblast-differentiated MSCs and investigate its effect on the osteogenic differentiation of MSCs and bone formation *in vivo*. The protein composition of the ECM was investigated by mass spectrometry and compared to the human bone proteome [23], in order to gain insight into how the ECM modulates MSC behavior and whether it mimics the *in vivo* bone microenvironment.

MATERIALS AND METHODS

Culture and devitalization of MSCs

Human bone marrow-derived MSCs were obtained commercially (PT-2501, Lonza, Walkersville, MD, USA). MSCs from a single donor at passage 7 were cultured in 12-well plates (5128 cells/cm²; Greiner bio-one, Frickenhausen, Germany) in alpha-Mem (10% fetal bovine serum (FBS), pH 7.5, phenol-red free, Gibco BRL, Life technologies). After 2 days of culture in non-differentiating conditions, MSCs were cultured in osteogenic conditions for 11 days (medium was supplemented with 100 nM dexamethasone and 10 mM β glycerophosphate; Sigma, St. Louis, MO, USA) to induce the osteogenic differentiation.

Before the onset of mineralization, MSCs were devitalized as represented in Figure 1A. Briefly, MSCs were washed twice with Phosphate Buffered Saline (PBS, Gibco BRL, Carlsbad, CA, USA), frozen at -80°C and then thawed at room temperature, without PBS, for 20 minutes each. These steps were repeated 3 times and followed by a DNase I treatment for 30 minutes at 37°C (10 U/ml; Sigma-Aldrich, St Louis MO, USA). The devitalized matrix was gently rinsed 3 times with PBS, air dried in the culture-hood and stored at -20°C for at least 7 days before further experiments.

ECM characterization

The devitalized ECM was cultured in osteogenic medium for 6, 24 and 48 hours and the metabolic activity of the devitalized ECM was assessed by a viability indicator (Presto Blue® Cell Viability Agent, Life Technologies) following manufacturer's instructions. Fluorescence was measured by a microplate reader (Victor X4™ Multimode Plate Reader, Perkin Elmer; excitation 530nm, emission 590nm). Live MSCs cultured in osteogenic conditions were used as positive control.

The absence of cells after the devitalization treatment was demonstrated by 4,6-diamidino-2-phenylindole (DAPI) nuclear staining (Sigma Aldrich, St. Louis, MO, USA). MSCs cultured on plastic and on ECM for 24 hours were used as positive control.

To measure the roughness, the matrix was produced on glass-coverslips coated with Poly-L-Lysine (PLL) (St. Louis, MO, USA), following the devitalization procedure. Briefly, sterile glass-coverslips had been coated with PLL for 10 minutes and washed 3 times with milliQ water before cell-seeding. For the background measurements, the same treatment was applied to a coated coverslip without cells. A dynamic mode atomic force microscopy (AFM; NaniteAFM, Nanosurf GmbH, Germany) was used to measure the roughness of the ECM. Areas of 50 μ m x 50 μ m, 20 μ m x 20 μ m and 5 μ m x 5 μ m were scanned in 2 different areas of the matrix-surface with NCLR probes (non-contact long cantilever reflex coating, Nanoworld AG, Switzerland). Images of 20 μ m x 20 μ m scanned-areas were analyzed using Gwiddion (www.gwiddion.net). We quantified the roughness by drawing 8 lines across each image and considering the amplitude of Roughness Average (Ra) for each line, which is defined as the average deviation of all points of roughness profile from a mean line over the evaluation length. The Ra values of all the lines were eventually averaged to the final values. Measurements were representative of 2 independent experiments.

The surface of the devitalized ECM was imaged by scanning electron microscopy (SEM) using a JEOL JSM-IT100LA equipment (JEOL Europe BV, Nieuw-Vennep, The Netherlands). Samples were prepared as previously described [24]. Briefly, devitalized ECM on PLL-coated coverslip was washed with PBS, fixed (4% paraformaldehyde, 1% glutaraldehyde in PBS, pH 7.4), rinsed in demineralized water, dehydrated sequentially in graded alcohols (50% for 15 minutes, 70% for 20 minutes, 96% for 20 minutes), air dried and gold-coated. Different areas of 2 replicates were examined at various magnifications.

Cell adhesion analysis

In order to visualize the cell morphology and analyze the cell adhesion to the ECM by immunohistochemistry, the devitalized ECM was produced on polystyrene plastic. Next, MSCs in osteogenic conditions were cultured for 2, 4, and 8 hours. Actin-cytoskeleton was stained by rhodamine-conjugated phalloidin (Thermo Fisher Scientific); focal adhesions were visualized by staining vinculin (Vinculin Abfinity™ recombinant rabbit monoclonal antibody, Clone 42H89L44, Life Technology, USA; as secondary antibody: FITC goat-anti-rabbit IgG, BD Pharmigen) and visualized by a fluorescent microscope (Zeiss Axiovert 200 MOT microscope). Images with a magnification of 630X were considered and processed with Image J (www.imagej. nih.gov/ij, version 1.47n), as previously described [25]. Briefly, the background was subtracted by using the Sliding Paraboloid option, the local contrast enhanced by running the Clahe option, the Mathematical Subtract Function with a value of 10000 was applied to subtract the background, followed by Mathematical Exponential (EXP) to further minimize the background. The contrast was adjusted using Bright-

ness & Contrast tool. The number of focal adhesions relative to the area stained by phalloidin was quantified by Cell Profiler (www.cellprofiler.com, version 2.1.1). For the analysis, an average of 4 pictures with a magnification of 400x were considered, following the same steps as previously described with Image J, and analyzed using a self-made pipeline in Cell-Profiler.

The morphology of cells cultured on the devitalized ECM and in standard culture conditions on PLL-coated coverslips was observed by SEM. Cells were cultured in osteogenic conditions for 24 hours and processed as previously described [24] for the devitalized ECM. Images were acquired at various magnifications using secondary and backscattered imaging modes.

Cell-adhesion was quantified by Flow Cytometry (Accuri C6 Flow Cytometer, BD Biosciences, San Jose, CA, USA), using counting beads (Liquid Counting Beads, BD Biosciences, San Jose, CA, USA). MSCs in osteogenic conditions were cultured for 6 and 24 hours on ECM and plastic; after washing and trypsinization, the number of cells relative to a known concentration of fluorescent counting beads was counted. The result is representative of 3 independent experiments.

The heterogeneous MSC population was sorted based on ALP expression by Fluorescence-activated cell sorting (FACS) (FACS Jazz, BD Bioscience) (ALP antibody: PE mouse anti-human Alkaline Phosphatase, clone B4-78, BD Biosciences, San Jose, CA, USA). ALP-positive and ALP-negative sorted cells were seeded on the devitalized ECM in osteogenic medium, and cell-adhesion was measured after 24 hours of culture as previously described. Unsorted MSCs were used as control. Measurements were representative of 2 independent FACS-sorting experiments.

Cell proliferation analysis

For the measurement of proliferation, MSCs were cultured in osteogenic conditions on ECM and plastic dishes for 1, 3, and 5 days, and the percentage of Ki-67 positive cells was detected (Alexa Fluor 488 mouse anti-human Ki-67, BD Pharmigen) by Flow Cytometry (Accuri C6 Flow Cytometer, BD Biosciences, San Jose, CA, USA), within the Propidium Iodide-positive population (PI solution, BD Biosciences, San Jose, CA, USA). The result is representative of 3 independent experiments.

Culture of MSCs on ECM and analysis of osteogenic differentiation

Alkaline phosphatase activity and ECM mineralization were measured in cell-extracts of MSCs cultured in osteogenic conditions on ECM and plastic dishes for 19 days as previously described [26]. Mineralization was further confirmed by Alizarin red staining (ARS) [26]. The result is representative of 3 independent experiments.

In vivo ectopic bone formation analysis

In order to check whether the ECM would promote in vivo ectopic bone formation by MSCs, MSCs on hydroxyapatite and tricalcium phosphate beta (HA-TCP) with and without ECM have been subcutaneously implanted in immunocompromised mice (Non-obese diabetic/Scid IL2R gamma (NSG), Charles River Laboratories). ECM was produced and devitalized on 20 mg of HA-TCP (Triosite™, Zimmer Biomet, Warsaw, IN, USA) powder, following the same devitalization procedure as previously described. HA-TCPs were loaded with MSCs (0.5x10⁶/ HA-TCP-pellet) in growth medium, let them attach overnight and subcutaneously implanted into 4 dorsal pockets in NSG mice (N=3) (10 weeks old, females and males) under anesthesia, as previously described [27]. ECM on HA-TCP and HA-TCP vehicle were used as controls. A schematic overview is presented in Figure 4A. Three independent experiments with similar sample size were performed. All animal procedures were approved by the Committee on the Ethics of Animal Experiments of Erasmus University Medical Center, Rotterdam, The Netherlands. Mice were kept in pathogen free facility (SPF), with 12-hours light/dark cycle, controlled temperature (22 ± 1 °C) and humidity $(50 \pm 5\%)$, and fed ad libitum with standard rodent diet. All pellets were retrieved 8 weeks after implantation and ectopic calcification checked by Masson-Goldner staining. Briefly, pellets were fixed in 70% Ethanol, dehydrated in graded alcohols, plastic-embedded (Methyl methacrylate MMA) and cut into 6-µm-thick sections by microtome (RM2255, Leica Biosystem). Two stained sections of each pellet (1 from the periphery of the pellet and 1 from the core) were scanned by Nanozoomer 2.0 HT (Hamamatsu Photonics), and areas of newly formed mineralized bone over HA-TCP quantified by Image J (www.imagej.nih.gov/ij, version 1.47n), by 2 independent observers blind towards the data (as represented in Supplementary Figure 1A-C).

Mass spectrometry analysis

The proteomic composition of ECM was analyzed by mass spectrometry (MS), with a label-free quantification (LFQ) method. ECM samples were scraped and collected in 0.5ml of PBS Triton 0.1% and concentrated by using centrifugal filters (Amicon Utra-0.5 ml centrifugal filters, Millipore; 3KDa cutoff), following manufacturer's instructions. Protein content was quantified by BCA kit (Pierce Biotechnology, Rockford, IL, USA), following manufacturer's instruction. Protein extracts (2.5 µg) were reduced by NuPAGE® Reducing Agent and resolved by one-dimensional SDS-Page gel, in duplicate (NuPAGE®Novex® 4-12% Bis-Tris-Acetate Gels, Life technologies). Protein bands were stained with Coomassie staining (Bio-safe Coomassie, Bio-Rad, Hercules, CA, USA) for 1 hour and de-stained in milliQ water overnight. Samples were processed as previously described [28]. Briefly, an automatic gel slicer was used to cut gel lanes into 2-mm slices, that were subsequently in-gel reduced with

dithiothreitol, alkylated with iodoacetamide and digested with trypsin (Promega, sequencing grade, Madison, WI, USA). A 1100 series capillary LC system (Agilent Technologies) coupled to an LTQ-Orbitrap XL mass spectrometer (Thermo Scientific) was used in positive mode to perform Nanoflow LC-MS/MS. ReproSil C18 reversed phase column (Dr Maisch GmbH; 1.5 cm × 100 μ m, packed in-house) were used to trap the peptide mixtures at a flow rate of 8 μ l/min. Peptides were separated by a linear gradient from 0 to 80 % B (A = 0.1 % formic acid; B = 80% (v/v) acetonitrile, 0.1 % formic acid) in 170 minutes, at a constant flow rate of 200 nl/min, using a splitter, on ReproSil C18 reversed phase column (Dr. Maisch GmbH, Ammerbuch-Entringen, GE; 15 cm × 50 μ m, packed in-house). The eluent was directly sprayed from the column into the ESI source of the mass spectrometer. Peptides were fragmented in data-dependent mode, and mass spectra acquired in continuum mode. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [29] partner repository with the dataset identifier PXD006865 (Username: reviewer20352@ebi.ac.uk; Password: LC3okFPV).

