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Abstract 

The use of price promotions to stimulate brand and firm performance is increasing. We discuss 

how (i) the availability of longer scanner data time series, and (ii) persistence modeling, have 

lead to greater insights into the dynamic effects of price promotions, as one can now quantify 

their immediate, short-run, and long-run effectiveness. We review recent methodological 

developments, and illustrate how the analysis of numerous brands and product categories has 

resulted in various empirical generalizations. Finally, we argue that persistence modeling should 

not only be applied to traditional performance metrics such as sales, but also to metrics such as 

firm value and customer equity. 

 

 

 



 

Introduction 

Consumers are confronted with all kinds of promotional activities when visiting various retail 

outlets such as supermarkets. Indeed, temporary price cuts, features, and displays seem to be 

omni-present. Recent figures (see e.g., Steenkamp et al. [1]) indicate that 24% of all purchases in 

Dutch supermarkets take place under some form of promotional support. Comparable numbers 

are observed in the United Kingdom and Spain, while in the United States, this number 

approaches 40%. Price promotions are the most often used form of promotional support. As 

such, it should come as no surprise that the effectiveness of price promotions has been studied 

extensively in the marketing literature (see e.g., [2], [3]).  

Promotional-effectiveness research has been facilitated through the advent of scanner 

data. Initially, scanner data offered a major impetus to cross-sectional research, in particular the 

study of heterogeneity in consumer response to price promotions. This heterogeneity has been 

studied at the level of brand choice, purchase quantity, and category incidence (see Pauwels, 

Hanssens and Siddarth [4, Table 1] for a recent review). Multinomial logit and probit models 

have been the most frequently used modeling approaches in this respect (cf. Franses and Paap 

[5]). 

As longer scanner time series became available, an interest emerged in using these data 

sources to make inferences on price promotions’ over-time impact, and to separate immediate 

from short-run and even long-run effectiveness. A number of research streams that deal with this 

issue have emerged. Mela, Gupta, and Lehmann [6] and Papatla and Krishnamurthi [7], among 

others, incorporate standard dynamic specifications such as the Koyck model (see [6]) into 

individual-choice logit or probit models.  While these methods are appropriate to study dynamic 

consumer response in stable markets, where constant means and variances in performance and 

marketing support have already been established, they are not well suited in evolving, or 
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stochastically trending markets (Dekimpe and Hanssens [8]). Indeed, the Koyck model implies 

that performance will return to its pre-promotion level, and hence precludes the detection of any 

persistent effect, i.e., a situation where the price promotion causes a permanent deviation from 

previous performance levels. Such effects are allowed for under the impulse-response and 

persistence modeling approach of e.g., Dekimpe and Hanssens [9] and Dekimpe, Hanssens and 

Silva-Risso [10], and adopted in the current paper.  

 

Persistence modeling of scanner data 

Without going into mathematical details, we can graphically illustrate the key concepts of this 

approach in Figure 1 (taken from Nijs et al. [11]): 

---Figure 1 about here --- 

In this Figure, we depict the incremental primary demand that can be attributed to an initial price 

promotion. In the stable detergent market of Panel A, one observes an immediate sales increase, 

followed by a post-promotional dip. After some fluctuations, which can be attributed to factors 

such as purchase reinforcement, feedback rules, and competitive reactions, we observe that the 

incremental sales converge to zero. This does not imply that no more detergents are sold in this 

market, but rather that in the long run no additional sales can be attributed to the initial 

promotion. In contrast, in the evolving dairy-creamer market depicted in the bottom panel of 

Figure 1, we see that this incremental effect stabilizes at a non-zero, or persistent, level. In that 

case, a long-run effect has been identified, as the initial promotion keeps on generating extra 

sales. Behavioral explanations include new customers who have been attracted to the category by 

the initial promotion and now make regular repeat purchases, and existing customers who have 
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increased their product usage rates. From these impulse-response functions, it has become 

customary (see e.g., [4], [9], [11], [12], [13]) to derive various summary statistics, such as:  

(i) the immediate performance impact of the price promotion; 

(ii) the long-run or permanent (persistent) impact, i.e., the value to which the impulse-

response function converges; and 

(iii) the combined cumulative effect over the dust-settling period. This period is 

defined as the time it takes before the convergence level is obtained. For the 

Figure in panel A, for example, the total effect over the dust-settling period (also 

referred to as the short-run effect) amounts to the area under the curve 

(specifically, the sum of the IRF estimates that have not yet converged to zero).1,2 

