Measuring Short- and Long-run Promotional Effectiveness on Scanner Data Using Persistence Modeling

Marnik G. Dekimpe, Dominique M. Hanssens, Vincent R. Nijs and Jan-Benedict E.M. Steenkamp
The use of price promotions to stimulate brand and firm performance is increasing. We discuss how (i) the availability of longer scanner data time series, and (ii) persistence modeling, have lead to greater insights into the dynamic effects of price promotions, as one can now quantify their immediate, short-run, and long-run effectiveness. We review recent methodological developments, and illustrate how the analysis of numerous brands and product categories has resulted in various empirical generalizations. Finally, we argue that persistence modeling should not only be applied to traditional performance metrics such as sales, but also to metrics such as firm value and customer equity.

Bibliographic Data and Classifications

<table>
<thead>
<tr>
<th>Library of Congress Classification (LCC)</th>
<th>5001-6182</th>
<th>Business</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5410-5417.5</td>
<td>Marketing</td>
</tr>
<tr>
<td></td>
<td>HF 5417</td>
<td>Price maintenance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Journal of Economic Literature (JEL)</th>
<th>M</th>
<th>Business Administration and Business Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 31</td>
<td>Marketing</td>
<td>Statistical Decision Theory</td>
</tr>
<tr>
<td>C 44</td>
<td>Marketing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>European Business Schools Library Group (EBSLG)</th>
<th>85 A</th>
<th>Business General</th>
</tr>
</thead>
<tbody>
<tr>
<td>280 G</td>
<td>Managing the marketing function</td>
<td></td>
</tr>
<tr>
<td>255 A</td>
<td>Decision theory (general)</td>
<td></td>
</tr>
<tr>
<td>290 B</td>
<td>Product pricing (Marketing)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gemeenschappelijke Onderwerpsontsluiting (GOO)</th>
<th>85.00</th>
<th>Bedrijfskunde, Organisatiekunde: algemeen</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.40</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>85.03</td>
<td>Methoden en technieken, operations research</td>
<td></td>
</tr>
<tr>
<td>85.40</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>85.03</td>
<td>Methoden en technieken, operations research</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Keywords GOO</th>
<th>Bedrijfskunde / Bedrijfseconomie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marketing / Besliskunde</td>
</tr>
<tr>
<td></td>
<td>Marketingmix, merken, prestatiebeoordeling, tijdreeksen, lange termijn, korte termijn</td>
</tr>
</tbody>
</table>

| Free keywords | promotional effectiveness; scanner data; time-series analysis; persistence |
Measuring Short- And Long-Run Promotional Effectiveness On Scanner Data Using Persistence Modeling

Marnik G. Dekimpe
(Catholic University Leuven & Erasmus University Rotterdam)

Dominique M. Hanssens
(University of California, Los Angeles)

Vincent R. Nijs
(Northwestern University)

Jan-Benedict E.M. Steenkamp
(Tilburg University)

October 24, 2003

Forthcoming: Applied Stochastic Models in Business and Industry

Keywords: promotional effectiveness; scanner data; time-series analysis; persistence.

The authors are listed in alphabetical order. Financial support by the Flemish Science Foundation (F.W.O.) under grants G.0145.97 and G.0116.04 is greatly appreciated.
Abstract

The use of price promotions to stimulate brand and firm performance is increasing. We discuss how (i) the availability of longer scanner data time series, and (ii) persistence modeling, have lead to greater insights into the dynamic effects of price promotions, as one can now quantify their immediate, short-run, and long-run effectiveness. We review recent methodological developments, and illustrate how the analysis of numerous brands and product categories has resulted in various empirical generalizations. Finally, we argue that persistence modeling should not only be applied to traditional performance metrics such as sales, but also to metrics such as firm value and customer equity.
Introduction

Consumers are confronted with all kinds of promotional activities when visiting various retail outlets such as supermarkets. Indeed, temporary price cuts, features, and displays seem to be omni-present. Recent figures (see e.g., Steenkamp et al. [1]) indicate that 24% of all purchases in Dutch supermarkets take place under some form of promotional support. Comparable numbers are observed in the United Kingdom and Spain, while in the United States, this number approaches 40%. Price promotions are the most often used form of promotional support. As such, it should come as no surprise that the effectiveness of price promotions has been studied extensively in the marketing literature (see e.g., [2], [3]).