Bioinformatic analysis

The MaxQuant Software (version 1.5.0.0) was used to analyze the raw MS data, with a false discovery rate of 0.01 for proteins and peptides and 6 amino acids as minimum peptide length. The MS/MS spectra were searched by Andromeda search engine, against the human proteome as provided by Uniprot database (taxonomy: *Homo sapiens*, release HUMAN_2013_04) (uniprot.org, v2014_05), with the reversed versions of all the sequences (maximum of two missed cleavages; 0.6 Da fragment mass tolerance, enzyme specificity: trypsin). Samples were run in duplicates and then averaged for the analysis. LFQ values higher than zero were considered for the analysis. Over-represented Gene Ontology (GO) terms were analyzed by using DAVID Bioinformatic Resources v6.7 [30], using the whole human genome as background. Only significantly enriched terms (Benjamini *P* <0.01) were considered.

The protein composition of the devitalized ECM was compared to the one of 3 human bone samples that we previously described [23]. The shared proteins between the 2 data sets were analyzed through QIAGEN's Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City www.qiagen.com/ingenuity).

Immunoblot analysis

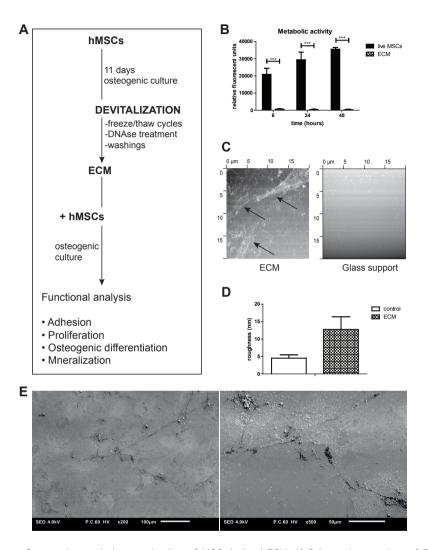
The presence of some proteins detected by MS in the ECM was confirmed by Western blot. Briefly, ECM samples (12 μ g) were prepared as for MS analysis, mixed with 6X reducing sample buffer, separated by SDS-PAGE and transferred onto nitrocellulose membrane (Hybond-ECL, Amersham Bioscience, Buckinghamshire, UK). After non-specific blocking with 5% BSA in Tris-buffered saline (TBS) 0.1% Tween-20,

membranes were incubated overnight with primary antibody against FN1 (mouse monoclonal to FN1, 1:5000, Ab-11, Clone FBN11, Termo Fisher Scientific, Rockford, IL, USA), ALP (mouse monoclonal to ALP, 1:1000, Clone 0.G.2, Abcam, Cambridge, UK), ANXA2 (rabbit polyclonal, 1:1000, Abcam, Cambridge, UK) and GAPDH loading control, mouse monoclonal, 1:1000, Clone sc-69778, Santa Cruz Biotechnology, Dallas, TX, USA). Membranes were probed with secondary antibody conjugated with goat-anti-mouse-Alexa Fluor 680 (goat-anti-mouse, 1:300, Invitrogen, Waltham, MA, USA) and IRDye 800CW (goat-anti-rabbit, 1:5000, LI-COR, Lincoln, NE, USA). Bands were visualized using the LI-COR Infrared Imaging System (LI-COR, Lincoln, NE, USA) according to manufacturer's instruction.

Statistical analysis

Data were representative of multiple independent experiments. All values were presented as average ± standard deviation (SD) of biological replicates, and significance was calculated by 2-way analysis of variance (ANOVA), followed by Bonferroni Post Hoc test, otherwise indicated elsewhere.

RESULTS


Preparation of MSC-derived ECM

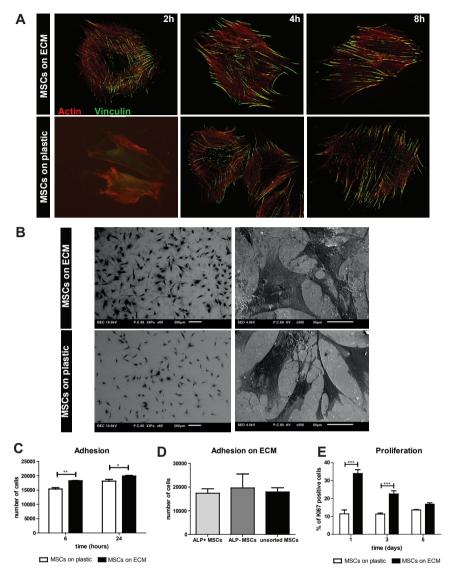
To study the impact of the ECM on MSC behavior, we successfully produced an *in vitro* model of devitalized ECM by using freeze/thaw cycling as decellularization technique. As schematically represented in Figure 1A, MSCs were osteogenically differentiated to allow the production of the extracellular matrix, and before the onset of mineralization, devitalized by freeze/thaw cycles, followed by a DNAse treatment. Extensive washings were intended to withdraw the potential remaining live cells and the cellular debris. Taking advantage of an adaptation of a previous protocol [31], this devitalization procedure represented a simplified way of producing an *in vitro* cell-secreted ECM.

The ECM was metabolic inactive after the devitalization treatment and exhibited a rough surface

As the devitalization treatment should remove cells to minimize immune response, while maintaining the bioactivity of the matrix [9], we checked the efficacy of the devitalization treatment by using Presto Blue. Figure 1B illustrates that the devitalization treatment completely abolished the viability of the cells. In fact, while the metabolic activity of live MSCs increased over time as expected, the matrix remained metabolically inactive. DAPI nuclear staining showed that cells were absent after

devitalization treatment (Supplementary Figure 1D). This confirmed the validity of the devitalization treatment used to prepare the MSC-derived ECM.

Figure 1. Preparation and characterization of MSC-derived ECM. A) Schematic overview of ECM-preparation and culture conditions. B) Metabolic activity of ECM and live MSCs measured at 6, 24 and 48 hours after seeding with Presto Blue viability agent. Values are presented as relative to blank (osteogenic medium with Presto Blue) (***, P < 0.001) (N=3). C) AFM images of ECM and control (20 μm x 20 μm scans) on a glass substrate. Images represent the topography of the area analyzed, coming from the oscillation of the cantilever over the scanned surface. Black arrows indicate fiber-like structures. D) Roughness quantification of ECM and control, based on amplitude of average Roughness (Ra) values from independent scans. Values: Average ± SD. E) Scanning electron micrographs of the surface of devitalized ECM at 200X (left) and 500X magnification (right). Images are representative for multiple areas in 2 specimens. Scale bars indicate 100 μm (left) and 50 μm (right).


Next, we analyzed the surface of the devitalized ECM by atomic force microscopy. AFM images of the scanned areas showed that the matrix had a rough surface, and exhibited fiber-like structures relative to the featureless poly-L-lysine-coated surfaces (Figure 1C). Quantified data revealed a roughness of 12.75 nm for the ECM compared to 4.53 nm for the poly-L-lysine-coated surface without cells, as shown in Figures 1C and 1D. Investigations of larger areas of devitalized ECM by SEM confirmed the rough surface and the presence of fibrous structures and aggregates (Figure 1E).

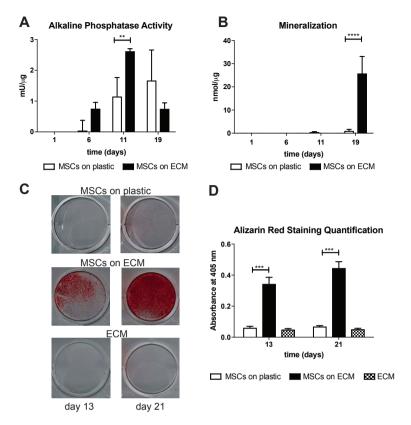
The ECM increased MSC adhesion

Next, we investigated whether the devitalized ECM could enhance cellular attachment. Therefore, we analyzed the effect of the devitalized ECM on the adhesion of freshly seeded human MSCs. Figure 2A illustrates that MSCs adhere more efficiently and quicker on the devitalized ECM than on plastic. Within 2 hours after seeding the cells, the actin cytoskeleton was correctly organized to shape a proper morphology, as shown by phalloidin staining, whereas this was not yet the case for the MSCs seeded on plastic. In addition, vinculin staining showed that MSCs on ECM formed focal adhesions within 2 hours after seeding. At this time point, the number of focal adhesions per area stained by phalloidin in cells on ECM was more than 18-fold higher than in cells seeded on plastic. Although not significant, the number of focal adhesions was overall higher at each time point (Supplementary Figure 1E). These analyses illustrate that seeding cells on a preformed ECM significantly accelerates MSC adhesion. MSCs cultured for 24 hours on the devitalized ECM and in standard culture conditions exhibited a stretched morphology with focal adhesion complexes, but no substantial differences in morphology were highlighted when imaged at high magnification by SEM (Figure 2B). However, an increased number of cells were generally observed on the devitalized ECM relative to the standard culture conditions.

The increased cell adhesion was further confirmed by counting the number of the cells that adhere to the different substrates. Six hours after seeding on the ECM, the number of cells was 1.2-fold (P<0.01) higher than on plastic, and 1.3-fold (P<0.05) higher after 24 hours (Figure 2C).

In addition, we investigated the preferential adhesion of MSC subsets to the devitalized ECM. We focused on ALP-positive MSCs, considered as already osteogenic committed MSCs, and ALP-negative MSCs, considered as yet uncommitted MSCs. Hereto we FACS-sorted the heterogeneous population of MSCs based on ALP expression, and next seeded the ALP-positive and ALP-negative population on the devitalized ECM. After 24 hours of culture, no significant difference was detected in the adhesion of these subsets and the unsorted population (Figure 2D). The devitalized ECM was able to bind not only the committed ALP-positive MSCs, but also the ALP-negative cells.