In a nutshell, persistence modeling offers two distinct advantages. First, it offers a clear and 

quantifiable distinction between short- and long-run promotional effectiveness, based on the 

difference between temporary and permanent movements in the data. Second, it uses a system’s 

approach to market response, in that it combines the forces of customer response, competitive 

reaction, and firm decision rules. Indeed, the chain reaction of all these forces is reflected in the 

impulse-response functions (which are themselves derived from a multi-equation vector-

autoregressive model; see [8], [9] for technical details). As such, it is very complete in its 

treatment of market response, and relates well to the complexities of real-world promotional 

effectiveness. 

                                                 
1  In panel B, the dust-settling period is defined in terms of the last period that has an impact significantly different 

from the nonzero asymptotic value (see [11] for details). 
2  In persistence research (see e.g., [1], [4], [8-14], as well as in the current paper) “permanent”, “persistent” and 

“long-run” effects are used as synonyms. Similarly, the term “short-run effects” is often used to denote the 
combined effect over the dust-settling period, while the effect in the promotional period itself is called the 
instantaneous or immediate effect. Other research traditions (see e.g., [6], [7]) use different delineations of the 
short run versus long run. Obviously, the marketing discipline would benefit from a generally accepted definition 
of these terms. 
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In 1995, Blattberg, Briesch and Fox [2, p. G127] called the long-term effectiveness of 

price promotions “probably the most debated issue in the promotional literature, and one for 

which the jury is still out.” In 1999, Dekimpe et al. [10] showed how persistence modeling could 

be used to infer long-run promotional effectiveness. They applied the technique to four different 

FPCG categories (catsup, detergent, soup, and yogurt), and identified long-run promotional 

effectiveness in one of them (soup). Since Dekimpe et al. [10], promotional effectiveness 

research using persistence modeling has evolved along two main dimensions: (i) some 

methodological developments have made the techniques better suited to the special 

characteristics of most promotional environments, and (ii) a large number of brands and product 

categories have been analyzed, resulting in a rich and novel set of empirical generalizations, as 

well as tests of various marketing-theory based hypotheses on the underlying drivers of short- 

and long-run promotional effectiveness (see e.g., [1], [11], [12], [13], [14]). We briefly elaborate 

on each of these developments. 

 

Methodological developments 

Alternative performance metrics. In the past, persistence modeling has focused predominantly on 

sales as the performance variable of interest, either in units or volume (e.g., liters). Market 

shares, an alternative performance metric used commonly in econometric models, have received 

less attention (see Bronnenberg, Mahajan and Vanhonacker [15], Franses, Kloek and Lucas [16] 

and Srinivasan, Popkowski Leszczyc and Bass [17] for notable exceptions). One issue related to 

the use of market shares in persistence models is that category expansion effects are not 

captured.3 Even though long-run effects occur very rarely, significant short-run category 

                                                 
3  One way to alleviate this problem may be to include an ‘outside good’ in the model specification (see Nevo [18] 

for an application in Empirical Industrial Organization). 
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expansion is a common occurrence that should not be ignored when modeling promotional 

effectiveness (see Nijs et al. [11] and Van Heerde, Gupta and Wittink [19]). There are also added 

complexities in establishing the order of integration of market-share data, due to the logical 

consistency requirement (i.e., shares are between 0 and 1, and their sum is equal to one). Franses, 

Srinivasan, and Boswijk [20] develop a procedure based on Johansen’s test for cointegration 

[21], which uses a system-based approach that can accommodate these requirements by 

imposing specific model restrictions. Their procedure is more reliable than Dickey-Fuller tests 

applied to individual equations. Further work in this area is needed to help disseminate the use of 

market-share data in persistence models. 

 Second, many studies (see e.g., [12]) look at composite measures, such as revenues 

(price*volume) or profits ((price –marginal cost)*volume). More research is needed to determine 

whether or not the substantive insights obtained from analyzing composites vs. their constituent 

components are similar. The decomposition approach in Pauwels et al. [4] may be used in this 

regard.  

