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1
Introduction

In the accumulative process of science, man’s knowledge of the underlying truth
is continually refined by confronting theoretical conjectures to empirical data. An
essential task of Statistics is to enable researchers to anticipate and control how
hypotheses will be influenced by data-optimized estimates of a new experiment.
As I will illustrate below, current statistical procedures make it difficult for
researchers to balance the in-sample accuracy of data-optimization with the
simplicity of sticking to prior hypotheses. One of the main goals of this thesis is
to present a general approach towards controlling such an Accuracy-Simplicity
Tradeoff (‘AST’).

This topic will be explored within the field of Econometrics, because this
discipline is primarily concerned with developing techniques for estimating
parameters of the underlying data generating process. The linear regression
model is the workhorse of Econometrics. The model posits that a dependent
variable y and independent variables X are linearly related through unknown
coefficients β and an error term ε.

In truth, that is, data are generated according to

y = Xβ + ε,

with an N ×1 vector y of dependent observations, an N ×K matrix of regressors
X, a K × 1 vector of coefficients β, and an N × 1 vector of disturbances ε. The
latter term captures the effects on y that cannot be explained through Xβ. For
a given sample of data, the true but unknown parameters β can be estimated
by b to give

y = Xb+ e,

where e = y−Xb represent the residuals. Estimates of β that are fully dependent
on the data can be obtained by minimizing the sum of squared residuals e′e.

1



2 Introduction

In the next three chapters I will focus on how the complexity of data-optimized
solutions can be reduced when estimating linear regression coefficients. Complex
methods are more flexible in selecting parameters and are therefore more likely to
capture random noise rather than the actual underlying parameters. This could
worsen forecasting performance as well as our understanding of the true model.
At the expense of in-sample accuracy, a model’s simplicity can be increased by
shrinking parameters towards prior hypotheses β0. This is the first AST that
I spoke of just now. When regressors are highly correlated, their parameters
can also be stimulated to have a similar deviance from β0. In this second
AST, in-sample accuracy is balanced with the simplicity of grouping parameters
together.

Bayesian and Frequentist statistics hardly enable a researcher to control
these ASTs. Their tuning parameters for making the first tradeoff between the
data-optimized parameters and the prior β0 can have values ranging from zero to
infinity, and it is often unclear to what degree parameter estimates change in case
a value of 0.1 is used instead of a 1000, for example. In Frequentist methods like
Ridge regression, it only becomes evident a posteriori what degree of shrinkage
towards β0 is associated with a given tuning parameter. Bayesians can try to
better anticipate how a prior will be balanced with a data-optimized solution
by rescaling each regressor, but they often resort to ‘uninformative’ priors to
avoid this cumbersome process. Regarding the second AST, methods have
been developed which either emphasize subset selection, grouping of correlated
parameters, or both; but none of these techniques differentiate between high
and low cross-correlations. As a result, the deletion of irrelevant regressors and
the grouping of highly correlated regressors are not performed effectively. The
added effect of small cross-correlations can lead irrelevant regressors to deviate
considerably from β0 = 0, for example.

As an alternative, I will develop an astimator whereby the researcher can
directly indicate through a tuning parameter λ how much influence data-
optimization should have relative to a reference setup of prior hypotheses. When
regressors are uncorrelated, the prior coefficient will at least have an influence of
λ ·100% in estimating regression coefficients. The degree to which a parameter is
further shrunk towards the prior is determined by the regressor’s contribution to
R2 accuracy. With a second tuning parameter cmin, the researcher will be able
to specify how high cross-correlations between regressors need to be for their
parameters to be grouped together. Next to establishing an effective grouping,
this also ensures that irrelevant deviations from β0 are not permitted. The
astimator that I will develop in Chapter 2 makes use of an `2 norm in measuring
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deviations from β0 and has an analytic solution.
In Chapter 3, astimators with an `1 norm will be constructed that enable the

researcher to perform exact subset selection, which means that parameters of
irrelevant regressors are equated exactly to β0 even when λ has not reached its
maximum value yet. I will provide astimated versions of well-known frequentist
shrinkage methods with an `1 norm. The interpretation of the moment that
a regressor is activated (allowed to deviate from β0) has been an enigma for
the latter techniques, as a result of which the researcher has not been able to
anticipate and influence to what extent data-optimized solutions are penalized.
I will show that these transition points are directly related to a regressor’s
contribution to the R2 measure of fit when regressors are uncorrelated. I
will introduce an `1 astimator that effectively performs grouping and exact
subset selection and combine this astimator with an `2 norm to further promote
grouping.

The out-of-sample performances of the different estimators and astimators
will be assessed in Chapter 4. Here, I will discuss how the tuning parameter λ
can be selected with the help of cross-validation and information criteria. In the
former case, it will be shown that a researcher’s own λ0 can easily be balanced
with a cross-validated alternative. When applying information criteria, one has
to specify the model’s effective number of parameters K, or the ‘effective degrees
of freedom’ as it has also been called (Hastie et al., 2009). Since there is no
undisputed method available for measuring K, I will offer a plain but effective
solution. Astimators penalize in-sample accuracy with a relative simplicity term,
and I will argue that this relative simplicity term can be used as an astimator’s
measure for the effective number of parameters. To apply cross-validation or an
information criterion, the researcher must also specify a set of candidate λ values
from which the optimal one is chosen. Up till now, such candidate sets often
had to be readjusted a posteriori. Astimators help to overcome this obstacle as
well, because they make the effect of λ easier to anticipate.

Until Chapter 5, it is assumed that there are no breaks in the underlying
data generating process. How should model parameters be estimated if we relax
this restriction of coefficients being fixed over time? One strategy is to estimate
the break date and use post-break data. The best starting point method (‘SPB’)
makes use of cross-validation to determine the timing of the break point. The
data is split in a validation sample of recent observations and a training sample
of more distant observations. Model parameters are estimated with the training
sample, and these estimates are used to ‘predict’ the outcomes in the validation
sample. By varying the starting point of a data set with which the model is
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estimated, one can select the starting point with the best pseudo predictions.
SPB can conveniently be applied to a broad range of techniques, but it also
has a number of drawbacks. It is slow to respond to a new break, it discards
old information too easily, and it only considers assigning positive weights to
post-break observations.

In Chapter 5, I will attempt to improve upon these three aspects. In the
process, I will develop an algorithm which adaptively combines discrete and
exponential weights to give robust estimates of the underlying breaks and
parameters. The algorithm selects multiple candidate break points in the first
step, assigns weights to the resulting periods in the second step, and shrinks
these weights to equal or exponential weights in the third step. Forecast errors
in the validation window are weighed exponentially to respond more quickly to
recent forecasting errors. Central to the method is that deviations from equal
weights are intuitively penalized with the same Accuracy Simplicity Tradeoffs
as before. I will explain the difference between using an `1 and an `2 norm in
penalizing deviations from equal weights and derive a measure for the effective
number of parameters that can be used when applying an information criterion.

In Chapter 6, I will further study how techniques for finding optimal configu-
rations, like cross-validation and information criteria, can be performed more
efficiently. In a typical grid search, configurations are equally spread across the
given dimensions after which all combinations of configurations between the
dimensions are evaluated. A random search aims at distributing configurations
equally across the configuration space by selecting candidates from a uniform
distribution. A more sophisticated approach starts with a random search, and
then iteratively estimates which set of configurations results in the largest Ex-
pected Improvement with the help of a stochastic model. The grid and random
searches are inefficient because they do not take into account that groups of
configurations may result in highly similar forecasts and because they fail to
focus on known good areas. The Expected Improvement approach is inefficient
because it takes a long time to estimate the stochastic model.

As an alternative, I will present a global to local approach towards choosing
candidate configurations that is simple, quick, and accurate. The basic idea is
to start by selecting the middle of two configurations whose forecasts are on
average the most dissimilar and to gradually tip the balance towards choosing
configurations based on the average accuracy between neighboring configurations.
This search procedure can be applied when there are multiple statistical choices
to be optimized over and when there are multiple (local) minima.

Astimating regression parameters, weighing observations, and efficiently
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selecting configurations are the main applications that this thesis about tradeoffs
in econometrics entails. The dissertation consists of single-authored chapters
only. It has benefited from the comments of my supervisors, Prof. dr. Philip
Hans Franses and Prof. dr. Richard Paap, for which I owe them my gratitude.

Although econometric approaches may vary in how they make claims about
the underlying truth, there is widespread agreement with regard to the general
steps that ought to be taken when doing research. The scientist starts with a
research question, derives hypotheses based on previous knowledge, and defines
methods for evaluating the theoretical conjectures. Next, he collects a random
sample of data and applies the methods on the data to assess the main hypotheses,
while holding auxiliary hypotheses fixed. Finally, the researcher discusses which
inferences can and cannot be drawn and suggests how future research could
overcome possible limitations of the study at hand.

The above procedure is known as the scientific method. This conception
of science is not without its problems and these will be further examined in
my forthcoming book Science: Under Submission. The chapters of the current
PhD thesis are written in accordance with predominant norms of science. The
statistical techniques that are presented here will make it easier for researchers to
specify in advance how they wish to balance prior hypotheses with the possible
findings of a new data set.





2
Accuracy-Simplicity Tradeoffs and the Linear Re-
gression Model: b2 Astimators

2.1. Introduction

A simple model has few parameters to be estimated at a given point in time
and parameters that do not alter across time. Complex models are more flexible
in optimizing over in-sample accuracy and are therefore more liable to confuse
the underlying process with random noise. At the cost of in-sample accuracy,
simplicity can be achieved by penalizing deviations from a given scheme. This
Accuracy-Simplicity Tradeoff (‘AST’) is fundamental to statistics and I aim to
control it when selecting parameters of the linear regression model, so that the
researcher can better specify and anticipate how parameters will be estimated.
To simplify the choice of linear regression parameters, one can urge them to stay
close to a prior coefficient β0 or to stay close to each other. I will explore both
possibilities.

Bayesian and Frequentist estimators make it difficult to control the first AST
of balancing the in-sample accuracy of a data-optimized regression coefficient
and the simplicity of a prior coefficient β0. In Bayesian regression, the researcher
has to rescale each regressor in some sensible manner to turn the prior variance
into a measure of trust regarding β0. Alternatives to this strenuous process
are to use uninformative priors or Zellner’s g-prior. In the former, the AST is
completely nullified; and in the latter, the degree of shrinkage towards prior
coefficients is controlled with no regard for the data. Frequentist shrinkage
techniques have been developed as well, like Ridge regression, Lasso, Adaptive
Lasso, and the Elastic Net. These methods are typically sensitive to the choice
of parameterization (Smith and Campbell, 1980, Leamer, 1981), so that one
cannot even remotely anticipate how a tuning parameter influences the AST.

7



8 ASTs and the Linear Regression Model: b2 Astimators

As an alternative, I will introduce a class of methods called linear regression
‘astimators’. Astimators allow a researcher to specify through λ how large a
relative increase in accuracy must be for a relative decrease in simplicity to
be allowed. When regressors are uncorrelated, λ · 100% specifies the minimum
degree of shrinkage towards β0 in percentage terms. Relative accuracy is directly
defined in terms of R2, which corresponds to the well-known ‘coefficient of
determination’ for β0 = 0. The lower a regressor’s contribution to R2 accuracy,
the more it will be shrunk towards β0.

In this way, the first AST promotes subset selection, so that only those
parameters are allowed to deviate from β0 whose contribution to R2 accuracy
is sufficiently large. This can be contrasted to Ridge regression (Hoerl and
Kennard, 1970), which does not perform subset selection at all. When regressors
are uncorrelated, this method shrinks the unrestricted solutions towards β0

by the same degree; and when regressors are correlated, its parameters are
stimulated to have a similar deviance from β0. Such a grouping of parameters is
another way of reducing a model’s dimensionality and helps to diversify risks
among correlated regressors.

Bayesian and Frequentist estimators can be refined in dealing with this
second instigation of an AST, where the freedom to optimize over in-sample
accuracy is restricted by the simplicity of grouping parameters together. These
estimators do not differentiate between high and low cross-correlations among
regressors. The implication for estimators that are mainly oriented to the first
AST, like the Adaptive Lasso, is that they will only select a single regressor from
a group of highly correlated regressors. Such a risky strategy might deteriorate
forecasting performance and could prevent researchers from identifying truly
relevant regressors (Chapter 3). Estimators that indiscriminately emphasize
grouping of parameters, like Ridge regression, have a tendency to let irrelevant
regressors substantially deviate from β0 even when cross-correlations are low.

In this chapter, the main goal is to reduce the complexity of the linear
regression model by shrinking coefficients towards β0 and by grouping parameters
of highly correlated regressors together. I will focus on procedures that employ
an `2 norm in penalizing deviations from prior coefficients. One astimator will
be introduced that performs subset selection, one that groups regressors, and
one that does both. The latter is called a b2c astimator, where the c stands
for correlated variables being controlled and the 2 refers to an `2 norm being
used. The b2c astimator has a straightforward analytic expression. The tuning
parameter λ ∈ [0, 1] controls deviations from β0, and through a second tuning
parameter cmin ∈ [0, 1], the researcher can specify how high cross-correlations



Bayesian Regression, Zellner’s g-prior, and Ridge Regression 9

need to be for parameters to be grouped together.
Regarding the organization of this chapter, Section 2.2 discusses benchmark

estimators with an `2 norm and Section 2.3 presents astimators with an `2 norm.
The behavior of astimators is illustrated with simulation studies and an empirical
application in Section 2.4. Section 2.5 concludes.

2.2. Bayesian Regression, Zellner’s
g-prior, and Ridge Regression

The linear regression model can be defined as

y = Xβ + ε,

where y is an N × 1 dependent variable, X is an N ×K matrix of independent
variables, β is aK×1 vector of parameters and ε is anN×1 vector of disturbances.
Individual observations will be marked by n = 1, 2, . . . , N and a subscript k
refers to the kth parameter. The estimated model is given by

y = Xb+ e,

for residuals e = y −Xb and parameter estimates b. In ordinary least squares,
the sum of squared residuals (e′e) is minimized with

LOLS = (y −Xb)′(y −Xb).

This loss function is only based on in-sample accuracy, which means that no
penalty is included for deviating from prior coefficients β0. Solving the first-order
condition for b gives

bOLS = (X ′X)−1(X ′y). (2.1)

These estimated are solely dependent on the data. Researchers typically wish to
balance such estimates with prior hypotheses β0. I will here focus on estimators
that penalize deviations from β0 with an `2 norm; namely, a standard form of
Bayesian Regression, Zellner’s g-prior, and Ridge Regression.

Bayesian regression is well-known for allowing researchers to make a gradual
tradeoff between prior beliefs and data-optimized OLS solutions. A popular
prior specification of the linear regression model is the natural conjugate prior
distribution of Raiffa and Schlaifer (1961), whereby p(β|σ2) ∼N(β0, σ

2B0) and
p(σ2) ∼ IG(α0/2, δ0/2) has an inverted gamma distribution. Under the current
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specifications, a closed-form solution of the posterior mean is available and is
given by the column vector

bBayes = (X ′X +B−1
0 )−1(X ′y +B−1

0 β0). (2.2)

Although the solution of the kth coefficient bBayes,k need not lie between β0,k

and bOLS,k (Chamberlain and Leamer, 1976, pp. 74), it is clear that when
B0 →∞, there is no penalty for deviating from β0 and we are back at the OLS
solution. In case B0 → 0, deviations from β0 are so heavily penalized that they
are not allowed.

After scaling each regressor, researchers may still have difficulties in antici-
pating how B0 ∈ [0,∞] corresponds to a degree of trust in his prior coefficients
relative to a data-optimized solution. One response has been to develop ‘nonin-
formative’ priors so that the influence of β0 is as small as possible again (Jeffreys,
1946, Gelman et al., 2014). Yet, even when one has little information about the
underlying relations between X and y, one might still want to perform subset
selection or encourage the grouping of regressors.

An intermediate solution in the Bayesian context was offered by Zellner
(1986). His g-prior, β ∼ N(β0, gσ

2(X ′X)−1), along with a Jeffrey’s prior on
σ2 ∝ 1

σ2 , leads to a posterior mean of

bZellner = 1
1 + g

β0 + g

1 + g
bOLS , (2.3)

which helps to regulate the degree of shrinkage towards β0 through g ∈ [0,∞).
To make this even more clear, one could define g = 1−u

u to get

bZellner = u β0 + (1− u)bOLS ,

so that the estimator becomes a weighted average between β0 and bOLS with
weights of u ∈ [0, 1]. Observe that a parameter’s degree of shrinkage is not
related to model fit or to cross-correlations between regressors, so Zellner’s
g-prior does not perform grouping of correlated regressors or subset selection of
relevant regressors.

Frequentist shrinkage methods have been developed as well. In Ridge regres-
sion (Hoerl and Kennard, 1970), the sum of squared residuals is supplemented
with a term that penalizes deviations from zero,

LRidge = (y −Xb)′(y −Xb) + λb′b.
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Ridge regression has a tendency to make coefficients equal due to its squared
norm and this may be convenient when using multicollinear regressors. By
solving the first-order condition for b, the estimator becomes

bRidge = (X ′X + λIK)−1(X ′y) (2.4)

Post-hoc heuristics have been suggested for choosing λ (ibid.), but this tuning
parameter is usually selected through cross-validation. Marquardt and Snee
(1975) emphasize that ‘nonessential ill conditioning’ can be removed by stan-
dardizing the data when performing Ridge regression (pp. 3). They propose to
transform X with Z-scores, xk−mean(xk)

std(xk) , and to center the dependent variable
with y −mean(y). Parameters can subsequently be rescaled by dividing bk by
std(xk), and the intercept can be estimated by taking the average of y −Xb.

The sensitivity of Ridge regression to the choice of parametrization does imply
that the interpretation of the tuning parameter λ is even more opaque than with
Bayesian regression, because the researcher can no longer adjust the scale of the
data in some favorable manner (Smith and Campbell, 1980, Leamer, 1981). A
comparison between bRidge and bBayes makes it clear that the prior distribution of
β in Ridge regression is assumed to be N(0, σ2IK/λ). In a similar vein, it follows
that bRidge equals bZellner if λ = 1

g and (X ′X)−1 = Ik. When regressors are
orthostandard (orthogonal and standardized), so that (X ′X)−1 = 1

N−1IK , Ridge
regression is the same as bZellner when λ is defined as N−1

g . The implication is
that for any λ > 0, bRidge is directly proportional to bOLS under these conditions.
The degree of shrinkage in bRidge is based on the singular values of X and is
unaffected by the strength of the correlation between a regressor and y.

If one wants to use prior coefficients other than zero, then deviances from β0

could be penalized in the following manner

LRidge = (y −Xb)′(y −Xb) + λ(b− β0)′(b− β0).

This loss function was developed by Swindel (1976), and results in

bRidge = (X ′X + λIK)−1(X ′y + λβ0).

For this slightly more general Ridge estimator, the prior specification is given
by β|σ ∼ (bR, σ2IK/λ). Assuming that data are standardized, this means
that Ridge solutions correspond exactly to the posterior mean of the Bayesian
estimator defined above when we define B0 = IK/λ.

To sum up, in bBayes there is a tradeoff between model fit and deviations
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from β0, but it could be difficult to influence this tradeoff through B0; and in
Zellner’s g-prior, the degree of shrinkage is easily controlled, but it is unaffected
by model-fit or cross-correlations. Ridge regression does take cross-correlations
into account, but practitioners typically experience difficulties in anticipating
how a choice of tuning parameter translates into a degree of shrinkage per
parameter. Its tuning parameter is often defined as λ = 10u for a hundred
equally distributed values of u (Zou and Hastie, 2005), whereby the range of the
grid is altered a posteriori per application (Friedman et al., 2010, pp. 17). Such
problems will be solved when astimators are used, because these methods make
the influence of λ on the degree of shrinkage towards β0 more predictable. I will
assume throughout that data are standardized, so that the K regressors in X
do not include an intercept.

2.3. b2 Astimators
The aim of the first AST is to let the astimated parameters deviate from
prior parameters insofar as accuracy sufficiently increases. To determine what a
sufficient increase is, it is convenient to define a loss function that balances relative
accuracy and relative simplicity. In the most general case, this loss function
will be minimized over j = 1, . . . , J candidate configurations cj . Accordingly,
Fit(cj) ≥ 0 is defined to be high when in-sample accuracy is low. By dividing
the fit of configuration cj by the fit of the prior configuration c0 one obtains a
relative accuracy measure.

Turning to relative simplicity, configuration cj ’s deviation from the prior
configuration is defined as d(cj , c0). The highest permissible deviation from c0

when λ is at its lowest is given by cmax. A measure for relative simplicity is
thus obtained by dividing d(cj , c0) by the maximum permissible deviation from
c0. To make it clear below when I refer to the maximum permissible deviation
from c0 when λ = 0, I use q(cmax, c0) with a letter q instead of d. A general
formulation of an AST loss function is given by

LAST (cj) = Fit(cj)
Fit(c0)︸ ︷︷ ︸

Relative Accuracy

+ f(λ) d(cj , c0)
q(cmax, c0)︸ ︷︷ ︸

Relative Simplicity

, (2.5)

where λ strikes the balance between the relative increase of a model’s in-sample
accuracy and the relative decrease of a model’s simplicity.

By monotonically transforming equation (2.5), so that the LAST (cj) values
are ordered in the same way, the loss function can be represented in the form of
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a penalty,
LAST (cj) ∝ Fit(cj) + f(λ) d(cj , c0)

q(cmax, c0)Fit(c0)︸ ︷︷ ︸
Penalty

. (2.6)

The scalar λ can thus be seen to penalize deviations from a prior configuration
c0 in optimizing over the fit. In case cj = cmax, it follows that d(cj ,c0)

q(cmax,c0) = 1 and
that configuration j must have a fit that is f(λ) times better than the fit of c0

in order to be preferred to c0.

2.3.1. b2i Astimator

The general recipe of an AST loss function in equation (2.5) can now be applied
to the linear regression model by using the following ingredients. The measure
of fit for the jth set of configurations cj = bj is given by the sum of squared
residuals, so Fit(bj) = sj = e′jej . It follows that the accuracy of Xb relative to
Xβ0 can be defined as

Relative Accuracy = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) .

The relative accuracy term remains unaltered throughout this chapter.

All of the changes are made with respect to relative simplicity. Since we
are dealing with an `2 norm, the deviance from β0,k is defined as d(bj,k, β0,k) =
(bj,k − β0,k)2. This deviance is made relative to the index q, which will depend
on the maximum deviation from β0,k when λ = 0, so cmax = bOLS,k. For now,
I will define q as q2i = (bOLS,k − β0,k)2. The 2 refers to the `2 norm and the
i is added to emphasize that this relative simplicity index is defined in terms
of an individual deviation from β0,k, which is independent of the deviations
between bOLS,j and β0,j of other parameters. The simplicity of b relative to
bOLS therefore becomes

Relative Simplicity =
K∑
k=1

(bk − β0,k)2

(bOLS,k − β0,k)2 .

For reasons that will quickly become apparent, relative accuracy and relative
simplicity should be balanced through a function of λk that is defined as f(λk) =
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λk
1−λk . Putting these terms together results in the following AST loss function

L2ASTi = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) +

K∑
k=1

λk
1− λk

(bk − β0,k)2

(bOLS,k − β0,k)2 , (2.7)

= (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) + (b− β0)′ΛQ−1

2i (b− β0), (2.8)

where Q2i and Λ are diagonal matrices of size K. The diagonal elements of Q2i

are given by q2i. The matrix Λ has diagonal elements λk
1−λk . In case all λk are

the same, I will just refer to these values as λ. I will also denote the sum of
squared residuals of the prior β0 as s0 = (y −Xβ0)′(y −Xβ0).

By solving the first-order condition for b, one gets

b2ASTi = (X ′X + ΛQ−1
2i s0)−1(X ′y + ΛQ−1

2i s0β0), (2.9)

which will also be referred to as a ‘b2i astimator’. The researcher only has to
specify λ and β0, because the rest are known. The higher λ ∈ [0, 1], the higher
the relative importance of simplicity over fit. When λ = 0, the data-optimized
OLS solution is chosen; and when λ = 1, the prior parameter is chosen.1 The
prior parameters β0 can for instance be selected based on previous experience.
If one has no clue on how to choose a prior coefficient or whether xk is relevant
in forecasting y, then a good choice could be to set β0,k equal to zero. When all
β0,k are zero (‘β0 = ~0’), the astimator becomes

b2ASTi = (X ′X + ΛQ−1
2i s0)−1(X ′y), β0 = ~0. (2.10)

To examine the properties of a b2i astimator in closer detail, I will first
compare it to the Bayesian and Frequentist estimators above. Subsequently,
it will be explained more concretely how λ influences the AST. I will begin
with a simple situation whereby K = 1 and β0 = 0, then study multiple
regressors that are uncorrelated while relaxing the assumption that β0 = 0, and
subsequently analyze what happens in the presence of multicollinearity. For
readibility, some aspects will also be relegated to subsections of Appendix 2.A.
In subsection 2.A.1, a derivation of a general `2 based astimator is provided;
and in 2.A.2, a straightforward Matlab code for b2 astimators is presented. All
of the reformulations of b2i and the other astimators below are derived in 2.A.3.

1I will set b2ASTi,k = β0,k when λk = 1. Multiply equation (2.7) by
∑K

k=1(1− λk), which
is a monotonic transformation. For λ = 1, the relative accuracy measure then contributes 0 to
the loss function, so that β0 is the optimal solution.



b2 Astimators 15

The b2i astimator corresponds to a prior specification of β|σ ∼
N(β0,Λ−1s−1

0 Q2iσ
2). This can be inferred by contrasting b2ASTi to bBayes

in equation (2.2). The b2i astimator is not sensitive to the parameterization
of data (see 2.A.4). Under the exceptional condition that s0Q

−1
2i = Ik, the

astimated solutions are the same as bRidge with a penalty of λ
1−λ . Zellner’s

g-prior is obtained when u = λ and X ′X = sRQ
−1
2i ; and I will now show that

the relation between an astimator and the g-prior is particularly interesting.

Figure 2.1: Geometric Interpretation of r⊗

0 1

0

1

    
 

     

Note: the length of column vector x is given by the norm of the inner product ||x|| =
√
x′x.

A unit vector of length 1 is therefore defined as x
||x|| . If φ is the angle between x and y,

then Pearson’s correlation coefficient r is the orthogonal projection cosφ of unit vector
y
||y|| onto unit vector x

||x|| , so that −1 ≤ r ≤ 1. The measure r⊗ = cos2 φ is the square
of that projection, which implies that 0 ≤ r⊗ ≤ 1. The term r⊗ can be represented as a
secondary projection onto unit vector y to make the connection with the R2 measure of
in-sample fit apparent. When both x and y are standardized with Z-scores and K = 1,
the sample correlation r is equal to bOLS = x′y

n−1 . So, for 0 ≤ φ ≤ π
2 , the smaller the

angle φ between x and y, the larger r, the larger r⊗, and the better the fit of xbOLS .

To further study when X ′X = sRQ
−1
2i , let us assume that there is a single
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regressor (K = 1), that the data are standardized, and that β0 = ~0. Under these
conditions, it can be derived that bZellner is the same as b2ASTi when xbOLS
has a perfect fit in terms of the famous R2 coefficient of determination. That is,

(x′x) ≤ s0Q
−1
2i ,

≤ (y′y)/(bOLS b′OLS),
≤ (x′x)/r⊗,

where r⊗ = (x′y)(x′y)′
(x′x)(y′y) ∈ [0, 1] is equal to R2 for centered data and β0 = ~0. I

will prove the equivalence between r⊗ and R2 for the more general case where
K ≥ 1 shortly. The sign ⊗ has been added to ‘r outer’ to stress that an outer
product is taken, although for K = 1 this is the same as an inner product. A
geometric representation of r⊗ is presented in Figure 2.1 and is directly related
to the Cauchy-Schwarz inequality.2

By substituting s0Q
−1
2i = (x′x)/r⊗ into equation (2.10), the following relation

between r⊗ and an `2 based astimator can be obtained,

b2AST =
(

1 + λ

r⊗(1− λ)

)−1
bOLS , K = 1, β0 = ~0, (2.11)

where I have dropped the letter ‘i’ in b2ASTi because there is no difference among
`2 based astimators when K = 1. What does this formulation say about the
influence of the AST tuning parameter λ? When x and y move in the exact
same (or exact opposite) direction, r⊗ = 1 and xbOLS will have a perfect fit.
The solution of b2AST in equation (2.11) will in that case be equal to bZellner
for all u = λ ∈ [0, 1], so that λ · 100% specifies in percentage terms with what
degree bOLS is shrunk towards β0 = 0. Zellner’s estimator always shrinks
bOLS by the same amount towards β0 for a given u, regardless of whether the
regressor is relevant to the sampled y or not. Through r⊗, a b2 astimator sooner
approximates 0 for a given λ the more x moves in the orthogonal direction of y.

So, the AST tuning parameter specifies the minimum influence of β0, and
this influence increases the worse is the fit of the data-optimized xb. In case r⊗

gets closer to 1, the effect of r⊗ fades away as λ goes to 1 and (1− λ) goes to
0. This helps to prevent a shrinkage towards β0 that is overly stringent for a
given λ. For λ values close to 0, b2 moves in the direction of (λ = r⊗, b = 0).3

2The Cauchy-Schwarz inequality states that 0 ≤ |(x, y)| ≤ ||x|| ||y|| (Kreyszig, 1999, pp.
361), from which it also follows that 0 ≤ (x′y)′(x′y) ≤ (x′x)(y′y) and 0 ≤ r⊗ ≤ 1.

3The tangent line (and first-order Taylor approximation) of equation (2.11) at the point
λ = 0 is given by b2AST = (1− λ/r⊗)bOLS .
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Consequently, subset selection is quickly approximated, since an r⊗ that is nearly
equal to zero will ensure that b2AST is close to 0 once λ ≈ r⊗. Let it here be
noted that, in the general case with K orthostandard regressors, centered y,
and ε ∼N(0, σ2IK), the expected value of R2 under the true β = ~0 is given by
E(R2) = K

N−1 .
4 For K = 1 and a sample size of N = 11, say, the expected value

of R2 is still 10% even when the true β = 0.

Figure 2.2: Stylized Solutions of b2AST with K = 1, β0 = 0, and bOLS = 2
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Under the assumption that β0 = 0, this figure shows stylized solutions of b2AST =
(1 + λ

r⊗(1−λ) )−1bOLS with bOLS = 2 and varying values of λ and r⊗. The closer r⊗ is
to 1, the more similar b2AST is to bZellner.

To illustrate more concretely in which manner the relevance of a regressor
influences its degree of shrinkage in b2AST , Figure 2.2 shows stylized solutions of
how a single regression coefficient moves from β0 = 0 to bOLS = 2 as λ decreases
from 1 to 0. To generate these results, I varied λ in equation (2.11) for a fixed
r⊗ and a prespecified bOLS = 2. The upper line shows that λ is the minimum
degree of shrinkage of b2AST when r⊗ = 1. The regression coefficient is exactly

4R2 ∼ Beta(K2 ,
N−K−1

2 ), see
http://davegiles.blogspot.nl/2013/10/more-on-distribution-of-r-squared.html.

http://davegiles.blogspot.nl/2013/10/more-on-distribution-of-r-squared.html
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halfway between bOLS and β0 when λ is a half, for example. In the second
highest line, the influence of β0 is further enlarged at a given λ, because an r⊗ of
0.5 is less than perfect. Observe also that when λ is close to zero, each solution
path moves towards the point (λ = r⊗, b = 0). A practically irrelevant regressor
with r⊗ = 0.0001 is approximately zero for most values of λ. I will now show
that these stylized solutions are of equal relevance in the multivariate case.

When there are multiple regressors and the prior β0 = ~0, a similar expression
as equation (2.11) arises if we also assume that regressors are orthostandard.
The b2ASTi solutions can then be written as

b2ASTi,k =
(

1 + λk

R⊗kk(1− λk)

)−1
bOLS,k, β0 = ~0, X ⊥, (2.12)

where the K ×K matrix

R⊗ = (X ′y)(X ′y)′(X ′X)−1(y′y)−1. (2.13)

An R⊗kk of 1 again implies that b2ASTi,k is equal to bZellner,k, in which case
λk · 100% becomes a direct measure for the degree of shrinkage towards β0,k = 0.
The smaller R⊗kk, the sooner b2ASTi,k moves to zero for a given λ.

To interpret the diagonal elements of R⊗, the matrix could once more
be related to a Cauchy-Schwarz inequality,5 but it is easiest to remark that
for centered data, tr(R⊗) again equals R-squared, which also implies that
0 ≤ tr(R⊗) ≤ 1 under these conditions. Note that the trace (‘tr’) takes the sum
of the diagonal elements of a matrix. The identity between tr(R⊗) and R2 follows
quickly from R2 = b′OLSX

′XbOLS
y′y = (X ′y)′(X ′X)−1(y′y)−1(X ′y). Just define the

K × 1 vectors (X ′y) and (X ′X)−1(y′y)−1(X ′y) and use that an inner product
between two vectors is the trace of their outer product. In plain language, R2 is
a scalar that gives an overall measure of fit, while the diagonal elements of the
matrix R⊗ allow us to identify the contribution of each regressor to the fit of the
model.

If XbOLS has a perfect fit and each orthogonal regressor has an equal
contribution to R2 = 1, then R⊗kk = 1

K for each k. When contributions to R2

vary among regressors, equation (2.12) tells us that these differences will be
emphasized quite strongly by a b2i astimator. Assuming orthostandard X, a
regressor that is more perpendicular to y will have a smaller bOLS,k solution,
which is also shrunk more quickly towards zero because of its small R⊗λ,kk.

5In the multivariate case, the Cauchy-Schwarz norm can be written as 0 ≤ |(X, y)|F ≤
||(X)||F ||y||F , where ||X||F =

√
tr(X′X) is the Frobenius norm for matrices (Yang, 2000).
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One can also quantify the relevance of individual deviations from prior
hypotheses without assuming that β0,k = 0. For standardized data, R2 can be
defined as a measure that compares the fit of a data-optimized Xb in comparison
to the fit of the prior Xβ0 for β0 = ~0. In fact, the relative accuracy term in an
AST loss function generalizes the optimization over R2 to situations where β0

and λ may be different from zero. This more general formulation is

R2
λ = 1− (y −Xbλ)′(y −Xbλ)

(y −Xβ0)′(y −Xβ0) = 1− Relative Accuracy. (2.14)

The larger the data-optimized improvement of the in-sample accuracy of the
prior model, the closer R2

λ is to 1. This quantity is only the same as the original
R2 when bR = ~0 and when the data is standardized (or a constant is included in
the model).

Relaxing the assumption that β0 = ~0 also implies that

R⊗ = (X ′ỹ0)(X ′ỹ0)′(X ′X)−1(ỹ′0ỹ0)−1, (2.15)

where ỹ0 = y −Xβ0. In 2.A.5 it is proven that tr R⊗ = R2
λ for λ = 0. Even

when β0 is allowed to be different from zero, that is, the diagonal elements of
R⊗ show the contribution of each regressor to the fit of a data-optimized model
relative to a prior model.

Armed with these results, one can now let go of the assumption that β0 = ~0
in specifying b2ASTi in terms of R⊗. For orthogonal regressors, the result is that

b2ASTi,k =
(1− λk)R⊗kk

tk
bOLS,k + λk

tk
β0,k, X ⊥, (2.16)

where the total tk = (1 − λk)R⊗kk + λk, see Appendix 2.A.6. The astimator
clearly takes a weighted average between bOLS,k and β0,k with weights that sum
to 1. If R⊗kk = 1, we obtain Zellner’s estimator (1 − λ)bOLS,k + λkβ0,k, and a
smaller R⊗kk again causes the influence of β0,k to increase.

Finally, when there are multiple correlated regressors and when it is assumed
for convenience that β0 = ~0, the b2i astimator can be defined as

b2ASTi =
(
IK + Λ(X ′X)−1Q−1

2i s0

)−1
bOLS , β0 = ~0 (2.17)

Using that Q−1
2i,kk = b−2

OLS,k, it can subsequently be derived that the kth diagonal
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element of Q−1
2i s0 is given by

Q−1
2i,kks0 =

(
ik(X ′X)−1(X ′y)(X ′y)′(X ′X)−1(y′y)−1i′k

)−1
,

=
(
ik(X ′X)−1R⊗i′k

)−1
,

where ik is a 1 × K vector that is 1 at k and 0 otherwise. The vector ik is
included to select the kth diagonal element of (X ′X)−1R⊗.

A smaller R⊗kk continues to imply that parameter bk will move more quickly
towards β0,k = 0, and tr(R⊗) continues to equal R2. When k and j are correlated,
though, the R⊗kk of regressor k can increase at the cost of a decreasing R⊗jj ; and
it is not uncommon in my experience to observe that R⊗jj becomes negative. In
more exceptional cases, R⊗kk can even be larger than one.6 When R⊗ is used
to assess the relevance of regressors, we therefore need to counter the volatility
of its diagonal elements by grouping R⊗kk values of highly correlated regressors
together.

The relative simplicity measure of the current b2i astimator already makes
its behavior quite predictable under multicollinearity. For β0 = ~0, this term is
given by

∑
k

b2k
b2
OLS,k

. Note that the denominators b2
OLS,k are independent of the

deviations b2
OLS,l of other regressors l 6= k. Yet, if there is a group of highly

correlated regressors, the tendency of the b2i astimator to focus on a single
member of that group will be limited. The reason is that the relative simplicities(

bk
bOLS,k

)2
grow with a factor 2, which implies that a given increase in |bk| is

penalized more if |bk| is already large. Whether regressors are correlated or not,
b2i will therefore stimulate parameters to have more similar relative deviations
when minimizing the penalty in L2ASTi.