Figure 2. ECM enhances MSC adhesion and proliferation. A) Immunohistochemistry of MSCs on ECM (top) and plastic (bottom) at 2, 4, 8 hours after seeding. Red, phalloidin for actin cytoskeleton; green, vinculin of focal adhesions. B) SEM images of MSCs cultured on the devitalized ECM (top) and in standard culture conditions (bottom) for 24 hours, at 60X (left) and 500X magnification (right). Images are representative of multiple areas in 2 specimens. Scale bars indicate 200 μm (left) and 50 μm (right). C) Quantification of cells in adhesion to substrates counted by flow cytometry. D) Quantification of MSC subsets (ALP positive-, ALP negative-sorted cells, unsorted cells) in adhesion to the ECM for 24 hours, counted by flow cytometry (no significant difference was detected by One-way analysis of variance, followed by Bonferroni's Multiple Comparison Test). (ALP+ MSCs: ALP-positive sorted MSCs; ALP- MSCs: ALP-negative sorted MSCs). E) Proliferation of MSCs on ECM and on plastic as percentage of Ki-67 positive cells by flow cytometry. Results are representative of multiple independent experiments. (*, *P*<0.05; **, *P*<0.01; ***, *P*<0.001). Values: Average ± SD.


The ECM increased MSC proliferation and accelerated MSC osteogenic differentiation and mineralization *in vitro*

We investigated whether the accelerated attachment to the devitalized ECM was accompanied by an effect on cell proliferation, by analyzing the percentage of Ki-67 positive cells by flow cytometry. After 1 day of culture of MSCs on ECM, 34% of the cells were Ki-67 positive, whereas only 11% of the cells were positive when cultured on plastic. This illustrates that 24 hours of culture on ECM were sufficient to increase the number of proliferating MSCs by 2.97-fold (Figure 2E). The percentage of Ki-67 positive cells gradually decreased in time to similar levels as the cells seeded on plastic. After 5 days of osteogenic differentiation, the percentage of proliferating cells lowered to 16%.

Next, the influence of the ECM on the osteogenic differentiation of MSCs was studied. MSCs cultured on ECM differentiated faster toward osteoblasts than those grown on plastic. After 11 days of differentiation, ALP activity in MSCs cultured on ECM was 2.2-fold higher than their counterpart on plastic (Figure 3A). Furthermore, mineralization was accelerated and increased by culturing MSCs on the ECM, as illustrated by calcium deposition in the well and the alizarin red staining (Figures 3B-D). The amount of calcium deposited after 19 days of culture, as measure of mineralization, was more than 20-fold higher in MSCs cultured on ECM than on plastic (Figure 3B). Alizarin Red staining of the mineralized ECM confirmed the increased mineralization of cells seeded on devitalized ECM, as shown in Figures 3C and 3D.

ECM promoted in vivo ectopic bone formation by MSCs

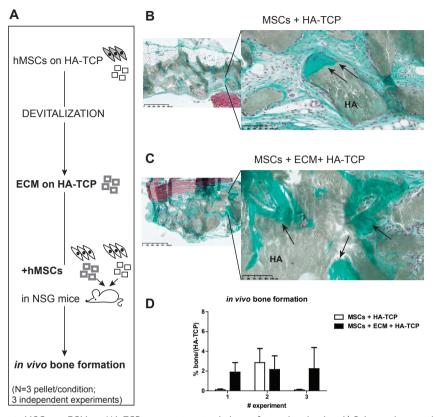
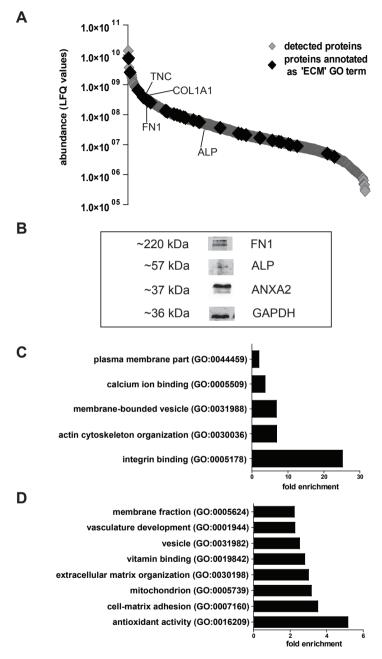

Based on the osteopromotive role of the ECM on MSCs *in vitro*, we investigated whether the ECM influenced the *in vivo* bone formation by MSCs in an ectopic calcification model. MSCs with and without ECM were subcutaneously implanted on HATCP in immunocompromised mice and bone formation checked by Masson-Goldner staining after 8 weeks, as represented in Figure 4A. Histological evaluation showed that MSCs on HA in this experimental set-up induced ectopic bone formation (Figure 4B and C). In 2 out of 3 experiments MSCs implanted with ECM gave rise to about 20-fold higher amount of bone than when ECM was not present (Figure 4D). In the experiment that did not show an effect of ECM, the bone formation in control HA-TCP was already at the level induced by the ECM conditions in the other experiments, potentially explaining that an additional increase was not observed. Overall, in contrast to the control condition, the presence of ECM robustly led to ectopic bone formation in all experiments (Figure 4D). Ectopic bone formation was not detected when HA-TCP pellets were loaded without MSCs (Supplementary Figure 1F).

Figure 3. ECM accelerates MSC-osteogenic differentiation and mineralization. A) ALP activity in cell extracts of MSCs on ECM and plastic. B) Calcium deposition in cell extracts of MSCs cultured on ECM and plastic. The values of MSCs on ECM were subtracted by the ECM contribution. All values are corrected for protein content at each time point. Negative values were artificially set as zero. The provided results are representative of multiple independent experiments. C) Alizarin Red Staining at day 13 and 21 of culture, in MSCs on plastic (top), MSCs on ECM (middle), and ECM only (bottom). D) Quantification of Alizarin Red Staining at day 13 and 21 of culture. (**, P<0.01; ***, P<0.001, ****, P<0.0001). Values: Average ± SD.


The proteomic composition of the ECM corroborated the role of the devitalized matrix in mediating the observed effects on MSCs

Following these positive effects of the devitalized ECM on cell adhesion, proliferation and osteogenic differentiation of MSCs, we investigated the protein composition of the ECM, in order to identify candidate proteins and processes underlying these effects. Mass spectrometry analysis identified 846 proteins that were part of the devitalized ECM (Supplementary Table 1). Of these 846, 35 proteins were annotated as 'extracellular matrix' GO term (GO:0031012) (Figure 5A). The detection of known ECM components such as FN, COL1A1 and tenascin C (TNC) within the most abun-

Figure 4. MSCs on ECM on HA-TCP promotes ectopic bone formation *in vivo*. A) Schematic overview of *in vivo* implantation experiment. B) Histological analysis of newly formed bone by MSCs on HA-TCP and C) MSCs on ECM on HA-TCP. Two sections/pellet, 4 pellets/conditions, in 3 independent experiment were analyzed and representative sections are shown. Arrows indicate the newly formed bone stained in green by Masson-Goldner staining on HA-TCP (indicated as HA). Light pink areas indicated unmineralized bone and purple dots indicate nuclei. Bars indicate 500 μ m (left) and 100 μ m (right). D) Quantification of the newly formed bone by MSCs on ECM on HA-TCP and MSCs on HA-TCP in each experiment. Three independent experiments are shown. Values: Average \pm SEM of % bone/(HA-TCP) in pellets per each experiment.

dant proteins in the devitalized ECM confirmed the presence of a bone-like ECM and the validity of the devitalization treatment to produce the ECM. The presence of proteins detected by MS in the devitalized ECM such as FN, Annexin2 (ANXA2), and ALP was confirmed by Western blot analysis (Figure 5B). As illustrated in Figure 5C, GO analysis revealed that the top 10% most abundant proteins (85 proteins) were involved in cell-matrix adhesion processes, as integrin binding (GO:0005178) was significantly enriched. Furthermore, GO terms such as membrane-bounded vesicle (GO:0031988) and calcium ion binding (GO:0005509), which included proteins such as ANXA2, ANXA5 and ANXA6, were also enriched in our analysis (Supplementary

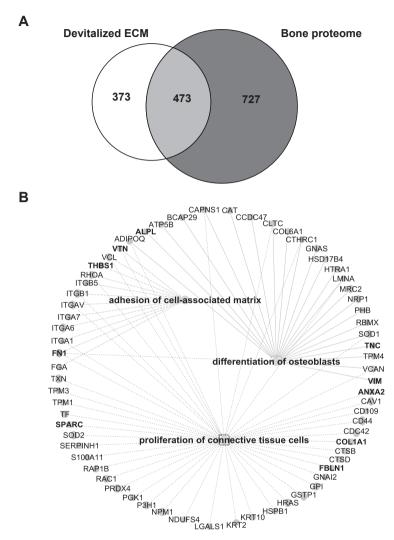


Figure 5. Proteomic analysis of the ECM composition. A) 846 proteins were detected by mass spectrometry; 35 were annotated as 'extracellular matrix' GO term. Some of the most relevant proteins are indicated. B) Western blot analysis of FN1, ALP, ANXA2 (12 μ g loaded) in the devitalized ECM. GAPDH was used as loading control. C) Gene ontology analysis of the top 10% most abundant detected proteins. D) Most enriched pathways of GO analysis of all the proteins detected in the ECM. Only the significantly enriched terms are shown (Benjamini P <0.01).

Table 2). As these proteins are involved in matrix-vesicle release, calcium ion binding and therefore mineralization, this suggested the role of the ECM in promoting the osteogenic differentiation and mineralization of MSCs. Alkaline phosphatase was also detected and ranked in position 142 of abundance (Figure 5A and 5B; Supplementary Table 1). However, ALP appeared to be inactive as the ECM lacked ALP activity (Supplementary Figure 1G). The GO analysis of the whole composition of the ECM shown in Figure 5D illustrates that the GO term extracellular matrix organization (GO:0030198) was significantly enriched, meaning that the total composition of ECM was important for the structure of the devitalized ECM, and not only the most abundant proteins. Furthermore, Figure 5D illustrates that GO terms such as antioxidant activity (GO:0016209), mitochondrion (GO:0005739) and vasculature development (GO:0001944) were significantly enriched (Supplementary Table 3).

The devitalized ECM showed high protein homology with human bone samples

We have previously analyzed the composition of the human bone proteome [23], showing 1213 proteins that were shared by 3 human bone samples. Further analyses lowered them down to 1200 unique proteins. This human bone proteome was compared with the protein composition of the in vitro cell-secreted ECM. More than 50% of the ECM proteins were shared with the bone proteome, as 473 proteins out of 846 detected in the devitalized ECM were also detected within the human bone samples (Figure 6A). Annexins such as ANXA2, ANXA6, ANXA5, ANXA1 and vimentin (VIM) were within the most abundant proteins in the ECM that were also detected in the bone proteome (Supplementary Table 4). Bioinformatic analysis of the shared proteins showed that specific osteoblast- and ECM-related terms such as 'adhesion of cell-associated ECM', 'differentiation of osteoblasts', and 'proliferation of connective tissue cells', were significantly enriched (Figure 6B), confirming the role of the protein composition of the ECM in mediating these effects. Proteins such as trombospondin-1 (THBS1), VTN and FN, but also intracellular proteins such as integrins, were within the 473 shared proteins, and were involved in 'adhesion of cell-associated matrix'. Moreover, proteins such as SPARC, COL1A1 and fibulin-1 (FBLN1) were related to the proliferation of connective tissue cells, whereas TNC, VIM and Versican (VCAN) were responsible for the differentiation of osteoblasts, overall confirming the role of the ECM in mediating the functional effects we observed.

