5. INTERACTIVE MULTIPLE OBJECTIVE PROGRAMMING METHODS

Fach time a new method is proposed, one has to judge its
contribution to the set of already existing comparable methods.
Because we are advocating a new interactive variant of goal pro-
granmming in our study, we have to expose its relationships both with
other interactive methods and with goal programming. As mentioned
in Chapter 4, interactive methods may circumvent the considerable
information requirements that make goal programming sometimes less
valuable. A characterization, together with an overview of the main
features of interactive methods is given in Section 5.2. A more
detalled typology of interactive methods (based on the framework
sketched in Chapter ), is presented in Section 5.3'. Because the
majority of the existing interactive methods lack some important
advantages of goal programming, it is worthwhile seeking an inter-
active variant of goal programming. In Section 5.4 we discuss a
sample of such interactive variants of goal programming. Our main

conclusions can be found in Section 5.5.

5.1. Features of an Interactive Approach

If in a decision situation involving multiple goals, the set
of alternative solutions has been clearly described, and if the
preferences of the decision maker have been expressed explicitly i1n
terms of the instrumental variables, the multiple criteria decision
problem can be reduced to an exclusively mathematical (optimization)
problem. Very often, however, and especially if the number of
decision alternatives increases, a situation arises in which the
decision maker is unable or unwilling to provide all required a
prfzi‘omij preference information. In such cases , interactive procedures
might offer much help. '

The interactive approach assumes that the decision maker 1is at
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least capable of defining which goal variables influence NlS

preferences. Furthermore, it assumes that the decision maker 1S able

local preference information, i.e. information with

tO prov ide
(or a given set of solutions) which 1s

respect to a given solution
nown to exist and to be feasible. The kind of local preference

information required varies for each interactive procedure. In some

~+hods the decision maker has to gilve his local trade-offs with

espect to the goal levels of the solution concerned. In other

methods, the decision maker has to indicate whether a given solution

s acceptable or not, and if not which of the goal values should be

which are presented to him in a stepwise manner and are partly the
result of his previous answers. This process of presenting solutions

and expressing the local preferences with respect to these solutions

. embedded in an interactive framework. The interaction takes place
between the decision maker, an analyst and a (computer) model of the
decision problem. The model (designed by the analyst in consultation

lth the decision maker) describes the set of feasible decision
adecision alternatives and goal variables. In most interactive pro-

cedures, the analyst (using the model) proposes a starting solution

s, the set of goal variables and the relationships between

0O the decision maker. The latter gives his preference information

Lnrormation into a new solution, again using the model and guided
Oy the requirements of the interactive procedure at hand. This new
solution is presented to the decision maker , who expresses his




local preference

information

presentation of \ /translation
proposal solutions \ ‘into model input

model of the set of |
alternatives, set of
goal variables, and
their inferrelation-
ships

Figure 5.1. The interactive approach

Generally, the role of the analyst during the interactive
process is more passive than in the preparatory phase. This is
because the translation from the decision maker's preference infor-
mation into a new solution can mostly be computerized in a straight-
forward manner. Nevertheless, the analyst still has to be involwved
in the interactive process: to instruct and reinstruct the decision
maker about the properties of the interactive procedure at hand,
to help analyze the model results and if necessary ¥to prepare

possible model revisions.

Advantages and Disadvantages of the Interactive Approach

An obvious advantage of the interactive approach 1s the limited

amount of preference information required from the decision maker,
as compared to methods in which the decision maker has to gilve his
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preference information on an q priort basis. In the latter case,

the decision maker has to consider all kinds of choices and trade-
off questions which might be relevant. However, because this
articulation of preferences takes place before knowing whether the
alternatives influenced by these preferences are feasible or not,
and if feasible, whether they are dominated, this kind of preference
information may clearly be redundant. Furthermore, this preference
information can only be obtained by means of hypothetical questions
such as 'What would you prefer if you could choose between alter-
natives A and B?' This is in contrast with the interactive approach,
in which the decision maker has toO express his preferences based on
a well-defined solution which is known to exist and to be feasible.
Questions to be answered now become quite concrete, such as 'Do you
accept this solution or not?', and 'Which goal value of the given
solution is too low?’.