The b2i astimator approximates subset selection in the sense that parameters
of irrelevant regressors are equated to approximately β0 for low λ. Next, I will
analyze an astimator that merely stimulates grouping, and subsequently develop
the recommended astimator which effectively approximates subset selection and
grouping.

2.3.2. b2a Astimator

From the forecasting combination literature, we know that giving an equal
weight to different regressors often results in hard-to-beat forecasts (Bates and

6Think of a simulation study of y = Xβ + ε with only N = 5 observations, K = 4 equally
relevant regressors, βk = 2, and standard normal X and ε.
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Granger, 1969, Smith and Wallis, 2009). In a similar spirit, forecasting accuracy
might improve when risks are more diversified across multicollinear regressors.
It is unfortunate in this regard that the b2i astimator does not assign more
similar weights to highly correlated regressors. On the other hand, a researcher
could also have reasons for wanting to ignore a (spurious) regressor that is
highly correlated with another. Moreover, when stimulating regressors to receive
a similar deviation from β0 as the others, subset selection may no longer be
approximated, because lots of small cross-correlations could have a large effect
on the manner in which parameters are estimated. I propose, therefore, that we
try to gain more control over how correlated regressors are dealt with.

As a first step, one can define an L2ASTa loss function that uses a matrix
Q2a with diagonal elements of q2a = 1

K

∑
l(bOLS,l−β0,l)2. This implies that the

average OLS deviation from a prior parameter is used to determine a parameter’s
relative simplicity; whereas, in b2i, an individual discrepancy between bOLS,k
and β0,k was employed. To be clear, the resulting loss function is given by

L2ASTa = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) +

K∑
k=1

λk
1− λk

(bk − β0,k)2

1
K

∑
l(bOLS,l − β0,l)2 ,

and the astimator becomes

b2ASTa = (X ′X + ΛQ−1
2a s0)−1(X ′y + ΛQ−1

2a s0β0). (2.18)

Nothing has changed with respect to L2ASTi and b2ASTi except that Q2a

replaced Q2i. The b2ASTa solutions are a rescaled version of Ridge regression
with λRidge = Q−1

2a s0f(λ) = 1
1
K

∑
l
(bOLS,l−β0,k)2 (y−Xβ0)′(y−Xβ0) λ

(1−λ) . Stan-
dardization of regressors is required, because the scaling of X influences the
average deviation between bOLS,k and β0,k. Provided that λ is intuitively de-
fined, laborious transformations of the data, like the ones advocated in Bayesian
regression, are no longer necessary, though.

As aforementioned, all `2 based astimators result in the same solutions as
equation (2.11) when K = 1. If regressors are orthogonal, the b2a astimator can
be rewritten as

b2ASTa,k =
(1− λk) 1

KR
2

tk
bOLS,k + λk

tk
β0,k, X ⊥, (2.19)

for the total tk = (1− λk) 1
KR

2 + λk. Under orthogonality, the influence of β0 is
at least λ, and is extended insofar as 1

KR
2 is small. What this means is that
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regressors are shrunk based on an overall measure of fit instead of their individual
contributions R⊗kk. Consequently, any volatility in R⊗kk due to cross-correlations
has no bearing on b2ASTa. If Xb2a has a perfect fit and regressors are orthogonal,
b2a is the same as bZellner but for the factor 1

K . When the overall fit of the
data-optimized model is poor (low R2), all parameters are shrunk towards β0

equally quickly.
For multiple correlated regressors and β0 = ~0, we get

b2ASTa =
(
IK + Λ(X ′X)−1Q−1

2a s0

)−1
bOLS ,

=
(
IK + Λ 1

1
KR

2
(X ′X)−1

tr (X ′X)−1

)−1
bOLS .

The influence of β0,k is again dictated by R2. When regressors are correlated,
b2ASTa will stimulate their parameters to have a similar ‘nominal’ deviance from
β0,k. That is to say, instead of the relative deviance (bk−β0,k)2

(bOLS,k−β0,k)2 being the

same as another (bl−β0,l)2

(bOLS,l−β0,l)2 , the nominal deviance (bk − β0,k)2 becomes more
similar to (bl − β0,l)2.

One can understand why that happens by taking a closer look at the relative
simplicity measure again. The denominator 1

K

∑
l(bOLS,l−β0,l)2 can be ignored,

because that is the same for all parameters. Turning to the numerator (bk−β0,k)2,
observe that it grows linearly with a factor 2 for a given increase in bk. In deciding
which regressors should be allowed to deviate more from β0,k based on information
that is shared among correlated regressors, less relevant parameters are therefore
given more leeway to deviate from β0, because they have a smaller bk to begin
with. As a result, the added effect of small cross-correlations can easily stimulate
a barely relevant regressor bk to have a squared nominal deviation from β0,k

that greatly exceeds (bOLS,k − β0,k)2. In the following section, an astimator will
be introduced that allows the researcher to specify through a tuning parameter
cmin ∈ [0, 1] how high cross-correlations need to be for parameters to be grouped
together.

2.3.3. b2c astimator

In comparison to b2ASTi, a disadvantage of b2ASTa (and Ridge regression) is that
subset selection is no longer approximated. The b2i astimator does approach
subset selection by equating parameters of irrelevant regressors to approximately
β0 for most values of λ. On the other hand, b2ASTi does not encourage the
grouping of highly correlated regressors. To play to the strengths of both b2ASTi
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and b2ASTa, one should take into account how each regressor is correlated with
the other regressors when taking a weighted average of (bOLS,l − β0,l)2. The
third and final astimator that will be presented in this chapter gives control
over the influence of cross-correlations, so that grouping and subset selection
can both be performed effectively. It is called b2ASTc, where the letter c stands
for correlation.

Central to the b2c astimator is Θ(X), which is a normalized matrix of absolute
cross-correlations |corr(X)|. The kth column of Θ(X) is called θk. Normalization
just means that the rows of each column of absolute correlations are divided by
the sum of that column, so that the columns add up to

∑K
l=1 θ

k
l = 1, where l

denotes a row. Using these correlation-based weights, one can define L2ASTc

through the diagonal elements q2c =
∑
l θ
k
l (bOLS,l − β0,l)2 of Q2c. This results

in the following loss function

L2ASTc = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) +

∑
k

λk
1− λk

(bk − β0,k)2∑
l θ
k
l (bOLS,l − β0,l)2 .

The first-order condition leads to

b2ASTc = (X ′X + ΛQ−1
2c s0)−1(X ′y + ΛQ−1

2c s0β0). (2.20)

As aforesaid, derivations of the astimators and straightforward Matlab codes are
presented in Appendix 2.A. Let me emphasize once more that regressors should
be standardized.

Before rewriting b2ASTc into a more convenient form, it is good to get more
acquainted with how Q2c balances between an individual Q2i and an average
Q2a. Assume that β0,k = 0 for all K = 4 parameters and consider the following
two examples. First, when θ3 = [0 0 1 0]′, this means that X3 is completely
uncorrelated with the other regressors, so that Q2c(3, 3) = (bOLS,3 − β0,3)2 =
Q2i(3, 3). That is, subset selection is approximated just like in the initial b2ASTi

of equation (2.9). Second, in case θ3 ≈ [.25 .25 .25 .25]′, the third regressor is
almost perfectly correlated with the other regressors (θ3

l ≈ 1
K ). Parameters are

therefore grouped together through Q2c(3, 3) ≈ 1
K

∑
l(bOLS,l−β0,l)2 = Q2a(3, 3),

which leads to b2a of equation (2.18). So, the correlation vector θkj determines
the degree to which parameters have a similar nominal deviation from β0.

Accordingly, when there are multiple orthostandard regressors, the b2c asti-
mator balances between bOLS and β0 in

b2ASTc,k =
(1− λk)

∑
l θ
k
l R
⊗
ll

tk
bOLS,k + λk

tk
β0,k, X ⊥, (2.21)
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where the total tk = (1 − λk)
∑
l θ
k
l R
⊗
ll + λk. For each parameter, the degree

of shrinkage towards β0,k is influenced by the weights θkl that b2ASTc assigns
to the diagonal elements of R⊗ through

∑
l θ
k
l R
⊗
ll . Note that, by measuring a

regressor’s relevance in terms of a weighted average of diagonal R⊗ values, one
can counter arbitrary fluctuations in R⊗ caused by cross-correlations. Since
regressors are currently assumed to be uncorrelated, θkl is 1 at k and 0 otherwise
(Θ = IK), so that b2ASTc = b2ASTi and subset selection is approximated through
the diagonal elements of R⊗. The vector r⊗2c,k =

∑
l θ
k
l R
⊗
ll could generally

be useful in quantifying the in-sample relevance of deviating from each prior
hypothesis.

In the presence of multicollinearity, one can assume for ease of display that
β0 = ~0 to get

b2ASTc =
(
IK + Λ(X ′X)−1Q−1

2c s0

)−1
bOLS , β0 = ~0, (2.22)

where Q−1
2c,kks0 = 1/tr

(
diag(θk)(X ′X)−1R⊗

)
. Note that tr(diag(θk)R⊗) =

r⊗2c,k. Through Θ, two parameters will be stimulated to have a similar nominal
deviation from β0 insofar as their cross-correlation is high. Only in the case that
all regressors are (nearly) the same does θkl ≈ 1

K and b2c ≈ b2a.
One of the main advantages of b2ASTc is that the matrix Θ can be adjusted

manually. One can, for example, set Θi,j and Θj,i to zero when prior param-
eters are different (β0,i 6= β0,j). Another important incentive for altering Θ is
that (many) small correlations between regressors could have a large effect. A
researcher can specify how large the minimum degree of correlation must be for
the deviance of (bk − β0,k) to be influenced by some other deviance (bj − β0,j).
Put differently, one can set |corr(X)| < cmin to zero for a minimum correlation
of cmin = 0.5, say. It is through cmin that the second AST of grouping parameter
together can be controlled, as I will illustrate with a simulation study and an
empirical application in the following section.

2.4. Analyzing the Influence of
Tuning Parameters

2.4.1. Simulation Studies

Having introduced a b2i astimator that focuses on subset selection, a b2a astimator
that merely stimulates grouping, and a b2c astimator that does both, I will now
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further analyze the theoretical claims of the previous sections with a simulation
study. The influence of the tuning parameters will be assessed with a simulation
exercise whereby there are two relevant and highly correlated regressors and
two irrelevant and uncorrelated regressors. That is, twenty data points will be
simulated with y = Xβ + ε, where β = [2 2 0 0]′, ε ∼ N(0, 1), X ∼ N(0,Σ),
and Σ = I except for Σ{2,1},{1,2} = .9. The priors will be defined as β0 = ~0. The
N = 20 realizations of this simulation study are presented in Appendix 2.A.7.

Figure 2.3 gives solutions paths for a single simulated data set, whereby
the independent variables are standardized with Z-scores and the dependent
variable is centered. The main goal of a ‘solution path’ is to reveal the manner in
which bk move from the prior β0,k to the data-optimized bOLS,k as the penalty
parameter changes. A reason for preferring one solution path over another could
be that the relation between λ and the degree of shrinkage is straightforward,
that irrelevant regressors barely deviate from their priors for many values of
λ, or that highly correlated regressors are assigned a similar parameter value.
The panel in the upper left corner of Figure 2.3, for example, again shows that
bZellner linearly shrinks coefficients from bOLS to β0 as the tuning parameter
u ∈ g = 1−u

u goes from 0 to 1. Observe that the degree of shrinkage is not
influenced by a regressor’s relevance or by its cross-correlations.

The panel in the upper right corner presents the solutions paths of b2ASTi. I
have explained above that the subset selection of b2ASTi is determined by the
diagonal elements of R⊗. In the current data set, this matrix is given by

R⊗ =


.56 .40 .05 -.04
.56 .40 .05 -.04
.17 .12 .02 -.01
.06 .04 .01 -.00

 .

The sum of the diagonal elements equals R2 = trR⊗ = 0.97. The irrelevant
regressors x3 and x4 indeed have tiny values of R⊗3,3 = 0.02 and R⊗4,4 = −0.004,
while the contributions of the relevant regressors to R2 are quite large with 0.56
for x1 and 0.40 for x2. As predicted, the tendency of b2ASTi to select a single
regressor out of a group of correlated regressors is limited by the `2 norm. The
proportional difference between b1 and b2 remains roughly similar. Due to the
small R⊗ values, the irrelevant parameters b3 and b4 are almost exactly equated
to zero for most values of λ.

The lower left panel of Figure 2.3 shows solutions paths for Bayesian and
Ridge regression, which are the same for B0 = IK/λ under the prior specifications
presented in Section 2.2. Around u = 1, the first two parameters are grouped
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Figure 2.3: Solutions Paths: `2 Estimators and Their Astimated Analogues
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This figure shows solution paths for estimators and astimators, with the coefficients on the
vertical axis and the tuning parameter on the horizontal axis. The tuning parameters are
B0,k for bBayes and g for Zellner’s g-prior and are defined in terms of u. Astimators use λ
as their tuning parameter. Data (N = 20) are simulated with y = Xβ + ε, β = [2 2 0 0]′,
ε ∼ N(0, 1), X ∼ N(0,Σ), and Σ = I except for Σ{2,1},{1,2} = 0.9. Prediction model:
ŷ = Xb, whereby β0 = [0 0 0 0]′.
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together while b3 is also slightly stimulated to deviate from 0. The main difficulty
with the Bayesian estimator (and Ridge regression) is to anticipate how a choice
of the prior variance (B0) influences the tradeoff between accuracy and simplicity
for each parameter. In the current example, I have defined B0 = 10−uIK . When
u = 5, the parameters are all shrunk towards β0,k = 0. Apparently, the value of
u = 5 is associated with a high degree of confidence in β0 here. At around u = 3,
the parameters suddenly start to alter. We can only infer after producing the
estimates, that a value of u = −1 corresponds to a small degree of confidence in
β0, since the bOLS,k solutions are dominant from this point onwards.

The lower right panel presents b2a, which is the astimated analogue of Ridge
regression. Remember that, in computing the relative simplicity measure, this
astimator takes a simple average over all the squared deviations from the priors,
so q1a =

∑
l

1
K (bOLS,l − β0,l)2. Since R2 is close to 1, the degree of shrinkage

towards zero of the first two parameters roughly corresponds to r⊗ = 1/K = 0.25
in the stylized solutions of Figure 2.2. Although λ is nicely defined to be between
0 and 1, subset selection of irrelevant regressors is no longer approximated with
this Ridge-type astimator. It also takes a while for the first two parameters to
be grouped together.

The recommended b2ASTc with qc,k =
∑
l θ
k
l (bOLS,l−β0,l)2 balances between

b2ASTi and b2ASTa based on absolute cross-correlations. For the current data
set, the absolute correlation matrix is given by

|corr(X)| =


1 .94 .20 .14
.94 1 .28 .14
.20 .28 1 .05
.14 .14 .05 1

 .

Note that x1 and x2 have a high cross-correlation of 0.94. Standardizing this
matrix results in

Θ =


.44 .40 .13 .11
.41 .42 .18 .11
.09 .12 .65 .04
.06 .06 .03 .75

 .

Θ is the same as |corr(X)|, except that the kth column θk now sums to 1
(rounding errors aside). Through cmin, the researcher can specify how high the
minimum amount of correlation must be for parameters to be grouped together.

In the left panel of Figure 2.4, one can see that if the smallest of cross-
correlations is allowed to influence the relative simplicity index (cmin = 0), the
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Figure 2.4: Solution Paths: 2ASTc
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This figure shows solution paths for the b2c astimator, with the estimated coefficients on
the vertical axis and the tuning parameter on the horizontal axis. Data (N = 20) are
simulated with y = Xβ + ε, β = [2 2 0 0]′, ε ∼ N(0, 1), X ∼ N(0,Σ), and Σ = I except
for Σ{2,1},{1,2} = 0.9. Prediction model: ŷ = Xb, with β0 = ~0.

third and fourth parameters are still urged to some degree to have a similar
deviance from β0,k as the others. Alternatively, one can also specify that all
absolute correlations |corr(X)| below cmin = 0.5 are equated to zero. The matrix
Θ then becomes

Θ =


.52 .48 0 0
.48 .52 0 0
0 0 1 0
0 0 0 1

 .

This specification of Θ ensures that only the first two parameters are grouped
together. The resulting solutions are presented in the right panel of Figure 2.4.
Note that the irrelevant regressors are inactivated just as quickly as in b2ASTi,
and that the grouping of b1 and b2 is performed more effectively than in b2ASTa.

Another implication of setting cmin = 0.5 is that diag(R⊗) =
[0.56 0.40 0.02 − 0.00]′ is changed into the correlation-adjusted r⊗2c =
[0.48 0.48 0.02 − 0.00]′, which gives a better sense of the relevance of each
regressor.7 Observe also that the degree of shrinkage of b1 and b2 with an r⊗2c of

7To be clear, the first element of r⊗2c is computed as
∑

l
θ1
l R
⊗
ll
≈ 0.52 · 0.56 + 0.48 · 0.40 +

0 · 0.02− 0 · 0.00 ≈ 0.48.
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0.48 is similar to the degree of shrinkage of the stylized solutions in Figure 2.2
with r⊗ = 0.5.

Continuing with the same simulated date set, I will finally illustrate how the
grouping of regressors can be controlled when prior coefficients are β0 = [3 0 0 0]′

instead of ~0. Stimulating parameters to have a similar deviance from their priors
usually makes little sense when the priors are different. Yet, the left panel of
Figure 2.5 shows that the estimators of Bayes (and Ridge) move b1 considerably
above 3 to make the deviance of (b1 − β0,1)2 more similar to the deviance of the
other parameters. With b2ASTc, one can set Θ = IK , so that the first parameter
does not affect the relative simplicity index of the other parameters. The result
is that b1 no longer takes a detour in converging towards β0,1 = 3, as the right
panel shows. In this way, b2ASTc allows the researcher to control the grouping
of parameters.

Figure 2.5: Solution Paths: β0 = [3 0 0 0]′
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This figure shows solution paths for Bayes/Ridge and 2ASTc, with the estimated co-
efficients on the vertical axis and the tuning parameter on the horizontal axis. Data
(N = 20) are simulated with y = Xβ + ε, β = [2 2 0 0]′, ε ∼ N(0, 1), X ∼ N(0,Σ), and
Σ = I except for Σ{2,1},{1,2} = 0.9. Prediction model: ŷ = Xb, and β0 = [3 0 0 0]′.

The main takeaway from this analysis is that b2ASTc makes it possible for a
researcher to anticipate and influence a priori how data-optimized parameters
of correlated regressors are balanced with β0. I will finally turn to a famous case
study.
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2.4.2. Case Study: Prostate Data
The `2 based estimators and astimators will now be used to predict the level of
prostate specific antigen (PSA) based on a constant and eight clinical measures.
The data are obtained from Hastie et al. (2009).

Table 2.1: Description Regressors Prostate

Name Description bOLS R⊗kk r⊗2c

y PSA prostate specific antigen
x1 lcavol log of cancer volume .67 .42 .21
x2 svi seminal vesicle invasion (0, 1) .32 .15 .15
x3 lweight log prostate weight .27 .10 .10
x4 lbph log of benign prostatic hyperplasia .14 .02 .02
x5 pgg45 percent of Gleason scores 4 or 5 .13 .05 .00
x6 gleason Gleason score (categorical) .04 .01 .00
x7 lcp log of capsular penetration -.15 -.07 .10
x8 age a person’s age -.16 -.02 -.02

Regressors are numbered from top to bottom based on the value of OLS applied to standardized data (fourth
column). In the last column, R⊗ is adjusted for cross-correlations in the spirit of b2c through r⊗2c = Θ′diag(R⊗)
and cmin = 0.5.

Table 2.2: Prostate Correlation Matrix

svi lweight lbph pgg45 gleason lcp age
1. lcavol .54 .28 .03 .43 .43 .68 .22
2. svi 1 .16 -.09 .46 .32 .67 .12
3. lweight 1 .44 .11 .06 .16 .35
4. lbph 1 .08 .08 -.01 .35
5. pgg45 1 .75 .63 .28
6. gleason 1 .51 .27
7. lcp 1 .13
8. age 1
Regressors are numbered from top to bottom based on the value of OLS applied to scaled data (see Table 2.1).

Table 2.1 enlists the clinical measures and Table 2.2 gives the cross-
correlations between the regressors. Some of these variables may immediately
make sense, like the log of cancer volume, the log of prostate weight, or a
person’s age. Other regressors might be less clear. The variable svi indicates
the presence of prostate cancer in the connective tissue around the seminal
vesicles and outside the prostate (Potter et al., 2000). Gleason scores (‘gleason’)
are obtained by a microscopic analysis of samples from a prostate biopsy. The
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variable pgg45 gives the proportion of high-grade carcinoma (Gleason 4 or 5).
The benign prostatic hyperplasia (lbph) is a noncancerous enlargement of a
prostate. Capsular penetration (lcp), finally, means that prostate cancer cells
have invaded through the prostate capsule (Pan, 2012). The question is which
regressors are relevant predictors of PSA. I will investigate this matter by setting
β0,k = 0 for all k = 1, 2, . . . ,K.

To analyze the relative influence of regressors, solution paths will be presented
based on standardized data. I have ordered the regressors in Table 2.1 from the
highest OLS estimate to the lowest. The second to last column presents the
diagonal elements of R⊗ and it sums to R2 = 0.66.

Figure 2.6 shows that Zellner’s g-prior gives the researcher great control over
the degree of shrinkage, but without regard for a regressor’s contribution to
accuracy. Note that λ = 0 corresponds to the bOLS solutions in Table 2.1, so
the highest line is the log of cancer volume, lcavol. With the b2i astimator in
the top right corner, the degree of shrinkage of lcavol is quite close to being
linear because of its R⊗ value of 0.42. Under the current prior specifications, the
Bayesian estimator is equal to Ridge regression for these standardized data. The
relationship between a degree of shrinkage and λ is again quite unpredictable.
In this case, most of the action happens between B0 = 0.001 to B0 = 1. The
analogous b2a astimator in the lower right corner of Figure 2.6 quickly promotes
parameters to have similar deviations from β0 = ~0.

The b2c astimator only groups parameters together when their associated
cross-correlation exceeds cmin = 0.5. The correlation-adjusted contributions to
R2 are reported in the last column of Table 2.1 under r⊗2c = Θ′diag(R⊗). The
log of cancer volume (lcavol) is again identified as the foremost predictor of the
level of prostate specific antigen and four out of eight predictors are revealed
to barely contribute to R2 accuracy. The estimated relevance of lcp increases
after it is compensated for its high cross-correlation with lcavol and svi. Figure
2.7 shows that lcp gets a more similar (squared) deviation from β0 as these
regressors when λ increases. Meanwhile, the parameters of the four irrelevant
predictors are quickly shrunk towards zero.

Lastly, it should be pointed out that the choice of cmin is important in
determining the relevance that is assigned to a variable. A cmin of 0.4 instead of
0.5 would cause pgg45 to be compensated for its cross-correlations with the first
two regressors, for example. The development of a more data-dependent choice
of such a tuning parameter is left for future research.
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Figure 2.6: Solutions Paths Prostate Data
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This figure shows solutions paths about the standardized prostate data. From top to
bottom at λ = 0, the regressors are lcavol (1), svi (2), lweight (3), lbph (4), pgg45 (5),
gleason (6), lcp (7), and age (8).
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Figure 2.7: Solutions Paths Prostate Data: b2ASTc with cmin = 0.5
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This figure shows solutions paths of b2ASTc with cmin = 0.5 applied to the standardized
prostate data. From top to bottom at λ = 0, the regressors are lcavol (1), svi (2), lweight
(3), lbph (4), pgg45 (5), gleason (6), lcp (7), and age (8).
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2.5. Discussion

In this chapter, I have attempted to improve upon Bayesian and Frequentist
methods by giving the researcher more control over the first AST which penalizes
deviations from β0 and the second AST which promotes grouping at the cost
of in-sample accuracy. The b2c astimator allows the researcher to influence the
first AST through λ and the second AST through cmin.

Relative simplicity was defined with an `2 norm and relative accuracy was
related to an R⊗ matrix, whose diagonal elements indicate the contribution of
each regressor to the R2 measure of fit. I might mention that the off-diagonal
elements of R⊗ can be interpreted as well. Define Rxx = corr(X) and a vector
of correlations ~rxy = [rx1y rx2y . . . rxKy]′. If β0 = ~0, y is centered and X is
standardized, it directly follows that R⊗ = ~rxy~r

′
xyR

−1
xx .8 If we assume that X is

orthogonal (Rxx = IK), then each element is just given by R⊗k,l = rxkyrxly, the
product of the regressors’ correlations with y.

In future research, astimators might be developed with an `1 norm so that
exact subset selection can be performed. To facilitate the choice of λ, techniques
should be explored that make this specification more dependent on the data.
The out-of-sample performances of estimators and astimators ought to be
compared as well.

2.A. Appendix: Further Details
Regarding b2AST

2.A.1: Show that b2ASTc, which has b2ASTi and b2ASTa as special cases, corre-
sponds to the global minimum of L2ASTc.

1. Solve first-order condition
Start with the loss function

L2ASTc = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) + (b− β0)′ΛQ−1

2c (b− β0).

8For centered y and standardized data X, ~rxy = (X′y)√
(N−1)(y′y)

and Rxx = 1
N−1 (X′X), so

that R⊗ = (X′y)√
(N−1)(y′y)

(X′y)′√
(N−1)(y′y)

(N − 1)(X′X)−1 = (X′y)(X′y)′(X′X)−1(y′y)−1.
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Take partial derivatives with respect to each bk,

∂

∂b
L2ASTc = −2X ′y + 2X ′Xb+ 2ΛQ−1

2c s0(b− β0),

where s0 = (y −Xβ0)′(y −Xβ0). The first-order condition ∂
∂bL2ASTc = 0

results in
(X ′X + ΛQ−1

2c s0)b = X ′y + ΛQ−1
2c s0β0,

so the solutions are given by

b2ASTc = (X ′X + ΛQ−1
2c s0)−1(X ′y + ΛQ−1

2c s0β0).

2. Check that the solution is a minimum
The solution of a first-order condition is a minimum if the ‘Hessian’ matrix
with second-order partial derivatives is positive definite (‘PD’). The Hessian
is given by

∂2

∂b∂b′
L2ASTc = 2X ′X + 2ΛQ−1

2c s0. (2.23)

i. The sum of a PD and a PSD (positive semi-definite) matrix is PD.
Consider K × K matrices A and B whereby A is PD and B

is PSD. In that case x′Ax > 0, x′Bx ≥ 0, and x′(A + B)x =
x′Ax+ x′Bx > 0.

ii. X ′X is PD if X has rank K.
For a column vector z of size K that does not consist entirely of
zeros, it follows that X ′X is PSD, since

z′X ′Xz = (Xz)′(Xz) =
N∑
n=1

c2
n ≥ 0,

where the N×1 vector cn = Xz. This solution is positive definite
if there exists no exact linear relationship between the columns
of X, in which case X is full rank.9

iii. The second term on the right hand side of equation (2.23) is at
least PSD because it is a diagonal matrix with nonnegative diagonal
elements.

9As explained in Heij et al. (2004, pp. 733), the rank of an N ×K matrix A is equal to the
largest number r for which there exists a square submatrix of A of size r that has a non-zero
determinant. If A has a rank of r < K, then there exists a non-zero K × 1 vector z such that
Az = 0. Alternatively, one might say that the rank of A corresponds to the number of linearly
independent columns of A.
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For a nonzero K × 1 vector z and a K ×K diagonal matrix D
with diagonal elements dk, z′Dz = d1z

2
1 + d2z

2
2 + · · ·+ dKz

2
K ≥ 0.

If all dk > 0, then D is PD.

iv. Consequently, if X is full rank and/or all λk > 0, the Hessian is PD
and b2ASTc is a minimum of L2ASTc.

3. Ensure that the solution is a global minimum
Finally, b2ASTc is a global minimum since L2ASTc is convex. A nonnegative
weighted sum of convex functions is itself convex (Boyd and Vandenberghe,
2004, pp. 79), and L2ASTc is the sum of two parabolas which are both
convex in b.

2.A.2: Matlab program for b2ASTi, b2ASTa and b2ASTc:

%Initial definitions:

K = size(X,2); bR = zeros(K,1); lam = 0.5;

LAM = lam/(1-lam)*eye(K);

XX=X'*X; XY=X'*Y; bOLS = XX\XY;

sR = (Y-X*bR)'*(Y-X*bR);

%2ASTi

Qi = diag((bOLS-bR).^-2);

b2ASTi = (XX + LAM*Qi*sR) \ (XY+LAM*Qi*sR*bR);

%2ASTa (assuming standardized data)

Qa = mean((bOLS-bR).^-2)*eye(K);

b2ASTa = (XX + LAM*Qa*sR) \ (XY+LAM*Qa*sR*bR);

%2ASTc (assuming standardized data)

cmin = 0.5;

Theta = abs(corr(X)); %Define absolute correlations.

Theta(Theta<cmin) = 0; %Equate to zero: abs. corr.<cmin

Theta = Theta*diag(1./sum(Theta)); %Normalize Theta.

Qc = diag((Theta'*(bOLS-bR).^2).^-1);

b2ASTc = (XX + LAM*Qc*sR) \ (XY+LAM*Qc*sR*bR);

2.A.3: Show that a b2c astimator can be written as

b2ASTc =
(
IK + Λ(X ′X)−1Q−1

2c s0

)−1
bOLS , β0 = ~0, (2.24)

where Q−1
2c,kks0 = 1/tr

(
diag(θk)X ′X−1R⊗

)
; and show that b2i and b2a are

special cases.
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First, for β0 = ~0,

b2AST = (X ′X + ΛQ−1
2c s0)−1(X ′y),

= (I + (X ′X)−1ΛQ−1
2c s0)−1(X ′X)−1(X ′y),

and b2ASTc in equation (2.24) follows from substituting bOLS . Second,

Q−1
2c,kks0 = 1/

(∑
l

θkl (bOLS,l)2
)

(y′y),

= 1/tr
(
diag(θk)(X ′X)−1(X ′y)(X ′y)′(X ′X)−1(y′y)−1

)
,

= 1/tr
(
diag(θk)(X ′X)−1R⊗

)
.

Special cases:

– For orthogonal data (or K = 1), (X ′X)−1 terms cancel.

– For b2ASTi, define Θ = Ik.

– For b2ASTa, define θkl = 1/K and use that trR⊗ = R2.

2.A.4: Show that b2ASTi does not depend on the choice of parametrization in
the sense that Cb is an astimate of Cb when b is an astimate of β for a K ×K
diagonal transformation matrix C.

X is changed into XC−1, b into Cb, and Qi, with its diagonal elements
1
K (bOLS,k−β0,k)2, is changed into (C ′)−1QC−1. The L2ASTi loss function
becomes,

L2ASTi = (y −XC−1Cb)′(y −XC−1Cb)
(y −XC−1Cβ0)′(y −XC−1Cβ0) + . . .

. . .
λ

1− λ
1
K

(Cb− Cβ0)′(C ′)−1QiC
−1(Cb− Cβ0),

and since (Cb − Cβ0)′ = (b − β0)′C ′, the scaling matrix C cancels so
that the loss function remains the same. Other transformations, such as
centering X and y, may influence results.

2.A.5: It was defined in equation (2.14) that

R2
λ=0 = 1− (y −XbOLS)′(y −XbOLS)

(y −Xβ0)′(y −Xβ0) .
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Show that R2
λ=0 = tr(R⊗), where

R⊗ = (X ′ỹR)(X ′ỹR)′(X ′X)−1(ỹ′RỹR)−1,

for ỹ0 = y −Xβ0; see equation (2.15).

Substituting bOLS = (X ′X)−1X ′y in the second line below, we can write

R2
λ=0 = 1− (y −XbOLS)′(y −XbOLS)

(y −Xβ0)′(y −Xβ0)

= 1−
(
y′y − 2b′OLSX ′y + b′OLSX

′XbOLS

)
(ỹ′0ỹ0)−1,

= 1− y′
(
IN −X(X ′X)−1X ′

)
y(ỹ′0ỹ0)−1.

I will now introduce a matrix W such that Wy = y −Xβ0. This means
that W = IN − diag(γXβ0), where the column vector γ has 1

yn
on the nth

row. Adding and subtracting the same quantity gives

R2
λ=0 = 1− y′

(
WINW −WX(X ′X)−1X ′W

)
y(ỹ′0ỹ0)−1,

= 1−
(
ỹ′0ỹ0 − (X ′ỹ0)′(X ′X)−1(X ′ỹ0)

)
(ỹ′0ỹ0)−1,

= (X ′ỹ0)′(X ′X)−1(ỹ′0ỹ0)−1(X ′ỹ0),
= tr(R⊗).

For the last step, define the K × 1 vectors (X ′ỹ0) and
(X ′X)−1(ỹ′0ỹ0)−1(X ′ỹ0) and use that an inner product between
two vectors equals the trace of their outer product.

2.A.6: Show that it holds under orthogonality that

b2ASTc,k =
(1− λk)r⊗2c,k

(1− λk)r⊗2c,k + λk
bOLS,k + λk

(1− λk)r⊗2c,k + λk
β0,k, X ⊥ .

Using that β0 = (X ′X)−1(X ′X)β0, it follows that bOLS − β0 =
(X ′X)−1(X ′ỹ0) for ỹ0 = y −Xβ0. Similar to 2.A.3, this means that

Q−1
2c,kks0 = 1/

(∑
l

θkl (bOLS,l − β0,l)2
)

(ỹ′0ỹ0),

= 1/tr
(
diag(θk)(X ′X)−1(X ′ỹ0)(X ′ỹ0)′(X ′X)−1(ỹ′0ỹ0)−1

)
,

= 1/tr
(
diag(θk)(X ′X)−1R⊗

)
.



Appendix: Further Details Regarding b2AST 39

Take

b2ASTc = (X ′X + λk
1− λk

Q−1
2c s0)−1(X ′y + λk

1− λk
Q−1

2c s0β0).

Use the orthogonality of X to multiply each term inside and outside of the
inverse by (X ′X)−1 = 1

N−1IK , let r⊗2c,k = tr diag(θk)R⊗, and substitute
(X ′X)−1Q−1

2c,kks0 = 1/r⊗2c,k to get

b2ASTc,k = (r⊗2c,k + λ

1− λ )−1(r⊗2c,kbOLS,k + λ

1− λβ0,k).

Multiply each term inside and outside of the inverse by (1− λk) to obtain
the desired result.

2.A.7: Table 2.3 presents the realizations of the simulated data in Section 2.4.
The data (N = 20) are simulated with y = Xβ + ε, β = [2 2 0 0]′, ε ∼N(0, 1),
X ∼N(0,Σ), and Σ = I except for Σ{2,1},{1,2} = 0.9.

Table 2.3: Untransformed Realizations of Simulated Data

n 1 2 3 4 5 6 7 8 9 10
y -4.47 -7.55 0.75 -5.61 -4.60 0.98 3.05 -1.02 1.65 -1.03
x1 -0.99 -1.57 0.54 -1.52 -1.54 0.33 0.63 -0.19 0.03 0.01
x2 -0.62 -1.56 0.20 -1.13 -1.62 -0.01 0.77 -0.54 0.38 0.17
x3 -0.34 -0.81 0.16 -0.26 0.01 -1.08 -0.86 0.34 0.64 -0.14
x4 -1.99 2.20 0.16 -0.73 -1.13 -1.42 0.43 0.06 -0.41 -0.28

n 11 12 13 14 15 16 17 18 19 20
y 6.53 4.48 -4.20 0.18 -0.44 -2.87 0.72 3.07 9.92 0.57
x1 1.33 1.14 -0.61 0.00 0.23 -0.87 0.15 0.83 2.10 0.36
x2 2.25 1.17 -1.18 -0.13 -0.30 -0.69 0.16 0.48 3.14 0.33
x3 0.14 -0.04 -2.06 -0.96 -0.51 1.84 -1.04 1.39 0.68 -0.03
x4 -0.11 1.91 -0.24 -0.77 0.28 0.88 1.88 -1.47 0.43 1.04

This table present realization of simulated data used in Section 2.4. Note that y has not been centered
and X has not been transformed into Z-scores in this table. In the simulation exercise, the N = 20 data
points are simulated with y = Xβ + ε, β = [2 2 0 0]′, ε ∼ N(0, 1), X ∼ N(0,Σ), and Σ = I except for
Σ{2,1},{1,2} = .9.





3
Accuracy-Simplicity Tradeoffs and the Linear Re-
gression Model: b12 Astimators

3.1. Introduction

When estimating linear relations β between the dependent variable y and the
independent variables X in the linear regression model, a researcher might
want to balance his prior opinion β0 with data-optimized solutions bOLS . His
incentive for doing so will be particularly strong when his prior is well-grounded
in previous research, or when the data at hand is small or possibly heterogeneous.
In Bayesian regression, a researcher can get some inkling of how his prior will
be balanced with a data-optimized solution by appropriately transforming each
variable. In Frequentist shrinkage methods, even this cumbersome strategy is
generally unavailable.

A linear regression astimator allows a researcher to control the Accuracy
Simplicity Tradeoff (‘AST’) between a data-optimized coefficient and a prior
through λ. The tuning parameter λ determines the minimum amount of shrinkage
towards β0 if regressors are uncorrelated. A variable’s contribution toR2 accuracy
determines to what extent parameters are further shrunk towards zero. Subset
selection is approximated in this way, because irrelevant regressors with a low
contribution to R2 are barely allowed to deviate from β0.