Figure 6. Comparison of the protein composition of the devitalized ECM and the human bone proteome. A) 473 proteins were shared between the devitalized ECM and the human bone proteome. B) Ingenuity Pathway Analysis of the 473 proteins shared between the devitalized ECM and the human bone samples. Represented proteins lead to the significant enrichment of Functional Annotations such as 'proliferation of connective tissue cells' (*P*=3.81 E-09), 'differentiation of osteoblasts' (*P*=6.44 E-07) and 'adhesion to cell-associated matrix' (*P*=1.89 E-06) (bold: proteins highlighted in the text).

DISCUSSION

In this study, we successfully produced an osteopromotive human MSC-derived ECM, which was able to accelerate the adhesion, proliferation and osteogenic potential of MSCs *in vitro* and to promote ectopic bone formation *in vivo*. Known ECM

components were detected in the devitalized ECM, which also showed high homology with the human bone protein composition. This validated our ECM-model and provided insights into how the ECM may modulate MSC-behavior. Moreover, many unexpected proteins not directly related to ECM-structural role were also detected.

Immediately after seeding on the ECM, MSCs formed focal-adhesion-complexes that improved their adhesion to the devitalized ECM. Extracellular proteins, such as FN, COL1A1, VTN and TNC, favor osteoblast adhesion to the ECM by creating cell-matrix adhesion sites [6, 20]. The proteomic analysis of the devitalized ECM identified FN, COL1A1 and TNC within the most abundant proteins, and other adhesive extracellular proteins, such as VTN and FBLN1. Together this confirmed the presence of cell-adhesion promotors in the devitalized ECM, explaining the accelerated cell attachment. Moreover, the devitalized ECM was able to enhance the attachment of MSCs irrespectively of their commitment, as less committed cells attached on the ECM to a similar extent than the more committed ones.

One day on the devitalized ECM was already sufficient to increase the percentage of proliferating MSCs, confirming previous findings that used different cell-secreted ECMs to enhance MSC proliferation [11-13, 16]. By analyzing the proteomic composition of the ECM, we could successfully detect FN, COL1A1 and SPARC, which have been shown to promote osteoblast proliferation [22, 32], and TNC, which may mediate transforming growth factor beta (TGF- β) action on bone formation [33]. The percentage of proliferating cells decreased over time as cells started to differentiate.

The devitalized ECM induces a faster differentiation of MSCs toward mineralizing osteoblasts as both ALP activity and matrix mineralization were higher when MSCs were cultured on the ECM. This observation is supported by previous findings showing in vitro cell-secreted-ECMs that promoted osteogenesis [14, 15]. The quicker adhesion to the known osteogenic inducers that were detected in the ECM, such as COL1A1, FN, collagen type XII alpha 1 (COL12A1), TNC, VTN and SPARC, might activate integrin-mediated signaling pathways, increasing osteogenic differentiation [5, 20, 22, 33, 34]. Annexins such as ANXA2, ANXA5 and ANXA6 were detected in the devitalized matrix, along with previous findings [17]. Annexins are the initiators of mineralization and were also detected within the most abundant proteins in human bone samples, confirming the role of the devitalized ECM in mimicking the osteogenic bone microenvironment [23, 35]. Despite the detection of initiators of mineralization such as Annexins and ALP, the ECM has low ALP activity and does not mineralize without the further presence of living cells. The necessity of living cells may be conceptually important for the therapeutic application of devitalized ECM. If the ECM mineralizes independently of living cells, this would lead to uncontrolled mineralization, and may lead to pathological heterotopic mineralization. As osteoblast differentiation and bone formation are complex processes in which timing,

order and magnitude of events are important, inappropriate timing of mineralization thus may lead to an inappropriate bone repair process.

Bone formation induced by ECM directly implanted *in vivo* or by MSCs expanded on ECM *ex-vivo*, have shown conflicting findings [10]. We showed that the ECM promoted *in vivo* ectopic bone formation by MSCs, inducing a higher amount of bone than by MSCs alone. Probably the role of ECM is decisive to stimulate a robust formation of bone. However, further experiments are needed to increase the sample size and diminish the heterogeneity to overcome the biological variation. Based on our current observations we propose that with any given MSC preparation, one may or may not observe bone formation, whereas in the presence of the ECM we produced, bone formation will be observed with all MSC preparations. In other words, the presence of the ECM seemed to reduce variation in the amount of bone formed over different experiments.

Structural ECM proteins and known components of the bone marrow niche, such as COL1A1, FN, VTN and TNC, were successfully detected among the most abundant proteins in the ECM, along with previous findings [12, 16-18]. However, also inhibitors of mineralization were detected, such as alpha-2-HS-glycoprotein (AHSG), which is found in the mineralized bone but also acts as inhibitor of ectopic calcification [36]. Interestingly, growth factors such as BMPs and TGF- β could not be detected in the ECM, which may be attributed to the sensitivity of the technique or to the devitalization procedure. Despite the absence of GFs, we unequivocally show that the matrix influenced MSC behavior. Probably, ECM-remodeling takes place, releasing GFs that were entrapped in the ECM. Indeed, protease inhibitors such as cystatin C (CST3), were detected, but also proteinases, such as matrix metalloproteinase 14 (MMP14), which are known to promote osteogenic differentiation [37, 38].

Notably, many proteins detected in the devitalized matrix were annotated as cytoplasmic or plasma membrane-bound. Cell-remnants most likely arose from cell-lysis during the freeze-thaw cycling and were resistant to the extensive washings [10]. Nevertheless, we should consider that the ECM-composition in its entirety was responsible for the effects described in this study; these proteins enriched the matrix composition, playing a central role with the known ECM proteins. As more than 50% proteins were shared between the devitalized ECM and the human bone samples, we thus show that our natural ECM model is representative of the *in vivo* dynamic bone microenvironment. Following this, cell-remnants may have a functional role as remnants arising from osteoblasts undergoing apoptosis. These are present in the bone and bone-marrow and stimulates efferocytosis by osteal macrophages, which are key regulators of bone homeostasis and wound repair [39]. Therefore, the cell-remnants detected in the devitalized ECM could implement the supportive role of stromal cells and thereby the ECM we produced may represent a more complete

environment than just the well-known ECM proteins. However, further studies are needed to unravel new functions for the ECM in the context of osteoimmunology.

We unexpectedly detected many proteins related to mitochondrial functions and structure in the devitalized matrix. Nevertheless, we show that the devitalized matrix is metabolically inactive. As the osteogenic differentiation is a high-energy demanding process, we believe that these proteins arise from lysis of the ECM-secreting MSCs, as the devitalization occurred before the onset of mineralization and might be related to energy metabolism function.

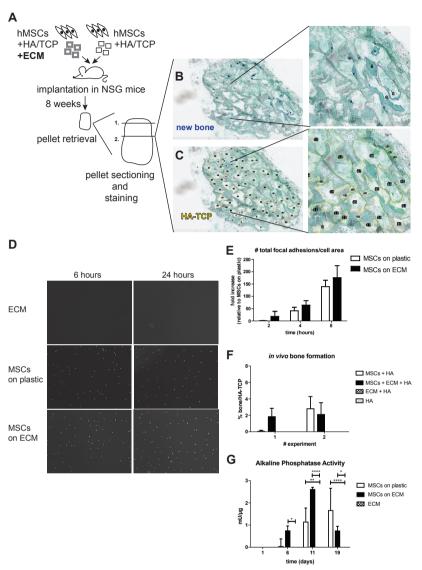
Gene ontology analysis of the proteins detected in the ECM revealed also GO terms that were not directly related to known ECM-functions, thus broadening the spectrum of the devitalized ECM functions. For instance, 'Antioxidant activity' appeared as an enriched GO term, with proteins such as superoxide dismutase 1 (SOD1) that was previously detected in the human bone microenvironment [23]. As the ECM has been already proposed to reduce MSC aging [13], the antioxidant function of the devitalized matrix should be further investigated to improve *ex-vivo* cultures for clinical applications. The most abundant proteins detected in the matrix were also related to angiogenesis and vasculature remodeling, showing interesting functions of the ECM. Indeed, among these proteins, TNC is mitogenic for hematopoietic stem cells (HSCs) in HSC-niche, [40] and COL1A1 is involved in vasculature remodeling [41]. Our findings support the idea of using the matrix for HSC expansion [16].

The role of ECM in modulating MSC-behavior has been successfully investigated in many studies using cell-secreted ECMs, that have been obtained by different decellularization techniques. Although the freeze/thaw cycles approach has been shown to damage the fibrillary structure of ECM [42], and not removing all cellremnants, this method also allowed successful production of cell-derived ECMs on scaffolds and maintain most of the ECM components [10, 14, 43]. Along with these latter findings, we believe that the model of devitalized ECM presented here represents a simpler way to produce a matrix in vitro by using cost-effective freeze/ thaw cycling, while still being able to accelerate and improve the osteogenic potential of MSCs as shown. In summary, we produced an osteoblast-derived ECM by a simple devitalization treatment; this in vitro model of bone-ECM improved the osteogenic potential of MSCs, reinforcing previous findings. This, combined with the increase in cell proliferation could be useful to expand autologous MSCs ex-vivo and improve their use for bone regeneration. A detailed proteomic analysis revealed known ECM components responsible for the observed effects and an overlap with the human bone microenvironment, but also novel ECM functions that need further investigation. Some candidate proteins could be overexpressed in ECM-secreting MSCs, to produce a tailor-made ECM that improves MSC properties to accelerate fracture healing, broadening the future applications of the cell-secreted ECM. In addition, MSCs could be isolated from patients to easily produce an autologous ECM, to improve patient-specific therapies. Overall, the devitalized ECM could be applied as natural biomaterial that mimics the osteogenic niche and to functionalize scaffolds to develop osteoinductive materials for the implanted cells *in vivo*, in order to robustly accelerate bone regeneration.

ACKNOWLEDGEMENTS

Funding: This work was supported by a grant from the Dutch government to the Netherlands Institute for Regenerative Medicine (NIRM, grant No: FES0908) and Erasmus Medical Center. The authors thank Molecular Medicine Post Graduated School, T. Strini and C. S. van der Leije for technical assistance, P. Kumar for performing Western blots, Dr. L. Sasso, Dr. H. H Perez Garza and Dr. M. K. Ghatkesar for helping with atomic force microscopy and data interpretation, and K. Bezstarosti and D. Dekkers for mass spectrometry analysis.