Promotional-effectiveness research has been facilitated through the advent of scanner data. Initially, scanner data offered a major impetus to cross-sectional research, in particular the study of heterogeneity in consumer response to price promotions. This heterogeneity has been studied at the level of brand choice, purchase quantity, and category incidence (see Pauwels, Hanssens and Siddarth [4, Table 1] for a recent review). Multinomial logit and probit models have been the most frequently used modeling approaches in this respect (cf. Franses and Paap [5]).

As longer scanner time series became available, an interest emerged in using these data sources to make inferences on price promotions’ over-time impact, and to separate immediate from short-run and even long-run effectiveness. A number of research streams that deal with this issue have emerged. Mela, Gupta, and Lehmann [6] and Papatla and Krishnamurthi [7], among others, incorporate standard dynamic specifications such as the Koyck model (see [6]) into individual-choice logit or probit models. While these methods are appropriate to study dynamic consumer response in stable markets, where constant means and variances in performance and marketing support have already been established, they are not well suited in evolving, or
stochastically trending markets (Dekimpe and Hanssens [8]). Indeed, the Koyck model implies that performance will return to its pre-promotion level, and hence precludes the detection of any persistent effect, i.e., a situation where the price promotion causes a permanent deviation from previous performance levels. Such effects are allowed for under the impulse-response and persistence modeling approach of e.g., Dekimpe and Hanssens [9] and Dekimpe, Hanssens and Silva-Risso [10], and adopted in the current paper.

Persistence modeling of scanner data

Without going into mathematical details, we can graphically illustrate the key concepts of this approach in Figure 1 (taken from Nijs et al. [11]):

---Figure 1 about here---

In this Figure, we depict the incremental primary demand that can be attributed to an initial price promotion. In the stable detergent market of Panel A, one observes an immediate sales increase, followed by a post-promotional dip. After some fluctuations, which can be attributed to factors such as purchase reinforcement, feedback rules, and competitive reactions, we observe that the incremental sales converge to zero. This does not imply that no more detergents are sold in this market, but rather that in the long run no additional sales can be attributed to the initial promotion. In contrast, in the evolving dairy-cream market depicted in the bottom panel of Figure 1, we see that this incremental effect stabilizes at a non-zero, or persistent, level. In that case, a long-run effect has been identified, as the initial promotion keeps on generating extra sales. Behavioral explanations include new customers who have been attracted to the category by the initial promotion and now make regular repeat purchases, and existing customers who have
increased their product usage rates. From these impulse-response functions, it has become customary (see e.g., [4], [9], [11], [12], [13]) to derive various summary statistics, such as:

(i) the immediate performance impact of the price promotion;

(ii) the long-run or permanent (persistent) impact, i.e., the value to which the impulse-response function converges; and

(iii) the combined cumulative effect over the dust-settling period. This period is defined as the time it takes before the convergence level is obtained. For the Figure in panel A, for example, the total effect over the dust-settling period (also referred to as the short-run effect) amounts to the area under the curve (specifically, the sum of the IRF estimates that have not yet converged to zero).1,2

In a nutshell, persistence modeling offers two distinct advantages. First, it offers a clear and quantifiable distinction between short- and long-run promotional effectiveness, based on the difference between temporary and permanent movements in the data. Second, it uses a system’s approach to market response, in that it combines the forces of customer response, competitive reaction, and firm decision rules. Indeed, the chain reaction of all these forces is reflected in the impulse-response functions (which are themselves derived from a multi-equation vector-autoregressive model; see [8], [9] for technical details). As such, it is very complete in its treatment of market response, and relates well to the complexities of real-world promotional effectiveness.