The flexibility of choosing regression parameters can be further restricted by
a second AST which promotes the simplicity of grouping parameters together.
By using a single regression coefficient (except for the sign) for multiple highly
correlated regressors, one can hedge against the risk of wrongfully setting a
relevant parameter to β0 = 0. In case no distinction is made between high and
low cross-correlations, irrelevant regressors will be compensated too liberally and
subset selection will no longer be approximated. Through a tuning parameter
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called cmin ∈ [0, 1], the researcher can specify how high cross-correlations need
to be for parameters to be grouped together.

In the previous chapter I have developed astimators with an `2 norm that
either focus on subset selection, grouping, or both. The latter was called a b2c

astimator, where the ‘2’ refers to an `2 norm being used and the ‘c’ indicates that
correlations are being accounted for. In this chapter, the same three variants will
be investigated but now with an `1 norm. Methods with an `1 norm perform
exact subset selection, which means that parameters will be inactivated (exactly
equated to β0) even before λ has reached it maximum value. Famous examples
are the Adaptive Lasso and the Lasso.

One goal of the current chapter is to come to grips with the fickle behavior
of the `1 based estimators. The Adaptive Lasso and the Lasso make it virtually
impossible to anticipate before the data is analyzed at which λ values parameters
will be added to the active set. I will present their astimated versions and thereby
solve this issue. It will be shown that the moment at which a parameter is allowed
to deviate from β0 is directly related to its contribution to R2 accuracy when
regressors are uncorrelated. I will also analyze the influence of cross-correlations
on subset selection and grouping. This discussion will lead to the introduction
of a b1c astimator.

To further promote the grouping of parameters while performing exact subset
selection, one can also combine `1 and `2 norms. This is the basic idea behind the
well-known Elastic Net. Like the other benchmark methods, the Elastic Net does
not differentiate between high and low cross-correlations. As a result, it takes
too long for irrelevant regressors to be inactivated and for highly correlated and
relevant regressors to be grouped together. That is why a b12c astimator (with
an `1 and an `2 norm) is introduced, which does control both ASTs effectively.

Regarding the structure of this chapter, the next section introduces the `1

based benchmarks. The properties of their astimated analogues are discussed
for uncorrelated regressors in Section 3.3 and correlated regressors in Section 3.4.
Astimators that combine `1 and `2 norms are introduced in Section 3.5. The
theoretical conjectures are examined with a simulation study and an empirical
application in Section 3.6.
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3.2. Lasso, Adaptive Lasso, and the
Elastic Net

The linear regression model is given by

y = Xβ + ε,

for an N × 1 dependent variable y, and N × K matrix of regressors X, a
K × 1 vector of coefficients β and an N × 1 vector of disturbances ε. The
index n = 1, 2, . . . , N is used to refer to individual observations and the index
k = 1, 2, . . . ,K marks individual regressors.

Tibshirani (1996) introduced an estimator of β called the ‘Lasso’ (Least Ab-
solute Shrinkage/Selection Operator), that is closely related to Ridge regression.
The difference is that absolute rather than squared deviations from the prior
β0 = ~0 are used in penalizing large b. The Lagrangian of the Lasso is

LLasso = 1
2(y −Xb)′(y −Xb) + λ

K∑
k=1
|bk|, (3.1)

whereby 1
2 is added for computational convenience. The Lasso is an interesting

technique because it automatically performs subset selection by setting certain
parameters exactly equal to zero even when λ has not reached its maximum
value. Active parameters that are allowed to deviate from β0 are denoted as bA,
where the active set is defined as A = {k : bk 6= β0, k = 1, 2, . . . ,K}. Following
a suggestion by Tibsharini, the Bayesian Lasso uses a conditional Laplace prior.
Data must be standardized by centering y and by taking Z-scores of X.

Among the many algorithms for solving the `1 based loss function are the
pathwise coordinate descent algorithm and the Least Angle Regression (‘LARS’)
(Osborne et al., 2000, Efron et al., 2004). The LARS procedure helps to interpret
Lasso regression, because it shows that only those parameters are allowed to
deviate from β0 = ~0 whose regressors have the largest correlation to the current
residual ỹ = (y −XAbA). A LARS type algorithm has been developed whereby
the λ values of the turning points are identified, see Zou et al. (2007) and
Tibshirani jr (2011). Other than that a large λ ∈ [0,∞) will shrink solutions
more strongly towards β0 = ~0 than a small λ, the interpretation of this tuning
parameter has remained unclear. I have not come across procedures that allow
the researcher’s prior β0 to differ from zero.

Two well-known extensions to the Lasso are the Adaptive Lasso and the
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Elastic Net. Zou’s (2006) Adaptive Lasso adds a vector of weights ŵ to the
penalty term,

LAdaptive Lasso = 1
2(y −Xb)′(y −Xb) + λ

K∑
k=1

ŵk|bk|,

where ŵ can be given by ŵk = 1
|bOLS,k|γ for some γ > 0. I will use γ = 1 for

reasons that will become apparent later. The estimator has ‘oracle properties’,
meaning that it asymptotically performs as well as if the true underlying sub-
model were given in advance (Fan and Li, 2001). It has been remarked that
Lasso type estimators may have issues with highly correlated data. ‘In practice,’
write (Wang et al., 2011, pp. 471), ‘Adaptive Lasso suffers (sometimes more
severely than Lasso) from the multicollinearity caused by large correlations
among covariates because OLS estimates are very unstable in this situation.’

To handle correlated regressors, many variations of the Lasso have been
applied, like the Random Lasso (Wang et al., 2011), the Group Lasso (Yuan
and Lin, 2006), and the 1d Fused Lasso (Tibshirani et al., 2005). Here, I will
focus on the well-known Elastic Net, which Hastie developed together with Zou
in 2005. In this variation, the penalty is a combination of `1 and `2 norms,

LElastic Net = (y −Xb)′(y −Xb) + λ

K∑
k=1

(α
2 b

2
k + (1− α)|bk|

)
.

The formulation is based on Hastie et al. (2009, pp. 73). I have defined
parameter α such that the Lasso is used when α = 0 and that Ridge regression
is employed when α = 1. By choosing some intermediate value of α, one can
perform subset selection and stimulate the grouping of correlated regressors.

Lastly, I will also refer to Zellner’s g-prior (1986), where the prior spec-
ifications β ∼ N(β0, gσ

2(X ′X)−1) and σ2 ∝ 1
σ2 result in a posterior mean

of

bZellner = 1
1 + g

β0 + g

1 + g
bOLS , (3.2)

with g ∈ [0,∞). Defining g = 1−u
u , one gets

bZellner = u β0 + (1− u)bOLS ,

which makes it clear that Zellner’s estimator amounts to taking a weighted
average between β0 and bOLS with weights of u ∈ [0, 1].
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In the following, I will further analyze the behavior of estimators that make
use of an `1 norm by rescaling the Lasso, the Adaptive Lasso, and the Elastic
Net; and I will propose a b12c astimator which combines an `1 and an `2 norm.
I will argue, for example, that the fraction of a 1

2 in `1 based estimators is
necessary for interpretative purposes and that the Adaptive Lasso always suffers
more from multicollinearity than the Lasso when it comes to discarding relevant
but correlated regressors. I will also show that a regressor’s contribution to the
R-squared measure of fit plays a pivotal role, just like it did in the previous
chapter.

3.3. b1 Astimators: Uncorrelated Data

A generic formulation of an `1 based Lagrangian is given by

L1AST = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) +

∑
k

2λk
|bk − β0,k|

q1,k
, (3.3)

for λ > 0. A b1i astimator, whereby the penalty of a regressor is barely affected
by those of others, results from defining q1i,k = |bOLS,k − β0,k| in terms of
individual (‘i’) deviances. Conditional on β0 = ~0, the associated loss function
is a rescaled version of an Adaptive Lasso with weights ŵk = 1

|bOLS,k| . The loss
function of b1a is obtained by taking an equal-weighted average (‘a’) to define
the index q1a,k = 1

K

∑
l |bOLS,l − β0,l|; and this is just a rescaled version of a

more general bLasso.
The third `1 based astimator that I will examine here is called b1c and is

designed to perform subset selection and grouping more effectively by controlling
the effects of correlations (‘c’). The matrix Θ standardizes absolute cross-
correlations |corr(X)| by rescaling the columns to sum to one. If we define θk as
the kth column of Θ, then q1c,k becomes

∑
l θ
k
l |bOLS,l − β0,l|. As I will illustrate

below, the tuning parameter cmin equates cross-correlations lower than cmin to 0
in Θ, so that only highly correlated regressors are grouped together.

Analytic solutions are not available for `1 based loss functions, which is
why I first followed Friedman et al. (2007) in formulating a coordinate descent
algorithm, see Appendix 3.A.1. Based on this exercise, I subsequently developed
Algorithm 3.1 in Appendix 3.A.2, which gives the entire solution path of `1

based astimators for known λ while prior coefficients β0 may deviate from zero.
To explain how astimators perform subset selection, I have defined R2 ∈ [0, 1]

in the previous chapter as the relative improvement of the data-optimized results
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over the prior model. So,

R2 = 1− (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) ,

which equals 0 if there is no improvement over the prior model and 1 if the
data-optimized solutions have a perfect fit. In case the data is standardized and
β0 = ~0, this measure is equal to the original R2 ‘coefficient of determination’.
The ‘R-outer’ matrix is given by

R⊗ = (X ′ỹ0)(X ′ỹ0)′(X ′X)−1(ỹ′0ỹ0)−1,

with ỹ0 = y −Xβ0. The matrix R⊗ helps to explain how astimators perform
subset selection by only allowing certain parameters to deviate from their prior
parameter.

More particularly, the diagonal elements of R⊗ were shown to add up to R2.
In this way, we can use R⊗kk to quantify how much an individual deviation from
a prior hypothesis contributes to the overall improvement of the prior model.
In case β0 = ~0, R⊗kk gives us a sense of how important each regressor is to R2,
although we do need to correct for cross-correlations to interpret the relevance
of individual regressors. Due to cross-correlations, the diagonal elements might
not lie between 0 and 1. For standardized data and β0 = ~0, I defined the matrix
Rxx = corr(X) and a vector of correlations ~rxy = (rx1y rx2y . . . rxKy)′ to find
that R⊗ = ~rxy~r

′
xyR

−1
xx . This allowed me to show that, when regressors are

orthostandard, the elements of R⊗k,l can simply be written as rxkyrxly, which is
the product between the regressors’ correlations with y.

The same situations will be studied as in the previous chapter to describe how
accuracy and simplicity terms influence solution paths of `1 based astimators.
The current section expresses the astimators in terms of R⊗ in case regressors
are uncorrelated. I will start with a single regressor and β0 = 0 and I will
subsequently relax these assumptions. In the section that follows, b1 astimators
are compared under multiple correlated regressors. I will finish by indicating
how a LARS-type algorithm must be adjusted in case β0 is allowed to vary from
zero. Any remaining aspects are discussed in Appendix 3.A.3. It is assumed
throughout that y is centered and X is standardized with Z-scores.

For a single regressor and β0 = 0, one can use that the sign of b1AST is equal
to the sign of bOLS to get rid of the absolute signs in L1AST of equation (3.3).
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The solutions for λ ∈ [0, 1] are then given by

b1AST =
{

(1− λ/r⊗)bOLS if λ ≤ r⊗,
0 if λ > r⊗,

(3.4)

where r⊗ ∈ [0, 1] measures the degree to which x moves in the same (or opposite)
direction as y; see 3.A.3.1.

From equation (3.4) it becomes evident once more that r⊗ affects the pro-
portion with which bOLS is shrunk towards β0 as λ increases. When r⊗ = 1,
the solutions of b1AST are the same as Zellner’s g-prior with u = λ. It follows
that λ · 100% specifies in percentage terms what the minimal influence of β0

is. The moment that the regressor is activated is marked by λ = r⊗. It should
be mentioned that if the true β0 = 0 and ε ∼N(0, σ2IK), one may expect that
b1AST activates the parameter on average at λ = 1

N−1 . Under these conditions,
E(R2) = K

N−1 with var(R2) = 2K(N−K+1)
N(N−1)2 for standardized data.1

Figure 3.1: Stylized Solutions of b2AST and b1AST with r⊗ = 0.5 and bOLS = 2
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This figure shows stylized solution paths for b2AST = (1+ λ
r⊗(1−λ) )−1bOLS and b1AST =

(1− λ/r⊗)bOLS1λ≤r⊗ with β0 = 0, bOLS = 2 and r⊗ = 0.5 or r⊗ = 1. The upper line
in each panel with r⊗ = 1 corresponds to bZellner.

To compare how the relevance of a regressor influences the degree of shrinkage

1See http://davegiles.blogspot.nl/2013/10/more-on-distribution-of-r-squared.html for a
small derivation.

http://davegiles.blogspot.nl/2013/10/more-on-distribution-of-r-squared.html


48 ASTs and the Linear Regression Model: b12 Astimators

towards β0 = 0 for `2 and `1 based astimators, Figure 3.1 is presented. Remember
that b2AST = (1 + λ

r⊗(1−λ) )−1bOLS . I have specified that bOLS = 2 and that
r⊗ = 0.5 or 1. It can be observed that b2AST ≈ b1AST when λ is close to zero,
and this occurs because the tangent line (and first-order Taylor expansion) of
b2AST at the point λ = 0 is given by (1 − λ/r⊗)bOLS = b1AST . As a result,
an irrelevant regressor with a low r⊗ is (approximately) equated to β0 = 0 at
λ ≈ r⊗ for b2AST . The effect of r⊗ in b2AST abates as λ increases, as the current
example with r⊗ = 0.5 shows.

For b1AST in the right panel, a given increase in λ leads to a decrease in
b1AST that remains directly proportional to r⊗. As indicated on the horizontal
axis, b1AST is activated precisely when λ = r⊗. A smaller angle between x and
y would have brought the astimated solutions closer to bZellner through a higher
r⊗.

In the multivariate case, a decrease in λ causes an active b1AST,k parameter
to move linearly in the direction of its restricted bAOLS = (X ′AXA)−1(X ′Ay)
solution, where the subscript A selects rows and/or columns of active parameters.
This follows from minimizing L1AST for the active regressors. To get rid of the
absolute signs in L1AST , one can replace |bk − β0,k| by zk(bk − β0,k); provided
that zk is −1 or +1 depending on whether (bk − β0) is negative or positive. The
first-order conditions then lead to

b1AST,A(λ) = bAOLS − λ(X ′AXA)−1Q−1
1,A(y′y)zA, β0 = ~0, (3.5)

where the diagonal matrix Q1 has diagonal elements of q1. If we wish to use
b1AST,A(λ), we only need to check whether the sign of zk indeed corresponds to
that of (b1AST,k−β0,k) for a given λ, and this will determine whether a regressor
is active or not.

For our current discussion about the role of accuracy and simplicity in relation
to b1i, b1a, and b1c, it is sufficient to focus on the moment that inactive regressors
become active. As a first step, we can further simplify the situation by assuming
that the standardized regressors are orthogonal and that β0 = ~0. Starting with
a current λcur = ∞, so that all regressors are inactive, it can be shown that
regressor k is added to the active set at λ̂ = max

k, 0≤λ̃k≤λcur
λ̃k, where

λ̃k(zk) = zk(x′ky)(y′y)−1

Q−1
1,kk

, k ∈ Ac, β0 = ~0,⊥ X. (3.6)

In words, inactive regressor k is activated at λ̂ once its λ̃k is higher than the
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others but below the current λcur value.

To begin with the Adaptive Lasso type b1i astimator, it can be remarked
that the individual simplicity measure Q1i,kk = |bOLS,k − β0,k| is barely affected
by other regressors. Even when variables are correlated and β0 6= ~0, the first
moment that a regressor (xk) is activated can be rewritten as λ̃k = R⊗kk. In case
β0 = ~0, its (initial) path is

b1ASTi,k =
{

(1− λ/R⊗kk)bkOLS if λ ≤ R⊗kk and β0 = ~0,
0 if λ > R⊗kk and β0 = ~0,

where bkOLS = (x′kxk)−1x′ky, see 3.A.3.2 in the Appendix. If a regressor is
completely uncorrelated with the active regressors, it will also be activated
at R⊗kk and linearly move towards bkOLS . As is shown in 3.A.3.1, this holds
true for β0 6= ~0 as well. So, λ again determines the minimum influence of β0

when regressors are uncorrelated; and that influence increases to the extent that
β0 is competitive to a data-optimized solution, as measured by the regressor’s
contribution to R2 accuracy.

Next, consider the astimated version of the Lasso, which is the b1a astimator
with Q1a,kk = 1

K

∑
l |bOLS,l − β0,l|. Under orthogonality (we need not assume

that β0 = ~0), each moment of activation occurs at

λ̃k = 1
K

√
r⊗k

K∑
l=1

√
r⊗l , k ∈ Ac,⊥ X, (3.7)

see 3.A.3.1. If we suppose that β0 = ~0, that the model has a perfect fit, and
that each regressor k contributes equally (r⊗k = 1/K), then all parameters are
activated at 1

K . In case only a subset of KB parameters are equally responsible
for the perfect fit, then this subset too will be activated at 1

K , since λ̃k of a
relevant regressor then equals 1

K
1√
KB

KB
1√
KB

= 1
K . In general, equation (3.7)

shows that the addition of an irrelevant regressor will always have a negative
impact on the timing of when a relevant regressor is activated.

For the highlighted b1c astimator with Q1c,kk =
∑
l θ
k
l |bOLS,l − β0,l| = q1c,k,

orthogonal regressors are added to the active set at the moment that

λ̃k =
√
r⊗k

K∑
l=1

θkl

√
r⊗l , k ∈ Ac,⊥ X, (3.8)

where β0 need not be a zero vector, see 3.A.3.1. Since θkl will be 1 at k and 0
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otherwise (Θ = IK) when regressors are uncorrelated, λ̃k = r⊗k and b1c = b1i.
To anticipate the behavior of b1c in the case of correlated regressors, let

us assume that there are K = 4 uncorrelated regressors; and that we want to
stimulate the first two parameters to have a similar deviation from β0 = ~0 via

Θ =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1 0
0 0 0 1

 .

The first column θ1 = [ 1
2

1
2 0 0]′ implies that the relative simplicity index of x1

becomes q1c,1 = 1
2 |bOLS,1|+

1
2 |bOLS,2|; and since the second column is the same,

q1c,2 = q1c,1. Equation (3.8) subsequently shows that b1 and b2 will be activated
at a λ̃k value that is closer to their average contribution to R2, since λ̃1 will
then equal 1

2r
⊗
1 + 1

2

√
r⊗1 r

⊗
2 instead of r⊗1 .

3.4. b1 Astimators: Correlated Data

Next, I will study what happens when we relax the assumption that regressors
are uncorrelated, so that x′kXA(X ′AXA)−1 can be different from zero. The
expression for λ̃k, which dictates when a regressor is activated, is then given by

λ̃k(zk) =
zkx
′
k

(
y −XAbAOLS

)
(y′y)−1

Q−1
1,kk − zkx′kXA(X ′AXA)−1Q−1

1,AzA
, k ∈ Ac, β0 = ~0. (3.9)

The numerator of λ̃k tells us how much xk moves in the same (or opposite)
direction as y once the explanatory potential of the active regressors XAbAOLS
has been deducted. The smaller the absolute correlation between xk and this
unexplained part of y, the larger λ̃k, and the sooner xk is activated. A conspicu-
ous problem is that an inactive regressor that is highly correlated with active
regressors will have little to add to the unexplained potential of y even though
it will be nearly as relevant as these active regressors.

The denominator of λ̃k helps to deal with this issue, because λ̃k increases
the more xk is correlated with XA. More specifically, the denominator of λ̃k
becomes smaller when Q−1

1,kk is reduced by the diagonal elements of Q−1
1A, and

this occurs to the extent that xk is correlated with the active regressors through
x′kXA(X ′AXA)−1. So, a small denominator with high correlations between xk
and XA brings the moment λ̂k closer that regressor k is activated.
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With these correlations in mind, the differences between an average and an
individual simplicity measure can be further examined through equation (3.9).
The diagonal elements of Q−1

1a all have the same value by definition, so that
Q−1

1a,kk will be compensated greatly by those Q−1
1a,A with which it is correlated.

When an individual simplicity index of b1i is used, on the other hand, a given
deviation from β0,k = 0 is penalized less for a relevant regressor with a large
|bOLS,k|, because its Q−1

1,kk = 1/|bOLS,k| is smaller. As a result, the diagonal
elements of the active Q−1

1i,A will generally be smaller than those of the inactive
Q−1

1i,kk. The amount with which Q−1
1i,kk is lessened by Q−1

1i,A thereby decreases, so
that regressor k will be added at a much lower λ̃k even though it might correlate
just a bit less with y than the active regressors.

This tendency of the b1i astimator to ignore relevant regressors might be a
disadvantage when regressors are highly correlated, but b1i also ensures that
irrelevant regressors are inactivated at a low λ already. The b1a astimator, by
contrast, compensates irrelevant regressors too liberally, which in turn delays
the grouping effect of relevant parameters.

To gain more control over the influence of cross-correlations, one can use a b1c

astimator, where Q−1
1c,kk =

(∑
l θ
k
l |bOLS,l − β0,l|

)−1
. Remember that absolute

cross-correlations lower than cmin ∈ [0, 1] can be set to zero when computing
the standardized correlation matrix Θ. In case cmin = 0, the smallest of cross-
correlations are of influence in estimating βk. When all of the cross-correlations
are below cmin, b2c is the same as b1i. In the intermediate case, Q1c,kk of a
relevant regressor is unaffected by an irrelevant regressor with which it is barely
correlated.

To derive asymptotic correctness for the Lasso it is often assumed that
max
k∈Ac
||x′kXA(X ′AXA)−1||1 are small so that irrelevant regressors do not influence

the relevant ones too much (Hastie et al., 2009, pp. 91). With b1c, I impose that
small cross-correlations scarcely influence λ̃k, because poor regressors will have
a much smaller Q1c,kk.

In Appendix 3.A.2, a computationally efficient solution procedure is derived
for when regressors are activated and inactivated, whereby β0,k is also allowed
to deviate from zero. In relation to LARS, I show under these more general
conditions that the regressor is added to the active set which has the largest
correlation to the current residual of (y − XAbA − X¬Aβ0,¬A); and that the
solutions move in the direction of b̃AOLS,k = (X ′AXA)−1(X ′A(y −X¬Aβ0,¬A)).
To speed up LARS type algorithms that have been proposed before in the
literature, the appendix also discusses in which cases and in which manner the
moment should be computed that active regressors become inactive.
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Finally, I will specify the range over which λ is defined. As aforesaid, the
diagonal elements of R⊗ can easily be smaller than 0 when regressors are
correlated; and in more unusual circumstances, they can be larger than 1. The
only restriction that always holds is that the trace of R⊗ equals R2. Having just
shown that the first regressor is activated at the largest R⊗kk for b1i, this means
that λ need not lie below 1 for an `1 based astimator. Combining an `1 norm
with an `2 norm forces λ ∈ [0, 1].

3.5. b12 Astimators

The Elastic Net combines Ridge regression and the Lasso, because Ridge regres-
sion has a [stronger] tendency to assign a similar coefficient to highly correlated
regressors and the Lasso has the advantage of performing exact subset selection.
The astimated versions of the Ridge and Lasso loss functions are L2ASTa and
L1ASTa, respectively. I will now take a weighted average between the latter two
loss functions to obtain

L12ASTa = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) + . . .

. . . λ

K∑
k=1

( α

1− λ
(bk − β0,k)2

1
K

∑
l(bOLS,l − β0,l)2 + 2(1− α) |bk − β0,k|

1
K

∑
l |bOLS,l − β0,l|

)
,

where α ∈ [0, 1] determines the weight that is assigned to the `2 norm (α→ 1)
relative to the `1 norm (α→ 0). For α > 0, bk will move towards β0,k as λ→ 1,
so that 0 ≤ λ ≤ 1 once more.

There are two important differences between the b12a astimator and the
b2c astimator of the previous chapter. First, the former combines two loss
functions that are both defined in terms of an average simplicity measure
(L2ASTa and L1ASTa), while the latter combines L2ASTa with L2AST i. As I
have just explained, loss functions with an average simplicity measure will not
stimulate subset selection as effectively as an individual simplicity measure does.

Second, it remains obscure in b12a how the tuning parameter α affects the
manner in which correlated and irrelevant regressors are dealt with. An α of
0.75, say, does not even mean that alterations in b will for 75% be due to an
`2 norm and for 25% to an `1 norm. What does α = 0.75 imply in terms
of the degree to which regressors receive a similar parameter value? How do
cross-correlations between regressors affect such an inclination? Would it not be
preferable to inactive irrelevant regressors as soon as possible and to only group
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highly correlated regressors?
In short, I expect that the b2c astimator gives a better control over subset

selection and grouping than b12a. The exact subset selection of the latter
astimator is a noteworthy aspect, but it comes with a price of solutions having
to be approximated with a coordinate descent algorithm. The b2c astimator has
the distinct advantage of offering straightforward analytic solutions.

If a researcher is keen on performing exact subset selection, then he can use

L12ASTc = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) + . . .

. . . λ

K∑
k=1

( α

1− λ
(bk − β0,k)2∑

l θ
k
l (bOLS,l − β0,l)2 + 2(1− α) |bk − β0,k|∑

l θ
k
l |bOLS,l − β0,l|

)
,

(3.10)

so that the b2c astimator is combined with a b1c astimator. The b2c astimator
will emphasize grouping more strongly (even when Θ is defined as IK), whereas
the b1c astimator makes it easier to identify and avoid irrelevant deviations from
β0. So, when cross-correlations are high, an α close to 1 may be more optimal,
and when cross-correlations are low, an α near 0 could be preferable.

Having studied differences between `1 based astimators theoretically, I will
now continue to illustrate their behavior with a simulated data set and an
empirical application.

3.6. Analyzing the Influence of
Tuning Parameters

3.6.1. Simulation Studies
To examine the postulated influence of tuning parameters on the astimated
solutions, I will now turn to a simulation exercise whereby there are two relevant
and highly correlated regressors and two irrelevant and uncorrelated regressors. A
sample of twenty data points are simulated with y = Xβ+ε, where β = [2 2 0 0]′,
ε ∼N(0, 1), X ∼N(0,Σ), and Σ = I except for Σ{2,1},{1,2} = 0.9. The priors
are defined as β0 = ~0. In the resulting data set, which was also used in the
previous chapter, the diagonal elements of R⊗ equal [0.56 0.40 0.02 −0.00]′

and the cross-correlations between x1 and x2 are 0.94.
Figure 3.2 gives solutions paths for this data, whereby the independent

variables are standardized with Z-scores and the dependent variable is centered.
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Figure 3.2: Solutions Paths b1
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This figure shows solution paths for the benchmark estimators on the left hand side
and `1 based astimators on the right hand side, with the selected coefficients on the
vertical axis and the tuning parameter on the horizontal axis. The λ tuning parameter is
occasionally defined in terms of a function of u for ease of display. Data (N = 20) are
simulated with y = Xβ + ε, β = [2 2 0 0]′, ε ∼ N(0, 1), X ∼ N(0,Σ), and Σ = I except
for Σ{2,1},{1,2} = .9. Prediction model: ŷ = Xb, whereby β0 = [0 0 0 0]′.
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Figure 3.3: Solutions Paths b12
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This figure shows solution paths of astimators that combine `1 and `2 norms. Data
(N = 20) are simulated with y = Xβ + ε, β = [2 2 0 0]′, ε ∼ N(0, 1), X ∼ N(0,Σ), and
Σ = I except for Σ{2,1},{1,2} = .9. Prediction model: ŷ = Xb, whereby β0 = [0 0 0 0]′.

The top panels present the Adaptive Lasso and its astimated analogue b1ASTi.
The only difference between these methods is the tuning parameter λ. Focusing
on the astimated version, parameter b1 is activated precisely at λ = R⊗1,1 = 0.56.
Even though x2 makes a small angle with y, the variable will have little to add
to the explanatory potential of y once x1b1 has been deducted, due to the large
cross-correlation of 0.94. For this reason, b1ASTi only allows the second regressor
to deviate from zero once λ = 0.07.

The middle two panels of Figure 2.3 show the Lasso and its astimated
version b1ASTa. In line with the theory above, it takes longer for the Lasso
type astimator to ignore irrelevant regressors than for the Adaptive Lasso type
astimator. Although the Lasso type astimator does not isolate a single member
from a group of correlated regressors, it does delay the moment that the relevant
regressors are activated considerably when irrelevant regressors are included.
Since R2 = 0.97 is near perfect, the first two parameters are both activated at
around λ ≈ 1/K = 0.25.

The Elastic Net in the lower left panel of Figure 3.3 has the nice property that
the first two parameters are joint together with an `2 norm while exact subset
selection is performed with an `1 norm. I have used α = 0.5. In comparing the
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Elastic Net to the (Adaptive) Lasso, one can observe that it takes longer for
the irrelevant regressors to be inactivated, which shows that subset selection is
unnecessarily affected by a general tendency to shrink parameters to a similar
value. It also takes quite a while for b1 and b2 to receive a similar value.

The b1ASTc solutions in the lower right panel delete irrelevant regressors from
the active set as quickly as b1ASTi. Unlike the latter astimator, b1ASTc does
not merely focus on a single regressor out of a group of correlated regressors.
Parameters b1 and b2 are activated at 0.48 and 0.36, which is close to their
average contribution to the fit of the model. To make the grouping of the first
two parameters as strong as in b1ASTa, one could equate absolute correlations
exceeding cmin to 1.

Next, Figure 3.3 presents the solutions of b12ASTa and b12ASTc with α = 0.5.
The former is closely associated with the Elastic Net. Unlike the Elastic Net,
b12ASTc deactivates irrelevant regressors at a low λ while the relevant regressors
are slowly shrunk towards 0. In this example, the b12ASTc solutions are highly
similar to b2ASTc of the previous chapter. The difference is that exact rather
than approximate subset selection is now performed.

3.6.2. Case Study: Diabetes
Finally, I will discuss a well known empirical case study about N = 442 diabetes
patients (Efron et al., 2004). In this application, a measure of how the disease
progressed one year after a baseline is regressed on K = 10 baseline variables.
The explanatory variables are age, sex, body mass index (‘BMI’), average blood
pressure (‘BP’) and six blood serum measurements (‘S1’, ‘S2’,. . . ). This case
study is typically used to illustrate that the Lasso can deactivate formerly active
parameters as λ decreases.

Table 3.1: Description Regressors Diabetes

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
S5 BMI BP S3 S1 sex S6 S4 S2 age

S3 -.40 -.37 -.18 1 .05 -.38 -.27 -.74 -.20 -.08
R⊗kk .26 .19 .09 -.02 -.10 -.01 .02 .05 .05 -.00

This table presents the diagonal R⊗ values of the regressors of the diabetes data as well as the cross-correlations
with the third blood serum measurement S3. Regressors are enlisted in the order of when they are first added
to the active set by b1c with cmin = 0 in the top panel of Figure 3.4.

Such behavior can also be observed in the top panel of Figure 3.4, where
b1c in equation (3.3) with cmin = 0 is plotted against the turning points of
when regressors are (de-)activated. The parameter of the third blood serum
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Figure 3.4: b1c Astimation with Diabetes
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This figure illustrates how b1c selects parameters of the Diabetes case study. Panel i
uses cmin = 0 and plots the coefficients against the turning points of when regressors
are activated or deactivated. Regressor ‘S3’ is compensated here for having correlations
(which are below 0.5) with the first three parameters that were activated. Panel ii is
different from panel i in that cmin = 0.5, so that ‘S3’ is no longer compensated for its
correlations with the first three regressors. Panel iii uses cmin = 0.5 like panel ii, but
plots the coefficients against λ, which enables one to infer the contribution of a regressor
to the fit of the model.



58 ASTs and the Linear Regression Model: b12 Astimators

measurement S3 is added to the active set at the fourth turning point, later
deactivated at the eleventh turning point, and activated once more at the twelfth
turning point. To explain why that happens, Table 3.1 presents cross-correlations
with S3, whereby the regressors are sorted in the order of when they are first
added to the active set by b1c with cmin = 0. S3 is activated quite early, because
it is compensated for having correlations of -0.40 and -0.37 with the first two
regressors. The subsequent change in sign results from the fact that regressors
are later added with which S3 is highly correlated.

The b1c astimator enables the researcher to control such influences of cross-
correlations on the grouping of parameters. By setting the minimum cross-
correlation to be cmin = 0.5, the variable S3 receives no compensation for its
cross-correlations with the first two regressors and is only activated at the ninth
turning point. This is shown in the middle panel of Figure 3.4. Note that this
panel does not indicate how the moment of activation of a regressor is related
to its contribution to in-sample accuracy.

Astimators also make it easier to anticipate and interpret at which values
of λ regressors are activated. This is illustrated in the bottom panel of Figure
3.4, where b1c with cmin = 0.5 is plotted against λ rather than the turning
points. The moment of activation is closely related to the diagonal elements
of R⊗. These values are presented in Table 3.1 and add up to R2 = 0.52. The
first regressor is activated at λ = 0.21 instead of 0.26, for example, due to its
correlations with S1 and S4. After compensating for high-cross correlations with
an `1 norm, it becomes clear that the fifth blood serum and the body mass index
account for the lion’s share of the model’s in-sample accuracy.

3.7. Discussion
For Bayesian and Frequentist estimators it is nearly impossible to anticipate
and influence how prior hypotheses are balanced with data-optimized solutions.
Through the tuning parameter λ, astimators enable a straightforward interpreta-
tion of the moment that coefficients deviate from β0. The benchmark estimators
also have difficulties in controlling the second AST, where the simplicity of group-
ing parameters is promoted at the expense of in-sample accuracy. The reason is
that these methods do not differentiate between high and low cross-correlations.
The b1c and b12c astimators do allow a researcher to exercise control over the
second AST through cmin.

Now that the interpretation of λ has become clear, it ought to be investigated
how a researcher’s estimate of λ can be made more dependent on the data. The
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out-of-sample performances of the different estimators and astimators should
also be compared.

3.A. Appendix: Further Details
Regarding b1AST and b12AST

3.A.1. Coordinate Descent Algorithm for `1 Based Astimators

In this appendix I will describe how a coordinate descent algorithm can be
used to find solutions of b1 and b12 astimators. A general loss function of b1

astimators is given by

L1AST = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) + 2

K∑
k=1

λk
|bk − β0,k|

q1
. (3.11)

To define q1, one can think of q1c,k =
∑
l θ
k
l |bOLS,l − β0,l|, which has q1i and

q1a as special cases. Following Friedman et al. (2007), I will concentrate on
parameter bk while keeping the other bj 6=k values fixed at b̃j . The loss function
can be then written as

L1AST = (y −X¬k b̃¬k − xkbk)′(y −X¬k b̃¬k − xkbk)
s0

+ . . .

. . . 2
(
λk
|bk − β0,k|

q1,k
+

K∑
j 6=k

λj
|b̃j − β0,j |

q1,j

)
,

We can now introduce a vector zk that is −1 or +1 depending on whether the
sign of (bk − β0,k) is negative or positive, so that we can drop the absolute signs
and replace |bk − β0,k| by zk(bk − β0,k). The first-order condition ∂L1AST

∂bk
= 0

then leads to
b̃k = (x′kxk)−1

(
x′k(y −X¬k b̃¬k)− λk

zk
q1,k

)
. (3.12)

Before bk can be equated to b̃k, we need to check whether the sign of zk indeed
corresponds to the sign of (b̃k − β0,k). From equation (3.12), it is clear that b̃k
moves linearly in the direction of b̃kOLS = (x′kxk)−1(x′kỹ) as λ decreases to 0. If
the signs between zk and (b̃k − β0,k) do not match, all solutions to the b̃k side of
β0,k (like b̃kOLS) are illegitimate. Of the possible values of |bk − β0,k|, the choice
of bk = β0,k will then be closest to the ‘optimal’ but illegitimate b̃kOLS . For a
convex least squares problem, this means that bk should be equated to β0,k if
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the sign of zk is different from that of (b̃k − β0,k).

To check the sign of (b̃k−β0,k), we can deduct β0,k on both sides of equation
(3.12) to get

b̃k − β0,k = (x′kxkq1,k/s0)−1
(
zkλ̄k − λk

)
, (3.13)

where
λ̄k = x′k(y −X¬k b̃¬k − xkβ0,k)q1,k

s0
. (3.14)

The denominator is always positive in equation (3.13), because it only contains
squared terms. A positive zk therefore corresponds to a positive (b̃k−β0,k) when
λk ≤ +λ̄k. In that case, bk can be equated to b̃k and otherwise bk = β0,k. From
a negative zk one gets bk = b̃k as long as λk ≤ −λ̄k; and bk = β0,k otherwise.
Hence the solution of L1AST can be approximated by

b̃1AST,k(λk)← S(b̃k, β0, λk) (3.15)

where

S(b̃k, β0,k, λk, λ̄k) =
{
b̃k if λk ≤ |λ̄k|
β0,k otherwise,

(3.16)

where zk is replaced by sign(b̃k − β0,k) in equation (3.12).

The following steps can now be used to astimate b1AST . Select a parameter
and update that parameter according to equation (3.15). Update the next
parameter in line until convergence. Go from λ = λmax to λmin with incremental
steps and use each solution as a warm start for the next; also when a single value
of λ is of interest. Friedman et al. (2007) make use of a Tseng (1988). Here it
is shown that coordinate descent algorithms converge to the minimizer of loss
functions like

f(b) = g(b) +
K∑
k=1

hk(bk), (3.17)

where g(b) is convex and differentiable and the convex penalty term
∑K
k=1 hk(bk)

is a sum of functions of each separate parameter. As a convergence criterion,
the program stops when there are no changes in the standardized parameters
up to the second decimal place. The speed of the algorithm can be increased by
computing terms like x′kxk outside the loop.