Author Contributions: MB, BE, RA, JP, JL designed research. MB, SC, ERT, IE, YK, MK performed research. MB, BE, SC, ERT, IE, LFA, YK, MK, JD, JP, JL analyzed data. MB; JP, JL drafted manuscript. MB, BE, JP, RA, JL revised the final version of manuscript. All authors have approved the final article.


No competing financial interest exists.

REFERENCES

- 1. Caplan, A.I., Mesenchymal stem cells. J Orthop Res, 1991. 9(5): p. 641-50.
- 2. Pittenger, M.F., et al., *Multilineage potential of adult human mesenchymal stem cells.* Science, 1999. 284(5411): p. 143-147.
- Caplan, A.I., Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics.
 Tissue Eng, 2005. 11(7-8): p. 1198-211.
- 4. Sommerfeldt, D.W. and C.T. Rubin, *Biology of bone and how it orchestrates the form and function of the skeleton*. Eur Spine J, 2001. 10 Suppl 2: p. S86-95.
- 5. Alford, A.I., K.M. Kozloff, and K.D. Hankenson, *Extracellular matrix networks in bone remodeling*. Int J Biochem Cell Biol, 2015. 65: p. 20-31.
- 6. Hidalgo-Bastida, L.A. and S.H. Cartmell, Mesenchymal stem cells, osteoblasts and extracellular matrix proteins: enhancing cell adhesion and differentiation for bone tissue engineering. Tissue Eng Part B Rev, 2010. 16(4): p. 405-12.
- 7. Hynes, R.O., The extracellular matrix: not just pretty fibrils. Science, 2009. 326(5957): p. 1216-9.
- 8. Guilak, F., et al., Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 2009. 5(1): p. 17-26.
- 9. Badylak, S.F., D.O. Freytes, and T.W. Gilbert, *Extracellular matrix as a biological scaffold material: Structure and function.* Acta Biomater, 2009. 5(1): p. 1-13.
- 10. Fitzpatrick, L.E. and T.C. McDevitt, *Cell-derived matrices for tissue engineering and regenerative medicine applications.* Biomater Sci, 2015. 3(1): p. 12-24.
- 11. Chen, X.D., et al., Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res, 2007. 22(12): p. 1943-56.
- 12. Lai, Y., et al., Reconstitution of marrow-derived extracellular matrix ex vivo: a robust culture system for expanding large-scale highly functional human mesenchymal stem cells. Stem Cells Dev, 2010. 19(7): p. 1095-107.
- 13. Sun, Y., et al., Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. FASEB J, 2011. 25(5): p. 1474-85.
- 14. Datta, N., et al., Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials, 2005. 26(9): p. 971-7.
- 15. Mauney, J.R., D.L. Kaplan, and V. Volloch, *Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion.* Biomaterials, 2004. 25(16): p. 3233-43.
- 16. Prewitz, M.C., et al., *Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments.* Nat Methods, 2013. 10(8): p. 788-94.
- 17. Kolf, C.M., et al., *Nascent osteoblast matrix inhibits osteogenesis of human mesenchymal stem cells in vitro*. Stem Cell Res Ther, 2015. 6: p. 258.
- 18. Marinkovic, M., et al., *One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior.* Matrix Biol, 2016. 52-54: p. 426-41.
- Ragelle, H., et al., Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials, 2017. 128: p. 147-159.
- 20. Salasznyk, R.M., et al., Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells. J Biomed Biotechnol, 2004. 2004(1): p. 24-34.

- 21. Santiago, J.A., R. Pogemiller, and B.M. Ogle, *Heterogeneous differentiation of human mesenchy-mal stem cells in response to extended culture in extracellular matrices.* Tissue Eng Part A, 2009. 15(12): p. 3911-22.
- 22. Ode, A., et al., Toward biomimetic materials in bone regeneration: functional behavior of mesenchymal stem cells on a broad spectrum of extracellular matrix components. J Biomed Mater Res A, 2010. 95(4): p. 1114-24.
- 23. Alves, R.D., et al., Unraveling the human bone microenvironment beyond the classical extracellular matrix proteins: a human bone protein library. J Proteome Res, 2011. 10(10): p. 4725-33.
- 24. van Hengel, I.A.J., et al., Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials, 2017. 140: p. 1-15.
- 25. Horzum, U., B. Ozdil, and D. Pesen-Okvur, *Step-by-step quantitative analysis of focal adhesions*. MethodsX, 2014. 1: p. 56-9.
- 26. Bruedigam, C., et al., Basic techniques in human mesenchymal stem cell cultures: differentiation into osteogenic and adipogenic lineages, genetic perturbations, and phenotypic analyses. Curr Protoc Stem Cell Biol, 2011. Chapter 1: p. Unit1H 3.
- Abdallah, B.M., N. Ditzel, and M. Kassem, Assessment of bone formation capacity using in vivo transplantation assays: procedure and tissue analysis. Methods Mol Biol, 2008. 455: p. 89-100.
- 28. Morhayim, J., et al., Proteomic signatures of extracellular vesicles secreted by nonmineralizing and mineralizing human osteoblasts and stimulation of tumor cell growth. FASEB J, 2015. 29(1): p. 274-85.
- 29. Vizcaino, J.A., et al., 2016 update of the PRIDE database and its related tools. Nucleic Acids Res, 2016. 44(22): p. 11033.
- 30. Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57.
- 31. Alves, R.D., et al., Activin A suppresses osteoblast mineralization capacity by altering extracellular matrix (ECM) composition and impairing matrix vesicle (MV) production. Mol Cell Proteomics, 2013. 12(10): p. 2890-900.
- 32. Globus, R.K., et al., *Fibronectin is a survival factor for differentiated osteoblasts.* J Cell Sci, 1998. 111 (Pt 10): p. 1385-93.
- 33. Mackie, E.J., et al., Regulation of tenascin-C expression in bone cells by transforming growth factor-beta. Bone, 1998. 22(4): p. 301-7.
- 34. Delany, A.M., et al., Osteonectin-null mutation compromises osteoblast formation, maturation, and survival. Endocrinology, 2003. 144(6): p. 2588-96.
- 35. Anderson, H.C., R. Garimella, and S.E. Tague, *The role of matrix vesicles in growth plate development and biomineralization.* Front Biosci, 2005. 10: p. 822-37.
- 36. Schafer, C., et al., The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest, 2003. 112(3): p. 357-66.
- 37. Karsdal, M.A., et al., *Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis.* J Biol Chem, 2002. 277(46): p. 44061-7.
- 38. Danjo, A., et al., *Cystatin C stimulates the differentiation of mouse osteoblastic cells and bone formation.* Biochem Biophys Res Commun, 2007. 360(1): p. 199-204.
- 39. Sinder, B.P., A.R. Pettit, and L.K. McCauley, *Macrophages: Their Emerging Roles in Bone.* J Bone Miner Res, 2015. 30(12): p. 2140-9.

- 40. Klein, G., S. Beck, and C.A. Muller, *Tenascin is a cytoadhesive extracellular matrix component of the human hematopoietic microenvironment.* J Cell Biol, 1993. 123(4): p. 1027-35.
- 41. Wang, Z. and N.C. Chesler, *Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia.* Biomech Model Mechanobiol, 2012. 11(1-2): p. 279-89.
- 42. Tour, G., M. Wendel, and I. Tcacencu, *Cell-derived matrix enhances osteogenic properties of hydroxyapatite*. Tissue Eng Part A, 2011. 17(1-2): p. 127-37.
- 43. Thibault, R.A., et al., Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Tissue Eng Part A, 2010. 16(2): p. 431-40.

Supplementary Figure 1. A) Schematic representation of *in vivo* ectopic bone formation analysis. MSCs on HA-TCP with and without ECM were implanted in NSG mice and pellets were retrieved 8 weeks after implantation. Two sections/pellet were stained with Goldner staining. To determine the percentage of newly formed bone, area of Goldner staining-positive newly formed bone (B) (indicated as 'new bone' in blue) over HA-TCP areas (C) (indicated as HA-TCP in yellow) were quantified. D) DAPI staining of devitalized ECM and of MSCs cultured on ECM and on plastic for 6 and 24 hours. E) Quantification of cell adhesion at 2, 4, 8 hours after seeding (number of focal adhesions/cell area). F) Quantification of the newly formed bone by MSCs on ECM on HA-TCP, MSCs on HA-TCP and by ECM on HA-TCP and HA-TCP as control in each experiment. Two independent experiments are shown. Values: Average ± SEM of % bone/(HA-TCP) in pellets per each experiment. G) ALP activity measured in lysates from ECM and MSCs cultured on plastic and ECM for 19 days (*, *P*<0.05, **, *P*<0.01; ****, *P*<0.0001). Negative values were artificially set as zero. Values: Average ± SD.

Supplementary Table 1. List of proteins detected in the devitalized ECM. Proteins are indicated as protein IDs and ranked for abundance. The top 10% (85) most abundant proteins are indicated in bold.