 

Structural Breaks and Outliers. Weekly scanner data may contain ‘extreme’ observations in 

sales and/or the marketing-mix variables. In some instances, these unusual observations and their 

causes or consequences are of particular interest to marketers. For example, the addition of a new 

Internet channel (see Deleersnyder et al. [22]) or of a new television station (see Kornelis [23]), 

may permanently alter the nature of the underlying data-generating process for the performance 

series of interest (incumbent newspapers’ revenues in [22] and revenues of the advertising 

industry in [23]). In such instances, structural-break tests and subsequent impulse-response 

analyses may be used to explicitly model the consequences of these major events. If, however, 
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these aberrant data points are numerous and not the main focus of the research, they may be 

labeled as outliers (e.g., caused by data errors, competitive promotions on which information is 

not available etc.). If not properly accounted for, such data points can produce sizeable biases in 

the estimation of long-run marketing effects. To deal with this data problem, Franses et al. [16] 

present Generalized Maximum Likelihood methods to obtain persistence estimates that are 

significantly more robust to outlying observations.  

 

Heterogeneity. Heterogeneity in marketing effects across stores, brands, and consumers has long 

been an important topic of research in marketing. Within the persistence modeling paradigm 

however, only very limited research on heterogeneity has been conducted. Most papers have 

used market or chain-level data due to availability, estimation convenience, and the fact that 

managers usually do not have access to data at lower levels of aggregation. The use of such data 

brings up the potential problem of aggregation bias (see Christen et al. [24]). Nijs et al. [11] and 

Srinivasan et al. [25] find this bias to have at most a limited impact. However, store-level data 

offer opportunities for micro-marketing. Horváth and Wierenga [26] allow for heterogeneity in 

both contemporaneous and dynamic marketing effects across stores by extending the random-

effects model to a time-series context. A further valuable step would be to model this 

heterogeneity as a function of store (environment) characteristics, e.g., using hierarchical Bayes 

methods.  

While great strides have been made in accounting for consumer heterogeneity in 

aggregated data (e.g., Nevo [18]), no such methods have been applied to persistence models. 

However, Lim, Currim and Andrews [27] developed an easy-to-implement approach to 

determine if the long-run impact of marketing efforts varies across, for example, heavy versus 
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light users. The authors apply a-priori segmentation based on consumer-level usage data and then 

estimate persistence using data that have been aggregated to the segment level (e.g., sales data 

are created separately for heavy and light users). A valuable extension to this work would be to 

simultaneously derive the determinants of heterogeneity and the persistence model parameters. 

A final source of heterogeneity considered here is that across brands/SKUs. The vast 

majority of papers in marketing use either data at the brand level (i.e., data aggregated across 

SKUs) or focus on just a few large SKUs. While the issue of dimensionality is often important in 

econometrics, it is even more so for persistence models. Indeed, persistence models are very 

flexible in capturing marketing dynamics, but this leads to a high level of parameterization, 

which limits the opportunity to investigate differences in marketing effectiveness across many 

SKUs. Future research is needed in this area to allow researchers to impose and evaluate various 

model restrictions and parameter structures (e.g., a factor structure). 

 

Insights on promotion effectiveness  

As mentioned earlier, recent research has applied persistence modeling to large scanner 

data sets, encompassing hundreds of FPCG categories and brands. This allows us to both derive 

empirical generalizations on the short- and long-run effectiveness of promotions, and to test 

various marketing-theory based hypotheses on the underlying drivers of short- and long-run 

promotional effectiveness (see e.g., [1], [11], [12], [13], [14]).  

The empirical generalizations that can be derived from these studies constitute an 

important body of marketing knowledge in their own right (e.g., Hanssens et al. [28]), and can 

serve as benchmarks in developing marketing plans. Using persistence modeling, Steenkamp et 

al. [1] and Srinivasan et al. [12] reported an average short-run own-sales elasticity of price 

7 



 

promotions of about 4.0. Any annual marketing plan featuring price-promotion actions and sales 

targets can be compared to this benchmark. The manager is “compelled” to argue why sales 

targets are above or below the benchmark (are there special circumstances?). The empirical 

generalizations can also be used to develop generalized theoretical explanations. This is in line 

with the ETET (Empirical-Theoretical-Empirical-Theoretical) model of scientific evolution 

described by Bass [29].  