The same steps can be used to derive the coordinate descent algorithm for a
general L12AST loss function with some qk. To obtain the b12c astimator, one
can define q2c,k = 1

K

∑
l θl|bOLS,l − β0,l| and q1c,k = 1

K

∑
l θl(bOLS,l − β0,l)2, for
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example. The first-order conditions of

L12AST = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) + . . .

. . .
λ

K

K∑
k=1

( α

1− λ
(bk − β0,k)2

q2,k
+ 2(1− α) |bk − β0,k|

q1,k

)
,

lead to

b̃12AST,k =
(
x′kxk + αλ

1− λ
s0

q2,k

)−1(
x′k(y −X¬k b̃¬k − xkβ0,k) + . . .

. . . λs0

( α

1− λ
s0

q2,k
β0,k −

(1− α)zk
q1,k

))
. (3.18)

Since the L2 terms cancel in the numerator when b̃12ASTi,k − β0,k is computed,
one obtains

λ̄12AST,k = 1
1− αx

′
k(y −X¬k b̃¬k − xkβ0,k)q1,k

s0
, (3.19)

which is the same as equation (3.14) above except for 1/(1 − α). One can
now use S(b̃12ASTi,k, β0, λk, λ̄12ASTi,k) again to cycle through parameters until
convergence.

3.A.2. Algorithm for Obtaining the Entire Solution Path of b1AST

Next, it will be explained how a complete solution path can be obtained for a
loss function that uses an `1 norm in the simplicity measure. To summarize the
notation that I will be using, let A select all active parameter rows and/or active
parameter columns and let ¬A select the inactive ones. Let the column vector z
indicate by -1 or +1 the sign of b1ASTk(λ)− β0,k. Let ¬k denote that parameter
k is not included in a set, and let k refer to a row and/or column associated
with the kth regressor. Finally, let bAOLS,¬k performs OLS with XA,¬k instead
of XA. With this notation, Algorithm 3.1 gives an overview of how the entire
solution path can be computed for a given λ. I will now explain the few steps
that are required for its derivation. Any remaining details (3.A.3.1, 3.A.3.2,
. . . ) are presented in the next section.
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Algorithm 3.1 Entire Solution Path of b1 Astimators
Input: β0, X, Y,Q
Output: b1AST (λ)
Let b̃AOLS = (X ′AXA)−1

(
X ′A(y −X¬Aβ0,¬A)

)
,

bA(λ) = b̃AOLS − λ(X ′AXA)−1Q−1
1,As0zA, (3.20)

the initial λcur =∞, and let

λ̃k(zk) =
zkx
′
k

(
y − (XAb̃AOLS +X¬Aβ0,¬A)¬k − xkβ0,k

)
s−1

0

Q−1
1,kk − zkx′k

(
XA(X ′AXA)−1Q−1

1,AzA

)
¬k

. (3.21)

while λ̂k ≥ 0 do
1. Compute λ̃k for currently inactive regressors with

max{λ̃k(−1), λ̃k(+1)}.
2. Only calculate λ̃k(zA,k) for a currently active regressor if the sign of a

new (b̃AOLS,k − β0) is different from the sign zA,k of (bA,k(λ̂)− β0).
3. Switch activity status of k∗ at λ̂ = max

k, 0≤λ̃k≤λcur
λ̃k.

4. Compute b1AST (λ̂) with bA(λ̂) and β0,¬A.
end while

Notes: Q is a K diagonal matrix, like Q−1
1i,kk = 1/|bOLS,k −β0, k|; s0 = (y−Xβ0)′(y−Xβ0), A selects

all active parameters rows and/or active parameter columns; zA gives the sign (-1 or +1) for each active
regressor based on the current sign of (bA,k(λ̂)−β0); ¬k means that element k was excluded from a set (if
applicable); b̃AOLS,¬k performs b̃AOLS after k has been removed from XA or X¬Aβ0,¬A. Premultiply

Q
−1
1,kk by a factor if you wish to penalize some regressors harder than others.

By minimizing L1AST in equation (3.11) for active regressors, the solutions
of bA(λ) are given by equation (3.20). From this expression it is clear that as λ
moves towards zero, bA,k moves linearly in the direction of b̃AOLS,k. To solve
a b1 astimator we just need to figure out at which λ values the set of active
regressors is altered and connect the dots.

In the derivation of the coordinate descent algorithm in Appendix 3.A.1
above, it was shown that the set of active regressors can be defined as A = {k :
λ < zkλ̄k}, where

λ̄k =
x′k

(
y −X¬kb¬k(λ)− xkβ0,k

)
s−1

0

Q−1
1,kk

. (3.22)

At a given λ, solutions of parameters other than k are represented by b¬k(λ);
and this vector is made up of the active bA(λ̂) and inactive β0 parameters. Since
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the relevant bA(λ) are given by equation (3.20) and the values of β0 are specified
by the researcher, we can just substitute these expressions in λ̄k and solve for λ
in λ < zkλ̄k. The solutions are given by λ̃k in equation (3.21), see 3.A.3.3 for a
derivation. The next alteration of an activity status occurs at the highest λ̃k
below the current λcur.

For presently inactive regressors, λ̃k can be computed by max{λ̃k(zk =
−1), λ̃k(zk = +1)}. Once parameter bk has become active, equation (3.20) shows
that it will move towards its b̃AOLS,k solution, so the sign in zA corresponds to
the sign of b̃AOLS,k of when k was most recently added to A. Active parameters
can become inactive when λ ≥ zkλ̃k, but this will only occur after the sign of
(b̃AOLS,k − β0,k) has become different from the sign of (bA,k − β0,k) as a result
of some new regressor being included or excluded. Merely in that case does one
need to compute λ̃k(zk = zA,k) to locate when active regressors become inactive.
By altering the active set at the largest permissible λk in this way, the entire
solution path of L1 loss functions is quickly obtained.

In the current literature, the moment that a regressor is activated or inacti-
vated is usually solved separately to find solutions akin to equation (3.21) (Zou
et al., 2007, Tibshirani, 2011). If separate strategies are employed, then I suggest
to make use of a similarity between triangles to show that an active bk will hit
β0 at

λ̃k = λcur
|b̃AOLS,k − β0,k)|

|b̃AOLS,k − β0,k|+ |bA,k(λcur)− β0,k|
, (3.23)

which will be faster to compute than an equation like (3.21), because it merely
contains scalars that are already available.

About the relationship between the LARS algorithm and the Lasso type b1a

astimator with β0,k = 0, it is clear from condition λ < zkλ̄k with λ̄k defined in
equation (3.22), that regressor k is activated once its angle to the current residual,
x′k(y−XAbA), equals Q−1

1a,kks0zkλ. It follows that Q−1
1a,kks0zAλ = X ′A(y−XAbA)

from substituting bA by equation (3.20),

X ′A(y −XAbA) = X ′Ay − (X ′AXA)
(

(X ′AXA)−1X ′Ay − λ(X ′AXA)−1Q−1
1,As0zA

)
,

= Q−1
1a,kks0zAλ;

and from using that Q−1
1a,kk is the same for all k.

The result is that a b1a astimator adds a new regressor once its angle to the
current residual is the same as those of the active regressors. What is more, the
angles between XA and y −XAbA are equal and they decrease monotonically
as λ goes to zero. Add the fact that active regressors are inactivated once the



64 ASTs and the Linear Regression Model: b12 Astimators

sign of bA(λ)− β0 changes, and it becomes clear that the algorithm is equivalent
to LARS for Q1,a and β0,k = 0. The same logic can be applied in the more
general case where β0 is allowed to deviate from zero. The ‘current residual’
then becomes (y−XAbA−X¬Aβ0,¬A) and the solutions move in the direction of
b̃AOLS,k. Forward selection can be performed by ignoring step 2; and backward
selection could be executed as well.

3.A.3. Remaining Claims

3.A.3.1: Assume β0 = ~0 and orthogonal X and show that each moment of
activation of a b2ASTc parameter can be written as

λ̃k =
√
r⊗k

K∑
l=1

θkl

√
r⊗l (3.24)

for r⊗l = (x′ly)(x′ly)′(x′lxl)−1(y′y)−1, where Q1c,k =
∑
l θ
k
l |bOLS,k|. Also

prove that the results of K = 1, b2ASTi, and b2ASTa are special cases. Fi-
nally, show that the relation in (3.24) holds in case β0 6= ~0, whereby r⊗l =
(x′lỹ0)(x′lỹ0)′(x′lxl)−1(ỹ′0ỹ0)−1 with ỹ0 = y −Xβ0.

1. Use that |a| =
√
a2 for some scalar a ∈ R and that (X ′X)−1 = 1

N−1IK for
orthostandard data to rewrite

λ̃k = zk(x′ky)(y′y)−1Q1c,kk,

= (y′y)−1|x′ky|
K∑
l=1

θkl |(x′lxl)−1(x′ly)|,

=
√

(x′ky)(x′ky)′(x′kxk)−1(y′y)−1
K∑
l=1

θkl

√
(x′ly)(x′ly)′(x′lxl)−1(y′y)−1,

=
√
r⊗k

k∑
l=1

θkl

√
r⊗l .

2. Special cases:

– For K = 1 or b2ASTi, define Θ = IK to get λ̃k =
√
r⊗k

√
r⊗k = R⊗kk.

– For b2ASTa, define θkl = 1/K to get λ̃k = 1
K

√
r⊗k
∑K
l=1

√
r⊗l .
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3. In case β0 6= ~0 (and X is orthogonal), we get

λ̃k = zk(x′kỹ0)(ỹ′0ỹ0)−1
K∑
l=1

θkl |bOLS,l − β0,l|.

The derivation is the same as in point 1. if it is recognized that

bOLS,l − β0,l = (x′lxl)−1(x′lỹ0),

so that every y can be replaced by ỹ0.

3.A.3.2: Given that the prior coefficients β0 are all zero and that Q1i,kk =
|bOLS,k−β0,k| is used; prove that the first activation occurs at the largest diagonal
elements of

R⊗ = (X ′y)(X ′y)′(X ′X)−1(y′y)−1.

Second, show that the (initial) path of the first activated regressor (xk) is given
by

b1ASTi,k =
{

(1− λ/R⊗kk)bkOLS if λ ≤ R⊗kk,
0 if λ > R⊗kk,

for active bkOLS = (x′kxk)−1(x′ky) and a 1×K vector i that is 1 at k and zero
otherwise. Third, if β0 6= ~0, it holds that

R⊗ = (X ′ỹ0)(X ′ỹ0)′(X ′X)−1(ỹ′0ỹ0)−1

for ỹ0 = y −Xβ0. Prove in this more general setting that the first activation
also occurs at λ = maxk R⊗kk when b1ASTi is applied.

1. Parameter bk is activated once λ̃k = (x′ky)(y′y)−1Q1i,kk = R⊗kk.

λ̃k = (x′ky)(y′y)−1|bOLS,k|

=
√
i(X ′y)(X ′y)′(X ′X)−1(y′y)−1(X ′y)(X ′y)′(X ′X)−1(y′y)−1i′,

=
√
iR⊗R⊗i′

= R⊗kk.

whereby I have used that |a| =
√
a2 for some scalar a ∈ R.
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2. The solution path is therefore given by

b1ASTi,k = (x′kxk)−1
(
x′ky − λQ−1

1i,kk(y′y)
)
,

= bkOLS − λ(x′kxk)−1(x′ky) 1
(x′ky)(y′y)−1|bOLS,k|

,

= (1− λ/R⊗kk)bkOLS .

In the second line, I multiplied the second term by x′ky
x′
k
y = 1. In the third

line, I used that λ̃k = R⊗kk.

3. For β0 6= ~0, see point 3. in 3.A.3.1.

3.A.3.3: Equate λ = zkλ̄k and solve for λ to get

λ̃k(zk) =
zkx
′
k

(
y − (XAb̃AOLS +X¬Aβ0,¬A)¬k − xkβ0,k

)
s−1

0

Q−1
1,kk − zkx′k

(
XA(X ′AXA)−1Q−1

1,AzA

)
¬k

.

Using that bA(λ) = b̃AOLS−λ(X ′AXA)−1Q−1
1,As0zA, we can replace X¬kb¬k

by XAbA(λ) +X¬Aβ0,¬A in

λ = zkx
′
k

(
y −X¬kb¬k − xkβ0,k

)
Q1,kks

−1
0 ,

= zkx
′
k

(
y − (XAb̃AOLS +X¬Aβ0,¬A)¬k − xkβ0,k

)
Q1,kks

−1
0 + . . .

. . . zkxkXA(X ′AXA)−1Q−1
1,AzA)Q1,kkλ.

Bring the latter term to the left hand side and the result quickly follows.



4
Accuracy-Simplicity Tradeoffs and the Selection of
Tuning Parameters

4.1. Introduction

In the preceding two chapters, I have argued that the choice of linear regression
coefficients entails two instances of an Accuracy Simplicity Tradeoff. Unrestricted
data-optimization is penalized in the first AST with the simplicity of the prior β0

and in the second AST with the simplicity of grouping parameters together. The
solutions of b12ASTc in equation (3.10) of Chapter 3 allow researchers to control
both ASTs through λ, cmin, and α. The first tuning parameter λ determines
the degree of shrinkage towards β0, the second specifies with cmin how high
cross-correlations need to be for coefficients to be grouped together, and the third
parameter α indicates to what extent an `1 or an `2 norm is used in measuring
deviations from β0.

In this chapter I will use simulation studies to compare the out-of-sample
forecasting performances of the different estimators and astimators. Before
doing so, I will need to discuss how the tuning parameter λ can be selected.
Astimators already make it easier to anticipate how λ affects a coefficient’s
degree of shrinkage towards β0, because λ represents the minimum degree of
shrinkage towards β0 if regressors are uncorrelated.

The choice of λ could still be complicated because it can be influenced by
many factors. On the one hand, the researcher might want to pick a high λ value
to express his confidence in a prior that is well grounded in previous research.
If the sample size is large, on the other hand, the researcher might trust the
data-optimized solution more and opt for a lower λ. If his goal is mostly to group
highly correlated regressors together and to delete variables that are irrelevant
to the data generating process, then a value of λ close to zero might do.

67
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To make the choice of λ more dependent on the data, one can make use of
cross-validation and information criteria. For both techniques the researcher has
to define a set of candidate λ values from which the optimal one is chosen. When
`2 estimators are used, this set often has to be manually adjusted a posteriori
(Friedman et al., 2010, pp. 17). The astimated versions solve this problem
because they make the effect of λ easier to anticipate. When information criteria
are applied, researchers also need to specify the effective number of parameters
K. The main procedures for doing so are to count the number of included
regressors or to compute the effective degrees of freedom. As I will explain below,
they have both become disputed. As an alternative, I will propose to use the
relative simplicity measure of an astimator as its measure for K.

The remainder of this chapter is set out as follows. In Section 4.2 it is
discussed how λ can be astimated through cross-validation. In the context
of information criteria, a new approach to measuring the effective number of
parameters is introduced in Section 4.3. Hypotheses about the performance of
the different estimators and astimators are presented in Section 4.4, and they
are evaluated with simulation studies in Section 4.5.

4.2. Astimating λ Through
Cross-Validation

Let the linear regression model be given by

y = Xβ + ε,

where the dependent variable y and the residuals ε are N × 1 vectors, where X
is an N ×K matrix of regressors, and where β is a K × 1 vector of unknown
coefficients to be estimated by b. I will also refer to the individual observation
n = 1, 2, . . . , N and regressor k = 1, 2, . . . ,K.

Let me remind the reader that although many techniques have been intro-
duced in the previous chapters, they only vary in two dimensions. The first
dimension is controlled by α and determines the extent to which exact or ap-
proximate subset selection is performed through an `1 norm (α = 0) or an `2

norm (α = 1). The second dimension specifies whether a parameter is influenced
by the deviance from β0 of other parameters through an average (a), individual
(i), or a correlation-based (c) simplicity measure.

Pivotal to the second dimension is Θ, which is a matrix of absolute cross-
correlations where the columns θkl are made to sum to 1. The researcher can
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specify cross-correlations lower than cmin to be 0 in Θ, so that parameters are
only grouped together if their cross-correlations are high. One special case is
Θ = Ik, which implies that the penalty of each parameter is independent of
the other parameters (b12i). Another special case is that all Θ values equal 1

K ,
so that a given deviation from β0 is penalized by the same amount for each
parameter (b12a). The former leads to astimated versions of the Adaptive Lasso
(b1i) and the latter to new formulations of the Lasso (b1a) and Ridge regression
(b2a). The Elastic Net is closely associated to b12a.

The most general loss function of an astimator is given by

L12ASTc = (y −Xb)′(y −Xb)
(y −Xβ0)′(y −Xβ0) + . . .

. . . λ

K∑
k=1

( α

1− λ
(bk − β0,k)2∑

l θ
k
l (bOLS,l − β0,l)2 + 2(1− α) |bk − β0,k|∑

l θ
k
l |bOLS,l − β0,l|

)
,

whereby λ strikes the balance between relative accuracy (first term right hand
side) and relative simplicity (second term right hand side).

Cross-validation is a well known technique for choosing configurations like λ,
α, and cmin. In cross-validation, the sample is split into a training sample and
a validation sample. The model is estimated with a training sample and these
estimates are used to ‘predict’ the outcomes of the validation sample. By varying
the choice of a tuning parameters, one can select the set of configurations that
leads to the best pseudo-out-of-sample forecasts. In 10-fold cross-validation, the
sample is randomly assigned to 10 folds and fold f is predicted using the other
folds for each f = 1, 2, . . . , 10, so that each observation is predicted one time.1

One disadvantage of cross-validation is that there could still be quite some
variability (uncertainty) in the data-optimized choice of the tuning parameter,
particularly when the sample size is small. Based on previous experience or
theoretical arguments, a researcher might also have good grounds for being more
confident in his prior estimate of λ0 than in the cross-validated alternative. To
come to grips with the uncertainty of cross-validation, a tuning parameter γ can
be introduced to determine how large a relative increase in accuracy must be
to justify a relative deviation from a researcher’s hyperparameter λ0. The loss

1This strategy can also be applied in time series forecasting. Alternatively, one could split
the sample in a training sample [1, N − v] and a validation sample ([N − v + 1, N ]) for v = 15,
say, and produce pseudo predictions with the training sample regarding the validation sample
for varying choices of λ. The best λ can then be selected.
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function for astimating λ is

Lλi = MSFE(bλi)
MSFE(bλ0) + γ

1− γ
(λi − λ0)2

max{(1− λ0)2, λ2
0}
. (4.1)

I will give two examples of how λ can be astimated. First, one can think
of the stylized fact that an equally weighted combination of forecasts is hard
to beat (Bates and Granger, 1969, Smith and Wallis, 2009). This means that
β0,k = 1

K is a strong prior in a forecasting combinations exercise. Lλi could then
be configured with λ0 = 1 and γ = 0.5, so that cross-validated accuracy only
has an influence of 50% relative to the simplicity of λ0 = 1.

As a second example, it might be expected that the cross-validated choice of
λ becomes more volatile when the sample size is as small as N = 10, say. With
such a small sample size, leaving out a fold of observations can have large effects
on the simplicity index q1c =

∑
l θ
k
l |bOLS,l − β0,l|1 (and q2c), which depends

on the estimated bOLS and the estimated cross-correlations. Similar problems
may occur for the Adaptive Lasso, incidentally, where |bk| in the penalty term
is divided by |bOLS,k|. Due to the variations caused be excluding a fold of
observations, deviations from β0 can be penalized too severely (Hastie et al.,
2009, pp. 243). Using that irrelevant parameters will be inactivated at a low
λ, one can restrain the size of cross-validated λ values by defining λ0 = 0. The
tuning parameter can then be astimated with a great degree of confidence of
γ = 0.9 or 0.99.

To apply cross-validation, one needs to define a candidate set of λ values from
which the optimal one is selected, and this has particularly caused trouble for `2

based estimators (Ridge regression), where readjustments are frequently required.
Astimators help to solve this issue, because they make it is easier to anticipate
at which values of λ irrelevant regressors will be inactivated. It should be noted
that an `1 norm may activate the first parameter at a λmax that is smaller (or
bigger) than 1.2 The moment that irrelevant parameters are (approximately)
equated to β0 = ~0 has been shown to be determined by the diagonal elements
of R⊗ = (X ′y)(X ′y)′(X ′X)−1(y′y)−1. Since an irrelevant regressor with a low
R⊗ will be inactivated at a low λ, the candidate configurations had best grow
exponentially from 0 to λmax.

Accordingly, I will define P = 101 candidate λ values with

λcand = mgp −m, (4.2)

2In case α > 0, λ̄12AST,k in equation (3.19) can only be used if it is less than or equal to 1.
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where m = 10−4, g = (λmax+m
m )1/(P−1), and p = 0, 1, . . . , P − 1. Note that

mg0 −m = 0 and that the choice of g follows from solving mgP−1 −m = λmax.
The smaller m, the smaller the initial increase in candidate λ values. In case
moments of (de-)activation are exactly calculated for `1 based astimators, then
I will include these in the candidate set of λ values and adjust P in equation
(4.2), so that the set still contains 101 members.

For the original `1 based estimators it will also be exploited that λmax can
be computed. Following the Matlab Lasso (2016) package, I will define

λcand = exp
(

log(λmin : st : log(λmax)
)
,

with λmin = mλmax and st = (log(λmax)− log(λmin))/(Nλ − 1). The notation
a : st : b means from a to b with steps of st. Once λcand is computed, I will
replace the first element of λcand by 0 to ensure that bOLS is one of the candidate
solutions as well. The advantage of equation (4.2) is that it leads to a more
gradual increase from β0 = 0. The optimal λ value for Ridge regression is
selected from λ = 10u with u ∈ [−5, 5]. For all techniques I will set b = β0 when
λ = 1.

Lastly, the candidate set of cmin values will be defined as {0, 0.1, 0.2, . . . , 1}.
The actual number of unique evaluations for cmin is typically smaller, because Θ
might be exactly the same when cmin = 0.4 or 0.7, say. The α of b12a and the
Elastic Net is selected from {0, 0.1, 0.2, . . . , 1}. The b12c astimator requires one
to specify three configurations (λ, α, and cmin). To reduce computational costs,
I will choose α from {0, 0.25, 0.5, 0.75, 1}. Note that cmin and α could also be
astimated through equation (4.1) by specifying cmin,0 = 0.5 and α0 = 0.5. One
can also increase or decrease α0 depending on whether cross-correlations are
high or not.

4.3. Information Criteria

A faster method for choosing λ than cross-validation is to make use of information
criteria. A popular Bayesian IC was introduced by Schwarz (1978),

BIC = log
[ 1
N

(y −Xb)′(y −Xb)
]

+ logN
N

K.

Observe that an IC balances the fit of a model with the number of effective
parametersK based on the sample size N . To penalize the inclusion of additional
parameters, one selects b with the lowest IC value. The main difficulty is that
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one has to specify what the effective number of parameters K is. I will now
discuss the critique that has been raised against the two available methods for
measuring K and propose a convenient alternative.

4.3.1. Counting the Number of Included Parameters
In discrete subset selection procedures, a regressor is either included unrestrict-
edly or excluded altogether. When an IC is applied to determine the best subset
of regressors, K has typically been measured by simply counting the number
of active parameters KA in the candidate models. KA = 2 if there are two
regressors in the subset, for example. Note that this measure of the effective
number of parameters is only influenced by whether a regressor deviates from β0

(the first AST), while no corrections are made for parameters of highly correlated
regressors being grouped together (second AST).

To compare different ways of measuring K, it will be convenient to have a
gradual version of KA that can be applied to shrinkage methods. To this end,
one can calculate what the parameter estimate bλ,k would have been if it were
possible to freely optimize over the data conditional on the other parameters
(¬k) being equal to bλ,¬k for a given value of λ. Treating X¬kbλ,¬k as fixed, we
can regress y −X¬kbλ,¬k on xk to get

b̃rOLS,k = (x′kxk)−1
(
x′k(y −X¬kbλ,¬k)

)
.

It follows that parameter k is free conditional on X¬kbλ,¬k if bk = b̃rOLS,k.
The extent to which a given parameter is data-optimized is then given by
|bk−β0,k|

|b̃rOLS,k−β0,k|
, so that a tentative measure for K becomes

K̂1ir =
K∑
k=1

|bk − β0,k|
|b̃rOLS,k − β0,k|

. (4.3)

The subscript ‘1ir’ says that an `1 norm is used to measure individual deviances
between β0,k and the restricted b̃rOLS,k solutions.

For many estimation procedures, the solution bk will always lie between β0,k

and b̃rOLS,k. The conditions are a special case of those delineating whether a
coordinate descent algorithm will optimize over a loss function, see equation
(3.17) in Appendix 3.A.1. The first condition is that the accuracy measure must
be defined in terms of the sum of squared residuals. The second condition is
that the (convex) penalty term must be separable into a sum of functions of
each individual parameter. Of all the estimators and astimators that have been
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presented in the previous chapters, only Zellner’s g-prior does not meet the
latter requirement. For the other techniques, the contribution of parameter k to
K̂1ir always lies between 0 and 1; and 0 ≤ K̂1ir ≤ K.3 If, for example, 2 out of
4 parameters are equal to their prior and the other two are unpenalized, then
K̂1ir = 2 again.

4.3.2. Degrees of Freedom

The K̂1ir measure generalizes a common usage of equating K to the discrete
number of included parameters KA, by allowing parameters to be partially
included and β0 to be different from zero. Nevertheless, it goes against decades
of research which emphasizes that the number of ‘degrees of freedom’ of a
regression does not equal the number of included parameters when a data-
optimized selection procedure is performed. Although the chosen model of a
discrete subset selection procedure has KA parameters, Hastie et al. (2009, pp.
77) feel that ‘in some sense’ we have used up more than KA degrees of freedom
here.

Accordingly, Mallows (1973) and Stein (1981) already developed a covariance
penalty as part of their information criteria with the idea that the covariance
between the estimated ŷ and the observed y gets larger the harder we fit the
data. Ye (1998) went on to define degrees of freedom as

KDF = 1
σ2

N∑
n=1

cov(ŷn, yn), (4.4)

which equals 1
σ2 tr cov(ŷn, yn) for i.i.d. errors with finite variance σ2 (Efron,

1986).
In OLS, for instance, ŷ = Hy, whereby the hat-matrix H = X(X ′X)−1X ′ is

known from outlier-detection. The OLS degrees of freedom is therefore given by
K = tr H and represents the sum of the sensitivities of the fitted values of ŷn
with respect to the observed yn. Ye (1998) showed that the covariance penalty
can be computed for other methods as well through a computationally intensive
parametric bootstrap procedure that measures how sensitive the fitted ŷn is to
adding a random value to the observed yn.

For some methods, closed-form approximations have been derived. Similar
to bOLS , KDF for Ridge regression is known to be K̂DF,Ridge = tr HRidge

with HRidge = X(X ′X + λIK)−1X ′. For a b2c astimator, K̂DF,2c equals
3For the most general of astimators b12ASTc, equation (3.18) shows that b̃k moves from

β0,k to b̃OLS,k as λ decreases to 0.
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tr X(X ′X + ΛQ−1
2c s0)X ′, where Q2c is a diagonal matrix with diagonal ele-

ments of
∑K
l=1 θ

k
l (bOLS,l − β0,l)2 and s0 = (y − Xβ0)′(y − Xβ0). Zou et al.

(2007) proved that an asymptotically (‘∞’) unbiased estimate of the Lasso’s
degrees of freedom K̂∞DF,Lasso for a fixed λ and X is simply given by the number
of active parameters that deviate from β0 = 0. They also showed that the
IC only has to be evaluated at the transition points of when the set of active
regressors alters.

When K = 1 and β0 = 0, for example, Ridge regression and the Lasso will
result in the same set of candidate regression coefficients from which an IC
chooses the optimal solution, but K̂DF,Ridge will gradually increase from 0 to
1, while K̂∞DF,Lasso already equals 1 after the slightest deviation of bLasso from
0. The degrees of freedom is higher for b1a (the Lasso), because its solutions
are directly proportional to R2 accuracy, while for b2a (Ridge regression) the
influence of R2 dies out as λ increases. So, once a parameter is activated, the
fitted values of the Lasso are far more sensitive to changes in y at a fixed λ.
The implication of setting K̂∞DF,Lasso = 1 for the active Lasso solutions is that
the choice will be between β0 and bOLS , since in-sample fit is monotone non-
decreasing for λ. One curious aspect of this result is that it makes it seem as if
gradual transitions from β0 to bOLS are irrelevant when the shrinkage estimator
is applied to K equally relevant regressors.

Kaufman and Rosset (2014) and Janson et al. (2015) recently questioned
the validity of KDF . These researchers were disconcerted by the discrepancy
between KDF and measures of model complexity like those of Lasso and Ridge
regression. In case an active regressor is inactivated while λ is decreased, for
instance, K̂∞DF,Lasso (the number of active regressors) decreases while the Lasso’s
model complexity (defined in terms of λ) increases.4 For a best subset selection
that iteratively deletes the worst regressor based on an IC, K̂DF can become
larger than K for a given subset, which is another clear breach of monotonicity.
The title of Janson et al. (2015) summarizes their verdict: ‘Effective Degrees of
Freedom: a Flawed Metaphor.’ It thus appears that we have reached a dead end
in the use of ICs, now that the two customary methods for estimating K are
considered to be inappropriate.

To find a way out of the current predicament concerning the measurement
of K, let us first try to formulate more clearly in what sense subset selection
can take up more than KA parameters. As an example, think of the famous
F -test being used to examine whether some xnew should be added to the model

4To ensure such a decrease in K̂DF , the authors independently showed how a data set can
be constructed for which a variable is consistently removed around the same λ value.
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or not. To specify K in this procedure, the mainstream solution is to count
the number of active parameters K̂A under H0 : βnew = 0 and under some
alternative hypothesis. A problem is that a relevant regressor may not have
a ‘significant’ contribution to the accuracy of a model when it is moderately
correlated to many other regressors, or highly correlated to a few others. In
these situations, the negligible increase in R2 as a result of adding the new
regressor will easily be outweighed by the penalty for increasing K̂A by 1.

Failing to include such relevant regressors not only deteriorates forecasting
performance, but will also affect one’s ability to understand and influence how
outcomes are truly generated. Selecting a single parameter from a group of
highly correlated regressors may for that reason well be penalized harder than
a ‘large’ model that groups these parameters together. Where the focus has
often been on the first AST about deviations from β0, it is the second AST of
grouping parameters together that can explain why subsets need to be penalized
more heavily. As I have mentioned before, the grouping of coefficients can even
be seen as a form of dimension reduction, because it amounts to using a single
parameter for multiple regressors (apart from the sign). Although the critique
of Kaufman and Rosset (2014) and Janson et al. (2015) continues to ignore the
second AST, it does underline that KDF makes it difficult to anticipate and
influence how model complexity is penalized.

In relation to KA of the previous section, it can be remarked that the degrees
of freedom of Ridge regression equals the naive K̂1ir under the assumption that
regressors are orthostandard. When y is centered and the orthogonal X are
standardized with Z-scores, that is,

K̂1ir,Ridge =
K∑
k=1

|bRidge,k|
|bOLS,k|

,

= K
N − 1

λ+N − 1 ,

= K̂DF,Ridge,

see 4.A.1. Since bRidge equals bZellner when λ = N−1
g and when regressors

are orthostandard (section 2.2), bRidge just shrinks parameters to zero without
regard for the data, see also Tibshirani jr. (2015).5 No additional penalty for
the uncertainty of a data-optimized subset selection is therefore required, so that
an estimate of K̂DF,Ridge may well be equated to the naive K̂1ir,Ridge, which

5Using a different framework, Tibshirani jr. (2015) makes the more general claim that
Ridge regression has zero ‘search degrees of freedom’.
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just counts to what extent each parameter is included in accordance with the
first AST. Now I will examine how the second AST can be incorporated when
counting the effective number of parameters.

4.3.3. Relative Simplicity Measures

In the previous section I have argued that the important challenge of how to deal
with the uncertainty of subset selection can be conceptualized in an alternative
way than through the covariance between ŷn and yn. The second AST explains
that the risk of ignoring a relevant regressor is reduced if parameters of (highly
correlated) regressors are grouped together. Of all the shrinkage estimators,
Ridge regression (b2ASTa) captures the essence of simplicity in terms of the
second AST, because it merely groups parameters together without performing
subset selection. It can also be remarked from the previous paragraph that
an astimator’s relative simplicity term is used to measure the effective number
of parameters. Particularly, when regressors are uncorrelated and β0 = ~0,
K̂1ir,Ridge equals

∑K
k=1

|bRidge,k|
|bOLS,k| , which corresponds to the relative simplicity

measure of a b1i astimator applied to the solutions of Ridge regression.
Having reached the topic of simplicity terms, is it not a bit strange to start

worrying about the uncertainty of subset selection only after an estimator has
been selected? The second AST is what mainly sets different estimators and
their simplicity terms apart, after all. Indeed, if we rescale the simplicity term of
an estimator, a straightforward measure for the effective number of parameters
can be defined which will also be monotonic with respect to an estimator’s
simplicity term.

In Ridge regression, for example, simplicity is measured through K̂Ridge =∑K
k=1(bk − β0,k)2, and this expression can just be premultiplied by K

K̂λ=0
so that

it goes from 0 to K as λ goes from ∞ to 0. This amounts to computing

K̂2a =
K∑
k=1

(bk − β0,k)2

1
K

∑
l(bOLS,l − β0,l)2

and that exactly equals the relative simplicity measure of b2a; the astimated
analogue of Ridge regression. What happens when the relative simplicity term
of an astimator is used as its measure for the effective number of parameters?

As a small thought experiment, imagine a situation where y is regressed on
two variables that are almost perfectly alike (extreme cross-correlation). Take
y = Xβ + ε with β = [1 1]′, β0 = [0 0]′, standard normal X, ε ∼ N(0,Σ), a
matrix Σ which has elements that are (close to) 1, and a sample of N = 1000, say.
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In that case, the fit of b = [1 1]′ with KA = 2 will almost be exactly the same as
b = [2 0]′ with KA = 1. A discrete subset selection procedure therefore favors
the risky alternative of using a single regressor. Conversely, K̂2a equals 2 in the
former and 4 in the latter, which means that Ridge regression gives preference
to the risk-diversified alternative of including both correlated regressors. A
disadvantage of K̂2a is that it is too lenient for irrelevant regressors (in which
case 1

K

∑
l b

2
OLS,l is comparatively large).

In terms of subset selection, reasons for preferring one measure of the effective
number of parameters over another are the same as those for preferring one
astimator over another. Relative simplicity in a b2c astimator is given by

K̂2c =
K∑
k=1

(bk − β0,k)2∑
l θ
k
l (bOLS,l − β0,l)2 .

When K̂2c with cmin = 0.5 is used as a measure of K in the experiment above,
it gives an equally large penalty as Ridge regression to the risky alternative of
b = [2 0]′. Unlike Ridge regression, it is quite strict on the inclusion of irrelevant
regressors, because b2c uses a 2i type penalty when regressors are not highly
correlated. I should note that K̂2c can easily lead to extreme values when applied
to bRidge for that reason.6 When K̂2c is used with b2c, such nonmonotonicities
will not occur. In general, K̂12c values might differ from K when λ = 0 and
α ∈ [0, 1], which is why I will premultiply these values by K

K̂λ=0
. The data should

also be standardized when a relative simplicity term is used to measure K.
Of all the relative simplicity measures, K̂1i of the Adaptive Lasso corre-

sponds most closely to the gradual version of KA called K̂1ir, although it does
compensate for cross-correlations to some extent. K̂2i differs from K̂1i in that
it promotes parameters of (un)correlated regressors to have a similar degree
of shrinkage. In the example with two nearly identical regressors, the Lasso
type K̂1a measure clearly compensates for cross-correlations because it equals
2 for both b = [2 0]′ and b = [1 1]′. Since K̂1a makes no distinction between
high and low cross-correlations in stimulating grouping, it can also be too strict
for relevant regressors and too lenient for the irrelevant ones. This problem is
alleviated when the relative simplicity term K̂1c is applied on b1c.

So, perhaps if we have found an astimator that enables a researcher to handle
the two ASTs, we will also have found a measure for the effective number of
parameters that does the same.

6Ridge regression can move bRidge,k outside of [β0,k, bOLS,k] to make the nominal deviance
from β0,k more similar to those of others. This can create extremely high K̂1c when xk is
irrelevant and bOLS,k is close to zero.
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4.4. Hypotheses

Table 4.1: Hypotheses

Subset Correlations AST alternative
Zellner 0 0

Bayes/Ridge 0 + 2ASTa
+ - 2ASTi
+ + 2ASTc

Lasso + 0 1ASTa
Adaptive Lasso + - 1ASTi
Subset Selection + -

+ 0 1ASTc

Elastic Net + + 12ASTa
+ + 12ASTc

Scores: better (+), equal (0), or worse (-) w.r.t. OLS. Subset: selecting a relevant subset of regressors.
Correlations: dealing with highly correlated regressors.