P63261	P07099	P09525	Q53GQ0	P09622	P08238
P07355	CON_QOIIK2	P49257	O94925-3	075947	C9J3L8
CONP02769	E9PNW4	P04899	P47985	F8VNT9	I3L1P8
P04264	Q9UHG3	Q04941	Q5JPE7-2	Q9UKX5	P46977
P15144	-	Q15084-3	O95202	R4GN98	P14384
P08133	Q14764	P22695	O95831-3	P31040	Q13724-2
	P04792		P50995-2	Q99623	Q9NRP0
P08758	P40939	P24539 F5GXX5	P62937	P60981	B4DZI8
CONP12763	Q01995			E9PR44	Q04837
P13645	Q00325-2	P18206-2	P19105		
P06576	P49755	P08195-2	P35232	P30084	O60831
Q14195	P23284	P09619	P11498	P07954-2	P61604
P35908	P40926	P09493-3	Q99715-4	Q96IX5	P30040
REVS4R403	P04406	P35613-2	Q9BWM7	Q01628	Q5JP53
P14625	P38646	P31949	P17813-2	O00483	Q9Y2Q3
P11021	P00367	P48047	P28331-4	Q10472	P08574
P35527	E9PIM6	P20340-2	P51659	Q13162	K7EJE8
Q13740-2	P24821-4	P11279	P51148	Q92743	Q969X5-2
P00387-2	P02452	P49748-2	Q99798	P13611-2	P61009
P04083	P12236	P60903	O15173	P36957	P05141
P35579	P43121	P13073	P30050	E7ETY7	Q9UJS0
P25705	Q9BVK6	Q96AG4	J3QS39	Q9H9B4	P05388
P68032	P39656	P31930	P54709	Q9BSJ8	Q9NYL4-2
CONP34955	Q9Y6N5	Q70UQ0-4	CON_EN-	P56385	P24752
P27824	P02545-2	P07339	SEMBL:ENS-	P26038	CON_Q2KIS7
P04843	CON_Q3SX09	P21589	BTAP00000016046	-	P21912
P21333-2	Q13423	P09382	Q15758	P60174-1	CON_Q9TRI1
P08670	P51571	Q15363	P10620	P24390	Q8WWI5-3
Q09666	P02751-17	P00403	P22307-6	Q86UY0	P30044-2
G5EA52	043707	H0YD13	P62805	B1AH87	075489
P12814	P36269	Q8IWA5-3	Q15836	B7Z6B8	O15460-2
P05556	Q14108	Q5VTE0	C9JA28	P62258	Q12797-10
CONP15497	Q07065	P60468	Q02218	P26006	P08779
Q6UVK1	Q6DD88	P12111-2	P56134-3	P52907	P61619
Q9NZM1-6	P06733	P05186	Q6YHK3	CONP17690	REVH0Y547
P10809	P23634-7	P45880	P63104	B4E2S7	P04075 B4DT77
P27797	P21964-2	E9PN17	P04179-4	P11047	
P50454	P61224 P18084	Q9BVC6 Q9Y4L1	Q99880 P27658	Q96JJ7 P13674	Q9BS26 Q00765
P04844		-		Q9UGT4	Q14165
P08648	Q2Y0W8-5 O75396	P00338	Q99878 P10301	P07996	O15427
E9PJK1 P56199	Q9HDC9	REVQ96HY7 Q12907	Q9P0L0	Q32P28	P04062-4
P21796	P30048-2	J3KNF8	P55084-2	P84077	P67936
Q03135	Q9UBI6	P61106	Q71U36-2	P42704	Q9Y5U9
P05023-4	P16615-5	P14314-2	P08123	O95302	P30049
P06756-3	P11142	P55072	B4E2V5	Q15149	CON_Q3SZ57
P06396-2	P61019	Q6NZI2	Q15165-3	Q00610-2	P62820
P07237	F8W1R7	P04040	P00167-2	Q05682-5	Q8TCT9-5
Q14697	P23528	P30447	H0YNG3	P29992	P12109
Q9NQC3-2	Q9H0U4	P51572	B4DJV2	P07737	P07942
Q9UBG0	P14618	P61026	Q969H8	Q15005	Q16563-2
CON_EN-	CONP01966	Q9BTV4	Q12884	P07951-2	J3KTF8
SEMBL:ENSBTAP	O75915	Q96AY3	P13667	Q6NUK1	P13647
00000024146	P62873	Q9NYU2-2	Q9Y3B3-2	E9PMR4	Q9P2E9
Q07954	P51149	B4DMK0	Q9NVJ2	P02786	P11177-2
Q07934 Q08431	Q9Y490	O15260-2	Q99714	13L4X2	P02538
20043I	Q 7 1 7 7 U	0 13200 Z	Q227 17	IJLTAL	. 32330

	DEOOES	1200V2	E9\M/7\\A	G3V5P8
O43852	P60953 Q99805	J3QQY2 P09110	F8W7Q4 P61421	F6SBX2
P54289-4		A6NLH6	O5T092	Q9Y2Q5
CON_Q3ZBS7	Q969V3-2	Q8N6L1	P27348	Q9UI09
Q99536	P09669	-		
P60059	Q96l99	Q9P035	F5H8J3	P62750
Q8N766-3	P26885	P01112	Q8TBQ9	B4DJA5
A6NNI4	P46940	P40261	G3V1S6	Q8N5K1
P61981	P61769	Q969G5	P55145	O96000
P39019	014735-3	E5RI99	Q96A33-2	Q9HAV0
Q92520	P35052	Q14699	094826	E9PP23
CONQ58D62	Q99720	CONP01044-1	Q9NS69	P48449-2
O95197-3	Q8N0U8	A8MWK3	O00264	Q86YZ3
Q7Z3B1	Q9UIJ7	014949	P13639	Q9BXK5-4
Q06830	P11717	E7ENA9	P05362	P08107
P49419-2	Q96HE7	H0YFI1	095168-2	P00441
Q9H3N1	O14495	E7EMM4	P12110-3	P30038
P54920	K7EMV3	P14854	Q9HD45	Q8NBX0
Q01082	Q8NB49-2	Q5RI15	Q6ZUX7	P10321
P14406	P21397	Q53TN4-3	P04181	Q9NP72
Q7Z7H5-3	Q5ZPR3-3	P06744	Q16740	Q16555
G3XAM7	P09486	Q04917	P61158	P31937
P05091	P50148	CONENSEMBL:ENS-	P53621	P16112-2
E9PEP6	P51636-2	BTAP00000007350	H3BN98	Q01518-2
Q92896	Q8TCJ2	H0YL12	P84157-2	O14828-2
P63000	Q9UFN0	O75891	P07900	Q9Y680-3
P61586	P55290	K7ERI7	P17342-2	P36871
P31946-2	P48357-5	CON_Q9TTE1	O15144	C9JEN3
Q9Y639-1	O00469	P49914-2	P23396	P47755
P00505	J3QS48	Q9HCU0	O15254-2	P24844
F8VQX6	Q9UBV2	Q9UDW1	P00558	Q5JTV8
P22392-2	P62913-2	O60568	CONQ3SZV7	P18085
O95980	B4DEZ3	P05387	P54886-2	O75083
Q13011	Q02809	Q6PIU2	E9PH64	C9JFR7
P53007	CON_Q2KJF1	E7ESK6	P61326	P08559-3
0.07.0				045440
O60762	P09211	Q9UJZ1-2	Q5BJH7-6	O15118
O60762 P34897-3	P09211 Q9Y3E5	Q9UJZ1-2 P63092-3	Q5BJH7-6 Q8N5M9	O15118 O95298
		-	-	
P34897-3	Q9Y3E5	P63092-3	Q8N5M9	O95298
P34897-3 Q9HC07	Q9Y3E5 O75487	P63092-3 Q86UE4	Q8N5M9 Q86Y82	O95298 P10599
P34897-3 Q9HC07 P50213	Q9Y3E5 O75487 P38117	P63092-3 Q86UE4 P18669	Q8N5M9 Q86Y82 O15400-2	O95298 P10599 M0QZY4
P34897-3 Q9HC07 P50213 B4DL14	Q9Y3E5 O75487 P38117 O75844	P63092-3 Q86UE4 P18669 Q86WV6	Q8N5M9 Q86Y82 O15400-2 Q14118	O95298 P10599 M0QZY4 P11166
P34897-3 Q9HC07 P50213 B4DL14 O94919	Q9Y3E5 O75487 P38117 O75844 Q5JRX3	P63092-3 Q86UE4 P18669 Q86WV6 O95292	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088	O95298 P10599 M0QZY4 P11166 Q96S97
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4	O95298 P10599 M0QZY4 P11166 Q96S97 Q9NTJ5
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7	O95298 P10599 M0QZY4 P11166 Q96S97 Q9NTJ5 Q9Y277
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2	O95298 P10599 M0QZY4 P11166 Q96S97 Q9NTJ5 Q9Y277 Q8N2H3
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CONQ3MHN5 P43304-2 Q9BQB6-3 P50416-2	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CONQ3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q9Y4D7-2	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7	O95298 P10599 M0QZY4 P11166 Q96S97 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q9Y4D7-2 F8W031 P07858	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7 Q9Y6C2	O95298 P10599 M0QZY4 P11166 Q96S97 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233 Q9Y5M8	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2 J3KN67	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q974D7-2 F8W031 P07858 P42765	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R384 Q8N4V1 F5H6U7 Q9Y6C2 Q7Z4H8	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16 Q06136
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233 Q9Y5M8 P14209	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2 J3KN67 Q9Y6A9	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q974D7-2 F8W031 P07858 P42765 M0QZN2	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7 Q9Y6C2 Q7Z4H8 Q8N1B9	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16 Q06136 H0YJ40
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233 Q9Y5M8 P14209 P59998	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2 J3KN67 Q9Y6A9 P62879	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q974D7-2 F8W031 P07858 P42765 M0QZN2 P0CW22	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7 Q9Y6C2 Q7Z4H8 Q8N1B9 P62081	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16 Q06136 H0YJ40 Q01650
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233 Q9Y5M8 P14209 P59998 P02533	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2 J3KN67 Q9Y6A9 P62879 P42126-2	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q9Y4D7-2 F8W031 P07858 P42765 M0QZN2 P0CW22 P11234	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7 Q9Y6C2 Q7Z4H8 Q8N1B9 P62081 O95479	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16 Q06136 H0YJ40 Q01650 Q9P0S9
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233 Q9Y5M8 P14209 P59998 P02533 O00116	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2 J3KN67 Q9Y6A9 P62879 P42126-2 Q13813-3	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q9Y4D7-2 F8W031 P07858 P42765 M0QZN2 P0CW22 P11234 P19404	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7 Q9Y6C2 Q7Z4H8 Q8N1B9 P62081 O95479 P30483	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16 Q06136 H0YJ40 Q01650 Q9P059 Q02252-2
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233 Q9Y5M8 P14209 P59998 P02533 O00116 O15031	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2 J3KN67 Q9Y6A9 P62879 P42126-2 Q13813-3 P62736	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q9Y4D7-2 F8W031 P07858 P42765 M0QZN2 P0CW22 P11234 P19404 Q9Y2R0	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7 Q9Y6C2 Q7Z4H8 Q8N1B9 P62081 O95479 P30483 P43007	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16 Q06136 H0YJ40 Q01650 Q9P0S9 Q02252-2 P62906
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233 Q9Y5M8 P14209 P59998 P02533 O00116 O15031 P16435	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2 J3KN67 Q9Y6A9 P62879 P42126-2 Q13813-3 P62736 Q9UL25	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q9Y4D7-2 F8W031 P07858 P42765 M0QZN2 P0CW22 P11234 P19404 Q9Y2R0 P12235	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7 Q9Y6C2 Q7Z4H8 Q8N1B9 P62081 O95479 P30483 P43007 P07602	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16 Q06136 H0YJ40 Q01650 Q9P0S9 Q02252-2 P62906 Q8IVL6-2
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233 Q9Y5M8 P14209 P59998 P02533 O00116 O15031 P16435 Q9Y394-2	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2 J3KN67 Q9Y6A9 P62879 P42126-2 Q13813-3 P62736 Q9UL25 O14880	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q9Y4D7-2 F8W031 P07858 P42765 M0QZN2 P0CW22 P11234 P19404 Q9Y2R0 P12235 P10606	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7 Q9Y6C2 Q7Z4H8 Q8N1B9 P62081 O95479 P30483 P43007 P07602 F6WST4	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16 Q06136 H0YJ40 Q01650 Q9P0S9 Q02252-2 P62906 Q8IVL6-2 P05109
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233 Q9Y5M8 P14209 P59998 P02533 O00116 O15031 P16435 Q9Y394-2 P30519	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2 J3KN67 Q9Y6A9 P62879 P42126-2 Q13813-3 P62736 Q9UL25 O14880 Q9UHA4-2	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q9Y4D7-2 F8W031 P07858 P42765 M0QZN2 P0CW22 P11234 P19404 Q9Y2R0 P12235 P10606 P14927	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7 Q9Y6C2 Q7Z4H8 Q8N1B9 P62081 O95479 P30483 P43007 P07602 F6WST4 P16278-3	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16 Q06136 H0YJ40 Q01650 Q9P059 Q02252-2 P62906 Q8IVL6-2 P05109 Q16134-3
P34897-3 Q9HC07 P50213 B4DL14 O94919 Q9Y3A6 CON_Q3MHN5 P43304-2 Q9BQB6-3 P50416-2 P46783 P11233 Q9Y5M8 P14209 P59998 P02533 O00116 O15031 P16435 Q9Y394-2	Q9Y3E5 O75487 P38117 O75844 Q5JRX3 Q96G23 P62269 Q96D15 Q9UIQ6-3 P22314 O94875-9 P47756-2 J3KN67 Q9Y6A9 P62879 P42126-2 Q13813-3 P62736 Q9UL25 O14880	P63092-3 Q86UE4 P18669 Q86WV6 O95292 O75369-2 E9PN66 Q4G0P3 Q99523 Q9Y4D7-2 F8W031 P07858 P42765 M0QZN2 P0CW22 P11234 P19404 Q9Y2R0 P12235 P10606	Q8N5M9 Q86Y82 O15400-2 Q14118 P57088 Q9NZN4 Q9Y3D7 Q08722-2 Q5R3B4 Q8N4V1 F5H6U7 Q9Y6C2 Q7Z4H8 Q8N1B9 P62081 O95479 P30483 P43007 P07602 F6WST4	O95298 P10599 M0QZY4 P11166 Q96597 Q9NTJ5 Q9Y277 Q8N2H3 E7EQU2 G3V1B6 Q9NZ45 C9JP16 Q06136 H0YJ40 Q01650 Q9P0S9 Q02252-2 P62906 Q8IVL6-2 P05109