1 In panel B, the dust-settling period is defined in terms of the last period that has an impact significantly different from the nonzero asymptotic value (see [11] for details).
2 In persistence research (see e.g., [1], [4], [8-14], as well as in the current paper) “permanent”, “persistent” and “long-run” effects are used as synonyms. Similarly, the term “short-run effects” is often used to denote the combined effect over the dust-settling period, while the effect in the promotional period itself is called the instantaneous or immediate effect. Other research traditions (see e.g., [6], [7]) use different delineations of the short run versus long run. Obviously, the marketing discipline would benefit from a generally accepted definition of these terms.
In 1995, Blattberg, Briesch and Fox [2, p. G127] called the long-term effectiveness of price promotions “probably the most debated issue in the promotional literature, and one for which the jury is still out.” In 1999, Dekimpe et al. [10] showed how persistence modeling could be used to infer long-run promotional effectiveness. They applied the technique to four different FPCG categories (catsup, detergent, soup, and yogurt), and identified long-run promotional effectiveness in one of them (soup). Since Dekimpe et al. [10], promotional effectiveness research using persistence modeling has evolved along two main dimensions: (i) some methodological developments have made the techniques better suited to the special characteristics of most promotional environments, and (ii) a large number of brands and product categories have been analyzed, resulting in a rich and novel set of empirical generalizations, as well as tests of various marketing-theory based hypotheses on the underlying drivers of short- and long-run promotional effectiveness (see e.g., [1], [11], [12], [13], [14]). We briefly elaborate on each of these developments.

Methodological developments

Alternative performance metrics. In the past, persistence modeling has focused predominantly on sales as the performance variable of interest, either in units or volume (e.g., liters). Market shares, an alternative performance metric used commonly in econometric models, have received less attention (see Bronnenberg, Mahajan and Vanhonacker [15], Franses, Kloek and Lucas [16] and Srinivasan, Popkowski Leszczyc and Bass [17] for notable exceptions). One issue related to the use of market shares in persistence models is that category expansion effects are not captured.⁴ Even though long-run effects occur very rarely, significant short-run category

⁴ One way to alleviate this problem may be to include an ‘outside good’ in the model specification (see Nevo [18] for an application in Empirical Industrial Organization).
expansion is a common occurrence that should not be ignored when modeling promotional effectiveness (see Nijs et al. [11] and Van Heerde, Gupta and Wittink [19]). There are also added complexities in establishing the order of integration of market-share data, due to the logical consistency requirement (i.e., shares are between 0 and 1, and their sum is equal to one). Franses, Srinivasan, and Boswijk [20] develop a procedure based on Johansen’s test for cointegration [21], which uses a system-based approach that can accommodate these requirements by imposing specific model restrictions. Their procedure is more reliable than Dickey-Fuller tests applied to individual equations. Further work in this area is needed to help disseminate the use of market-share data in persistence models.

Second, many studies (see e.g., [12]) look at composite measures, such as revenues (price*volume) or profits ((price –marginal cost)*volume). More research is needed to determine whether or not the substantive insights obtained from analyzing composites vs. their constituent components are similar. The decomposition approach in Pauwels et al. [4] may be used in this regard.

Structural Breaks and Outliers. Weekly scanner data may contain ‘extreme’ observations in sales and/or the marketing-mix variables. In some instances, these unusual observations and their causes or consequences are of particular interest to marketers. For example, the addition of a new Internet channel (see Deleersnyder et al. [22]) or of a new television station (see Kornelis [23]), may permanently alter the nature of the underlying data-generating process for the performance series of interest (incumbent newspapers’ revenues in [22] and revenues of the advertising industry in [23]). In such instances, structural-break tests and subsequent impulse-response analyses may be used to explicitly model the consequences of these major events. If, however,
these aberrant data points are numerous and not the main focus of the research, they may be labeled as outliers (e.g., caused by data errors, competitive promotions on which information is not available etc.). If not properly accounted for, such data points can produce sizeable biases in the estimation of long-run marketing effects. To deal with this data problem, Franses et al. [16] present Generalized Maximum Likelihood methods to obtain persistence estimates that are significantly more robust to outlying observations.