Now that I have discussed how tuning parameters can be selected, Table 4.4
gives an overview of the hypothesized performance of the different estimators
and astimators. It shows whether the techniques are expected to improve the
forecasting performance of OLS when there is a subset of relevant regressors
(‘Subset’) or when there are high cross-correlations among regressors (‘Corre-
lations’). A method’s accuracy will be measured in terms of Mean Squared
Forecasting Errors,

MSFEt = 1
V

V∑
v=1

(ŷv − yv)2,

for v ∈ [1, V ] out-of-sample observations.
Under the natural conjugate prior distribution of Raiffa and Schlaifer (1961)

with p(β|σ2) ∼ N(β0, σ
2B0) and p(σ2) ∼ IG(α0/2, δ0/2), it is to be expected

that the posterior mean does well in the case of correlated regressors. Being equal
to Ridge regression for B0 = Ik/λ and standardized data, the Bayesian estimator
will minimize the joint squared norm and this stimulates (highly correlated)
regressors to receive the same value. Continuing with Zellner’s g-prior,

bZellner = 1
1 + g

β0 + g

1 + g
bOLS ,
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it is not evident that it will help to improve upon OLS in the stipulated situations,
because it just shrinks OLS solutions to β0 with no regard for a regressor’s
relevance, nor for its correlation with other regressors.

Since the Lasso and the Adaptive Lasso are famous for performing exact
subset selection, I presume that they outperform OLS in a subset selection
exercise. The Lasso can be redefined as an astimator with an average simplicity
measure (‘1ASTa’), and I have argued in the previous chapter that it can be
expected to have the edge on the Adaptive Lasso in case of correlated regressors.
Measuring the effective number of parameters with the simplicity term of the
Adaptive Lasso comes closest to counting the number of parameters that are
included in the model. The Subset Selection technique minimizes BIC with
KA by iteratively deleting the worst regressor from the model (an intercept is
always included). It is expected to perform well in a subset selection exercise
and poorly when regressors are highly correlated. The Elastic Net combines
Ridge regression and the Lasso and is designed to have accurate forecasts in all
situations.

Since none of the Bayesian and Frequentist estimators differentiate between
high and low cross-correlations, I expect that subset selection and grouping can
be performed more effectively. Of the astimators that have been developed, I will
be particularly interested in the performances of b2c, b1c, and b12c, because these
astimators were designed to give accurate estimates of the underlying process in
each of the situations described in Table 4.4. The optimal choice of α could also
depend on cross-correlations. In case they are low, an α closer to 0 can be used
to quickly get rid of irrelevant regressors with b1c. An α around 1 might group
parameters together more effectively when regressors are highly correlated.

With regard to the selection of tuning parameters, and λ in particular,
the current best practice is to apply cross-validation. Consequently, the H0

hypothesis is that this procedure outperforms the use of information criteria.
Before evaluating forecasting accuracies of each method through simulation
studies, I will first illustrate the differences between various measures of K.

4.5. Simulation Studies

4.5.1. Analyzing the Influence of K

To illustrate the behavior of relative simplicity measures that are used to estimate
K, I will return to a simulated data set of the previous chapters with two relevant
and highly correlated regressors and two irrelevant and uncorrelated regressors.
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In this example, N = 20 data points are simulated with y = Xβ + ε, where
β = [2 2 0 0]′, ε ∼N(0, 1), X ∼N(0,Σ), and Σ = I except for Σ{2,1},{1,2} = .9.
In terms of in-sample accuracy, it makes little difference whether b1 = 4 and
b2 = 0 or whether both parameters are equal to 2, because the two regressors
are so highly correlated.

The upper panel of Figure 4.1 shows how the b1ASTi solutions change as
λ decreases towards 0. As I have demonstrated in the previous chapter, this
Adaptive Lasso type astimator focuses on a single regressor out of a group of
correlated regressors. In the current data set, b1 is activated at λ = R⊗1,1 = 0.56
and moves in the direction of b1OLS ≈ 4. The almost equally relevant parameter
b2 is only added to the active set at λ = 0.07, after which the two parameters
move closer together. The irrelevant regressors b3 and b4 are activated at the
very end.

The middle panel of Figure 4.1 presents four measures of the effective number
of parameters K with an `1 norm. The lowest line represents K̂1ir, which merely
counts the degree to which each parameter has been included in terms of the
first AST. K̂1ir moves towards 1 as long as only the first parameter is allowed to
deviate from β0; and heavily penalizes the introduction of the second parameter
by quickly increasing in the direction of 2 once it is activated. The Adaptive
Lasso type K̂1i does promote grouping to some degree, since it already exceeds
1 before b2 is added.

K̂1c is almost indifferent about whether b2 is added to the active set or not.
Even before the second parameter is added, K̂1c moves towards 2 in a near
linear fashion. No additional penalty is given for the exclusion of the irrelevant
regressors, because they are barely correlated with x1 and x2. By contrast, K̂1a

does not discriminate between degrees of cross-correlations at all. To penalize
the Adaptive Lasso for singling out the first parameter while ignoring the others,
K̂1a already moves towards K = 4 in case only the first parameter is activated.

Next, I will turn to the lower panel of Figure 4.1, where estimates of K with
an `2 norm are depicted. In comparison to K̂1i, K̂2i promotes grouping more
vehemently, because it decreases once b2 is activated. From the moment that
the degree of shrinkage of b1 and b2 becomes more similar, K̂2i quickly lowers
in the direction of 2. The grouping effect is stronger for K̂2c, which has already
reached 2.8 before b2 has been added to the active set. The relative simplicity
measure of b2a excessively penalizes the lack of grouping of the Adaptive Lasso
type astimator, acting as if all regressors in X are perfectly correlated.

One thing to take away from Figure 4.1 is that risky solutions that only focus
on a single correlated regressor can be discouraged by applying a measure of
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Figure 4.1: Measures of K for b1ASTi
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Panel i gives solutions of the Adaptive Lasso type b1i astimator. Panel ii presents the
effective number of parameters of b1i when K̂ is computed with the relative simplicity
measures of astimators with an `1 norm. When only b1 is activated, for example, K̂1ir in
equation (4.3) exactly matches the degree to which b1 has been included unrestrictedly,
while K̂1a = |bk−β0,k|

1
K

∑
l
|bOLS,l−β0,l|

heavily penalizes the exclusion of the other regressors.

Panel iii applies K̂ with an `2 norm to the solutions of b1i. Regarding the data generating
process, N = 20 data points are simulated with y = Xβ + ε, β = [2 2 0 0]′, ε ∼ N(0, 1),
X ∼ N(0,Σ), and Σ = I except for Σ{2,1},{1,2} = .9. I use β0 = [0 0 0 0]′ and cmin = .5.
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K that does not increase monotonically as λ decreases. A still more sensible
strategy is to adjust the astimator along with K, so that they both perform
subset selection and grouping effectively.

4.5.2. Out of Sample Performance
To asses the out-of-sample performance of estimators and astimators, I will
generate data with y = Xβ + ε for X ∼ N(0,Σ), ε ∼ N(0, 1), and evaluate
sample sizes of N = 20, 30, and 60. The intercept is always simulated to be
zero. I will standardize the data and retransform the solutions for all techniques.
The result is that the parameters of K regressors and an intercept are estimated.
Prior coefficients are equated to β0,k = 0 for all k = 1, . . . ,K.

Table 4.2: Overview Data Generating Processes

Name k = 1, 2, 3, 4 k = 5, 6, 7, 8 Σ (Correlation matrix)
subset βk = 2 βk = 0 IK
corr. βk = 2 - c = 0.9 for ∀k
subset & corr. βk = 2 βk = 0 c = 0.9 for k ≤ 4, 0 otherwise

This Table gives an overview of three simulation exercises called ‘subset’, ‘corr’, and ‘subset & corr.’ The
expression ‘c = 0.9 for k ≤ 4, 0 otherwise’ means that cross-correlations among the first four regressors are
0.9 and that all other cross-correlations are 0.

As Table 4.2 shows, the first simulation exercise is about selecting four out
of eight relevant regressors. Cross-correlations in Σ are simulated to be zero.
As I have detailed in the previous chapters, a small sample size relative to the
number of regressors can cause sample correlations to be quite high even when
one simulates that Σ = IK . The second task focuses on estimating a model
containing four regressors with cross-correlations of 0.9. The third exercise
combines subset selection and grouping by including four relevant and highly
correlated regressors and four irrelevant and uncorrelated regressors.

Each simulation study is repeated 10,000 times. In each iteration, five
thousand out-of-sample predictions are used to compute the MSFEs. I will
report the MSFE of the estimators and astimators relative to the MSFE of OLS.
Even though b1ASTa is a rescaled version of the Lasso, I will present this and
other benchmark methods separately. The primary reason is that the scaling
of b1ASTa can affect the quality of cross-validation, because the scaling changes
with each fold that is excluded. For the information criteria, solutions of the
estimator and its astimated analogue will be exactly the same, so they will
only be presented for the latter. In the reference setup of b12ASTc (referred to
as ‘12ASTc’) I apply 10-fold cross validation to select the tuning parameters.
‘(K̂12c) 12ASTc’ means that λ is selected with BIC using K12c; and that cmin
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and α are manually specified to be 0.5.
Table 4.3 presents the MSFEs relative to those of bOLS for the three simulation

studies. Zellner’s g-prior has scores of 1.00 or higher, which means that it is
unable to beat bOLS in any of the cases. Turning to methods with an `2 norm,
it can be remarked that b2ASTa (Ridge/Bayes) is good at dealing with highly
correlated regressors (‘corr.’). When the sample size is twenty, b2ASTa has a
score of 0.92, for example, which means that it outperforms OLS by 8%. As
expected, b2ASTi has good results in the subset selection exercise with small
cross-correlations. The b2ASTc technique performs grouping as well b2ASTa,
subset selection as well as b2ASTi, and has the best scores in general when it
comes to a situation in which both subset selection and grouping are required.

Regarding the `1 based techniques, it is remarkable that b1ASTa (Lasso),
which is well known for performing subset selection, improves OLS only by a
small margin in the first exercise. The Adaptive Lasso type b1ASTi solutions
result in quite similar scores as b2ASTi and b2ASTc when selecting four out of
eight uncorrelated regressors. The technique starts to get into trouble once
cross-correlations increase in the second and third task. The same goes for
the Subset Selection method, which gives no compensation for risk-diversified
solutions in deciding whether correlated regressors are incorporated or not. In
the group of astimators with an `1 norm, the solutions of b1ASTc with K̂1c are
the most optimal for each task.

Third, I will turn to computationally intensive methods that combine `1

and `2 norms. The Elastic Net procedure is ineffective when dealing with the
two tasks where subset selection is required, scoring notably worse than the
closed-form solutions of b2ASTc. An α lower than 1 in b12ASTc only appears to
be preferable in terms of forecasting accuracy when regressors are uncorrelated,
in which case b1ASTc slightly outperforms b2ASTc.

On the selection of tuning parameters, it should be remarked that a cmin ∈
[0.4, 0.8] produces highly similar results in these simulation studies, since cross-
correlations are either simulated to be 0 or 0.9. Nevertheless, the cross-validated
choice of cmin can vary substantially. In the third exercise with N = 20, for
example, the selected cmin for b2ASTc is 0 in five percent of the cases and 0.90
in thirty percent of the cases. This explains why forecasts are occasionally
improved by setting ‘cmin = 0.5’, where cross-validation is applied to select λ
while cmin is fixed to be 0.5. To reduce uncertainty in the cross-validated choice
of cmin, the parameter can be astimated with a prior cmin,0 of around 0.5.

Turning to the selection of λ, it is interesting to observe that the more
time-consuming method of cross-validation rarely beats BIC. What is more, the
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Table 4.3: Relative MSFEs of Three Simulation Studies

subset corr. subset & corr.
N 20 30 60 20 30 60 20 30 60
Zellner 1.02 1.00 1.00 1.01 1.00 1.00 1.01 1.00 1.00

Ridge/Bayes 1.01 1.00 1.00 .92 .95 .98 .87 .93 .98
2ASTa (CV) 1.02 1.01 1.00 .93 .96 .98 .88 .93 .98

K̂2a 1.02 1.02 1.01 .93 .96 .99 .86 .93 .98
DF .99 1.00 1.00 .92 .95 .99 .86 .93 .98

2ASTi .89 .92 .96 1.01 1.00 1.00 .97 .97 .97
K̂2i .86 .90 .95 1.09 1.06 1.02 .92 .94 .96
DF .87 .91 .95 1.17 1.13 1.07 .94 .98 1.00

2ASTc .91 .93 .96 .94 .96 .99 .76 .85 .93
cmin=0 1.02 1.00 1.00 .93 .96 .98 .83 .90 .96
cmin= 1

2 .91 .93 .96 .93 .96 .98 .74 .83 .92
K̂2c .88 .91 .95 .93 .96 .99 .78 .85 .93
DF .89 .91 .95 .92 .95 .99 .74 .83 .92

Lasso .94 .97 .99 1.00 1.00 1.00 .86 .92 .97
1ASTa .95 .97 .99 1.00 1.00 1.00 .87 .93 .97

K̂1a .93 .96 .98 1.00 1.00 1.00 .91 .95 .98
DF .95 .97 .99 1.00 1.00 1.00 .87 .92 .96

Adap. Lasso .87 .91 .95 1.02 1.00 1.00 .99 .97 .97
1ASTi .87 .91 .95 1.02 1.01 1.00 1.00 .98 .97

K̂1i .85 .89 .94 1.10 1.05 1.01 .92 .93 .95
K̂1c .95 .97 .99 1.00 1.00 1.00 .96 .98 .99
K̂1ir .88 .91 .96 1.09 1.03 1.01 .94 .94 .96

Subset Select. .89 .91 .95 1.14 1.05 1.00 1.01 .96 .95
1ASTc .87 .91 .95 1.03 1.01 1.00 .84 .90 .95

K̂1c .85 .89 .94 1.00 1.00 1.00 .84 .89 .94

Elastic Net .95 .97 .99 .93 .96 .98 .83 .91 .96
12ASTa .96 .97 .99 .93 .96 .98 .84 .91 .97

K̂12a .96 .98 .99 .98 .99 1.00 .90 .95 .99
12ASTc .88 .92 .95 .95 .97 .99 .78 .86 .93

K̂12c .86 .90 .94 .97 .98 .99 .81 .87 .94
• This table reports the MSFE of estimators and astimators relative to the MSFE of OLS for samples sizes

of N = 20, 30, and 60. Simulations are repeated 10, 000 times, with ‘subset’: 4 out of 8 regressors relevant,
no cross-correlations, ‘corr.’: 4 relevant and highly correlated regressors, ‘subset & corr.’: 4 relevant and
highly correlated regressors and 4 irrelevant and uncorrelated regressors. See Table 4.2 for specifications
of data generating processes.

• All of the shrinkage methods use 10-fold cross-validation to select the tuning parameters, unless the in-
dented specification below a bold-faced method states otherwise. The indented ‘K̂12c’ below 12ASTc, for
example, means that λ is selected with BIC using K̂12c; while cmin = α = 0.5. Lastly, the indented
‘cmin= 1

2 ’ below 2ASTc means that cross-validation is applied to select λ while cmin = 0.5 has been
prespecified.
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Table 4.4: Relative MSFEs of Simulation Studies with N = 10

s. c. s.&c. s. c. s.&c.
Ridge/Bayes .93 .81 .56 Lasso .93 .99 .52
2ASTa (CV) 1.11 .83 .86 1ASTa .97 1.00 .62

γ=.9 .84 .82 .56 γ=.9 .80 1.00 .54
γ=.99 .79 .80 .54 γ=.99 .76 .98 .55
K̂2a .84 .83 .72 K̂1a .85 .96 .77
DF .92 .82 .84 DF .92 .97 .84

2ASTi 1.47 1.09 .96 Adaptive Lasso 1.27 1.10 .77
γ=.9 .78 1.08 .60 1ASTi 1.28 1.14 .82
γ=.99 .73 1.05 .59 γ=.9 .83 1.13 .68
K̂2i .85 1.08 .79 γ=.99 .76 1.10 .66
DF .89 1.15 .85 K̂1i .86 1.13 .82

2ASTc 1.10 .88 .65 Subset Select. .98 1.23 .97
γ=.9 .79 .87 .45 1ASTc .97 1.11 .58
γ=.99 .76 .84 .46 γ=.9 .76 1.10 .52
K̂2c .84 .84 .70 γ=.99 .73 1.06 .53
DF .90 .82 .80 K̂1c .86 .96 .76

Elastic Net .91 .83 .51 Zellner 2.26 1.07 5.60
12ASTa .97 .85 .62

γ=.9 .80 .84 .52
γ=.99 .77 .82 .54

12ASTc .97 .91 .55
γ=.9 .76 1.07 .52
γ=.99 .73 1.03 .53
K̂12c .85 .90 .73

• This table reports the MSFE of estimators and astimators relative to the MSFE of OLS for a samples
size of N = 10. Simulations are repeated 10, 000 times, with ‘subset’: 4 out of 8 regressors relevant, no
cross-correlations, ‘corr.’: 4 relevant and highly correlated regressors, ‘subset & corr.’: 4 relevant and highly
correlated regressors and 4 irrelevant and uncorrelated regressors. See Table 4.2 for specifications of data
generating processes.

• All of the shrinkage methods use 10-fold cross-validation to select the tuning parameters, unless the in-
dented specification below a bold-faced method states otherwise. The indented ‘K̂12c’ below 12ASTc, for
example, means that λ is selected with BIC using K̂12c; while cmin = α = 0.5. The indented ‘γ=0.9’
means that λ is astimated through cross-validation with λ0 = 0.
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straightforward measure of the effective number of parameters K in terms of an
astimator’s relative simplicity term is highly competitive to the more opaque
degrees of freedom approach, for which closed-form expressions are only available
in a few instances. With respect to the risky solutions of b1ASTi (which tends to
focus on a single correlated regressor instead of spreading risks among the entire
group of correlated regressors), Table 4.3 can be used to compare K̂1i to K̂1ir

and K̂1c. The latter leads to more conservative choices among candidate b1ASTi

solutions, with λ values closer to 0 (resulting in more grouping). In the second
exercise about correlated regressors with N = 20, for example, the average λ
value is .0003 with K̂1c and .0011 with K̂1i, resulting in more moderate losses
and gains relative to bOLS for K̂1c.

Next, I will illustrate how λ can be astimated with λ0 = 0 and γ = 0.9 or
0.99. For the earlier results in Table 4.3, it does not matter whether γ = 0.99 or
0. This changes when the sample size is N = 10, which causes great variations
in the estimated cross-correlations and bOLS . Table 4.4 confirms that plain
cross-validation then leads to relatively poor results for astimators and the
Adaptive Lasso because the penalty term λ becomes too high. Ridge regression
is better than bOLS in the subset selection exercise, for example, while its
astimated version ‘2ASTa’ is worse than bOLS . Once deviations from λ0 = 0 are
penalized with ‘γ=0.9’, the out-of-sample performance of bOLS is considerably
improved once more. The results of 12ASTc show that the choice of α had better
be astimated as well. It can also be observed again that BIC with a relative
simplicity measure for K̂ has promising results in comparison to the degrees of
freedom approach and to plain cross-validation.

In sum, there are three overall conclusions about the simulation studies.
First, controlling for correlations through cmin leads to excellent results in terms
of forecasting accuracy relative to the benchmark methods. Second, the results
of BIC are highly competitive to those of cross-validation. Third, an astimator’s
relative simplicity term can be used as a straightforward measure for the effective
number of parameters in an IC.

4.6. Discussion
At the expense of in-sample accuracy, the flexibility of OLS can be restricted by
stimulating parameters to be close to a prior β0 or close to each other via grouping.
Astimators that effectively control both ASTs have been shown to outperform
other techniques in terms of out-of-sample performance in circumstances where
only a subset of regressors is relevant and where there are highly correlated
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regressors. The ASTs are also of relevance when selecting tuning parameters.
Astimators make it easier to define a set of candidate λ. It was also illustrated
that cross-validation can lead to volatile choices of λ and that λ can itself be
astimated. The hyperparameter λ0 could also be based on an Information
Criterion. The use of ICs has become somewhat controversial due to the
measurement of the effective number of parameters (K). I argued that the
problem of subset selection uncertainty should be conceptualized in terms of the
second AST. Consequently, it was shown that an astimator’s relative simplicity
term can be used as its measure of K.

Building on the latter result, an exciting area of future research is to employ
an astimator as an information criterion. One would succeed in doing so by
directly defining a closed-form heuristic choice of λ. This would help to define
λ0 when astimating the tuning parameter, and it would circumvent the trouble
of having to optimize over another IC, in which case a large set of candidate λ
values needs to be evaluated. Note that BIC can already be rewritten as

BIC ∝ log
[
Relative Accuracy

]
+ logN

N

[
Relative Simplicity

]
,

which closely resembles the loss function of astimators. The logic behind the
Adjusted R̄2 criterion of Theil (1961,1971) could be another good starting point
for bringing astimators and information criteria closer, since it is defined in terms
of (1−R2), which equals relative accuracy; K, which equals relative simplicity;
and the sample size N .

A second direction that might be explored is to improve best subset selection
techniques. With the help of a correlation-adjusted R⊗ matrix, one can try to
focus on a subset of possibly relevant regressors in each step, so that the search
can be performed more quickly. What is more, a K̂1c(r) type measure of the
effective number of parameters might be employed to stimulate highly correlated
and relevant regressors to be included as a group.

4.A. Appendix: Degrees of Freedom
Ridge Regression

4.A.1: Show that K̂DF,Ridge = K̂1i(r),Ridge when regressors are orthostandard.
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Use that X ′X = (N − 1)Ik to rewrite the Ridge degrees of freedom as

K̂DF, Ridge = tr X(X ′X + λIK)−1X ′,

= tr X ′X 1
λ+N − 1IK ,

= K
N − 1

λ+N − 1 ,

where tr(AB) = tr(BA) if A is m× n and B is n×m.

Next, use that x′kxj = 0 for all j 6= k and that x′kxk = (N − 1). To select
the kth element of bRidge, include a 1×K vector ik which is 1 at k and 0
otherwise. Finally, note that orthogonality implies that

∑K
k=1

|bRidge,k|
|bOLSr,k| =∑K

k=1
bRidge,k
bOLS,k

. The result is that

K̂1i(r),Ridge =
K∑
k=1

ik(X ′X + λIK)−1(X ′y)
(x′kxk)−1x′ky

,

= K
N − 1

λ+N − 1

K∑
k=1

ik(X ′y)
(x′ky) ,

= K
N − 1

λ+N − 1 ,

which equals K̂DF, Ridge.



5
Accuracy-Simplicity Tradeoffs and the Weighing of
Observations

5.1. Introduction

In time series forecasting, the underlying data generating process might be
subject to breaks. The traditional strategy in such a situation is to test for
structural breaks and use post-break data (Chow, 1960, Quandt, 1960, Brown
et al., 1975, Andrews, 1993). Pesaran and Timmermann (2007) explained,
however, that even if one has correctly pinpointed the timing of a break, it
might be more optimal in terms of mean squared forecasting errors to include
pre-break data. The reason is that a short post-break window can cause a large
estimation uncertainty (ibid.).

As an alternative, Pesaran and Timmermann (2007) proposed to estimate
the timing of the starting point via cross-validation. The idea is to divide
the estimation sample in a validation set of recent observations and a training
set of more distant observations, and to use the training set to ‘predict’ the
validation set while varying the starting point of the data. In their Best Starting
Point method (‘SPB’), the starting point with the best pseudo predictions is
subsequently selected. One of the main advantages of SPB is that it is easy to
apply to a variety of estimation methods. SPB does have three serious drawbacks,
and I hope to address them in this chapter.

One problem is that SPB can be slow to respond to a new break, because it
can take a while before there is a sufficient number of post-break observations
in the validation set. Based on such difficulties in estimating the timing of
break points, Pesaran, Pick, and Pranovich (2013, pp. 149) concluded that one
should instead use their ‘robust optimal weights,’ which progressively increase as
observations become more recent. Their approximations of exponential weights

89
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can indeed be employed when there has been a break most recently or when there
are breaks continuously, but in situations where the timing of break points has
become sufficiently clear, less recent data need not be wasted so immoderately.
After all, data of the distant past could be of relevance in the near future; and an
estimation of the timing of discrete break points could be important in trying to
understand why the underlying process has changed. ‘Discrete’ weights like SPB
result from assigning weights to discrete periods of observations. My proposal is
to look for ways in which exponential and discrete weights can be combined.

A second concern is that SPB will ignore large portions of the data based
on the smallest of improvements in the accuracy of the validation sample. Such
volatility in the selection of a configuration (the best starting point) is a general
issue of cross-validation. In the previous chapters I have argued how, at the
expense of in-sample Accuracy, Simplicity can be accomplished by penalizing
deviations from a given setup. In the current context, I will show that a tuning
parameter λ ∈ [0, 1] can be used to intuitively balance between the Accuracy
of the validation window and the Simplicity of equal weights. In connection
to chapters 2 and 3, where Accuracy-Simplicity Tradeoffs were analyzed in
estimating parameters of the linear regression model, I will compare an `2 norm
to an `1 norm in counting deviations from equal weights. Parallel to Chapter 4,
a measure for the effective number of observations will be developed that can be
employed in information criteria.

A third issue is that SPB only considers giving positive weights to data after
the starting point, whereas individual weights could be assigned to all periods.
One advantage of giving each period its proper due is that it will no longer
be necessary to adjust the timing of a break point to include pre-break data.
Pesaran, Pick, and Pranovich (2013) already derived closed-form expressions for
weighing individual periods of observations in the context of a linear regression
model with one-step-ahead forecasts. At the cost of analytic tractability, I
will present a procedure that is more generally applicable. In doing so, I will
also make use of a technique that Bai and Perron (1998, 2003) developed for
consistently estimating the timing of multiple breaks. The only downside of
this algorithm, is that it can be rather slow for large data sets. I will therefore
compare Bai and Perron’s method to a few simple alternatives as an aside.

In short, the goal of this chapter is to improve SPB by responding to a
new break more quickly, by discarding old data less quickly, and by assigning
individual weights to multiple periods. In dealing with these three aspects, I
will develop an algorithm that is designed to provide more robust estimates
of the underlying break points and regression parameters. The outline is as
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follows. In Section 5.2, the benchmark methods are discussed along with the
newly proposed algorithm. Simulation studies are presented in Section 5.3. In
Section 5.4, I apply the methods on a case study about the rational expectations
hypothesis. Section 5.5 concludes.

5.2. Methods

The methods for weighing observations that will be developed below can be
applied on many estimation procedures. Still, one can think of applications of
the linear regression model,

y = Xβ + ε,

with a T × 1 dependent variable y, a T ×K matrix of independent variables X,
a K × 1 vector of parameters β, and a T × 1 vector of errors ε.

The weighing of observations is performed by premultiplying the data by a
column vector of weights w that sums to

∑T
t=1 wt = 1. Assigning an equal weight

to all observations in the estimation sample amounts to setting wEQt = 1/T . If a
starting point of 2 is selected, only the first observation is left out and the remain-
ing observations receive an equal weight, so that w = [0 1/T−1 ... 1/T−1]′.

In case a weighing procedure is applied in the context of the linear regression
model, then one can define the matrix W 1/2 = diag(

√
w), so that the weights

are assigned to the data through yw = W 1/2y and Xw = W 1/2X. The weighted
least squares estimator then becomes bWLS = (X ′WX)−1X ′Wy. Consequently,
if y is regressed on a constant (xt = 1) with weights wt, the solution is bWLS =∑T
t=1 wtyt, which corresponds to the weighted average of y.
I will now continue by presenting three benchmark methods for weighing

observations.

5.2.1. Benchmark Methods

The main benchmark to be considered is the best starting point method. This
will be called ‘SPB original’, because adjustments will be proposed below. To
select the optimal starting point through cross-validation, the estimation sample
that runs from 1 to T is split up into two samples. Observations 1 to T − V
constitute the training sample, and the last V observations the validation sample.
The training sample is used by SPB original to compute h-period-ahead pseudo
forecasts regarding the validation sample, whereby the starting point of the
training sample is varied. The selected starting point is the one with the best
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predictions of the validation set. To forecast ŷT+h, a sample running from the
chosen starting point to T can be employed to estimate the β coefficients.

Regarding the measurement of a starting point’s pseudo-out-of-sample predic-
tion accuracy, I will denote an h-step-ahead forecast made with a set of weights
wi as ŷi,v,h, where v ∈ [T − V + 1, T ] refers to an observation in the validation
set. The associated prediction error is then given by ei,v,h = ŷi,v,h − yv, so that
the Mean Squared Forecasting Errors can be defined as

MSFEit = 1
V

T∑
v=T−V+1

e2
i,v,h.

The second benchmark method is also based on cross-validation but takes a
weighted average of the starting points’ predictions. It is called ‘SPW original’.
The inverse MSFE weight that is assigned to the forecasts of starting point i is
given by (MSFEit)

−1∑J

j=1
(MSFEjt )−1

, provided that there are J eligible starting points. The

technique is based on the forecasting combination literature and is an attempt to
diversify risks among starting points. Pesaran and Timmermann (2007) remark
that it is likely to work well when there are small breaks.

When applying the SP methods, researchers have to decide upon the minimum
length of the training set (minT) and the size of the validation window V . A
large minT prevents recent starting points from being selected and a small minT
can result in poor estimates of model parameters. The bigger V , the longer
it takes for postbreak observations to dominate the validation sample, so the
longer it takes for a new break to be identified. When V is too small, on the
other hand, ‘the ranking of forecasting methods will be too noisy and affected
too greatly by random variations’ (Pesaran and Timmermann, 2007, pp. 145).

To examine the influence of such tuning parameters, I will define a reference
setup and evaluate the effect of altering that reference setup. In the reference
setups of the SP methods, the minimum number of observations in the training
sample is equated to minT = 15, and the validation sample is also specified
to have a size of V = 15. As I have just explained, the optimal choice of V
and minT may depend on the application. To evaluate these manually defined
settings, I will study what happens when these sample sizes are allowed to be
higher (minT = 20, V = 20) or lower (minT = 10, V = 10).

The third benchmark is the ‘robust optimal weight’ of Pesaran, Pick, and
Pranovich (2013, ‘PPP’). Under the assumption that the break date is uniformly
distributed from 1 to T, the break date is integrated over the entire estimation
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sample to give,

w∗t =
{
− log(1−t/T )

T−1 if 1 ≤ t ≤ T − 1
log(T )
T−1 if t = T,

and these weights are normalized to add up to one,

wEXP
t = w∗t∑T

t−1 w
∗
t

. (5.1)

As it stands, EXP does not require tuning parameters to be cross-validated.
It should be noted that PPP have introduced a number of variants of their

robust optimal weights. One such variant is designed to deal with two breaks in
a linear regression model conditional on the size of the breaks being known.1 ‘In
practice,’ write PPP in their conclusion, ‘dates and sizes of breaks are unknown
and their estimates can be unreliable’ (ibid., pp. 149). PPP therefore recommend
the robust optimal weights wEXP

t of equation (5.1), since it does not require a
priori knowledge of break dates or their sizes (ibid.).

In evaluating the last two benchmark methods, note that the weighing of
starting points by SPW original causes more recent observations to be included
more often, which means that they will have a greater influence on the estimation
of model parameters than more distant observations. If one wishes to guard
against SPB’s risk of wrongfully downweighing certain observations, a more
direct approach is to penalize deviations from equal weights and to allow for
pre-break data to receive a nonnegative weight. The idea of using inverse MSFE
scores can then be used to assign weights to periods of observations before and
after a break.

Next, EXP assigns progressively higher weights to more recent observations
and is related to SPW original in this sense. PPP have shown that the connection
between EXP and exponential smoothing is particularly close and that EXP
responds more quickly to a single break than SPB original. One might worry
about how robust these weights are to changes in the underlying break process. In
particular, EXP may not be optimal in case an earlier period of observations is at
least as relevant for the current forecast as a more recent period of observations.

With EXP and SPW original in mind, I will focus on three aspects that

1An analytic solution of robust optimal weights for two breaks is not available. Note further
that PPP also present a version whereby the break sizes are numerically integrated out. The
difference with EXP is that the rate of decay is smaller and that the weights initially decrease
slightly at the start of the sample. At the end of this section I will present a variant of EXP
whereby the rate of decay is determined dynamically by shrinking EXP towards EQ.
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might improve the main procedure of interest, SPB original. First, discrete
weights can be combined with exponential weights to quicken the response
time to new information. Second, SPB original can be made less susceptible
to random variations by intuitively penalizing deviations from equal weights
through an Accuracy-Simplicity Tradeoff. These features help to circumvent
the issue of requiring a small V to make recent starting points eligible and a
large V to reduce noise in estimating the starting point. Third, one can enable
multiple periods of observations to receive positive weights with the help of
inverse MSFE scores. By assigning positive weights to pre-break data, we can
deal with the uncertainty of a short post-break window without having to tamper
with estimates of the true timing of break points.

The overall goal is to improve upon these three aspects of SPB original. The
resulting MB-S algorithm (Multiple Breaks and Shrinkage) incorporates the
proposed alterations. It is developed to respond swiftly to a new data generating
process and still provide estimates of model parameters and break points that
are robust against changes in circumstances. A number of nested procedures will
be defined along the way, so that the postulated necessity of each suggestion can
be evaluated. Hypotheses about the forecasting performance of the presented
methods are formulated at the end of this section.

5.2.2. Improving the Response Time

Instead of shortening V and minT to swiftly adapt after a break, one can achieve
the same effect by using exponential weights in two unremarkable ways.

First, the predictions errors (‘PE’) in the validation sample that SPB original
uses to select a starting point can be premultiplied by expontial weights to
respond more quickly to a recently poor performance. Accordingly, the accuracy
measure is defined as

MSFEiT (wEXP
PE ) = 1

V

T∑
v=T−V+1

wEXP
v · e2

i,v,h.

Weighing the prediction errors in this way is equivalent to weighing the observed
yv and predicted ŷi,v,h with √wv in weighted least squares. Note further that
wEXP

PE is computed for t = 1 to T and that wEXP
PE uses the last V of those weights

after normalizing them to sum to one.
Second, it can be remarked that the original SP methods assign equal weights

to the observations of the validation sample when the selected starting point
is used to estimate a method with which to forecast yT+h. Another simple
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adjustment to quicken the response to new information is to ascribe exponential
weights to the validation window with wEXP

V . When the last V observations
receive the last V weights of wEXP

V , then the weights of the training sample do
have to be rescaled so that the weights of the entire estimation sample sum to
unity.

As described above, a greater emphasis on recent observations could result
in noisy approximations of parameters and break points, so I will now look for a
way to curtail the influence of cross-validation in weighing observations.

5.2.3. Penalizing Deviations From Equal Weights

In SPB original, the tiniest of differences in MSFE can result in much data being
excluded, because the MSFE criterion does not penalize deviations from equal
weights. One might translate this remark into an Accuracy-Simplicity Tradeoff
(‘AST’). A method with a good MSFE is defined as being more accurate, and a
method that barely deviates from a prior setup of equal weights is defined as
more simple. Simplicity can be achieved at the cost of MSFE accuracy. The
question is whether it is possible for a researcher to obtain an intuitive control
over this AST, so that he can specify how influential the cross-validated weights
may be relative to equal weights (EQ).

In accordance with the previous chapters, one can begin by observing that
a relative accuracy term can be obtained by dividing the MSFE of wi by that
of EQ. To measure relative simplicity, a deviance measure D(wi) can be used
to quantify how much wi differs from EQ. For the SP methods, deviances are
defined in terms of the proportion of observations in the training sample

D01(wi) = M −N(wi)
M

, (5.2)

where N(wi) is the sample size associated with weights wi and M = T − V
is the maximum number of observations in the training sample. ‘01’ in D01

signifies that individual observations are either ignored (0) or included (1). D01

equals 0.75 when three quarters of the sample are included, for example. The
maximum deviance from equal weights occurs when the minimum amount of
observations (minT) is used. D01(wi) can be divided by D01(wminT) = M−minT

M

to make the simplicity measure relative to the largest permissible deviance from
equal weights.

In terms of a general D (other deviance measures will be defined below), the
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resulting AST loss function becomes

LAST (wi, wEXP
PE , λ,D) = (1− λ) MSFEi(wEXP

PE )
MSFEEQ(wEXP

PE )︸ ︷︷ ︸
Relative accuracy

+ λ
D(wi)

D(wminT)︸ ︷︷ ︸
Relative simplicity

. (5.3)

The researcher can determine through λ ∈ [0, 1] how much influence EQ has
relative to cross-validation in weighing observations. EQ is used when λ = 1,
and the cross-validated weights are used when λ = 0. A λ of 1/3 means that
weights are based for 67% on the accuracy of pseudo forecasts and for 33% on
the simplicity of equal weights. The data-optimized solutions might also favor
equal weights, of course.

By monotonically transforming equation (5.3) in the following way,

LAST (wi, wEXP
PE , λ,D) ∝MSFEi(wEXP

PE ) + λ

1− λMSFEEQ(wEXP
PE ) D(wi)

D(wminT)︸ ︷︷ ︸
Penalty term

.

it becomes clear that the MSFEi of a given set of weights wi is penalized with
the second term on the right hand side. Estimation procedures that can adjust
many configurations in order to optimize over the validation sample could be
penalized harder to reduce the problem of overfitting the validation sample.
Another reason for increasing λ could be that the validation window is rather
small and therefore less reliable.

Observe that the penalty is proportional to theMSFEEQ(wEXP
PE ) score of equal

weights. When the minimum amount of observations is selected (wi = wminT),
the MSFEi score has to be at least λ

1−λ times as good as EQ to be preferred to
EQ. This penalty term in conjunction with exponentially weighing forecasting
errors reinforces the application of equal weights in case the weighted forecasts
suddenly perform poorly relative to equal weights.

The methods that exponentially weigh prediction errors and the validation
window and that penalize deviations from EQ are called ‘SPB’ and ‘SPW’. In
their reference setups, the AST tuning parameter is set to λ = 1/3, so that
cross-validation has twice as much influence in weighing observations as the prior
setup of equal weights. The specification λ = 1/3 will be compared to λ = 0 (no
penalty for deviating from equal weights), λ = 2/3, and λ = 1 (equal weights).
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5.2.4. Multiple Break Points

To further explore the possibility that observations in the distant past could
be more informative about the current underlying process than more recent
ones, I will develop a procedure that incorporates multiple break points (‘MB’)
instead of single starting points. To this end, a method needs to be introduced
for estimating the timing of breaks and for assigning weights to the resulting
periods. The deviance measure D01 in LAST will also have to be adjusted,
because individual weights will then be allowed to vary among observations that
are included.