P62851 Q9NZ01 Q9H330-2 P51809-3 H0YI P48960-2 P41159 P50281 REV_MORQQ7 O15-	
P61160 Q15006 Q5T123 Q5XKP0 Q960	
O14494 Q6ZXV5-2 Q9NX40 O95573 H0YI	-
	JM54-5
	748-2
	Q5T4B2-2
Q7KZF4 C9JKQ2 CON P07224 P03897 F5H5	
	JGQ3-2
	JWP7-3
* * * * * * * * * * * * * * * * * * * *	
	VVX3
O95183 CON_Q03247 REV_Q86VH2-3 H7BZI1 Q9P0	
4	/AX7
Q86UP2-2 B4DKB2 000161-2 Q7Z7M9 I3L1 [*]	
• • • • • • • • • • • • • • • • • • • •	IFQ8
H7BZ81 O15439-2 P61020 Q5JX45 H0Y0	
	DP4
Q9BU23-2 Q14254 CON_Q3T052 REV_H7C388 E9PF	
P51970 P60866 P02656 Q9H0U3 C0H	
Q86UY8 Q15293 E9PN51 C9JGJ9 O949	911
Q9H061 CON_Q3Y5Z3 P50395 P84095 U3K0	QU4
Q16836 Q13683-9 P27701-2 B4DQ51 F5H4	459
P32969 P53597 Q6P587 B4DN67 B5M	1CE2
P03928 E5RIP4 060701 E9PCB6 P084	473
O75746 Q6UXV4 B4DLH2 Q9BW60 C9JY	Y28
Q99470 E9PIE4 Q96CG8-3 C9JL85 K7EF	P56
Q9Y673-2 Q7Z5G4 Q8NE86-3 Q9H3H5-3 P528	815
B4DGU4 REV_Q5JVD3 Q15738 D6RBS5 Q9N	NZ08
P55769 O15269 H7C2G3 Q969M3 H7B3	XK9
O43920 H3BR27 P23229-4 S4R3U9 M0R	R1E0
O43678 Q13636 Q92629-3 P02461-2 P001	156
Q9H3Z4-2	613
Q96DZ1-3 Q9H0R3-2 J3QL56 H0Y8Z9 Q5T3	3Q7
Q0ZGT2-4 Q9H2U2-6 Q6PI78 S4R329 H7B3	SXL1
Q9H4G4 Q13641 O43504 G3V5T4 F5H4	4N4
Q9HB66 Q4KMQ2-3 Q13505-3 A8MT40 E9PS	SI1
Q86Y39 Q92544 Q15155 Q14739 D6RI	RF69
Q9NR31 J3QRU4 Q8NBJ5 Q5T7F5 O750	
Q9BRR6-2	771
P38919 E5RK01 P63173 P23786 H7B'	
P26022 Q9UP95-3 Q96CS3 Q9Y320-2 H0YI	
4	YR7-6
P30837 P49821-2 Q92633 Q9HBH5	
P61006 Q9BUB7-2 CON_P02777 O14521-2	
P23368 Q99643-5 REV CON P02672 P28838-2	
Q8WY22 Q14579 Q9BWH2 F5H261	
Q011122 017377 Q201112 1311201	

Supplementary Table 2. List of proteins belonging to the indicated GO terms (Benjamini *P*<0.01) of the GO analysis of the top 10% most abundant proteins in the devitalized ECM. Proteins are indicated as Gene names.

Category	GO	term	Count	Genes	Fold Enrichment	Benjamini <i>P</i> value
GOTERM_ MF_FAT	GO:0005178	integrin binding	8	ACTN4, ITGA5, ITGA1, ACTN1, MFGE8, CALR, ITGB1, THY1	25.15	7.16E-06
GOTERM_ BP_FAT	GO:0030036	actin cytoskeleton organization	9	ACTG1, ACTC1, ACTN4, GSN, ACTN1, MYH9, CALR, ITGB1, FLNA	6.82	0.008471569
GOTERM_ CC_FAT	GO:0031988	membrane- bounded vesicle	24	P4HB, TF, A2M, GANAB, PDIA3, ACTN4, ITGA1, ACTN1, ANPEP, ATP1A1, ITGB1, CANX, ANXA2, ANXA6, HSP90B1, APOA1, LRP1, PPIB, ALB, RPN1, TMED10, HSPA5, HSPD1, FN1	6.75	1.75E-11
GOTERM_ MF_FAT	GO:0005509	calcium ion binding	18	ACTN4, ATP5B, MRC2, ITGA1, ANXA1, ACTN1, ANXA5, CALR, CANX, ANXA2, ANXA6, HSP90B1, LRP1, ITGA5, GSN, ITGAV, HSPA5, SSR4	3.63	4.30E-04
GOTERM_ CC_FAT	GO:0044459	plasma membrane part	26	CYB5R3, TF, CAV1, CSPG4, ANPEP, CALR, ITGB1, ALCAM, ANXA6, ITGAV, SLC25A3, SCARB2, SSX2IP, FN1, ANXA1, ITGA1, ACTN1, MFGE8, ATP1A1, MYH9, THY1, LRP1, ITGA5, CD59, CD81, HSPD1	1.89	0.007441549

Supplementary Table 3. List of proteins belonging to the indicated GO terms (Benjamini *P*<0.01) of the GO analysis of all proteins in the devitalized ECM. Proteins are indicated as Gene names.

Category	GO	term	Count	Genes	Fold Enrich- ment	Benjamini <i>P</i> value
GOTERM_ MF_FAT	GO:0016209	antioxidant activity	12	MGST3, ALB, APOE, GSTK1, PRDX4, PRDX5, GPX8, PRDX3, CAT, SOD1, PRDX1, SOD2	5.16	3.57E-04
GOTERM_ BP_FAT	GO:0007160	cell-matrix adhesion	16	COL3A1, ITGA1, ITGA11, ACTN1, ITGB5, ITGA3, VTN, ITGB1, CTNNB1, THY1, CD44, ITGA6, ITGAV, ITGA7, RHOA, FN1	3.50	0.001613246
GOTERM_ CC_FAT	GO:0005739	mitochondrion	208	PDP1, STOML2, IARS2, OGDH, HIBADH, GOT2, BAK1, AGPS, PDHA1, TMEM14C, PDPR, ACAA2, BSG, SUCLG2, SUCLG1, LYRM4, SYNJ2BP, BCL2L13, LETM1, NNT, PTRF, DLD, ATP5C1, MDH2, HSD17B10, ACADSB, TMX4, MTX1, SFXN3, SFXN1	3.16	4.81E-53

Category	GO	term	Count	Genes	Fold Enrich- ment	Benjamini <i>P</i> value
				HSPA1A, ACAT1, HADHA, HADHB, COX6B1, ALDH4A1, FH, GPD2, MAOA, PHB, GARS, AFG3L2, VDAC2, VDAC3, PPA2, VDAC1, ATP5D, ATP5B, LONP1, P4HA1, SLC25A3, ATP5L, ATP5O, SLC25A1, ATP5L, DHTKD1, ATP5H, FUNDC2, NDUFB10, SLC25A4, ACO2, SLC25A5, AIFM1, SLC25A6, NDUFA13, CYB5A, CYB5B, DECR1, NDUFA10, NDUFA12, NDUFA11, TRAP1, CLIC4, TXN, TOMM22, APOOL, YWHAZ, ALDH18A1, ECH1, COX7A2L, ACSL1, MRPL12, PITRM1, ETFDH, HSD17B4, ACSL3, ETFB, ETFA, SHMT2, COX7A2, CS, SOD1, YWHAE, CPT1A, SOD2, SDHA, SDHB, FFRC, SDHC, SDHD, NLN, ATP5A1, TSPO, GRPEL1, COX5B, PDHB, FAHD1, UQCR10, CISD1, SLC25A24, LRRC59, TIMM9, DNAJC5, HADH, ALDH6A1, TMEM126A, COX6C, CLPP, LRPPRC, CAV2, CAV1, ME2, GLUD1, CTSA, PTRH2, MTCH2, GSTK1, HSPE1, ATP5J2, C21ORF33, AK3, ABCB6, IDH3A, SLC25A12, SLC25A11, USMG5, SLC25A13, TOMM70A, GLS, NDUFV1, NDUFV2, ALDH2, HSPD1, PC, UQCRC2, CYB5R3, CPT2, UQCRC1, CYC1, PRDX4, PRDX5, TIMM50, PRDX3, CLTC, UQCRF51, UQCRQ, PRDX1, ACOT9, NDUFS2, NDUFS4, NDUFS8, CAT, NDUFS3, ACAD9, NDUFS2, NDUFS1, SQRDL, SSBP1, CYCS, NDUFC2, TMEM70, COX411, TIMM22, LAP3, ACADVL, ALDH7A1, C1QBP, ALDH1B1, CTSD, CTSB, OAT, UQCRB, NDUFB3, NDUFB4, NDUFB4, NDUFB4, NDUFB4, NDUFB4, NDUFB8, NDUFB9, ETHE1, ECH51, ALDH3A2, OXCT1, HSPA9, SCO1, NDUFA4, NDUFA5, DLST, NDUFA2, NDUFA8, PSAP, NDUFA9, ATP5F1, DPYSL2, PEX11B, HSDL2, PHB2,		
GOTERM_ BP_FAT	GO:0030198	extracellular matrix organi- zation	16	SCP2, MGST1 RECK, COL3A1, HSD17B12, CST3, VTN, SERPINH1, ANXA2, EMILIN1, P4HA1, COL1A2, ACAN, COL6A2, COL12A1, LAMC1, COL1A1, ENG	3.00	0.007650404
GOTERM_ MF_FAT	GO:0019842	vitamin bind- ing	18	GC, SHMT2, SPTLC1, LEPREL2, OGDH, ALDH1L2, GOT2, MTHFS, LEPRE1, PLOD1, P4HA2, PLOD2, ALB, P4HA1, PLOD3, DHTKD1, OAT, PC	2.80	0.004239403