The assumptions related to the preference structure of the
decision maker are less restrictive in the interactive approach than
in procedures aiming at the a priort articulation of preferences.
Also, because the decision maker is closely involved in the solution
process, the solution finally chosen has a better chance of being
implemented (cf. also Hwang and Masud [1979]).

By means of interactive decision procedures the decision maker
may become more closely involved in the process of solving his
decision problem, thus obtaining more insight into the trade-~offs
among different goal variables. The feed-back process inherent in
interactive decision procedures leads to a closer cooperation between
decision maker and analyst. In a sense, the interactive approach
can pe regarded as an operational application of learning theorv
(cf. also Atkinson et al. [1965], Golledge [1969], and Hilgard and
Bower [1969]). One of the learning effects induced by the interactive
approach may be that the decision maker's perception of the decision
situation changes during the interactive process. This in turn may
necessitate restructuring the model describing the decision problem,

e.g. by changing a goal variable or by adding an instrumental
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variable. In addition, the decision maker's preferences may change

decision maker 1into account. Therefore, it is wise to repeat the
whole interactive process several times to ensure that a final
solution is found which is as close to the 'optimum' as possible.

Of course, the characteristics of the learning process started
by the interactive approach depend among other things on the very
interactive procedure chosen, and - given a particular procedure -
on the starting point. It is virtually impossible to test the
influences of different interactive procedures and different
starting points on the learning process empirically. This makes
1L{‘he choice of a particular procedure and of a particular starting
solution somewhat arbitrary, although on theoretical grounds several
criteria can be formulated which may influence the choice of such
a procedure (cf. Section 5.2).

Traditionally, the entrepreneuri al preference structure was
considered by such academic fields as economics, operations research
and management science to be a given. As described in Chapter 2,
this given mostly consisted of some profit maximization or cost
minimization assumption. Given the recognition of the existence of
miltiple goals, no straightforward assumption on the decision maker's
preference structure can , 1n a general sense, be made. The only
solution is to model the decision maker's preferences in a more
direct way, e.g. by interviewing techniques (cf. also Chapter 3).

In interviewing techniques the same phenomenon may arise as in
interactive procedures. The very way of interviewing may also induce
a learning process. As long as this is clear to the decision maker,
there are no objections to this situation.

To summarize, we can state that the interactive approach offers
a powerful tool in decision situations in which the decision maker's
preferences are not known a priorz. It is able to include and to.
benefit from learning effects, it involves a closer co-operation

of the decision maker in the solution process and moreover, the
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information to be given by the decision maker CONCeINs real

instead of hypothetical choices. In the next section we list a

number of elements which might be useful for evaluating interactive

procedures.

5.2. Elements of Interactive Methods

In the preceding section we argued that interactive methods
may be regarded as a learning process in which the decision maker
reacts upon the questions posed to him. From this viewpoint, the
specific method of obtaining information from a decision maker may
influence his answers. Therefore, one should pay heed to the
behavioural assumptions made in a particular interactive method.

The convergence of a particular interactive method might often
be accelerated by adding a few behavioural assumptions. This,
however, would in turn affect the class of problems which can be
tackled by this method.

These points show that the evaluation of an interactive
decision method 1itself can be recarded as a multiple criteria
problem. In order to illustrate this statement, we shall propose
a set of elements which may be important in evaluating interactive
decision methods. Some of these elements have been adopted from

studies of Cohon and Marks [1975], Roy [1971,1976ab], Wallenius
[1975] and Wallenius and Zionts [1976].