Heterogeneity. Heterogeneity in marketing effects across stores, brands, and consumers has long been an important topic of research in marketing. Within the persistence modeling paradigm however, only very limited research on heterogeneity has been conducted. Most papers have used market or chain-level data due to availability, estimation convenience, and the fact that managers usually do not have access to data at lower levels of aggregation. The use of such data brings up the potential problem of aggregation bias (see Christen et al. [24]). Nijs et al. [11] and Srinivasan et al. [25] find this bias to have at most a limited impact. However, store-level data offer opportunities for micro-marketing. Horváth and Wierenga [26] allow for heterogeneity in both contemporaneous and dynamic marketing effects across stores by extending the random-effects model to a time-series context. A further valuable step would be to model this heterogeneity as a function of store (environment) characteristics, e.g., using hierarchical Bayes methods.

While great strides have been made in accounting for consumer heterogeneity in aggregated data (e.g., Nevo [18]), no such methods have been applied to persistence models. However, Lim, Currim and Andrews [27] developed an easy-to-implement approach to determine if the long-run impact of marketing efforts varies across, for example, heavy versus
light users. The authors apply a-priori segmentation based on consumer-level usage data and then estimate persistence using data that have been aggregated to the segment level (e.g., sales data are created separately for heavy and light users). A valuable extension to this work would be to simultaneously derive the determinants of heterogeneity and the persistence model parameters.

A final source of heterogeneity considered here is that across brands/SKUs. The vast majority of papers in marketing use either data at the brand level (i.e., data aggregated across SKUs) or focus on just a few large SKUs. While the issue of dimensionality is often important in econometrics, it is even more so for persistence models. Indeed, persistence models are very flexible in capturing marketing dynamics, but this leads to a high level of parameterization, which limits the opportunity to investigate differences in marketing effectiveness across many SKUs. Future research is needed in this area to allow researchers to impose and evaluate various model restrictions and parameter structures (e.g., a factor structure).

Insights on promotion effectiveness

As mentioned earlier, recent research has applied persistence modeling to large scanner data sets, encompassing hundreds of FPCG categories and brands. This allows us to both derive empirical generalizations on the short- and long-run effectiveness of promotions, and to test various marketing-theory based hypotheses on the underlying drivers of short- and long-run promotional effectiveness (see e.g., [1], [11], [12], [13], [14]).

The empirical generalizations that can be derived from these studies constitute an important body of marketing knowledge in their own right (e.g., Hanssens et al. [28]), and can serve as benchmarks in developing marketing plans. Using persistence modeling, Steenkamp et al. [1] and Srinivasan et al. [12] reported an average short-run own-sales elasticity of price
promotions of about 4.0. Any annual marketing plan featuring price-promotion actions and sales targets can be compared to this benchmark. The manager is “compelled” to argue why sales targets are above or below the benchmark (are there special circumstances?). The empirical generalizations can also be used to develop generalized theoretical explanations. This is in line with the ETET (Empirical-Theoretical-Empirical-Theoretical) model of scientific evolution described by Bass [29].

Moreover, the parameters obtained from persistence models (e.g., short- and/or long-run effect of a price promotion for a given brand in a given category; see Figure 1) can be used as input for a second research stage in which the variation in the effectiveness estimates is explained, using theories and constructs from marketing, consumer behavior, and industrial economics, among others. This allows the marketing scientist to test various theory-based hypotheses on the underlying drivers of short- and long-run promotional effectiveness across a broad set of product-market contexts. Much of the relevant theory in marketing and industrial economics deals with brand- and market-specific effects, which can be tested most reliably when a wide range of brands and markets is included in the study. For example, analyzing 560 FPCG categories, Nijs et al. [11] found that the short-run category-expansion effect of price promotions is larger in perishable and in more concentrated categories and in categories characterized by high price-promotion frequency, low advertising intensity, and absence of major new-product introductions. In addition, long-run category-expansion effects of price promotions were larger in perishable and less heavily advertised categories.