Category	GO	term	Count	Genes	Fold Enrich- ment	Benjamini <i>P</i> value
GOTERM_ CC_FAT	GO:0031982	vesicle	102	A2M, VAPA, ATP1B3, APOA1, SND1, SLC2A1, RPN1, DNAJC5, RAB21, BSG, MYO6, ACTN4, ERP29, ACTN1, VAMP7, DLD, RAB14, VAMP2, ALDOA, CAV2, RAB7A, CAV1, ITGB1, CALU, STX12, SYPL1, ECE1, FGA, ALB, RAC1, TMED10, FN1, P4HB, GARS, ITGA1, LAMP1, LAMP2, PPIB, YIPF5, HSPD1, HSP90AB1, COPA, RAB5B, PDIA3, RAB5C, AP3S1, PDIA6, ANPEP, PDIA4, CLTC, PRDX1, CANX, SLC1A4, RABAC1, SLC1A5, COPB2, ATP6V0D1, TM9SF1, HSP90AA1, FLOT1, SLC3A2, MMP14, STOM, CLIC4, IGF2R, RAB5A, SORT1, CTSD, GNAS, CTSB, PROS1, COPE, TF, YWHAZ, GANAB, PF4, ANXA6, CD9, ANXA7, TMED2, TMEM33, RAB11B, SEC22B, RAB11A, HSPA5, SNAP23, THBS1, MYOF, HSPA8, RAB2A, YWHAB, ATP1A1, SPARC, SOD1, YWHAE, ANXA2, NCSTN, HSP90B1, LRP1, TFRC, ANXA11, ABCC4	2.51	6.88E-17
GOTERM_ BP_FAT	GO:0001944	vasculature development	29	RTN4, CAV1, NRP1, ATP5B, LEPR, COL3A1, CSPG4, ANPEP, CDH2, CTNNB1, BAK1, CD44, APOE, ITGAV, ERAP1, PLXND1, THBS1, PPAP2B, RECK, MYH9, MMP14, ANXA2, THY1, GPI, CDH13, ITGA7, COL1A2, COL1A1, ENG	2.25	0.003287588
GOTERM_ CC_FAT	GO:0005624	membrane fraction	109	HRAS, VAPA, VAPB, GNA11, CTNNB1, PGRMC1, LRRC59, SLC2A1, DDOST, RECK, DPAGT1, HLA-C, MOGS, HLA-B, POR, NME2, PTRF, RAB14, VAMP3, VAMP2, CAV2, TMX1, CAV1, GNAI2, DAG1, MME, ACP2, LMAN1, CALR, ITGB1, ECE1, RAC1, TMED10, ZMPSTE24, SCARB2, ERO1L, P4HB, CKAP4, SEC11A, ITGA1, EPHX1, VDAC3, LAMP1, LAMP2, ATP2A2, VCP, ITGA5, CD59, SPCS3, SPCS1, SPCS2, ENG, COPA, RABSB, ATL1, LSS, CD151, LNPEP, HMOX2, SLC1A5, VKORC1, ATP6V0D1, KDELR1, NT5E, STS, AIFM1, FLOT2, FLOT1, CCDC47, KTN1, CYB5A, CYB5B, GNAQ, H6PD, IGF2R, RABSA, SORT1, TOMM22, GNAS, DEGS1, CALD1, CTNND1, COMT, STT3A, ACSL1, TMED2, FMO3, SNAP23, PPAP2A, ACSL3, EHD2, PLP2, DLST, NCEH1, SLC16A3, NCSTN, MGST3, HSP90B1, LRP1, ABCC3, DPM1, ABCC4, ABCC1, MGST1, SSR3, SPTAN1	2.22	3.56E-14

Supplementary Table 4. List of 473 proteins shared between devitalized ECM and human bone samples. Protein IDs are ranked for abundance in devitalized ECM (LFQ values).

P63261	Q01995	P60903	C9JA28	E9PMR4
P07355	Q00325-2	P13073	Q02218	P02786
CONP02769	P49755	Q96AG4	P56134-3	P08238
P04264	P23284	P31930	Q6YHK3	C9J3L8
P15144	P40926	P07339	P63104	I3L1P8
P08133	P04406	P21589	P04179-4	P46977
P08758	P38646	P09382	P10301	Q13724-2
CONP12763	P00367	Q15363	P55084-2	Q9NRP0
P13645	P24821-4	P00403	Q71U36-2	O60831
P06576	P02452	H0YD13	P08123	P30040
Q14195	P12236	Q8IWA5-3	B4E2V5	Q5JP53
P35908	P43121	P12111-2	Q15165-3	Q9Y2Q3
P14625	Q9BVK6	P05186	P00167-2	P08574
P11021	P39656	P45880	H0YNG3	K7EJE8
P35527	Q9Y6N5	Q9BVC6	B4DJV2	Q969X5-2
P00387-2	P02545-2	Q9Y4L1	Q969H8	P61009
P04083	CON_Q3SX09	P00338	P13667	P05141
P35579	Q13423	Q12907	Q9Y3B3-2	Q9UJS0
P25705	P51571	J3KNF8	O9NVJ2	P05388
P68032	P02751-17	P61106	Q99714	Q9NYL4-2
P27824	O43707	P14314-2	P09622	P24752
P04843	P36269	P55072	075947	CON_Q2KIS7
P21333-2	O14108	O6NZI2	P31040	P21912
P08670	Q07065	P04040	Q99623	P30044-2
Q09666	Q6DD88	P30447	P60981	O75489
G5EA52	P06733	P51572	E9PR44	Q12797-10
P12814	P23634-7	P61026	P30084	P04075
P05556	P21964-2	Q9BTV4	P07954-2	B4DT77
CONP15497	P61224	O9NYU2-2	O01628	O9BS26
Q9NZM1-6	P18084	B4DMK0	Q13162	O00765
P10809	075396	015260-2	092743	O14165
P27797	P30048-2	O53GO0	P13611-2	P67936
P50454	O9UBI6	P47985	P36957	P30049
P04844	P16615-5	O5JPE7-2	E7ETY7	P62820
E9PJK1	P11142	095202	O9H9B4	P12109
P56199	P61019	O95831-3	Q9BSJ8	P07942
P21796	F8W1R7	P50995-2	P26038	O16563-2
O03135	P23528	P62937	O86UY0	J3KTF8
P06756-3	Q9H0U4	P19105	B7Z6B8	P13647
P06396-2	O75915	P35232	P62258	P11177-2
P07237	P62873	O99715-4	P52907	O43852
O14697	P51149	Q9BWM7	CON P17690	P54289-4
O9NOC3-2	O9Y490	P28331-4	B4E2S7	CON Q3ZBS7
Q9UBG0	P09525	P51659	P11047	O99536
CON_ENSEMBL:ENS-	P49257	P51148	Q96JJ7	A6NNI4
BTAP00000024146	P04899	O99798	P07996	P61981
O07954	O15084-3	015173	O32P28	P39019
Q08431	P22695	P30050	P84077	O95197-3
P07099	P24539	J3OS39	O00610-2	O06830
CON Q0IIK2	P18206-2	P54709	Q05682-5	P49419-2
E9PNW4	P09493-3	CON ENSEMBL:ENS-	P29992	Q9H3N1
O9UHG3	P31949	BTAP00000016046	P07737	P54920
O14764	P48047	O15758	Q15005	Q01082
P04792	P20340-2	P10620	P07951-2	Q7Z7H5-3
P40939	P49748-2	Q15836	Q6NUK1	P05091

Chapter 2

E9PEP6	P09211	P61421	P18085	Q9H2U2-6
Q92896	Q9Y3E5	P27348	C9JFR7	Q4KMQ2-3
P63000	P38117	Q96A33-2	P08559-3	Q9UBS4
P61586	P62269	Q9NS69	P10599	P49821-2
P31946-2	P22314	O00264	P11166	F5H0J3
P00505	P47756-2	P13639	Q96S97	Q9Y696
F8VQX6	J3KN67	P12110-3	Q9Y277	O75955
Q13011	P62879	P61158	E7EQU2	CONP07224
P53007	Q13813-3	H3BN98	G3V1B6	P28066
O60762	P62736	P07900	Q02252-2	P10619-2
B4DL14	O14880	O15144	P62906	Q15404-2
Q9Y3A6	P55809	P23396	P62851	P61020
P43304-2	P01112	P00558	P61160	CONQ3T052
Q9BQB6-3	P40261	CONQ3SZV7	O14494	P50395
P46783	Q969G5	E9PH64	Q08257-3	Q6P587
P11233	E5RI99	Q86Y82	E5RHW4	Q96CG8-3
P59998	Q14699	O15400-2	P57105	P23229-4
P02533	E7EMM4	Q9NZN4	O75306-2	Q92629-3
O15031	Q53TN4-3	Q9Y6C2	Q86UP2-2	O43181
P16435	P06744	Q8N1B9	H7BZ81	REV_CON_P02672
Q9Y394-2	Q04917	P62081	Q16836	Q9BWH2
Q07021	CON_ENSEMBL:ENS-	O95479	P32969	Q9H1E5
P60953	BTAP00000007350	P30483	Q9NR31	P81605
Q969V3-2	H0YL12	P07602	P38919	Q5JX45
Q96l99	K7ERI7	E9PNJ4	P61006	Q9H0U3
P46940	P05387	P62750	Q8WY22	C9JGJ9
O14735-3	Q9UJZ1-2	B4DJA5	Q9NZ01	P84095
Q8N0U8	P63092-3	Q8N5K1	J3QRD1	B4DQ51
Q9UIJ7	Q86UE4	O96000	Q6YN16	Q14739
P11717	P18669	P48449-2	P62834	P28838-2
Q96HE7	O75369-2	P00441	CONQ03247	F5H261
P21397	E9PN66	P30038	E7EPM6	Q96QK1
P09486	F8W031	Q8NBX0	Q14254	P06748-2
P50148	P07858	P10321	P60866	F5H5N1
P51636-2	P42765	Q9NP72	Q15293	B5MCE2
Q9UFN0	M0QZN2	Q16555	CON_Q3Y5Z3	P08473
O00469	P11234	P31937	Q13683-9	Q9NZ08
J3QS48	P19404	P16112-2	P53597	
Q9UBV2	P12235	Q01518-2	E9PIE4	
P62913-2	P04632	P47755	H3BR27	
CONQ2KJF1	X6RJP6	P24844	Q13636	