The method of Bai and Perron (‘BP’) can be used to find break points. In
this procedure, break dates are selected by minimizing the in-sample sum of
squared residuals. BP discuss various techniques that choose the number of
breaks by penalizing the added parameters caused by including break point(s).
The Bayesian Information Criterion (‘BIC’) is known to select too many breaks
when there is serial correlation in the errors (Bai and Perron, 2003, pp. 15). By
contrast, the modified Schwarz criterion (‘LWZ’) developed by Liu et al. (1997)
tends to be too restrictive in the number of break points it selects. I will use
BIC because deviations from equal weights will also be penalized with LAST
when weights are assigned to the resulting periods (as I will explain below).

The BP method is known to be rather slow, particularly when the sample
size and the maximum number of break points are large. I will therefore set the
maximum number of break points allowed to be four, but the optimal choice
may depend on the application. A simple alternative that I will consider is that
of equally distributing break points over the training sample (‘EB’), whereby a
researcher can specify the minimum number of observations per period (minT).
To compare this method with BP, the maximum number of break points will
also be set to four when EB is used. I will also select the single best break point
(‘BPB’) through cross-validation. The main difference between BPB and SPB is
that the former allows for weights to be assigned to pre-break data.

To weigh multiple periods, all possible combinations of including some periods
while excluding others are evaluated through cross-validation. The best option
is subsequently selected. The included periods are either assigned equal weights
or individual LAST based weights. In the latter case, LAST scores are computed
for each individual period with equation (5.3). Each observation then receives
the LAST score of the period it is part of and these weights are subsequently
normalized to sum to one (wt = LAST,t∑T−V

t=1
L
AST,t

). Included periods that have fewer

than minT observations receive the average LAST based score of all the included
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periods. Remember that minT also controls the minimum size of the training
sample. As I mentioned before, minT is specified to be 15 in the reference setup
and it will be compared to minT = 10 and minT = 20.

Table 5.1: Example of Assigning Discrete Weights

Per. Obs. 1 2 3 4 5 6 7 8
P1 1:20 EQ 0 EQ EQ EQ 0 AST AST
P2 21:80 EQ EQ 0 EQ 0 EQ AST AST
P3 81:85 EQ EQ EQ 0 0 0 AVE 0

Note: this table gives an example of the possible weights that can be assigned
to periods P1, P2, and P3 when there are breaks at t = 21 and 81 for a training
sample of size 85. EQ stands for equal weights, AST for LAST based weights,
and AVE is the average of the AST weights of the other periods. Among the 8
alternatives, the one with the best LAST score is selected.

Table 5.1 gives an example for when there are candidate break dates at t = 21
and 81 in a training sample of size 85. The training sample is divided into three
periods; P1 (observations 1 to 20), P2 (21 to 80), and P3 (81 to 85). The above
strategy leads to a total of eight unique ways in which periods of observations
can receive weights. In the column labeled 4, the observations of the third period
are ignored while the others receive an equal weight of 1/80. From columns 5
and 6 the individual LAST scores of the first two periods can be obtained, since
the validation sample is ‘predicted’ with either the first or the second period,
respectively. An individual score is not determined for the third period. The
reason is that it only contains five observations, which is less than the required
minT = 15. When the third period is combined with the other periods on the
bases of LAST in column 7, it therefore receives the average LAST score of the
first two periods. Of the eight options, the one with the lowest LAST score is
selected.

Now that observations can receive individual weights, the deviance measure
D01(w) = M−N(w)

M must be refined in the LAST loss function. After all, D01(w)
just measures the fraction of observations included without differentiating be-
tween the individual weights of the included observations. A deviance measure
with an `2 norm can be formulated as follows

Ds(w) = 1∑M
m=1 w

2
m

∑
m

(wm −
1
M

)2, (5.4)

given that
∑M
m=1 wm = 1. Small derivations are provided in Appendix 5.A. The
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sum of squared deviations is premultiplied by 1∑M

m=1
w2
m

to ensure that Ds(w)

can be seen as the fraction of observations included. When discrete weights of
SPB original are used, for example, Ds(w) = M−N(w)

M and so it also holds that
0 ≤ Ds(w) ≤ 1.

To assess the quality of this proposal, Ds will be compared to a measure
with absolute deviations from equal weights, which is defined as

Da(w) = 1
2

M∑
m=1
|wm −

1
M
|. (5.5)

Premultiplication by a half ensures that Da(w) can also be interpreted as the
fraction of included observations (Da(w) = M−N(w)

M for SPB original). This also
implies that 0 ≤ Da(w) ≤ 1.

My preference goes out to Ds(w) for measuring the total deviation from
equal weights, because larger individual deviations from EQ are more heavily
penalized by the `2 norm. This can be seen as an attempt to control a second
AST between the in-sample Accuracy of the validation sample and the Simplicity
of assigning more similar individual weights to multiple observations. Conversely,
Da is indifferent to the individual composition of weights, so that it is easier
for a few observation to receive extremely high weights. Failing to diversify
risks among observations could make Da(w) more vulnerable to changes in the
underlying break process. A small illustration about the differences between Ds

and Da is provided in Appendix 5.A.
In the same Appendix, a useful corollary is also derived, which states that the

deviance measures can be employed to obtain heuristics for the ‘effective’ sample
size. This comes in handy for researchers who employ a technique that requires
them to specify a sample size when assigning individual weights to observations,
like the often applied BIC information criterion. In case the researcher uses
exponential weights with T = M = 100 observations, for example, a heuristic for
the effective number of observations is 1∑

(wEXP)2 = 51 under quadratic deviances
and (1−Da(wEXP))M = 63 under absolute deviances.

5.2.5. Shrinking MB to EXP and EQ

So far, I have developed an algorithm that starts by finding candidate break
points in the first step. In the second step, it assigns discrete weights to the
resulting periods of the training sample. During this second step, the prediction
errors and the validation sample receive exponential weights; and deviations
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from equal weights are penalized with λAST . This method was called MB.

In case there are breaks continuously or when the timing and size of the
break points are unclear, MB may not be preferable. A better option could
be to shrink the entire estimation sample towards exponential weights. In a
situation with much variability but no breaks, the flexibility of MB to exclude
some periods while including others might actually worsen forecasts, in which
case equal weights could be more appropriate. As a last step, I will therefore
try to refine the first aspect of combining discrete and exponential weights by
making such a choice adaptive to changes across times and across applications.

In case a sufficient amount of predictions has been gathered of MB, EXP,
and EQ, then one can choose among them based on an LAST measure. As an
example, if one has been predicting since T = 30 and the current time is T = 60,
then the last V = 15 predictions of each technique can be used to select the best
one. To allow for a more gradual transition from MB towards either EQ or EXP,
a shrinkage model is applied

wMB-S
T (1EQ, φ) =

{
(1− φ)ŵMB

T + φwEQ
T if 1EQ = 1,

(1− φ)ŵMB
T + φwEXP

T if 1EQ = 0,
(5.6)

where φ is the shrinkage rate and 1EQ indicates whether discrete weights are
shrunk towards equal (1) or exponential weights (0). The specifications of φ and
1EQ are obtained by varying φ ∈ {0 : 0.1 : 1} and 1EQ ∈ {0, 1} and selecting the
settings that minimize the LAST loss function. The method that results from
shrinking MB is called ‘MB-S’. If not enough forecasts of MB are yet available in
real-time, a shrinkage of φ = 0.5 towards equal weights is used. Next to MB-S, I
will also evaluate ‘SPB-S’, whereby SPB is shrunk towards EXP or EQ through
equation (5.6).

As a final benchmark, I will examine ‘EXP-S’, which shrinks wEXP
T to wEQ

T

based on the LAST loss function like so,

wEXPt (φ) = (1− φ)wEXPt + φwEQt .

The advantage of this shrinkage model over exponential smoothing is that there
is no dependency on the first observation in determining the rate of decay, since
PPP’s weights are not defined recursively.
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5.2.6. Hypotheses

To summarize, the three main steps in the MB-S algorithm are: find break
dates (1), obtain weights for the training sample (2), shrink weights to equal
or exponential weights (3). Exponential weights are also assigned to pseudo
forecast errors and the observations of the validation window; and deviations from
equal weights are only allowed to the extent that pseudo forecasting accuracy
sufficiently increases. An overview of all the methods and configurations is
presented in Table 5.2.

Table 5.2: Overview Methods and Tuning Parameters

1. Benchmark methods

SPB original Select best starting point (with minT, V )
SPW original Take weighted average of starting points (with minT, V )
EXP PPP’s robust optimal weights

2. Exponential weights and penalizations

SPB Select best starting point with wEXP
V and LAST (and minT,

V )
SPW Take weighted average of starting points with wEXP

V and
LAST

BPB Select best break point with wEXP
V and LAST through

cross-validation
MB Select multiple break points with wEXP

V and LAST , BP-
BIC, and a maximum number of break points of 4

3. Shrink weights to EXP or EQ

SPB-S Shrink SPB to EXP or EQ with wEXP
V and λAST

MB-S Shrink MB to EXP or EQ with wEXP
V and λAST

EXP-S Shrink wEXP
T to wEQ

T with LAST
Tuning parameters (choice in reference setup gets ∗) and other specifications

minT ∈ {10, 15∗, 20} Minimum size of the training sample
V ∈ {10, 15∗, 20} Size of the validation sample
wEXP
V Weigh validation sample exponentially

wEXP
PE Weigh prediction errors exponentially

λAST ∈ {0, 1/3∗, 2/3, 1} Specify the AST tradeoff to penalize deviations from EQ
Ds or Da Use squared or absolute deviations from equal weights
LAST (wi, wEXP

PE , λAST , Ds) AST loss function where weights wi are evaluated

Note: ‘BP-BIC’: Bai and Perron procedure with a BIC criterion for selecting the number of breaks. An
alternative to BIC is LWZ and an alternative to estimating the timing of breaks through BP is by equally
distributing breaks (EB).

Table 5.3 summarizes my hypotheses regarding the benchmark methods.
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Table 5.3: Hypotheses

H0 Description
1 SP original methods are slow to respond to a new DGP.
1.1 Using wEXP

PE and wEXP
V improves the response time.

2 SP original methods ignore old data too quickly.
2.1 Setting λAST = 1/3 helps to achieve more conservative deviations

from EQ.
2.2 When there are multiple breaks in the DGP, the best MSFE follows

from estimating multiple discrete breaks.

3 EXP is robust and optimal.
3.1 EXP perform best when there is a single break or when there are

breaks continuously.

MSFE scores will be used to evaluate these hypotheses. The first main hypothesis
is that the SP methods are slow to respond to a new data generating process
(‘DGP’). It will be investigated whether exponentially weighing the prediction
errors (wEXP

PE ) and/or the validation sample (wEXP
V ) will improve the response

time. The second main hypothesis is that SP methods ignore old information
too quickly. Here, I will study whether it helps to penalize deviations from equal
weights with λ = 1/3, and whether multiple breaks should be estimated instead
of a single starting point. I presume that estimating the timing of multiple
breaks works best when the data generating process contains more than one
break, but I will also study what happens when a single best break point is used
or when the estimation method equally distributes breaks across the training
sample.

Following PPP, the third main hypothesis is that EXP results in robust
optimal weights. I expect that EXP performs best when there is a single break
or when there are breaks continuously (due to its connection with exponential
smoothing). As an alternative to EXP and the original SP methods, it will
be studied whether EQ, EXP, and MB ought to be combined into an MB-S
algorithm in order to obtain robust estimates of regression parameters and of
(discrete or continuous) breaks.
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5.3. Simulation Studies
Before analyzing MSFE accuracies for various simulation problems, the hypothe-
ses are first examined with a single simulation study.

5.3.1. Two Breaks in Drift

Figure 5.1: Example of Simulated Data with Two Breaks in Drift
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Note: This figure presents an example of simulated outcomes when data is generated
with yt = µt + εt, where µt = 3 + 2 · 150≤t≤89 and εt ∼ N(0, 1).

In the first simulation study, the objective is to estimate a mean (‘drift’) that
is simulated to change from 3 to 5 at t = 50 and to revert back to 3 at t = 90.
That is, the regression model yt = µt + εt is simulated with µt = 3 + 2 ·150≤t≤89

and a standard normal εt. The two break dates can be used to define three
periods (1, . . . , 49; 50, . . . , 89; and 90, . . . , 120), which will be referred to as P1,
P2, and P3. The break dates were chosen in this way so that one can observe
when methods perform differently compared to equal weights (wEQt =‘EQ’= 1/T )
even though the total sample size is small (120 observations). At the cost of a
longer estimation time, larger sample sizes could be defined of course.

Forecasts regarding yT+1 are generated by taking a weighted average of
observations at t = 1, 2, . . . , T , so that ŷT+1 =

∑T
t=1 wt · yt with weights wt.

The minimum size of the estimation sample is 30. An illustration of how weights
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are assigned by SPB original and MB-S will first be given on the basis of a
single data set, and the MSFE accuracies of all the methods are subsequently
presented for when the exercise is repeated 10,000 times.

Figure 5.1 gives an example of simulated data according to the data generating
process just described. Note that when y40 is predicted, all observations should
receive about an equal weight in averaging over y. Exponential weights could
be used in case there are a few data points after the first break around t = 50.
During the second period, observations before t = 50 need not be discarded
altogether, because they could be of relevance in the unknown future. After the
second break at t = 90, the second period should eventually get a lower weight,
while the first period can be more emphasized in estimating the underlying
process.

Figure 5.2 shows how SPB original and MB-S assign weights to observations
for different forecasts of yT+1 across time. The darker a dot, the higher a weight.
In the upper panel, SPB original starts with assigning equal weights to all
observations. That is, the column of ‘Observations’ from row 1 to row 30 has
the same color at ‘T+1’ equals 31. As the colorbar indicates, the observations
receive a weight of 1/30 ≈ .03. Equal weights are used for T + 1 = 31 because
minT + V = 30, so only the first starting point is eligible. Note that data are
already discarded before the first break point has taken place at T + 1 = 50.
From T + 1 = 72 to 92, only the last 30 observations are typically selected. After
the second break at T + 1 = 90, the included number of observations slowly
increases until the entire estimation sample is used. From T + 1 = 117 onwards,
the smallest possible sample size is employed once more.

The lower panel presents the weights assigned by MB-S. At T + 1 = 40, all
eligible data receive an equal weight. After the break around T + 1 = 50, the
validation sample is emphasized more. Once a sufficient amount of post-break
data has become available, discrete weights get more pronounced (T + 1 = 87).
Observations in the first period are not entirely discarded in the second period
and this will reduce the prediction error once the simulated mean jumps back
from 5 to 3 at T + 1 = 90. In the wake of the forecasting inaccuracy at that
time, equal weights are quickly emphasized in the third period until the new
underlying structure sufficiently reveals itself once more.

Having given an example of how weights are assigned by SPB original and
MB-S in case there are two breaks in the drift, I will now repeat this simulation
study 10,000 times. Starting with the three benchmark methods, Table 5.4
shows the average MSFE of the benchmark methods at a particular point or
period in time. All scores are relative to the MSFE of equal weights (EQ).
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Figure 5.2: Heatmap of Weights Across Time: Two Breaks in Drift
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Note: this heatmaps show the weights wt assigned to Observations (vertical axis) that
were used by SPB original (panel i) and MB-S (panel ii) in estimating µt at a certain
time (horizontal axis). Simulated model: yt = µt + εt, with µt = 3 + 2 · 150≤t≤89 and
εt ∼ N(0, 1). Prediction model: ŷT+1 = µ̂T .



106 ASTs and the Weighing of Observations

Table 5.4: Relative MSFE for Two Breaks in Drift: Benchmark methods

t=55 t=89 t=90 t=95 t=120 P1 P2 P3 All

SPB original 0.88 0.46 2.67 1.63 0.70 1.01 0.66 1.23 0.84
minT=20 V=20 0.94 0.46 2.63 1.88 0.96 1.00 0.76 1.36 0.93
minT=20 V=10 0.88 0.47 2.62 1.25 0.72 1.01 0.65 1.14 0.81
minT=10 V=20 0.89 0.46 2.70 1.88 0.70 1.01 0.68 1.33 0.87
minT=10 V=10 0.79 0.47 2.68 1.25 0.72 1.02 0.57 1.07 0.74

SPW original 0.95 0.54 1.92 1.57 1.05 1.00 0.79 1.38 0.96
minT=20 V=20 0.97 0.61 1.68 1.52 1.17 1.00 0.86 1.37 1.00
minT=20 V=10 0.95 0.55 1.90 1.51 1.06 1.00 0.78 1.36 0.95
minT=10 V=20 0.95 0.54 1.94 1.62 1.05 1.00 0.79 1.40 0.96
minT=10 V=10 0.91 0.52 2.05 1.56 0.94 1.01 0.70 1.32 0.89

EXP 0.69 0.52 2.00 1.48 0.94 1.02 0.60 1.24 0.80

Note: the table reports MSFEs relative to those of the equal weighted prediction, MSFEi/MSFEEQ, where
MSFEi is the MSFE of forecasting method i in the first column. The header ‘t=55’ refers to the one-
period ahead prediction regarding t = 55. The reference setup for each method is boldfaced. Variations
to a reference setup, like ‘minT=20 V=20’, are presented below it. Simulated model: yt = µt + εt, with
µt = 3 + 2 · 150≤t≤89 and εt ∼ N(0, 1). Prediction model: ŷT+1 = µ̂T . Repetitions: 10, 000 times. P1:
obs. 31-49. P2: obs. 50-89. P3: obs. 90-12. All: obs. 31-12.

‘SPB original’ is the best starting point method. The results highlight that
it can indeed be too slow in adapting to changes in the data generating process
(H1

0 ) and that it is too quick in ignoring old information (H2
0 ). I will give a

short walk-through of the outcomes of SPB original. For the one-period ahead
prediction regarding the observation at t = 55, the relative MSFE of SPB original
is 0.88. This improvement of 12% relative to EQ is considerably smaller than
EXP. Once more post-break data has become available, at t = 89, SPB original
gets an excellent score by ignoring old parts of the data. As a consequence, SPB
original is no less than 2.67 times worse than EQ when the data generating
process goes back from 5 to 3 at t = 90. At the fifth forecast after the second
break (t = 95), EQ still outperforms SPB original by a large amount. In the
period before the first break (‘P1’), SPB original has about the same forecasting
accuracy as EQ, in the second period it outperforms EQ by 34%, and in the
third period it is 23% worse than EQ on average. Column ‘All’ shows that the
overall MSFE score relative to EQ is 0.84.

The four rows directly below the boldfaced SPB original allow us to analyze
how forecasts change when the reference setup of SPB original is altered in terms
of the minimum number of observations in the training (minT ) and validation
(V ) samples. The global performance of SPB original improves in case they are
decreased from fifteen to ten (‘minT=10 V=10’), because such small sample sizes
help in responding more quickly to a new data generating process (or random
noise).
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Table 5.5: Relative MSFE for Two Breaks in Drift: SPB, SPW and MB

Method t=55 t=89 t=90 t=95 t=120 P1 P2 P3 All

SPB original .88 .46 2.67 1.63 .70 1.01 .66 1.23 .84
SPW original .95 .54 1.92 1.57 1.05 1.00 .79 1.38 .96
EXP .69 .52 2.00 1.48 .94 1.02 .60 1.24 .80
SPB .69 .48 2.48 1.08 .82 1.02 .58 1.00 .73
wPE=EQ .69 .47 2.49 1.17 .82 1.02 .58 1.05 .74
wV =EQ .99 .49 2.40 1.03 .93 1.00 .81 1.09 .90
wPE & wV =EQ 1.00 .48 2.42 1.16 .94 1.00 .81 1.16 .91
minT=20 V=20 .69 .48 2.49 1.16 .81 1.02 .60 1.03 .75
minT=20 V=10 .69 .50 2.40 .98 .84 1.02 .60 .98 .74
minT=10 V=20 .69 .47 2.55 1.17 .79 1.02 .58 1.04 .74
minT=10 V=10 .68 .49 2.44 .99 .82 1.02 .55 .97 .70
λ=0 .66 .46 2.66 1.18 .71 1.03 .55 1.04 .72
λ=2/3 .69 .68 1.49 1.06 .84 1.02 .65 .94 .76

SPW .69 .52 2.02 1.39 .93 1.02 .60 1.18 .79
MB .69 .53 2.23 1.07 .72 1.02 .62 .90 .73
wPE = EQ .69 .53 2.21 1.16 .71 1.02 .62 .93 .74
wV = EQ 1.00 .58 2.05 1.01 .73 1.00 .91 .87 .91
wPE & wV =EQ 1.00 .58 2.04 1.15 .73 1.00 .91 .94 .93
minT=20 V=20 .69 .61 2.07 1.16 .71 1.02 .62 .94 .74
minT=20 V=10 .69 .54 2.12 .92 .73 1.02 .65 .85 .74
minT=10 V=20 .69 .51 2.37 1.16 .71 1.02 .60 .95 .73
minT=10 V=10 .68 .53 2.24 .92 .73 1.02 .60 .85 .71
λ=0 .68 .47 2.63 1.07 .71 1.02 .60 .93 .73
λ=2/3 .69 .64 1.59 1.07 .82 1.02 .64 .94 .75
Da(w) .69 .52 2.29 1.08 .72 1.02 .62 .91 .73
BP-LWZ .69 .53 2.23 1.07 .72 1.02 .62 .90 .73
EB .69 .52 2.22 1.07 .74 1.02 .60 .91 .72
BPB .68 .52 2.24 1.09 .74 1.02 .59 .91 .71

Note: the table reports MSFEs relative to those of the equal weighted prediction, MSFEi/MSFEEQ, where
MSFEi is the MSFE of forecasting method i in the first column. The reference setup for each method is
boldfaced. Variations to a reference setup, like ‘minT=20 V=20’, are presented directly below it. Simulated
model: yt = µt + εt, with µt = 3 + 2 · 150≤t≤89 and εt ∼ N(0, 1). Prediction model: ŷT+1 = µ̂T .
Repetitions: 10, 000 times. P1: obs. 31-49. P2: obs. 50-89. P3: obs. 90-12. All: obs. 31-12.
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The same story goes for SPW original, although its scores are generally worse
than SPB original. Despite the fact that the errors of SPW original are smaller
at the second break, SPW original performs poorly in the third period. At
t = 120, for example, it is still unable to beat EQ.

Turning to the third benchmark method, EXP responds admirably to the
first break at t = 50. Its forecasting error at t = 90 is quite a bit smaller than
the other benchmark methods, and yet EXP remains substantially less accurate
than EQ in the third period. This is a first indication that PPP’s exponential
weights are not robust to varying break processes (H3

0 ). Next to the fact that old
information is too easily discarded at times, another disadvantage is that EXP
does not inform us about when the underlying break (approximately) occurs.

Now I will switch to three methods that incorporate exponential weights in
a discrete weighing scheme on the one hand, and penalize deviations from equal
weights on the other hand. These techniques either select the best starting point
(‘SPB’), weigh starting points (‘SPW’), or use multiple break points (‘MB’).
Their forecasting accuracies are compared to the benchmark methods in Table
5.5.

SPB is slightly worse than EQ in the first period because it exponentially
weighs the validation sample. Compared to the original SPB procedure, the
method adjusts the mean more quickly after the first break. Due to a quick
recovery after the second break, SPB manages to avoid worsening EQ in the
third period on average. The rows directly below the boldfaced SPB again show
what happens when certain configurations are altered in the reference setup. If
the prediction errors are not weighed exponentially but equally (‘wPE=EQ’),
the response to the second break gets worse at t = 95. The row labeled ‘wV=EQ’
clearly shows that exponentially weighing the validation sample has a large
positive effect on overall forecasting accuracy.

Next, it is confirmed that penalizing deviations from equal weights with λAST
helps to achieve more conservative deviations from EQ (H2.1

0 ). Setting ‘λ=0’
instead of 1/3 results in a good overall MSFE, but a poorer MSFE during the
break at t = 90. At the expense of a slightly worse overall score, the forecasting
performance of SPB becomes even less volatile when λ = 2/3. SPW is improved
considerably by using exponential weights, but its predictions during the third
period remain poor.

As could be expected, MB performs particularly well in the third period.
Exponentially weighing the validation sample in MB has the same large influence
on forecasting accuracies as in SPB. Regarding hypothesis 2.2, a striking result
is that, in terms of forecasting accuracy, one might as well equally distribute
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Table 5.6: Relative MSFE for Two Breaks in Drift: SPB-S, MB-S, and EXP-S

Method t=55 t=89 t=90 t=95 t=120 P1 P2 P3 All

SPB original .88 .46 2.67 1.63 .70 1.01 .66 1.23 .84
SPW original .95 .54 1.92 1.57 1.05 1.00 .79 1.38 .96
EXP .69 .52 2.00 1.48 .94 1.02 .60 1.24 .80
SPB .69 .48 2.48 1.08 .82 1.02 .58 1.00 .73
SPW .69 .52 2.02 1.39 .93 1.02 .60 1.18 .79
MB .69 .53 2.23 1.07 .72 1.02 .62 .90 .73
SPB-S .94 .52 2.23 1.03 .88 1.00 .67 1.05 .80
MB-S .94 .53 2.07 1.04 .78 1.00 .68 .97 .78
wPE=EQ .97 .52 2.04 1.13 .77 1.00 .71 1.03 .82
wV =EQ .94 .53 1.99 1.02 .76 1.00 .68 .93 .78
wPE & wV =EQ .97 .53 1.97 1.17 .75 1.00 .71 1.03 .82
minT=20 V=20 .95 .54 1.96 1.06 .78 1.00 .72 1.02 .82
minT=20 V=10 .93 .55 2.01 1.00 .80 1.00 .67 .94 .77
minT=10 V=20 .94 .52 2.16 1.06 .78 1.00 .68 1.01 .80
minT=10 V=10 .88 .54 2.08 1.00 .79 1.00 .65 .93 .75
λ=0 .69 .49 2.42 1.07 .73 1.00 .60 .97 .73
λ=2/3 .99 .91 1.10 1.01 .97 1.00 .94 1.00 .96
Da(w) .93 .52 2.08 1.05 .76 1.00 .65 .97 .77
BP-LWZ .94 .53 2.07 1.04 .78 1.00 .68 .97 .78
EB .94 .53 2.07 1.04 .79 1.00 .68 .98 .79
BPB .94 .54 2.09 1.04 .80 1.00 .67 .98 .78

EXP-S .89 .53 1.96 1.09 .99 1.00 .65 1.11 .80
wPE=EQ .94 .53 1.98 1.28 .99 1.00 .67 1.15 .82
V=20 .92 .53 1.97 1.12 .99 1.00 .66 1.11 .81
V=10 .86 .54 1.94 1.05 .99 1.00 .64 1.09 .79
λ=0 .70 .52 1.99 1.18 .95 1.00 .61 1.13 .78
λ=2/3 .98 .80 1.25 1.03 1.00 1.00 .89 1.03 .94
Da(w) .98 .54 1.93 1.05 1.00 1.00 .68 1.10 .82

Note: the table reports MSFEs relative to those of the equal weighted prediction, MSFEi/MSFEEQ, where
MSFEi is the MSFE of forecasting method i in the first column. The reference setup for each method is
boldfaced. Variations to a reference setup, like ‘minT=20 V=20’, are presented directly below it. Simulated
model: yt = µt + εt, with µt = 3 + 2 · 150≤t≤89 and εt ∼ N(0, 1). Prediction model: ŷT+1 = µ̂T .
Repetitions: 10, 000 times. P1: obs. 31-49. P2: obs. 50-89. P3: obs. 90-12. All: obs. 31-12.
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breaks (‘EB’) across the training sample instead of employing more sophisticated
techniques. In MB, I have used Bai and Perron’s procedure with a BIC criterion
for determining the number of breaks included. Changing BIC into LWZ does
not affect mean prediction errors. Selecting the single best break point (‘BPB’)
through cross-validation while allowing for pre-break data to receive positive
weights leads to results that are more closely akin to MB than to SPB. From this
we might tentatively conclude that the manner in which weights are assigned to
periods of observations has a larger influence on the results than the manner in
which break dates are identified.

Lastly, I will analyze in Table 5.6 what happens when the weights of SPB,
MB, and EXP are shrunk towards equal or exponential weights based on the their
latest V = 15 predictions. The shrinkage step decreases forecasting errors of the
three procedures at the second break (t = 90) and leads to smaller improvements
relative to EQ at the end of the third period (t = 120). For MB-S, the largest
difference in predictive quality results from altering the tuning parameter λ,
which allows the user to balance cross-validated accuracy with the simplicity of
EQ.

Can we leave out discrete weights altogether here and simply optimize over
the extent to which exponential weights are used? ‘EXP-S’ shows that the
addition of discrete weights does help to improve forecasts. Particularly in the
third period, is it clear that break points or starting points should be estimated
before shrinking discrete weights towards EQ or EXP.

Overall, the first impression about the main hypotheses is that SPB original
indeed responds slowly to new information. This might be explained as a
cautionary strategy when the choice is to shorten the sample after a recent
number of aberrant observations. Yet, once a second break is introduced, the
return to the full sample also takes a long time. Exponential weights were shown
to respond quickly to the first break point, but to ignore old data too soon as
well. As an alternative, MB or MB-S algorithm can be used, which appear to be
less volatile than EXP and SPB original. Will the same conclusions hold when
different simulation exercises are considered?

5.3.2. Alternative Simulation Exercises
Having analyzed one simulation study in-depth, I will now present more global
results of other simulation models. Table 5.7 gives an overview of the exercises.
With ‘Drift-1’, the mean in the exercise of the previous section has a simulated
break of size 1 instead of 2. The exercise labeled ‘X’ replaces the mean by a
regressor with a standard normal distribution. The ‘AR’ task is loosely inspired
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by Pesaran and Timmermann (2005), who showed that the use of post-break
data can lead to poor forecasts with autoregressive models, which is why it
is interesting to see whether the weighing schemes are robust when the AR
coefficient becomes less or more persistent. The fourth simulation exercise
analyses the continuous break process of a standard random walk model.

Table 5.8 reports forecasting performances across the three periods, which
are defined by breaks at t = 50 and t = 90. Panel i shows that when the average
of y is simulated to jump from 3 to 4 to 3 instead of from 3 to 5 to 3, the overall
performance of the three benchmark methods (SPB original, SPW original, and
EXP) are more volatile than MB and MB-S. The same holds for panel ii. with
the ‘X’ exercise. Methods like BPB and MB, that assign individual weights to
pre-break observations, particularly outperform others in the third period.

The lower left panel of Table 5.8 indicates that when there is a break in an
autoregressive parameter, it is best to weigh observations equally. Consequently,
PPP’s exponential weights have much difficulties here. In case weights are shrunk
towards EQ or EXP based on LAST scores, equal weights are often used, which
is why SPB-S, MB-S, and EXP-S perform about as well as EQ here. These
methods also produce good forecasts in the continuous break process of the
random walk model (panel iv), particularly once a sufficient number of forecasts
is available to combine discrete weights with EXP.

In general, MB and MB-S have the most consistent performance among
the different techniques for weighing observations. It is also noteworthy that
assigning individual weights to pre-break data through BPB often improves SPB;
and that equally distributing breaks across the training sample, ‘(EB) MB’,
results in forecasts that are about the same as the Bai and Perron procedure for
selecting the timing and number of breaks (H2.2

0 ) in all of the exercises. Next, I
will turn to an empirical case study.

Table 5.7: Overview Alternative Simulation Exercises

Simulation model Specify Prediction model

Drift-1 yt = µt + εt µt = 3 + 150≤t≤89 ŷt = µ̂t
X yt = β1,tXt + εt β1,t = 3 + 2 · 150≤t≤89 ŷt = β̂1,tXt
AR yt = φ1,tyt−1 + εt φ1,t = 0.3 + 0.2 · 150≤t≤89 ŷt = µ̂t + φ̂1,tyt−1
RW yt = µt + εt µt = µt−1 + vt ŷt = µ̂t

Xt, vt, εt ∼ N(0, 1), t = 1, 2, . . . , 120, forecasting horizon h = 1.
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Table 5.8: Relative MSFE for Alternative Simulation Exercises

i. Drift-1 ii. X
P1 P2 P3 All P1 P2 P3 All

SPB original 1.01 .83 1.09 .94 1.01 .61 1.34 .80
SPW original 1.00 .90 1.14 .99 1.00 .74 1.55 .94

EXP 1.02 .80 1.09 .92 1.02 .54 1.36 .76
SPB 1.02 .81 1.00 .90 1.02 .51 1.04 .66
SPW 1.02 .80 1.08 .92 1.02 .54 1.27 .74
MB 1.02 .82 .98 .90 1.02 .56 .86 .65

(EB) MB 1.02 .81 .98 .90 1.02 .53 .88 .64
BPB 1.02 .81 .98 .90 1.02 .51 .89 .63

SPB-S 1.00 .90 1.02 .95 1.00 .61 1.09 .74
MB-S 1.00 .90 1.01 .95 1.00 .62 .96 .72
EXP-S 1.00 .88 1.03 .94 1.00 .60 1.18 .75

iii. AR iv. RW
P1 P2 P3 All P1 P2 P3 All

SPB original 1.01 .99 1.05 1.01 .79 .46 .30 .43
SPW original 1.00 .99 1.03 1.00 .88 .64 .49 .60

EXP 1.05 .98 1.04 1.01 .47 .44 .42 .43
SPB 1.05 .98 1.02 1.01 .48 .37 .29 .34
SPW 1.05 .98 1.04 1.01 .48 .44 .40 .43
MB 1.05 .98 1.02 1.01 .48 .37 .28 .34

(EB) MB 1.05 .98 1.02 1.01 .48 .39 .31 .36
BPB 1.05 .98 1.02 1.01 .48 .36 .27 .33

SPB-S 1.00 .99 1.00 1.00 .90 .40 .30 .41
MB-S 1.00 .99 1.00 1.00 .90 .39 .29 .40
EXP-S 1.00 .99 1.01 1.00 .90 .44 .42 .48

Note: the table reports MSFEs relative to those of the equal weighted prediction, MSFEi/MSFEEQ, where
MSFEi is the MSFE of forecasting method i in the first column. The title of each panel refers to the
simulation exercise defined in Table 5.7. Repetitions: 10, 000 times. P1: obs. 31-49. P2: obs. 50-89. P3:
obs. 90-12. All: obs. 31-12.
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5.4. Empirical Application

In his paper, Croushore (2008) describes how survey forecasts were ignored as a
source of data on people’s expectations as a result of the rational expectations
literature in the 1980s. The surveys appeared to contain irrational expectations,
in the sense that inflation forecasts were systematically too high or too low. One
way of testing whether the mean survey forecasts are biased, is to estimate the
bias-adjusted model

f̄ bat+h = α+ βf̄t+h,

where the mean survey forecast, f̄t+h = 1
N

∑N
i=1 ft+h,i, gives the average h-

quarter-ahead prediction at time t of all the participating experts i = 1, 2, . . . , N .
If expert forecasts are unbiased, then one should estimate α = 0 and β = 1.
Since experts might tend to overpredict in one period and underpredict in
another (Capistrán and Timmermann, 2009a), the underlying data generating
process could be subject to breaks. I will examine whether the bias-adjusted
model improves upon the mean survey forecast and whether the bias-adjusted
model produces better forecasting accuracies when observations receive unequal
weights.

The data on expert predictions is obtained from the Survey of Professional
Forecasters (‘SPF’), which has been conducting the survey about macroeconomics
variables on a quarterly basis since 1968Q4. Inflation forecasts are obtained
by transforming the quarterly data on the Price Index for the Gross Domestic
Product (‘PGDP’) with

xt+h = 400 · ln Xt+h

Xt+h−1
, (5.7)

following (Capistrán and Timmermann, 2009b). Next to the one quarter and one
year ahead predictions of PGDP, I will analyze expert forecasts of the Nominal
Gross Domestic Product (‘NGDP’), which were also transformed with equation
(5.7).

Figure 5.3 shows the weights that MB-S assigned to observations (vertical
axis) when predicting inflation at a given time (horizontal axis) for one-year-
ahead forecasts. The validation sample and the minimum training sample are
both of size 15. Notice that some data points are missing (white horizontal
lines). This is because four-quarters-ahead forecasts made at 1968Q4 can only
be evaluated with real-time data five quarters later; and because, for some
reason, one-year-ahead forecasts were not collected on a number of occasions.
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Figure 5.3: Heatmap of Weights Across Time: SPF Data
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This heatmap shows the weights that were assigned to ‘Observations’ (vertical axis)
in producing ‘T + 4 quarters’ ahead forecasts (horizontal axis) of inflation with the
bias-adjusted model.