Analyzing competitive reaction behavior of over 1,200 brands in more than 400 FPCG categories over a four-year period using persistence modeling, Steenkamp et al. [1] reported that

4 Alternatively, it would be valuable to assess whether some of these insights can be replicated in field experiments (see e.g., Anderson and Simester [30]).
simple competitive retaliation to price-promotion attacks was more intense when the attacking brand is more powerful, when the power disadvantage of the defending brand is small, in less concentrated markets, and when the product category is high on impulse buying or on interpurchase times. These effects were consistent with theorizing. It illustrates that reaction behavior involving price promotions is affected both by company, competitor, market structure, and consumer behavior variables (see also Pauwels [31]). An interesting area for future research is to investigate if some of the factors explaining cross-sectional variation in immediate, short- or long-run effectiveness, also explain (predict) transitions between prolonged periods of stability and subsequent intervals of evolutionary market behavior.

Last, but not least, the effect of promotions on the financial performance of manufacturers vs. retailers has been studied with persistence models on a five-year long weekly scanner database for 25 product categories (Srinivasan et al. [12]). Overall, price promotions typically do not have permanent monetary effects for either party. However, there are important differences in the cumulative promotional impact on the financial performance of manufacturers vs. retailers. Price promotions have a predominantly positive impact on manufacturer revenues, but their effects on retailer revenues are mixed. Moreover, retailer category margins are typically reduced by price promotions. Even when accounting for cross-category and store-traffic effects, there is still evidence that price promotions are typically not beneficial to the retailer. Like the promotion reaction study in Steenkamp et al. [1], this paper also reports on a number of second-stage correlates of promotional impact.
Concluding thoughts

In conclusion, the advent of long time series of scanner data and the use of persistence modeling have greatly enhanced the state of our knowledge on promotion effectiveness. In particular, they have produced a virtually unanimous jury verdict on the question of whether or not price promotions have a long-term impact on brand sales. These techniques can also be used to quantify the impact of other marketing investments (Hanssens et al. [28]) and, as such, they have become an integral part of modern-day marketing science. Nagel [32] (cited in Bass [29, pp. G10-11]) provided a general definition of science that can be modified straightforwardly to marketing science: “Marketing science seeks to provide generalized explanatory statements about disparate types of marketing phenomena and to provide critical tests for the marketing relevance of the attempted explanations.” Two key aspects of this definition are: 1) explanation of marketing phenomena and 2) marketing relevance of explanations. Explanation of marketing phenomena requires theory and statistical models. As argued, persistence modeling is very suitable to quantify marketing phenomena, which can subsequently be explained using company, competitor, market structure, and consumer variables. The critical test of the marketing relevance of explanations is typically provided by the results of actual decision making. Persistence modeling yields benchmarks, models actual behavior in the market place, and captures the net result of all actions taken by companies, competitors, retailers and consumers. As such it provides a long-run perspective that makes it eminently suitable for use in marketing decisions, but also, and perhaps even more importantly, for linking marketing decisions to other metrics such as firm value (see Pauwels et al. [14]) or customer equity (see Villanueva, Yoo and Hanssens [33]). In this way, persistence modeling is a tool that quantifies how marketing
contributes to shareholder value, which will further enhance the importance of marketing in corporate strategy.
REFERENCES

FIGURE 1: IMPULSE RESPONSE FUNCTIONS

DETERGENT

Price promotion elasticity

Immediate Impact
End of Dust Settling
Long-run Impact

Weeks

DAIRY CREAMER

Price promotion elasticity

Immediate Impact
End of Dust Settling
Long-run Impact

Weeks
Publications in the Report Series Research* in Management

ERIM Research Program: “Marketing”