Moreover, the parameters obtained from persistence models (e.g., short- and/or long-run 

effect of a price promotion for a given brand in a given category; see Figure 1) can be used as 

input for a second research stage in which the variation in the effectiveness estimates is 

explained, using theories and constructs from marketing, consumer behavior, and industrial 

economics, among others. This allows the marketing scientist to test various theory-based 

hypotheses on the underlying drivers of short- and long-run promotional effectiveness across a 

broad set of product-market contexts. Much of the relevant theory in marketing and industrial 

economics deals with brand- and market-specific effects, which can be tested most reliably when 

a wide range of brands and markets is included in the study.4 For example, analyzing 560 FPCG 

categories, Nijs et al. [11] found that the short-run category-expansion effect of price promotions 

is larger in perishable and in more concentrated categories and in categories characterized by 

high price-promotion frequency, low advertising intensity, and absence of major new-product 

introductions. In addition, long-run category-expansion effects of price promotions were larger 

in perishable and less heavily advertised categories.  

Analyzing competitive reaction behavior of over 1,200 brands in more than 400 FPCG 

categories over a four-year period using persistence modeling, Steenkamp et al. [1] reported that 

                                                 
4  Alternatively, it would be valuable to assess whether some of these insights can be replicated in field experiments 

(see e.g., Anderson and Simester [30]). 
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simple competitive retaliation to price-promotion attacks was more intense when the attacking 

brand is more powerful, when the power disadvantage of the defending brand is small, in less 

concentrated markets, and when the product category is high on impulse buying or on 

interpurchase times. These effects were consistent with theorizing. It illustrates that reaction 

behavior involving price promotions is affected both by company, competitor, market structure, 

and consumer behavior variables (see also Pauwels [31]). An interesting area for future research 

is to investigate if some of the factors explaining cross-sectional variation in immediate, short- or 

long-run effectiveness, also explain (predict) transitions between prolonged periods of stability 

and subsequent intervals of evolutionary market behavior. 

Last, but not least, the effect of promotions on the financial performance of 

manufacturers vs. retailers has been studied with persistence models on a five-year long weekly 

scanner database for 25 product categories (Srinivasan et al. [12]). Overall, price promotions 

typically do not have permanent monetary effects for either party. However, there are important 

differences in the cumulative promotional impact on the financial performance of manufacturers 

vs. retailers. Price promotions have a predominantly positive impact on manufacturer revenues, 

but their effects on retailer revenues are mixed. Moreover, retailer category margins are typically 

reduced by price promotions. Even when accounting for cross-category and store-traffic effects, 

there is still evidence that price promotions are typically not beneficial to the retailer. Like the 

promotion reaction study in Steenkamp et al. [1], this paper also reports on a number of second-

stage correlates of promotional impact. 
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Concluding thoughts 

In conclusion, the advent of long time series of scanner data and the use of persistence modeling 

have greatly enhanced the state of our knowledge on promotion effectiveness. In particular, they 

have produced a virtually unanimous jury verdict on the question of whether or not price 

promotions have a long-term impact on brand sales. These techniques can also be used to 

quantify the impact of other marketing investments (Hanssens et al. [28]) and, as such, they have 

become an integral part of modern-day marketing science. Nagel [32] (cited in Bass [29, pp. 

G10-11]) provided a general definition of science that can be modified straightforwardly to 

marketing science: “Marketing science seeks to provide generalized explanatory statements 

about disparate types of marketing phenomena and to provide critical tests for the marketing 

relevance of the attempted explanations.” Two key aspects of this definition are: 1) explanation 

of marketing phenomena and 2) marketing relevance of explanations. Explanation of marketing 

phenomena requires theory and statistical models. As argued, persistence modeling is very 

suitable to quantify marketing phenomena, which can subsequently be explained using company, 

competitor, market structure, and consumer variables. The critical test of the marketing 

relevance of explanations is typically provided by the results of actual decision making. 

Persistence modeling yields benchmarks, models actual behavior in the market place, and 

captures the net result of all actions taken by companies, competitors, retailers and consumers. 

As such it provides a long-run perspective that makes it eminently suitable for use in marketing 

decisions, but also, and perhaps even more importantly, for linking marketing decisions to other 

metrics such as firm value (see Pauwels et al. [14]) or customer equity (see Villanueva, Yoo and 

Hanssens [33]). In this way, persistence modeling is a tool that quantifies how marketing 
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contributes to shareholder value, which will further enhance the importance of marketing in 

corporate strategy. 
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