Table 5.9: MSFE for Bias-Adjusted Model: Relative to Mean Survey Forecast

PGDP NGDP
1 qr ahead 1 yr ahead 1 qr ahead 1 yr ahead

EQ 1.12 1.67 1.01 1.02
SPB original 1.00 1.36 1.02 1.23
SPW original 1.02 1.39 1.04 1.04

EXP 0.98 1.28 1.05 1.06
SPB 1.01 1.31 1.04 1.07
SPW 1.00 1.26 1.05 1.09
MB 1.01 1.15 1.04 1.09
EB 1.02 1.26 1.03 1.10

SPB-S 1.02 1.38 1.02 1.02
MB-S 1.03 1.35 1.02 1.01
EXP-S 1.01 1.35 1.01 1.01

Note: the table reports MSFEs of the bias-adjusted model whereby different schemes (first column) were
used to weigh observations in estimating the regression parameters. The scores are made relative to the
MSFE of the mean survey forecasts f̄. Data are PGDP and NGDP (1968Q4-2016Q3). The first 30 available
mean survey forecasts are used in the initial estimation sample.
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MB-S used equal weights to estimate f̄ bat+4 until these weights resulted in some
relatively poor forecasts in the 1980s. As of 1986Q4, groups of observations
before around 1980 were often disregarded in the second step of the algorithm,
and these discrete weights were shrunk to exponential ones in the third step.
From 2001Q3 onwards, equal weights were generally employed once more.

Table 5.9 reports the MSFE results of the bias-adjusted model relative to
the mean survey forecast. When α and β are estimated with equally weighted
observations (‘EQ’), it clearly worsens mean survey predictions for PGDP.
Assigning unequal weights to observations clearly helps to improve the bias-
adjusted model in the case of PGDP, although the results are still worse than
the unadjusted mean survey forecasts.

In the case of NGDP, the bias-adjusted model with equally weighted obser-
vations has a similar performance as the mean survey forecast (f̄). Assigning
weights to observations deteriorates estimates of the bias-adjusted model, partic-
ularly for the original SPB method. Penalizing deviations from equal weights
helps to avoid such bad results, especially when the possibility is added to shrink
previously obtained weights to EQ or EXP in the third part of the algorithm
(SPB-S, MB-S, EXP-S).

What we learn from this application is that the presumed biases in survey
forecasts of PGDP and NGDP are not of such a structural nature that they can
be corrected for in real-time. Regarding the MB-S algorithm, it is pleasing to
observe that its weights only deviate from equal weights if the accuracy of the
validation window is markedly better (PGDP); and that they do not deviate
from EQ when the relative improvement in MSFE is small (NGDP).

5.5. Discussion
In this chapter, I have studied three ways to improve upon the best starting
point method. First, it was shown how the slow response time of SP methods
could be improved with the help of exponential weights. Second, I explained
how a tuning parameter λAST ∈ [0, 1] enables a researcher to make the tradeoff
between cross-validation and a prior setup, so that more conservative deviations
from equal weights can be stimulated. Third, a broadly applicable procedure
was introduced for weighing observations of multiple periods instead of just
assigning a positive weight to post-break data. Overall, it was found that the
resulting MB-S algorithm offers robust estimates of breaks dates and regression
parameters.

A possible limitation is that the Bai and Perron (2003) procedure used for
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estimating the timing of breaks can take a long time to run. When a plain model,
like regressing y on a constant, is estimated for a sample of 2000 observations,
MB-S takes around 45 sec. while SPB takes 0.7 sec., for example. A suggestion
for further research is to look for ways in which multiple break points can be
found more quickly. I have presented simple alternatives to BP, like equally
distributing breaks across the estimation sample. Such a simple alternative
could function as a prior setup if one desires to estimate the timing of breaks
with an Accuracy-Simplicity Tradeoff.

5.A. Appendix: Heuristics for
Determining the Effective Sample
Size

I will now show why Ds(w) and Da(w) may be interpreted as measures for the
relative deviance from equal weights; how a heuristic for the ‘effective’ number
of observations follows; and how differences between the two measures can be
illustrated.

I begin with

Ds(w) = 1∑
m w

2
m

∑
m

(wm −
1
M

)2,

where
∑
m wm =

∑M=1
m wm = 1. Without further assumptions, Ds can be

rewritten as

Ds(w) = 1∑
m w

2
m

∑
m

(wm −
1
M

)2

= 1∑
m w

2
m

[∑
m

(w2
m) + 1

M
− 2 1

M

∑
m

(wm)
]
,

= M − N̂2

M
,

where N̂2 = 1∑
m
w2
m

is the effective sample size with an `2 norm and where I

have used that
∑M
m=1 c = Mc. It follows that 0 ≤ Ds(w) ≤ 1.
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In case the weights still need to be normalized, one would get

Ds(w) =
(
∑
m wm)2∑
m w

2
m

∑
m

( wm∑
m wm

− 1
M

)2,

=
M −

(
∑

m
wm)2∑

m
w2
m

M
,

and the heuristic for the effective sample equals (
∑

m
wm)2∑

m
w2
m

. The same expression
was derived in the design effect literature by determining what adjusted sample
size is required to equate the variance of an individually weighted average
var(X̃) = σ2

∑
m
w2
m

(
∑

m
wm)2 to the variance of an equal weighted average var(X̄) = σ2

N

under the assumption of independent and identically distributed observations
(Kish, 1965).

Next, I turn to the absolute deviance measure,

Da(w) = 1
2
∑
m

|wm −
1
M
|.

Note that Da(w) = 0 when wm = 1
M for all m = 1, 2, . . . ,M . When the first N

observations are included and the others are ignored, this can be represented
as w1:N . Such weights are an example of when N observations receive an equal
weight of 1

N and the other (M −N) observations receive a weight of 0. If one
also uses that N ≤M , the following can be derived

Da(w1:N ) = 1
2
∑
m

|w1:N − 1
M
|,

= 1
2

[
(M −N) · |0− 1

M
|+N · | 1

N
− 1
M
|
]
,

= 1
2

[M −N
M

+ 1− N

M

]
,

= M −N
M

= D01(w),

and this proportion of observations is between 0 and 1. Since the largest deviation
from equal weights occurs when only the minimum amount of observations is
included, it also follows that 0 ≤ Da(w) ≤ 1. The heuristic for the effective
sample size N̂1 = (1−Da(w))M results from solving Da(w) = M−N̂1

M for N̂1.
Table 5.10 compares the two deviance measures when N = 3 observations

receive weights of w = [p q r]′/(p+ q + r). The letter r is associated with the
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Table 5.10: Measuring Deviations from Equal Weights

i. Ds ii. Da
p\q 0 1 2 3 4 5 0 1 2 3 4 5
5 0 0
4 .01 .01 .05 .05
3 .06 .04 .05 .12 .08 .10
2 .18 .12 .10 .11 .22 .17 .15 .17
1 .40 .29 .23 .21 .21 .38 .29 .22 .23 .24
0 2

3 .54 .44 .37 .34 1
3

2
3 .50 .38 1

3
1
3

1
3

Note: this table shows how Ds and Da measure the total deviation from equal weights. The three weights
are given by w = [p q r]′/(p + q + r), where r = 5.

third observation and is fixed at 5 while p and q of observations one and two
vary from 0 to 5. When both p and q equal zero (and r = 5), for example, then
the deviance from equal weights is 2/3 for both measures, because two out of
three observations are excluded. The total deviances from equal weight is 0 in
case p = q = r = 5. As one would expect, Da gives higher penalties than Ds to
small deviations from equal weights, while Ds has more discriminatory power
for large deviations from equal weights. For instance, when p = 0, Da is exactly
equal to 1/3 for q = 3, 4, and 5; while Ds gives higher penalties than 1/3 the
more q diverges from r = 5. In this way, Ds stimulates periods of observations
to receive similar weights because larger deviations from EQ are more heavily
penalized by the `2 norm.



6
A Quick and Easy Search for Optimal Configura-
tions

6.1. Introduction

In econometric analyses one often has to make choices about configurations like
the starting point of a data set, the penalty term of an estimator, or weights
that are used when combining forecasts. One popular procedure for the selection
of configurations is called cross-validation. The data is first split into a training
and a validation set. Varying configurations are then used to produce pseudo
forecasts with the training set about the observations of the validation set. The
configurations with the best pseudo predictions are subsequently selected for
producing out-of-sample forecasts.

When a single statistical decision like the starting point of a sample is
selected by optimizing over a validation set, it might already take a long time
to evaluate the full grid of all eligible candidates. The computation time will
increase considerably when multiple statistical choices are cross-validated. For
these reasons, tools are needed that identify for which range of settings it is
worthwhile to investigate many candidate configurations, and which areas do
not have to be studied in close detail.

To give an example, say a researcher optimizes over a tuning parameter
c ∈ [0, 1] by applying cross-validation on the grid {0, 0.01, 0.02, . . . , 0.99, 1}. By
equally distributing the candidate values in this way, areas of configurations
that produce forecasts which barely deviate from each other are examined
just as closely as areas that produce highly dissimilar forecasts. Turning the
tables, one can also choose new candidate configurations such that the resulting
predictions vary by a similar degree across all neighbouring configurations. Just
find out where the average forecasting deviance (‘FD’) between two contiguous

119
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configurations is largest, add the point that lies in the middle, and repeat this
process.

Once more settings have been globally spread across the configuration space
in this way, one might become more interested in focusing on local areas with
good pseudo predictions. In the latter case, a configuration c can be added
that lies between two neighboring configurations which have on average the best
pseudo forecasting accuracy (‘FA’) according to some loss function.

By giving the user an intuitive control over a gradual transition from a
selection based on forecasting deviance towards a selection based on forecasting
accuracy, configuration searches can be performed far more efficiently. The new
‘FAD’ (Forecasting Accuracy Deviance) that I aspire to introduce, is a global to
local strategy. A choice that is based on data-optimization will be referred to as
an ‘item’. The items may be discrete or continuous and there may be multiple
items. FAD can also be applied when information criteria like AIC or BIC are
used to select configurations, or when cross-validation is employed with multiple
folds.1

The main requirement for an FD search is that neighboring configurations
(c = 0 and c = 0.25) produce more similar forecasts on average than configu-
rations that are further apart (c = 0 and c = 1). FD is unaffected by further
conditions such as the convexity of the accuracy measure. An FA search is barely
troubled by forecasts of contiguous configurations being more similar or not, but
does require the optimization problem to be convex. By combining FD and FA
in FAD, the global and local search techniques help to overcome each other’s
liabilities, so that FAD can find multiple (local) minima.

Widely used methods for selecting trial configurations are grid and random
searches (Bergstra and Bengio, 2012). With a grid search, the user manually
chooses candidate sets of configurations for each item and computes every
possible combination among these configurations. Its main advantage is that
it is straightforward to apply and interpret. One disadvantage is that the grid
search suffers from the curse of dimensionality, which means that the number
of permutations grows exponentially as more items are added. A practitioner
could manually adjust the set of configurations to be examined, but this can be
a cumbersome exercise in practice.

In a random search, configurations are independently drawn from a uniform
density with the same manually defined configuration space as the one spanned by
a regular grid, like U(0, 1) (Bergstra and Bengio, 2012). The random search has

1In g-fold cross-validation, the estimation sample is split into g folds and each fold is
predicted with the other folds precisely one time.
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the same efficiency in the relevant set of parameters as if the search algorithm
had only been applied to those relevant dimensions, because many unique
configurations are evaluated per item. When there are many items, the random
search may thus find a better set of configurations than a grid search for a given
number of runs. A disadvantage could be that the entire estimation procedure
needs to be rerun for each unique set of configurations, which might slow the
program down.

As a third benchmark method, I will consider a more sophisticated search
algorithm which starts with a random search and continues by iteratively pre-
dicting which set of configurations will lead to the largest Expected Improvement
(‘EI’) (Jones et al., 1998, Bartz-Beielstein et al., 2005, Hutter et al., 2011).
Here the assumption is that configurations that are closer together have a more
similar predictive performance. Extending the random search with EI is known
to improve in-sample accuracy for a given number of runs. The time required
for estimating expected improvements through a stochastic model might be
much larger though. Bergstra and Bengio (2012) write that ‘of course, random
search can probably be improved by automating what manual search does, i.e.,
a sequential optimization, but this is left to future work’ (pp. 283).

Regarding the structure of this chapter, Section 6.3 explains how FAD can
help to automate what a manual search does with a sequential optimization
procedure. In Section 6.3, the search techniques will be evaluated with a variety
of simulation exercises. Section 6.4 applies the search methods to multiple choices
that can be made when combining a number of top-ranked expert forecasts.
Section 6.5 concludes.

6.2. Search Methods

6.2.1. Benchmark Methods

As I mentioned above, the grid search typically spreads candidate configura-
tions equally across a manually defined space, while the random search selects
candidate configurations from a uniform distribution. Although both methods
seem easy to apply, there are several reasons why the grid and random searches
could be inefficient when searching within a single item. For one, the procedures
heavily depend on the initial range that is given. For another, they might include
many configurations that lead to highly similar forecasts. Lastly, they do not
discriminate in selecting configurations between those that lead to good forecasts
and those that lead to poor ones.
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In a setting where multiple items are to be optimized over, the grid search will
equally distribute configurations across the space by examining all combinations
between the sets of configurations examined. When there are two items A ∈ [0, 1]
and B ∈ [10, 100], for example, one could define A ∈ {0, 0.1, . . . , 1} and B ∈
{10, 20, . . . 100} and take combinations (A = 0, B = 10), (A = 0, B = 20), and
so on. Note that this means that only 11 unique configurations are considered
for item A and 10 for item B. When more items are added, it may only be
feasible to assess fewer unique configurations per item.

In case the candidate configurations are drawn from a uniform distribution,
by contrast, many unique configurations of a given item are selected at least
once, which is why the random search could be more efficient when the number
of items increases. As Bergstra et al. (2012) write, the ‘random search has the
same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions’ (pp. 284). The idea that the random search could beat the
grid because it evaluates many unique configurations for each item could also
lead one to expect that the random search is slower to execute. The reason is
that when only a few settings are altered while others remain the same, it may
often be unnecessary to recompute large parts of the algorithm. This could be a
comparative advantage of the grid search.

The Expected Improvement (‘EI’) search attempts to refine these aspects
of the random search by adding new configurations based on their expected
performance. The performance of configuration c is measured with a score
function f(c) that is typically based on the accuracy of the model. It is defined
in such a way that a lower score is better than a higher one. Think of Root
Mean Squared Forecast Errors (RMSFE). After running an estimation procedure
with a number of randomly drawn configurations, one has obtained a data set
consisting of those initial configurations and their associated scores. The relation
between the scores and the configurations can then be estimated with this
data set, and these estimates can subsequently be used to predict the unknown
scores of configurations that have not been evaluated yet. EI iteratively adds
configurations whose Expected Improvement in the score is largest.

A set of configurations with M items is summarized in the M -vector c. In
case the vector has not been evaluated yet, it is denoted as c∗. Given the best
score that has been observed so far (fmin), the expected improvement of an
unknown vector of configurations c∗ is given by

E[I(c∗)] := E
[

max{0, fmin − f(c∗)}
]
.
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To predict scores of unknown configurations, one can regress

f(ci) = µ+ εi, (6.1)

where µ is an unknown constant, ci is a set of configurations for which the
scores have been computed, and εi is the error term. The trick is to note that
configurations that are closer together may be expected to have a more similar
error (εi) from the mean score µ.

To capture these correlations, the distribution of εi is given by N(0, σ2) with
covariance V (ci, cj) = σ2A(θ, ε(ci), ε(cj)). The Gaussian correlation function A
is formulated as

A(θ, ε(ci), ε(cj)) =
M∏
m=1

exp(−θm(cmi − cmj )2), (6.2)

where cmi refers to item m of a set of configurations i. The parameters µ, σ2, and
θm can be estimated by applying maximum likelihood on the data of sampled
configurations and scores (Jones et al., 1998, pp. 460). Note that the errors of
ci and cj are indeed more closely related in A when ci and cj are closer to each
other. The parameter θm can be regarded as a measure of importance of item
m (ibid., pp. 459).2 The stochastic model defined by equations (6.1) and (6.2)
is called ‘DACE’ (‘Design and Analysis of Computer Experiments’) following
(Sacks et al., 1989).

If r = 1, 2, . . . , R is the number of runs that has been performed so far (the
number of configurations for which scores have been computed), the DACE
predictor of the unknown score of configuration c∗ is given by

f̂(c∗) = µ̂+ a′A−1(f(c)− 1µ̂),

where 1 is an r-vector of ones and a is an r-vector with correlations between
the error terms of c∗ and the previously sampled points ci. The mean squared
error of the predictor is

s2(c∗) = σ2
[
1− a′A−1a+ (1− 1A−1a)2

1′A−11

]
,

which is larger the less it is correlated to the sampled points and which is zero at
the sampled points, because a′A−1a will then be 1 (Jones et al., 1998, pp. 462).

2I follow Hutter et al. (2009) and others in using a power of 2 in equation (6.2), instead of
estimating this parameter as well, like Jones et al. (1998).
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To arrive at the expected improvement E[I(c)], one can now define u :=
fmin−f̂(c∗)

s and compute

E[I(c)] = s ·
[
u · Φ(u) + φ(u)

]
,

for standard normal pdf (φ) and cdf (Φ). The expected improvement of config-
urations c∗ is large when it is far removed from a set of configurations whose
score is known (through s) and when the expected score f̂(c∗) is low (ibid.,
pp. 470-473). In this way, EI gives an automated tradeoff between exploiting
known good areas and exploring unknown areas (Hutter et al., 2011, pp. 515).
The scores are often log-transformed, in which case the optimization criterion
becomes

Iexp(c) := max{0, fmin − ef(c)}.

Defining v := log(fmin)−f̂(ci)
s , one then obtains

E(Iexp(c)) = fminΦ(v)− e 1
2 s

2+f̂(ci) · Φ(v − s),

following (Hutter et al., 2009).
Jones et al. (1998) formulated an Efficient Global Optimization procedure

(‘EGO’) for continuous parameters. Many other variations were developed to
deal with discrete and categorical configurations; and scores that can vary when
they are recomputed (such as computation times), see Hutter et al. (2011) for an
overview. Following Jones et al., I will initialize the EI procedure with a random
sample of size 10M , where M is the number of items.3 Subsequently, a new set
of configurations that has the largest Expected Improvement is added until a
prespecified maximum number of runs is reached. I will use a well-documented
Matlab toolbox to estimate the DACE model (Lophaven et al., 2002). Since it
is relatively cheap (takes little time) to predict unknown scores of configurations
c∗ once the DACE model is estimated, I will assess the expected improvement
of 104 randomly drawn configurations each time a new configuration is to be
added (Hutter et al., 2009, Bartz-Beielstein et al., 2005).

Although the EI procedure is known to improve upon the random search
when it comes to selecting promising new configurations, its estimation procedure
is more complicated. It could also take a much longer time to run because the
stochastic model needs to be estimated and because EI tends to select unique

3One may use a random Latin Hypercube design to initialize EI with continuous configura-
tions, but Hutter et al. (2009) remark that there is ‘very little variation in predictive quality
due to procedures used for constructing the initial design.’
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configurations for multiple items. The computation time will be empirically
examined in the following sections. Like the grid and random searches, the
exploration of unknown areas by EI is largely based on the distance between con-
figurations rather than the average deviance between their resulting predictions;
and I will argue that such a strategy for a global search may be inefficient.

6.2.2. A Global to Local Search: FAD

To develop an alternative approach that is quick and simple, one could start
by observing that the grid and random searches more or less equally distribute
configurations across a space. Switching perspectives, one can also choose
configurations such that the average deviances between the resulting forecasts
are more equally distributed. Once there is a sufficient number of configurations
to avoid local minima, the researcher can subsequently focus on subsets of
configurations with a good forecasting accuracy.

In selecting candidate configurations such that the deviance between forecasts
becomes more equal, I will use a forecasting deviance measure that describes
the relevance of statistical choices in terms of their influence on forecasts. Let ŷi
denote predictions that are generated with a set of configurations ci regarding
the observations in the validation sample v = 1, 2, . . . , V . An average absolute
deviance measure between the forecasts of two sets of configurations labeled i
and j can then be given by

FDa(ŷi, ŷj) = 1
V

V∑
v=1
|ŷi,v − ŷj,v|. (6.3)

A value of FDa = .1 means that the average absolute deviation among the
predictions of ci and cj is .1. When the FDa between the highest and lowest
configuration of a statistical choice is zero, this means that the two forecasts are
exactly the same for all v ∈ [1, V ]. It would then make little sense to study such
a decision in further detail. Conversely, if the average forecasting deviance is
relatively large between two extremes of a statistical decision, then it might be
interesting to analyze more of its configurations. Since I will be optimizing over
squared errors (RMSFE), I will consider squared deviances,

FDs(ŷi, ŷj) =

√√√√ 1
V

V∑
v=1

(ŷi,v − ŷj,v)2. (6.4)

An FD measure can be used to develop an automated procedure for selecting
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candidate configurations. Continuing the example with c ∈ [0, 1], one can start
by comparing the pseudo predictions of the extremes c = 0 and c = 1. In case
the forecasting deviance is high, a candidate weight is added that is halfway
between 0 and 1; namely, c = 0.5. Subsequently, the pseudo predictions of
c = 0.5 can be compared to those of c = 0 and 1 to determine whether c = 0.25
or 0.75 should be examined. The next configuration that is added is the one
where the forecasting deviance between two contiguous configurations is largest.

Note that a focus on forecasting deviances does not imply that the distance
between configurations is irrelevant. After all, forecasting deviances are only
evaluated between configurations that are closest neighbors. In fact, the main
assumption is that predictions of neighbouring configurations i and i + 1 are
more alike on average than those of i and i+ 2. An accuracy measure plays no
role here, so assumptions regarding convexity do not apply. Possible stopping
criteria are a minimum amount of forecasting deviance, a maximum number of
runs, and/or a maximum amount of computation time.

New configurations can also be selected based on forecasting accuracy. One
may, for example, use a root mean squared prediction error,

RMSFE(ŷi) =

√√√√ 1
V

V∑
v=1

(yv − ŷi,v)2, (6.5)

as a performance measure. The average pseudo forecasting accuracy between
two consecutive configurations can then be given by

FAs(ŷVi , ŷVi ) =
[1

2
(
RMSFE(ŷi) + RMSFE(ŷj)

)]−1
,

where an inverse is used to ensure that FA is high when the average accuracy
is high. To avoid extreme values, I will add the rule that if the lowest average
between RSMFEs is ξ less than .001, then ξ will be added to all RMSFEs before
FAs is computed.4 A high average forecasting accuracy between two neighboring
configurations could indicate that the accuracy of the configuration that lies in
the middle will be high as well. So, a sequential procedure to find an optimal
configuration could be to iteratively select the middle of two configurations
whose FAs is largest.

Now there are two measures. The FD measure may search the global space
efficiently, but it does not focus on configurations that have good pseudo forecasts.

4The inverse is taken over the average 1
2

(
RMSFE(ŷi,t) + RMSFE(ŷj,t)

)
instead of the

individual RMSFEs because the average is less prone to extreme values.
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The FA measure concentrates on promising subsets, but it might easily end up
in a local minimum or even get stuck along the way. By using a global to local
strategy, one first focuses on an FD approach at the start of the procedure and
one gradually turns to an FA approach as more configurations have efficiently
been spread across the space.

With a tuning parameter φ ∈ [0, 1], the researcher can specify how important
the relative FD scores are compared to the relative FA scores in the following
weighted average

FAD(yi, yj) = (1− φ) log

Relative accuracy︷ ︸︸ ︷
FAij

max(FA) + φ log

Relative deviance︷ ︸︸ ︷
FDij

max(FD) , (6.6)

where max(FA) is the maximum value of all the FA’s. FAD(yi, yj) is high
when the average deviance between forecasts of two consecutive configurations is
high and/or when their average forecasting accuracy is high. The log is taken to
mitigate the influence of extreme dissimilarities in forecasts.5 The configuration
that lies in the middle of two consecutive settings with the highest FAD is
added. I will use the rule that if the maximum forecasting deviance is zero,
configurations will be added based on FA.

The researcher can choose φ by specifying after how many runs (Ru) he wants
to focus more on FA than FD by defining φ = Ru

Ru+r , where r is the number of
runs at a given time. This means that configurations will first (r < Ru) mostly
be selected based on FD and that FA will gradually become more important
as the number of runs increases (r > Ru). In the reference setup, I will set
Ru = 1

2R and I will compare this specification to others.6

When there are multiple items, like A ∈ [0, 1] and B ∈ [10, 100], the basic
FAD procedure circles through two steps again. In step 1, pseudo predictions are
generated for all new sets of configurations. At first, these are all of the possible
combinations of the initial configuration sets of each item. Step 2 is to select
a set of configurations based on FAD scores. In case configuration A = 0.5 is
added conditional on B = 50, the extremes (A = 0, B = 50) and (A = 1, B = 50)
will also be added if they were not already included before, in order to make sure
that this apparently relevant dimension can be fully investigated. Steps 1 and 2
are iterated until some stopping criterion is reached, such as a maximum number

5Since α log β = log βα, it is clear that relative differences between FD values decrease as
φ ∈ [0, 1] decreases.

6One could also define φ in terms of computation time θ ∈ [0,Θ], by choosing after which
amount of time, Θu = 1

2 Θ, FA should be as important as FD in φ = Θu
Θu+θ .
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of runs R. I will investigate whether it is necessary to round off continuous
configurations to two decimal places in order to prevent the algorithm from
getting stuck in one dimension.

In case FAD is applied to multiple items, situations might arise whereby
there is only a single configuration of one item conditional on the other items.
One might then be concerned about not being able to expand each set of
configurations in all directions. To study this potentially relevant issue, a small
extensions (‘step 3’) is included in the reference setup of FAD. The third step
involves placing ‘anchors’ around the current best set of configurations (cb) and
it is performed on each occasion that step 2 has been repeated another 10 times.
Anchors are placed by adding the extremes of each configuration in cb and by
adding two configurations that are ‘nearby’. To find configurations that are
nearby, a list for each item m will be made of all the unique configurations that
have been included so far, and the configuration that is closest above and below
cmb will be added (if they are new). I will examine empirically whether this
addition results in a quicker convergence to the optimal value.

Lastly, I will make two remarks. First, FAD might be more sensitive to
the assumption that neighboring configurations produce more similar forecasts
than EI is to the assumption that scores of neighboring configurations are more
similar. The main reason is that EI predicts the expected improvement of a set
of configurations by making use of all other sets that have been evaluated up
to that point, whereas FAD only uses the predictions of two direct neighbours.
Second, it is good to remark that there is no tree structure in the optimization
procedure of FAD, in the sense that solutions do not depend on a user-specified
order in which items are optimized over. A tree structure can nevertheless be
implemented for the FAD procedure as well.

6.2.3. Hypotheses

Table 6.1: Hypotheses

Few items Many items Time
Grid + - +
Random 0 + +
EI + + -
FAD + + +

Few/Many items: Methods is good (+), neutral (0), bad (-) in finding optimal configurations.

Time: Methods is quick (+), unremarkable (0), or slow (-) in finding a set of configurations.
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Table 6.1 summarizes the main hypotheses that I will examine in the sim-
ulation studies and the empirical application. I will compare the efficiency of
the existing search methods with the alternative FAD procedure in terms of the
RMSFE accuracy of the selected configurations and in terms of the time it takes
for the procedures to run. As aforementioned, the grid search is regarded to
be an efficient and easy-to-apply search technique when there are a few items,
and the random search is known to perform better when there are many items.
Neither of the two techniques is known for resulting in a long computation
time. The more complicated EI search may require fewer configurations to be
evaluated before an optimal set is found in both cases, although its computation
time is known to be longer. As an alternative, it will be examined whether the
FAD search is a quick method for finding optimal configurations.

In evaluating the search techniques, the size of the training and validation
samples will both be 15. One can think of a time series application whereby the
15 most recent observations are used as a validation set to select configurations.
Larger validation samples will just make it easier for EI and FAD to predict
where the most relevant configurations can be found. This assertion will be
evaluated empirically as well.

Simulation studies are used to compare the performance of the search methods
when the object is to find a single configuration. An empirical application is
subsequently used to examine how well they perform when there are multiple
items.

6.3. Simulation Studies

As a first step in analyzing the above hypotheses for search problems with
a single item, I will apply the procedures to Ridge regression and show how
configurations are selected. Subsequently, the MSFE accuracy and the running
time of the techniques are analyzed based on three simulation studies. There
will be one exercise where forecasts barely differ for large parts of the sample
space, one exercise where the change in forecasts is proportional to the change in
configurations, and one exercise where forecasts deviate strongly in large parts
of the sample space.
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6.3.1. Choosing the Tuning Parameter of Ridge Regression
I will first study the selection of the Ridge tuning parameter. Let the linear
regression model be given by

y = Xβ + ε, (6.7)

with an N × 1 vector representing N observations of the dependent variable y,
an N ×K matrix of k = 1, 2, . . . ,K explanatory variables X, an N × 1 vector
of disturbances ε, and a K × 1 vector of parameters β. In Ridge regression, the
loss function for estimating β is given by

LRidge = (y −Xb)′(y −Xb) + λb′b,

so that the size of bOLS = (X ′X)−1X ′y is restrained by penalizing large b′b.
Solving the first-order condition for b leads to the following solution

bRidge = (X ′X + λIK)−1(X ′y).

The penalty term can be any positive number, λ > 0, which makes it difficult to
anticipate which configurations are good candidates.

Cross-validation is frequently applied to select the penalty term for these
types of methods, and oftentimes, a grid of the form λ = 10z is used for a
hundred equally distributed values of z (Zou and Hastie, 2005), whereby the
range of the grid may change per application (Friedman et al., 2010, pp. 17).
After dividing the estimation sample into a training and validation sample, the
training sample is used to estimate bTridge for various values of λ. Forecasts are
then generated regarding the validation sample with ŷV = bTridgeX

V. The penalty
term with the lowest RMSFE is subsequently selected.

In the following, I will use a single predictor X in equation (6.7) and simulate
the column vectors X and ε to be standard normally distributed. A sample of
N = 30 observations is split halfway into a training set used for estimating bTridge
and a validation set used for evaluating z in λ = 10z. The coefficient in the
training sample will be set at βT = 4 and in the validation sample at a fraction
q of this parameter, so that βV = q · βT. The object is to find the right penalty
λ for shrinking the regression parameter of the training sample (bTridge) towards
the optimal regression parameter of the validation sample bVOLS.

Each procedure will be allowed to perform R = 20 runs. To avoid excluding
relevant values of z, the initial bounds on z were made as large as [−10, 10].
For the grid and random procedures, this space was made twice as small to
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facilitate more instructive comparisons. So, in the grid approach, the R candidate
configurations were equally distributed over z ∈ [−5, 5] and in the random search,
they were drawn from U(−5, 5).

Figure 6.1: Ridge regression: Grid and Random Searches
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This Figure illustrates how the grid and random searches select configurations for the
Ridge exercise. Panels to the left show which values of configuration z ∈ λ = 10z were
selected. The panels to the right show the resulting values bTridge(λ(z)) for sorted z(rank).
The lowest z in the left panel has a rank of 1 in the right panel, the second lowest z
in the left panel has a rank of 2 in the right panel, and so on. The first row of panels
corresponds to the grid search, and the second row to the random search. Simulated
series: X, e ∼ N(0, 1), bTOLS = 3.73 and bVOLS = 1.17 (dashed line), N = 30, validation
sample of V = 15. Maximum number of runs is R = 20.

As I will explain, Figure 6.1 illustrates that equally distributing configurations
can lead to many forecasts of the validation sample that are too similar to be
of relevance. The data-optimized value is bTOLS = 3.73 in the training set and
bVOLS = 1.17 in the validation set.

The left panels of Figure 6.1 indicate which values of the configuration
z ∈ λ = 10z were selected, and the right panels show the resulting bTridge estimates
that were obtained based on z(rank). The lowest z has a rank of 1, the second
lowest z has a rank of 2, and so on. Configurations were equally distributed for
the grid search and selected from a uniform distribution in the random search,
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as the left panels indicate.
The right panels of Figure 6.1 confirm that many choices of z result in

solutions of bTridge that are highly similar. A value of z = −5 (first bar in upper
left panel) leads to a bTridge of 3.73 (first point in upper right panel). A value of
z = −4.5 (second bar in upper left panel) also leads to a bTridge of 3.73 (second
point in upper right panel). In this example, it so happens that one of the
configurations of the grid search is close to the optimal value. That is, the
thirteenth lowest value of z results in a bTridge of 1.19, which is close to bVOLS = 1.17
(dashed line in upper right panel). The lower right panel indicates that the
bTridge values of the random search are far removed from the optimal value at the
dashed line in this data set.

Figure 6.2: Ridge Regression: EI
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The panels show the values bTridge(λ(z)) for sorted z(rank) when applying the EI search.
The lowest z has a rank of 1, the second lowest z a rank of 2, and so on. The left
panel gives uses bounds z ∈ [−10, 10], the right panel z ∈ [−5, 5].Simulated series:
X, e ∼ N(0, 1), bTOLS = 3.73 and bVOLS = 1.17 (dotted line), N = 30, validation sample of
V = 15. Maximum number of runs is R = 20. EI is initialized with 10 randomly drawn
configurations. Outcomes can differ when search is repeated with same simulated data.

Figure 6.2 gives an example of how the EI search chooses candidate z. Ten
configurations were selected uniformly at random, and ten configurations were
subsequently added based on the expected improvement. Even when the initial
range is [-10, 10], EI does quite well to approximate the optimal value at the
dashed line in panel i. This plot can change substantially when the search is
repeated. In case the initial range of z is made twice as small (panel ii), EI
gets even closer to 1.17. The spread of candidate bTridge is not so well, because
there are many values around the edges and not so many values in between.
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The reason is that EI’s global search is largely based on the distance between
configurations.

Figure 6.3: Ridge Regression: FDs, FAs, and FADs
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This figure illustrates the selection of configurations for FD, FA, and FAD for the Ridge
example with z ∈ [−10, 10]. Panels to the left show the frequency with which certain
values of z were selected. The panels to the right show the resulting values bTridge(λ(z))
for sorted z(rank). The lowest z has a rank of 1, the second lowest z a rank of 2, and so
on. In the first row configurations are selected based on forecasting deviances (FDs),
in the second row based on forecasting accuracy (FAs), and in the third row based on
FADs with Ru = 10. Simulated series: X, e ∼ N(0, 1), bTOLS = 3.73 and bVOLS = 1.17
(dotted line), N = 30, validation sample of V = 15. Maximum number of runs is R = 20.

The upper panels of Figure 6.3 present the selection of configurations for the
FD search. Panel i indicates that values of z are unevenly distributed in the area
[−10, 10]. Most of the configurations are between z = 0 and 3. Panel ii shows
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that the resulting forecasts (XV)bTridge are quite evenly spread across the space,
since bTridge is generally shrunk in a linear fashion from around bTOLS = 3.73 to 0.
There are also a couple of configurations that lead to similar forecasts. The four
lowest values of z all lead to bTridge values close to 3.73, for example. The number
of such superfluous cases is often less when the simulation exercise is repeated.

The second row of Figure 6.3 presents the selection of candidate z for FAs.
The FA search does not converge to bVOLS = 1.17 but sticks to around zero instead,
because, for z(rank) in panel ii, FAs(ŷVz3 , ŷ

V
z4) > FAs(ŷVz2 , ŷ

V
z3). The lower panels

illustrate how FAD selects configurations for Ru = 1
2R = 10. Note that FA

helps FD so that there are no redundant configurations at the start, and FD
helps FA to find the minimum at bVOLS = 1.17.

Figure 6.4: Ridge Regression: Sequence of Configurations Added by FAD
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This figure illustrates the sequence with which configurations are selected by FAD in
the Ridge exercise for a total of R = 200 runs and z ∈ [−10, 10]. A dot represents the
bTridge(λ(z)) value of the rth configuration that was added. Simulated series: X, e ∼
N(0, 1), bTOLS = 3.73 and bVOLS = 1.17 (dotted line), N = 30, validation sample of
V = 15.

Figure 6.4 presents in what sequence configurations are added for R = 200
and Ru = 100. At the start of this global to local procedure, FAD chooses
configurations in such a way that the resulting forecasts (XV)bTridge are evenly
spread. As more configurations are added, the walls around the optimal value
start to close. Observe that, rather than adding more configurations redundantly
close to the best configuration so far, FAD will keep on looking for alternative local
minima in a systematic fashion. The FD measure determines what ‘redundantly
close’ is and the tuning parameter φ = Ru

Ru+r specifies that the FD measure is
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emphasized less as more configurations are added.
Having illustrated the search methods with Ridge regression, the performance

of the procedures will now be studied in terms of RMSFE for when there are
large subspaces of configurations with similar forecasts; when the sample space
is well-defined; and when there are large dissimilarities between forecasts in a
large part of the configurations space.

6.3.2. Large Subspace with Similar Forecasts
In the first assessment, I will continue with the Ridge example. The validation
sample will be simulated by βV = q · βT

sim, where q is drawn from U(0, 1) or
specified otherwise. The penalty term λ(z) should be chosen in such a way that
bTridge is sufficiently shrunk towards zero. The optimal solution with an RMSFE
accuracy measure occurs when bTridge = bVOLS. For each search procedure, I will
select the candidate configuration with the lowest RMSFE. In the ‘reference’
setup, the search procedures are allowed to have R = 10 runs. The grid and
random procedures choose z from [−5, 5] and the EI and FAD searches are based
on z ∈ [−10, 10]. The simulation exercise is repeated 10,000 times.
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Table 6.2 reports the RMSFE of a search technique relative to the optimal
RMSFE when bVOLS is estimated based on the validation sample. In the above
defined ‘reference’ setup, the relative RMSFE score of the grid search is 1.14,
which means that it is 14% less accurate than bVOLS on average. The grid
performs better than the random search. EI has some trouble in finding optimal
configurations in case the initial range in its reference setup is as large as
z ∈ [−10, 10]. By comparing ‘EI’ with ‘(No scale) EI’, it is clear that it makes
no difference whether the scores that EI predicts are log-transformed or not.
When EI also employs the boundaries z ∈ [−5, 5] instead of [−10, 10], it does
find more accurate settings than the grid and random searches.