2003

The Effect of Members’ Satisfaction with a Virtual Community on Member Participation
Fred Langerak, Peter C. Verhoef, Peeter W.J. Verlegh, Kristine de Valck
ERS-2003-004-MKT
http://hdl.handle.net/1765/269

Surprise … Surprise, An Empirical Investigation on How Surprise is Connected to Customer Satisfaction
Joëlle Vanhamme
ERS-2003-005-MKT
http://hdl.handle.net/1765/273

Differentiated Bayesian Conjoint Choice Designs
Zsolt Sándor, Michel Wedel
ERS-2003-016-MKT
http://hdl.handle.net/1765/320

A Multi-Country Study Of The Adoption Of ERP Systems: The Effect Of National Culture
Yvonne M. van Everdingen, Eric Waarts
ERS-2003-019-MKT
http://hdl.handle.net/1765/280

New Product Announcements As Market Signals; A Content Analysis In The DRAM Chip Industry
Wybe T. Popma, Eric Waarts, Berend Wierenga
ERS-2003-025-MKT
http://hdl.handle.net/1765/328

Estimating Duration Intervals
Philip Hans Franses, Björn Vroomen
ERS-2003-031-MKT
http://hdl.handle.net/1765/331

On The Bass Diffusion Theory, Empirical Models And Out-Of-Sample Forecasting
Philip Hans Franses
ERS-2003-034-MKT
http://hdl.handle.net/1765/333

Predicting Customer Lifetime Value in Multi-Service Industries
Bas Donkers, Peter C. Verhoef, Martijn de Jong
ERS-2003-038-MKT
http://hdl.handle.net/1765/325

* A complete overview of the ERIM Report Series Research in Management:
http://www.erim.eur.nl

ERIM Research Programs:
LIS Business Processes, Logistics and Information Systems
ORG Organizing for Performance
MKT Marketing
F&A Finance and Accounting
STR Strategy and Entrepreneurship
Confidence Intervals for Cronbach’s Coefficient Alpha
Alex J. Koning, Philip Hans Franses
ERS-2003-041-MKT
http://hdl.handle.net/1765/431

Modeling Dynamic Effects of the Marketing Mix on Market Shares
Dennis Fok, Richard Paap, Philip Hans Franses
ERS-2003-044-MKT
http://hdl.handle.net/1765/336

Weathering Tight Economic Times: The Sales Evolution Of Consumer Durables Over The Business Cycle
Barbara Deleersnyder, Marnik G. Dekimpe, Miklos Sarvary, Philip M. Parker
ERS-2003-046-MKT
http://hdl.handle.net/1765/428

The Effectiveness of Case-Based Reasoning: An Application in Sales Promotions
Niek A.P. Althuizen, Berend Wierenga
ERS-2003-053-MKT
http://hdl.handle.net/1765/436

Purchasing complex services on the Internet; An analysis of mortgage loan acquisitions
Björn Vroomen, Bas Donkers, Peter C. Verhoef & Philip Hans Franses
ERS-2003-075-MKT
http://hdl.handle.net/1765/992

Which brands gain share from which brands? Inference from store-level scanner data
Rutger van Oest and Philip Hans Franses
ERS-2003-076-MKT
http://hdl.handle.net/1765/1007

Contagion and heterogeneity in new product diffusion: An empirical test
Christophe Van den Bulte and Stefan Stremersch
ERS-2003-077-MKT
http://hdl.handle.net/1765/1012

Effectiveness of Brokering within Account Management Organizations
David Dekker, Frans Stokman and Philip Hans Franses
ERS-2003-078-MKT
http://hdl.handle.net/1765/1015

Deriving dynamic marketing effectiveness from econometric time series models
Csilla Horváth and Philip Hans Franses
ERS-2003-079-MKT
http://hdl.handle.net/1765/1016