The reference FAD search, with R = 10 runs and a large initial space of
z ∈ [−10, 10], is only 1% removed from an optimal choice. The subsequent
rows show how sensitive the FAD procedure is to changes in φ, the tuning
parameter that regulates how much FD is emphasized relative to FA. It is
clear that choosing a different φ than Ru

Ru+r does not improve results. The FD
procedure works quite well whereas the FA search is no less than 42% removed
from the optimal RMSFE. Increasing or decreasing the speed with which FA is
emphasized with Ru = 0.25R and Ru = R, respectively, does not appear to be
necessary. The row labeled ‘(MSFE) FAD’ shows what happens when one does
not take a square root of MSFE in FA and a square root in FD in equation
(6.4). This decision does not seem to influence results much. A FAD measure
that does not include logs, ‘(no log) FAD’, performs excellent as well here.

The columns labeled ‘q=0’, ‘q=.1’, . . . , ‘q=1’ illustrate that the accuracies
of the search procedures depend on the degree q with which bTOLS is shrunk. As
could be expected from Figure 6.1, GRID and RAND have more difficulties
in finding a good z when bTridge is shrunk half-way (q = 0.5). By contrast, the
relative performance of the FAD search is 1.01 for all q except q = 0 and q = 1.
The anomalies arise at the extremes of q because bVOLS can be below zero for
low q or above bTOLS for high q. This is something to think about when doing
cross-validation.7

The columns labeled ‘R=6’ up to ‘R=100’ show what happens when the
maximum number of configurations is altered. In case R ≤ 5, all search tech-
niques have relative scores that are higher than 1.30. The random procedure
with a 100 runs has a score of 1.01, which is the same as FAD’s score after ten
runs.

Decreasing the sample size from N = 30 to N = 10 (with V = 5) worsens the

7One might use a transformation so that cross-validated outcomes that are close to the
extremes become more similar to the extremes.
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performance of all search procedures while results improve in case the estimation
sample is increased to N = 100 (with V = 50). When we optimize over the
extremely large space of λ ∈ [0, 105]’ instead of over z ∈ [10, 10], then none of
the methods perform well. It is only when the maximum number of runs is
increased from R = 10 to 20 that the FAD procedure is near-optimal again. In
the even more extreme case that λ ∈ [0, 1010], it takes around 40 runs for FAD
to converge.

Finally, EI’s computation times for R = 10, 100, and 200 runs are 0.5, 12,
and 40 seconds, respectively. To compare, the grid and random search take
around 0.02 seconds to do 200 runs, and FAD around 0.05 seconds. This means
that search techniques other than EI can evaluate far more configurations in the
same amount of time. In fact, I have not actually computed the EI procedures
for a hundred runs (‘NaN’), but we can be confident that it will have converged
to a score of 1.00 by then.
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6.3.3. Well-Defined Space

In the second simulation exercise I will investigate a situation where defining
the relevant initial range is less of a problem than in Ridge regression. A
linear regression model will be estimated with the restrictions that 0 ≤ δk ≤ 1,∑K
k=1 δk = 1, and K = 2. This may be interpreted as taking a weighted average

between two forecasts x1 and x2. One can write

y = δx1 + (1− δ)x2 + ε, (6.8)
y − x2 = δ(x1 − x2) + ε, (6.9)

and define ỹ = y − x2 and x̃ = x1 − x2, so that the solution that minimizes
the sum of squared errors becomes δ̃OLS = (x̃′x̃)−1x̃′ỹ. Furthermore, I will
simulate X ∼ N(0, 4) and ε ∼ N(0, 1). The maximum number of candidate
configurations in the reference setup is R = 10, the sample size is N = 30, and
the last V = 15 observations constitute the validation window on the basis of
which δ is selected.

Table 6.3 gives the results for this example. In the reference setup, the
random search is quite far removed from an optimal RMSFE score, whereas
the grid search performs good and EI and FAD have near solutions after a few
runs. I have again not computed EI for a hundred runs. The column labeled
X ∼N(0, 1) shows that if X is simulated with a variance of 1 instead of 4, the
exercise has hardly any discriminatory power.

To briefly illustrate what happens when there are multiple local minima,
I will generate the data in the same fashion as equation (6.9), but alter the
estimation model. Namely, I will specify that

δ̂ =
{
d if d ≥ 0
d2 otherwise

and optimize over d ∈ [−1, 1]. Figure 6.5 presents the selection of configurations
for FAD with Ru = R/2. The optimal values are d = δ̃VOLS = .44 and d =
−
√
δ̃VOLS = −.66.
The upper left panel of Figure 6.5 shows how twenty candidate configurations

are selected in this example where a linear regression parameter is used for d
between 0 and 1 and a squared parameter between -1 and 0. In the reference setup,
about 10 candidate configurations are employed to evenly spread configurations
across the space; and the other 10 candidates are distributed around the two
optimal values. The upper right panel clearly illustrates how the gradual



Simulation Studies 141

Figure 6.5: Combining Forecasts: FAD and EI
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This plot illustrate how FAD and EI select configurations when data is simulated by
y = δX1 + (1− δ)X2 + ε with X ∼ N(0, 4), ε ∼ N(0, 1). The estimated δ̂ = d if d ≥ 0
and δ̂ = d2 for d < 0, and d ∈ [−1, 1]. Optimal values are d = .44 and d = −.66 (dashed
lines). The left panels shows which value of δ̂ are associated with the rank of d(rank),
where the lowest d gets a rank of 1, and the second lowest d a rank of 2, and so on. The
right panels show which values of δ̂ are obtained when the rth configuration is added.
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transition from FD to FA leads FAD to close up on the two global minima.
If R is smaller, FAD will also emphasize FA more quickly. The lower panels
show that EI does well to find both minima. Where FAD continues to search
for possible alternative configurations after locating the two minima, EI mostly
keeps on adding configurations closely around the optimal values as the number
of runs increases.
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6.3.4. Large Subspace with Dissimilar Forecasts

In the third simulation exercise, a case will be studied with large forecasting
deviances in relatively large subspaces. The data will again be simulated using
equation (6.8),

y = δX1 + (1− δ)X2 + ε,

with X ∼ N(0, 4) and ε ∼ N(0, 1). The difference is that predictions are
generated by estimating β in

y = β4x1 + (1− β4)x2 + ν, (6.10)

where β ∈ [0, 5]. With β4, a small change in β can result in a large change in
forecasts.

Table 6.4 reports the accuracy of the various search methods. The grid and
random searches have much difficulties with this task and the EI search starts
to perform well when the number of runs exceeds R = 20. FAD is close to an
optimal solution after 10 runs already. In the reference setup, the computation
time of EI (.45 seconds) is again much longer than that of grid (.0006), rand
(.0019), and FAD (.0023).

Focusing on FAD, the results do not improve by altering φ. ‘(MSFE) FAD’
makes it clear that excluding a square root in FD and FA worsens the search
in these extreme settings. Results are also much poorer for ‘(no log) FAD’, so a
log should indeed be included in the FAD measure to deal with forecasts that
are highly dissimilar.

The three simulation exercises lead me to reject the hypotheses that grid,
random, and EI are efficient search techniques when a single item is optimized
over through cross-validation. The newly proposed FAD search has outperformed
each of them. In the next section I will evaluate the search techniques for when
there are multiple items to be optimized over.

6.4. Empirical Application

Having analyzed the search techniques for a single item, I will now use an
empirical case study to examine the how well the search methods perform in
a situation with multiple items. In the case study, I will analyze choices to
do with combining a number of best-ranked expert forecasts of the US Survey
of Professional Forecasters (‘SPF’), see Capistrán and Timmermann (2009b).
Three of such statistical decisions are the maximum number of best-ranked
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experts included (E ∈ [1, 40]), the required number of pseudo predictions used
for ranking and weighing expert forecasts (G ∈ [1, 10]), and a shrinkage rate
which determines to what extent individual weights (S = 0) or equal weights
(S = 1) are assigned to the E forecasts. A fourth item specifies to what degree
absolute (P = 1) or squared (P = 2) prediction errors are used in assessing
expert forecasts. E and G are discrete items, S and P are continuous, and some
items may be more relevant than others.

To be more concrete, the forecasts of expert i are ranked and weighed on
the basis of scores ωit that are derived from his h-step-ahead predictions like so

ωit = 1
G

T−h−1∑
t=T−h−G

|yt − ŷit,h|P .

Note that a prediction about yt can only be evaluated in the following quarter
at yt+1, because we are dealing with a real-time data set. Individual weights are
then determined by taking the inverse of these expert scores ωi and by shrinking
them to equal weights,

wit = (1− S) (ωit)−1∑E
j=1(ωjt )−1

+ S
1
E
. (6.11)

The weights assigned to forecasts of the selected top-ranked experts vary less
when S → 1 (shrink towards equal weights) and when P → 1 (use absolute
rather than squared prediction errors).

Forecasts of configurations that are closer together need not be more similar
than those of more distant neighbors. A pooled forecast with 5 top-ranked
experts could be more similar to a forecast with 20 rather than 10 top-ranked
experts; although on average, it usually won’t be.8 Similarly, when experts are
compared based on a track record of 2, the resulting forecasts could be more
similar when a track record of 5 is used rather than a track record of 3. It
will be interesting to see how the FAD and EI approaches perform under these
circumstances.

I will start by looking at h-quarter ahead predictions of the USA Price index of
the Gross Domestic Product (‘PGDP’).9 Following Capistrán and Timmermann

8The more experts that are included in the average, the less the average will change due to
the addition of a new expert (law of large numbers).

9Data available at: https://www.philadelphiafed.org/research-and-data/real-time-center/
survey-of-professional-forecasters/

https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/
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(2009b), PGDP is transformed by

xt+h = 400 · ln Xt+h

Xt+h−1
. (6.12)

Thirteen other predictands will be evaluated later to assess the overall quality
of each search technique. The main goal is again to efficiently cross-validate
over statistical decisions, so I want to minimize pseudo prediction errors of the
validation sample by selecting an optimal set of configurations regarding the
four items just mentioned.

Figure 6.6 shows how the search procedures distribute 49 sets of configurations
across the number of experts E and the length of the track record G for a
validation window of twenty observations. The other items are set to S = 0 and
P = 2 because it is more convenient to present a two dimensional graph than a
four dimensional one.

The grid and random searches evaluate numerous less relevant configurations.
For example, pooling over E = 31 top-ranked experts instead of 35 probably
amounts to similar forecasts, whereas the choice between including 1 or 5 experts
could result in large differences. So, based on forecasting deviances, it seems
more worthwhile to evaluate the average of 3 rather than 33 expert forecasts.
Moreover, experts frequently enter and exit the survey, so that many forecasts
are excluded when the required track record is too long. The decision on the
maximum number of experts might therefore only be relevant conditional on
the track record being short. When the EI search is repeated for this example,
it often focuses on one good area in the space and continues by adding points
along the perimeter. In Figure 6.6.iii I have shown an example where EI gets
close to the optimal value (E = 11, G = 6).

Rather than equally distributing configurations across the space or adding
configurations along the perimeter, an FD approach can be used to efficiently
spread sets of configurations. The best forecasts might nevertheless result from
combining many eligible experts with long track records. That is why, as
more configurations are added, the FAD search gradually focuses on areas with
promising FA’s. To illustrate step 2, where configurations are selected based on
FAD scores, consider the following hypothetical results for experts E and track
records G:

FAD(yE=1, G=1, yE=40, G=1) = log 0.8, FAD(yE=1, G=1, yE=1, G=10) = log 0.6,

FAD(yE=1,G=10, yE=40,G=10) = log 0.4, FAD(yE=40,G=1, yE=40,G=10) = log 0.2,

where G = 1 is underlined to emphasize that the forecasts of E = 1 are compared
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Figure 6.6: Example of Selection Track Records and Experts
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This figure shows the selection of E and G for grid, random, EI, and FAD searches,
where E ∈ [1, 40] is the number of best-ranked experts included, and G ∈ [1, 10] is
the length of the track records on the basis of which the experts are compared. The
other items are set at S = 0 and P = 2. In panel iii, the dots represent the randomly
drawn initial configurations and the × represent the selection based on EI. In panel iv.
the dots represent FAD configurations when FD was predominant and the × represent
configurations when FA was predominant. The optimal set of configurations with E = 11
experts and a track record of G = 6 is encircled. Data: PGDP, h = 4, window [161,180].
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to E = 40 conditional on G = 1. In this example, the difference between using 1
and 40 experts for a track record of 1 leads to the highest FAD, which is why
a number of experts will next be added that is half-way between 1 and 40, so
(E = 20, G = 1). When adding a new E conditional on, say, G = 3, it might be
the case that the extremes (E = 1, G = 3) and/or (E = 40, G = 3) have not yet
been included. As aforesaid, those settings will then be added as well to ensure
that this apparently relevant subspace can be properly investigated.

Figure 6.6.iv gives an example of 49 sets of configurations that were selected
by the FAD procedure. When the FD search was predominant (dots), few experts
with short to intermediate track records were mainly selected. This tendency was
continued when FA became more influential (crosses). The optimal configuration
(E = 11, G = 6) was only included after 46 runs, which explains why it has not
been anchored yet. Performing step 3 means adding (E = 11, G = 1) and (11, 10)
at the extremes; and (E = 10, G = 6), (20, 6), (11, 5), and (11, 7) close-by. It
would have been more usual for FAD to have selected (E = 10, G = 5) here,
but I specifically looked for an example that helps to illustrate the third FAD
step. Regarding the lack of tree structure in FAD, it can be remarked that in
Figure 6.6.iv, E = 20 was added conditional on G = 1, and G = 4 was added
conditional on E = 20.

Moving on to evaluate the accuracy of the search methods, Table 6.5 com-
presses the results for h = 0, 1, 2, 3, and 4 quarter ahead predictions of PGDP.
Associating observation 1 with 1968Q4 and observation 187 with 2015Q3, I
applied the techniques on windows [21, 40], [31, 50], . . . [161, 180]. The windows
are of size twenty, and I iteratively move them up with 10 observations. Since
h-quarter-ahead forecasts with a track record of 10 are only available in real-time
one quarter later, I will define the first window as [11+h, 10+h+20]. Finally, to
also use the last observations, a window of [168, 187] is included. The RMSFEs
reported in Table 6.5 are averages over 85 RMSFE scores.

In the column labeled ‘G,E, S’ I have set the power P to 2 and tried
to find the optimal configurations of the track record, the number of top-
ranked experts included, and the shrinkage rate, respectively. The grid is
defined by equally distributing 5 configurations for each item and by taking
all possible combinations between the items. The other search techniques are
also allowed to consider R = 53 = 125 runs. This chapter is about finding the
optimal set of configurations. So, for each search procedure, I have selected
the set of configurations with the lowest (pseudo) RMSFE of the validation
window. The scores are made relative to a large grid procedure, whereby
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Table 6.5: Combining SPF Forecasts for PGDP

G,E, S G,E, S, P

GRID 1.063 (0.060) 1.083 (0.073)
RAND 1.038 (0.041) 1.050 (0.056)
RAND 1.055 (0.056) 1.064 (0.059)

EI 1.016 (0.028) 1.023 (0.045)
EI 1.009 (0.015) 1.018 (0.044)

(R/2) EI 1.032 (0.047) 1.029 (0.048)
(no trans) EI 1.013 (0.030) 1.018 (0.039)

FAD 1.002 (0.004) 1.002 (0.006)
(R/2) FAD 1.011 (0.018) 1.009 (0.017)

FA 1.076 (0.063) 1.110 (0.084)
FD 1.003 (0.006) 1.004 (0.009)

(no step 3) FAD 1.001 (0.003) 1.004 (0.006)
(round discr. up)FAD 1.002 (0.006) 1.002 (0.004)
(no round cont.) FAD 1.002 (0.004) 1.016 (0.025)

(no log) FAD 1.001 (0.002) 1.002 (0.006)
This table reports the average (and standard deviation) of the 85 RMSFE results of a search technique
relative to the RMSFE of a large grid with G ∈ [1 : 1 : 10], E ∈ [1 : 1 : 40],, S ∈ [0 : .1 : 1], (and
P = [1 : .1 : 2]) for the PGDP data. R = 125 in the left panel and 256 in the right panel. The windows
are of size V=20. Remarks in brackets indicate how a reference setup defined in the main text is altered.
‘(no step 3) FAD’ means that the third FAD step is not executed, for example. For four items the average
computation times in seconds are 0.6 (grid), 32.0 (large grid), 7.5 (random), 115.3 (EI), and 2.5 (FAD).
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G ∈ [1 : 1 : 10], E ∈ [1 : 1 : 40], and S ∈ [0 : .1 : 1].10.
Starting with the benchmark methods, the RMSFE of the grid is on average

6.3% removed from the large grid when the search includes three items, with a
standard deviation of .060 among the RMSFSEs. The random search is slightly
better than the grid search. I have repeated the random search and EI twice
to highlight that results can vary. The accuracy of EI search is quite close to
the large grid. ‘(R/2) EI’ indicates that, in case the maximum number of runs
R is halved, EI is still better than the grid and random searches. FAD nearly
always finds an optimal set of configurations which is why its average RMSFE
is near optimal. The quality of this performance is mainly due to FD’s efficient
global search, as the rows labeled ‘FA’ and ‘FD’ indicate. The repercussions of
including the third FAD step, of rounding discrete configuration to the lowest
integer, or of rounding continuous variables to the second decimal place are
negligible here.

In the right column, all four items are included. In that case, the small grid
is defined by equally distributing 4 configurations for each item, so that the
maximum number of runs becomes R = 44 = 256. RMSFE scores are now made
relative to a large grid which also includes P = [1 : .1 : 2]. The large grid contains
48,400 sets of configurations in total. The scores of the grid, random, and EI
searches deteriorate as a fourth item is added, while FAD finds near optimal
configurations again. ‘(R/2) FAD’ shows that in case the maximum number of
runs R is halved, FAD is still better than the benchmark methods. The row
labeled ‘(no step 3) FAD’ suggests that when the anchoring step is excluded,
the results of FAD become slightly worse. It is interesting to observe that the
FAD scores deteriorate when continuous configurations are not rounded off to
the second decimal place. The reason is that a small difference in the continuous
item P can have a large discontinuous effect on the ranking of experts.

The average computation time in seconds varies greatly between the search
techniques; for four items they are 0.6 (grid), 32.0 (large grid), 7.5 (random),
115.3 (EI), and 2.5 (FAD). The ranking of experts need only be determined
afresh when the track record (G) or power (P ) are altered. The random and
EI searches often use unique configurations for each item in each run, so that
experts need to be ranked again for each new set of configurations. FAD is far
less susceptible to this issue, because it only varies one item a time (conditional
on other items).

For PGDP, the ‘optimal’ choices of the large grid often involves few experts,
either high or low shrinkage rates, and all kinds of track records and powers. In

101:1:10 means from 1 to 10 with increments of 1.
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Table 6.6: Overview Variables

Name Description Transfor-
mation

Starting
Point

PGDP Price Index of GDP logYEAR 1968Q4
NGDP Nominal GDP logYEAR 1968Q4
HOUSING Housing starts logYEAR 1968Q4
INDPROD Index of industrial production logYEAR 1968Q4
RGDP Real GDP logYEAR 1968Q4
UNEMP Civilian unemployment rate - 1968Q4
CPROF Corporate profits after tax logYEAR 1968Q4
CPI CPI inflation rate - 1981Q3
RCBI Real change in private inventories - 1981Q3
RCONSUM Real personal consumption expendi-

tures
logYEAR 1981Q3

RSLGOV Real state and local government con-
sumption & gross investment invest-
ment

logYEAR 1981Q3

RFEDGOV Real federal government consumption
& gross investment

logYEAR 1981Q3

RRESINV Real residential fixed investment logYEAR 1981Q3
TBILL Three-month Treasury bill - 1981Q3

Transformation logYEAR: xt+h = 400 · lnXt+h/Xt+h−1. End of sample: 2015Q3

Table 6.7: Combining SPF Forecasts: 14 Variables and 4 Items

V = 10 V = 20
GRID 1.084 (0.103) 1.052 (0.055)
RAND 1.063 (0.081) 1.037 (0.044)

EI 1.028 (0.059) 1.013 (0.027)
FAD 1.006 (0.022) 1.004 (0.011)

This table reports the average RMSFE results relative to that of the large GRID. The average is taken
over 5 horizons, 18 or 12 windows (depending on the starting point of the data set), and fourteen variables.
The average computation times in seconds are 0.6 (grid), 28.0 (large grid), 8.7 (random), 97.8 (EI), and
2.5 (FAD) for V = 20.
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selecting candidate configurations, the FAD procedure mostly focuses on adding
new expert numbers and track records. The power is also varied quite often and
the shrinkage rate is largely ignored. In the few instances that shrinkage rates
are added by FAD, they are mostly introduced conditional on large P . That
is because shrinkage rates S are more relevant for high powers, in the sense
that P = 2 results in more extreme deviances between the weights of expert
forecasts than P = 1. FAD automatically focuses on such a relevant subset of
configurations.

Lastly, I will study the overall performance of grid, random, EI, and FAD
for a total of fourteen macroeconomic variables, see Table 6.6.11 I use the same
data and transformations as in Capistrán and Timmermann (2009b). Note that
for seven of the regressors, expert forecasts are only available as of observation
number 52 (1981Q3). In that case, the first window is defined as [63+h, 62+h+V ]
and the next windows continue with [71, 70+V ], [81, 80+V ], . . . , [181-V , 180],
[188-V , 187]. To study the effect of the size of the validation window, I will
evaluate window sizes of V = 20 and V = 10.

Table 6.7 shows the RMSFE relative to that of the large grid for each search
method. All four items G,E, S, and P are included and I average over the
RMSFEs of the different windows for all five horizons and fourteen variables
(1050 results in total). The results for V = 20 are quite similar to the ones
of PGDP and grow worse when the window size is decreased to V = 10. For
V = 20, the average computation times in seconds of the large grid (28.0), the
random search (8.7), and EI (97.8) are again quite a bit longer than those of the
small grid (0.6) and FAD (2.5).

Overall, this application shows that the FAD search can be a quick procedure
for finding optimal configurations of multiple statistical decisions.

6.5. Discussion

In this chapter, it has been investigated how to efficiently select statistical settings
based on cross-validation. The standard practice of using grid or random searches
was shown to be inefficient, in the sense that many (manually defined) sets of
configurations need to be evaluated to find the optimal set of configurations.
The more sophisticated Expected Improvement search results in more accurate

11Regarding CPROF, experts predicted the corporate profits after tax without IVA and
CCadj prior to 2006 and with IVA and CCAdj from 2006 to present. Prior to 2006, the
real-time data set ‘NCPROFAT’ was used, and as of 2006, I used realizations from https:
//fred.stlouisfed.org/series/CPATAX.

https://fred.stlouisfed.org/series/CPATAX
https://fred.stlouisfed.org/series/CPATAX
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solution than the grid and random searches for a given number runs, but its
estimation procedure is more complex and takes a longer time to run.

Instead of equally distributing forecasts across a space, I have suggested
to use the average forecasting deviance between neighboring configurations to
decide which point to add next. A global to local approach was developed by
gradually focusing on forecasting accuracies as more configurations get included.
This simple FAD search was shown to be quick and accurate for a variety of
challenges.

In future research, I recommend that the global to local approach is applied
to other problems so that its quality can be further assessed. A sequential
optimization procedure requires that forecasts of nearby configurations are more
similar than forecasts of distant configurations. In applying the method, the
practitioner may need to formulate the statistical problem such that configu-
rations can be ordered. Rather than comparing mean and median forecasting
accuracy measures, for example, I have tried to capture the idea of downweighing
extreme forecasting errors by comparing absolute (P = 1) to squared errors
(P = 2).

I will give three more suggestions for further research. First, the initial grid
now contains 2K sets of configurations. To make FAD feasible for more than
10 items, adjustments need to be made. Second, when considering an item c1

conditional on some choice for c2 = κ, it appears wasteful to only use direct
neighbors in predicting the deviance and accuracy of the middle configuration
while other configurations of c1 are available conditional on c2 = κ as well. One
may take a weighted average of various FA and FD scores, whereby the weights
are determined based on the (inverse) distances between the configurations.
This will smooth FAD scores, thereby making them less vulnerably to volatile
behavior in y as c1 is varied. Third, a measure of the relative deviance between
configurations can be included in the FAD measure to deal with cases where
average forecasts often get more similar when the distance between configurations
increases.

Finally, I would like to make some remarks regarding the use of cross-
validation to evaluate statistical settings, since the FAD procedure appears to
promote its use (although FAD can also be applied when employing information
criteria). In many cases, cross-validation need not be applied if the tuning
parameter is defined more intuitively. A FAD tuning parameter φ ∈ [0, 1] was for
instance specified in terms of Ru

Ru+r to make a gradual transition from forecasting
deviance towards forecasting accuracy. Setting Ru = R

2 has appeared to result
in a stable performance.
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A related point is that adding more complexity to an algorithm may worsen
out-of-sample results. Instead of employing a loss function that merely focuses
on in-sample accuracy, I recommend that a researcher defines a loss function
which makes an intuitive tradeoff between relative accuracy and relative sim-
plicity. Such tradeoffs were examined for linear regression models in Chapter
2, 3 and 4 and for weighing observation in Chapter 5. ASTs help to make
optimization problems more convex and thereby less random. Cross-validation
is an excellent technique in dealing with statistical decisions, particularly when
an efficient search procedure like FAD is employed to quickly find the optimal
set of configurations.



Samenvatting (Dutch)

In het cumulatieve proces van wetenschap wordt kennis over de onderliggende
waarheid voortdurend bijgesteld door hypothesen te testen met nieuwe empirische
data. Huidige statistische benaderingen maken het moeilijk voor onderzoekers
om een goede balans te vinden tussen de eenvoud van het onveranderd laten
van de hypothesen en de accuraatheid van data-geoptimaliseerde waarden. Een
overkoepelend doel van deze dissertatie is om een dergelijke afweging tussen
eenvoud en accuraatheid intuïtief te formuleren, zodat een onderzoeker beter
kan anticiperen en beïnvloeden hoe modellen geschat worden.

Het boek is geschreven vanuit een econometrisch perspectief, gezien deze
discipline er in het bijzonder op toegerust is om op basis van data analyses
uitspraken te doen over de onderliggende waarheid. Naast de algemene inleiding
in hoofdstuk 1 bestaat dit proefschrift uit vijf hoofdstukken.

Hoofdstukken 2, 3 en 4 gaan over het lineaire regressiemodel. Dit werkpaard
van de econometrie stelt dat een afhankelijke variabele y lineair gerelateerd
is aan een onafhankelijke variabele x via parameters α en β en een residu ε.
Observaties n = 1, 2, . . . , N worden aldus als volgt gegenereerd:

yn = α+ βxn + εn.

De ware en onveranderlijke parameters α en β zijn onbekend. Om die te kunnen
achterhalen, stelt een onderzoeker allereerst hypothesen op, zoals α0 = 2 en
β0 = 1. Deze verwachtingen kunnen vervolgens aangepast worden door een
willekeurige steekproef te analyseren.

Verscheidene statistische methoden maken gebruik van een penaltieparameter
λ om te bepalen hoeveel de uiteindelijk geschatte waarden mogen afwijken van de
hypothesen. Het is daarbij pas achteraf mogelijk om te bepalen hoeveel invloed
een bepaalde waarde van λ toekent aan een hypothese. Bij de Bayesiaanse
benadering kan nog geprobeerd worden om variabelen op een handige manier
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te schalen, maar een dergelijke schalingsprocedure wordt doorgaans vermeden
omdat het (extreem) tijdrovend kan zijn. In de nieuwe schattingsmethode die
ik voorstel geeft λ · 100% in percentages aan wat de minimale invloed van de
hypothesen is. Alleen relevante afwijkingen van de hypothesen worden toegestaan.
De schattingsmethode berekent de relevantie van iedere onafhankelijke variabele
impliciet aan de hand van diens bijdrage aan een welbekende maat voor de
accuraatheid van het model (R2). Terzijde laat ik zien hoe deze individuele
bijdragen expliciet gemeten kunnen worden.

Een tweede manier om de eenvoud van modellen te bevorderen, is om dezelfde
waarde toe te kennen aan verschillende parameters. Indien de ene variabele
gemiddeld genomen hoog (of laag) is als een andere variabele dat ook is, dan
spreekt men van een hoge positieve correlatie tussen die variabelen. Bij een
negatieve correlatie bewegen de variabelen gemiddeld juist in tegengestelde
richting. De nieuwe schattingsmethode zorgt ervoor dat parameters van sterk
positief of negatief gecorreleerde variabelen gegroepeerd kunnen worden, wat
betekent dat ze gestimuleerd worden om dezelfde afwijking van de hypothesen te
krijgen. De schattingsmethode stelt de onderzoeker in staat om van te voren aan
te geven wat een ‘sterke’ correlatie is. Voorheen werd er geen onderscheid gemaakt
tussen zwakke en sterke correlaties tussen variabelen, waardoor irrelevante
aanpassingen van de hypothesen bevorderd werden.

In hoofdstuk 2 introduceer ik een schattingsmethode die een directe controle
geeft over de bovenstaande twee manieren om een model eenvoudiger te maken.
De eenvoud van een model wordt hier gekwantificeerd door de gekwadrateerde
afstand te berekenen tussen de hypothesen en de data-geoptimaliseerde waar-
den. Deze schatter heeft een exacte oplossing, staat irrelevante wijzigingen
van hypothesen (bij benadering) niet toe en groepeert parameters van sterk
gecorreleerde variabelen.

In hoofdstuk 3 wordt een absolute in plaats van een kwadrateerde afstand
gebruikt voor het meten van de eenvoud van een model. De resulterende schatter
heeft een bijzondere eigenschap die helpt bij het bepalen van welke variabelen rel-
evant zijn voor het schatten van y. Zelfs al voordat λ de maximale waarde bereikt
heeft, zullen parameters exact gelijkgesteld worden aan de gehypothetiseerde
waarden. Het moment waarop dat gebeurt was voorheen onduidelijk en ik laat
zien dat dit direct samenhangt met de bijdrage die een onafhankelijke variabele
levert aan R2. Zo kan de onderzoeker dus goed anticiperen en beïnvloeden hoe
de afweging tussen hypothesen en variabelen gemaakt worden. Ook deze schat-
ter zal op een effectieve manier parameters van sterk gecorreleerde variabelen
groeperen.
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In hoofdstuk 4 onderzoek ik methoden die de onderzoeker helpen in het
bepalen van een geschikte waarde van de penaltieparameter λ. Wederom laat
ik zien hoe op een praktische manier de afweging gemaakt kan worden tussen
een waarde die door de onderzoeker opgegeven is en een waarde die door data-
optimalisatie tot stand is gekomen. Daarnaast bespreek ik hoe λ gekozen kan
worden met een informatiecriterium. Zo’n criterium maakt een afweging tussen
de accuraatheid van het model en het effectieve aantal parameters in het model
aan de hand van het aantal observaties in de dataset.

Op het moment is er geen onomstreden manier om het effectieve aantal
parameters van een model te berekenen. In de literatuur is over het hoofd
gezien dat het aantal parameters van een model vermindert naarmate dezelfde
waarde wordt toegekend aan meerdere parameters. Methoden zoals de F -
toets hebben daardoor de neiging om variabelen uit te sluiten als ze al hoog
correleren met andere variabelen in het model. Als gevolg hiervan kunnen
variabelen genegeerd worden die wel relevant zijn in het onderliggende data-
genererende proces. Bovendien zullen de risico’s tussen hoog gecorreleerde
variabelen niet gespreid worden, waardoor de voorspelkracht van het model
kan afnemen. Om dit probleem op te lossen zal ik laten zien dat de term die
door de eerder geïntroduceerde schatters gebruikt werd om de eenvoud van
het model te bepalen, direct toegepast kan worden om het effectieve aantal
parameters te meten. Simulatie studies tonen aan dat het voorspelvermogen en
de interpretatie van modellen verbeteren door de methoden ik ontwikkeld heb
om lineaire regressie- en penaltieparameters te schatten.

Waar in de voorgaande hoofdstukken is aangenomen dat het data genererende
proces onveranderlijk is, onderzoek ik in hoofdstuk 5 hoe parameters geschat
kunnen worden als er breuken zijn in het onderliggende proces. De werkelijke
α kan na 50 observaties bijvoorbeeld veranderen van α = 3 naar α = 5. Een
veelgebruikte benadering is om allereerst het moment en de grootte van de
breuk te schatten en om vervolgens de data na de breuk te gebruiken voor
het schatten van modelparameters. De beste startpunt methode selecteert de
optimale breuk door te bepalen welk startpunt de grootste accuraatheid heeft
in het voorspellen van de meest recente observaties die beschikbaar zijn. Dit
wordt ook wel cross-validatie genoemd. De drie voornaamste tekortkomingen
van deze methode zijn dat het te traag is in het reageren op een nieuwe breuk,
dat het te snel is in het negeren van observaties uit het verleden en dat het enkel
observaties na de breuk in ogenschouw neemt.

De reactiesnelheid op een nieuwe breuk kan worden verkort door gewichten
aan observaties te geven die groter worden naarmate de observaties meer recent
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worden. Om ervoor te zorgen dat de invloed van data alleen afneemt als daar
voldoende aanleiding toe is, formuleer ik een afweging tussen de eenvoud van
alle data een gelijk gewicht te geven en de accuraatheid van cross-validatie.
Om het derde punt te adresseren wordt er een breed toepasbare methode
geïntroduceerd waarmee meerdere periodes in het verleden hun eigen gewicht
toegekend krijgen. De voorgestelde aanpassingen aan de beste startpunt methode
worden verwerkt in een algoritme dat aan de hand van simulatiestudies en een
empirische toepassingen geëvalueerd wordt. Het eerste en het derde punt bouwen
voort op het werk van Pesaran, Pick en Pranovich (2013).

Tenslotte wordt in hoofdstuk 6 besproken hoe op een eenvoudige, snelle,
en accurate wijze de waarde van een statistische keuze door data-optimalisatie
gevonden kan worden. Denk aan de keuze van de penaltieparameter λ of van
het startpunt van de dataset. Om hierover te optimaliseren wordt een set van
kandidaatwaarden opgesteld. De beste waarde kan hier bijvoorbeeld geselecteerd
worden door vast te stellen wanneer één deel van de data het beste ‘voorspeld’
kan worden aan de hand van een andere deel van de data (cross-validatie).
Meestal worden de kandidaatwaarden gelijk verdeeld over de dimensies, zoals
λ = 0, 0.01, 0.02, . . . , 0.99, 1. Het gevolg is dat gebieden van configuraties waarbij
de resulterende voorspellingen nauwelijks verschillen net zo nauw onderzocht
worden als gebieden waarbij de voorspellingen sterk verschillend zijn. Bovendien
wordt er geen speciale aandacht gegeven aan gebieden die betere voorspellingen
genereren dan andere. Wel bestaat er een meer geavanceerde techniek die
configuraties selecteert op basis van de verwachtte vooruitgang in accuraatheid
die het oplevert, maar het duurt erg lang voordat computers de benodigde
berekeningen hiervoor gemaakt hebben.

De methode die ik voorstel voegt eerst kandidaatconfiguraties toe in gebieden
waar de voorspellingen het sterkst verschillen. Naarmate meer configuraties op
deze manier globaal verdeeld worden, zal de accuraatheid van de voorspelling
steeds meer invloed krijgen in het selecteren van nieuwe kandidaatwaarden. De
voornaamste veronderstelling hierbij is dat voorspellingen van aangrenzende
configuraties die reeds geëavalueerd zijn, zeg λ = 0 en λ = 0.25, meer op
elkaar lijken dan de voorspellingen van configuraties die verder uit elkaar liggen,
zoals λ = 0 en λ = 1. De methode is eenvoudig en kan worden toegepast om
meerdere statistische beslissingen tegelijk te onderzoeken. Simulatie studies en
een empirische applicatie laten veelbelovende resultaten zien. In plaats van 101
waarden van λ te evalueren, zijn er bijvoorbeeld slechts 10 nodig om de juiste
waarde te selecteren.

Het schatten van regressie- en penaltieparameters, het wegen van observaties
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en het efficiënt selecteren van configuraties zijn de voornaamste toepassingen waar
deze dissertatie over balansoefeningen in de econometrie over gaat. Er bestaan
verschillende opvattingen over de manier waarop er uitspraken gedaan kunnen
worden over de onderliggende waarheid. Toch is er algemene overeenstemming
over de globale stappen die genomen dienen te worden bij het doen van onderzoek.
De wetenschapper begint met het opstellen van een onderzoeksvraag, stelt op
basis van eerdere kennis hypothesen op en specificeert de methoden waarmee
die hypothesen onderzocht gaan worden. Vervolgens verzamelt hij willekeurig
geselecteerde data en past hij de methoden op de data toe om de hoofdhypothesen
te evalueren terwijl de overige aannamen onveranderd blijven. Tenslotte geeft
de onderzoeker aan welke conclusies er wel en niet getrokken kunnen worden
en bespreekt hij hoe eventuele tekortkomingen van de studie in de toekomst
verholpen kunnen worden.

De bovenstaande procedure staat bekend als de wetenschappelijke methode.
Deze opvatting van wetenschap is niet zonder problemen en die zal ik verder
onderzoeken in het binnenkort te verschijnen boek Science: Under Submission.
De hoofdstukken van de huidige dissertatie zijn geschreven volgens de geldende
normen van de wetenschap. Met behulp van de statistische benadering die hier
gepresenteerd wordt zal het eenvoudiger worden voor onderzoekers om vooraf
aan te geven in hoeverre ze bereid zijn om hun hypothesen over de onderliggende
waarheid bij te stellen aan de hand van de nog onbekende resultaten van een
nieuwe dataset.
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