Because we have already (in Section 3.2) listed a number of

characteristics of decision problems to be used for the evaluation

of multiple criteria decision methods in general, we limit ourselves

here to the more specific elements of interactive methods, subdivided
into the following groups:

I. The communication process between decision maker and decision
model '

II. Technical properties of the interactive process
These features will be described in more detail below.
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The Communication Process between Decision Maker and

Deciston Model

Clearly, the way in which the process of interaction between
Jecision maker and model (possibly guided by an analyst) has been
structured is of crucial importance for the acceptance of the inter-
active method by the decision maker. For instance, when only limited
information is provided to the decision maker, he may feel that scme
information is being withheld fraom him. Likewise, he will require

sare freedom to influence the direction of the interactive process.

7o characterize the comunication process, we suggest the following
qualifications.
a. The questions posed to the decision maker
- Is he requested to answer 'zero-one' questions (e.g., 'Do you
prefer this solution to the preceding one?') or does he have
to specify cardinal information (e.g., the specification of a
marginal rate of substitution between two goal variables)?

- Is he requested to answer these questions with respect to

welghts, with respect to achievement levels attached to the

goal variables, or both?
- How many questions are to be answered at each iteration and in

total?
To stress the importance of including these qualifications, we quote
Cohon and Marks [1975, p. 209]: 'It is futile, and antithetical to
the essence of planning, to camplicate the analysis with all sorts
of esoteric terms and terminology. Yet, same of the multiobjective
techniques rely on the collection of abstruse, sametimes exotlc

data from the decision maker, thereby producing meaningless results'.

b. The information for the decision maker
- Is the decision maker confronted with a fixed amount of infor-

mation or does he have same options to select fram the avai-
lable information those items which he believes to be interes-

ting?




- Does the model allow for the possibility of sensitivity ana-
lysis; at each stage of the problem?
~ Ts the decision maker given one or more solutions at a time?
c. Options available to the decision maker to control the interac-
tive process
- What are the decision maker's degrees of freedom to change the
direction of the search process for a consecutive solution?

~ Tf the decision maker changes his mind during the interactive

procedure, can he return to an earlier solution?

idea of how the method is perceived by the decision maker. Wallenius
[1975] carried out a laboratory experiment in order to compare the
performance of three interactive methods from a human declsion ma-
ker's point of view. From this experiment we adopt the following
measures, which are obviously of a more subjective nature than the
preceding ones.

- The decision maker's confidence in the best compromise.

- The ease of using the method.

- The ease of understanding the logic of the method.

- The use of the information provided to aid the decision maker.

-~ The claim on the decision maker's time.
In the next section we will briefly describe some of the experimen-

tal results with respect to the decision maker's perception of in-
teractive methods.

Technical Properties of Interactive Methods

some technical characteristics:

a. The specific solution (optimization) procedure(s) which have to
be used in the computational phases of the process
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b. Computer time per iteration

This 1s not only important for the acceptance of the method by

the decision maker (see I.d), but also as a cost factor. Of course,

this measure depends on the problem to be solved, the solution

(optimization) procedure chosen, the efficiency of the computer

program and last but not least, the type of computer used.

c. Convergency properties

- Does the procedure converge to a final solution?

- What are the minimm and maximm number of iterations needed toO
approach such a final solution close enough? (This depends on
the accuracy chosen, but also on the number of goal variables,
the preference structure and the properties of the set of
possible actions).

- If the procedure converges, is there a unique final solution

or not?

Many of the elements of interactive methods mentioned in this
section, as well as some of the characteristics described in Sec-
tion 3.2 will be discussed further in the following sections, in

which we will give a classification of interactive methods.

5.3. The Need of an Interactive Variant of Goal Programming

During the last decade, the number of multiple objective pro-—
gramming methods grew considerably. Besides, a wide variety of lite-
rature on the efficiency concept and on vector maximization has
emerged. Goal programming techniques, methods that maximize one
goal variable subject to a priori fixed levels of the other goal
variables, and methods which generate all efficient solutions (see
for instance Gal [1977]) have been proposed to deal with the multi-
ple objective programn:ihg problem. The first two procedures need a
considerable amount of a priori information on the decision maker's
preferences (cf. Chapter 4). An ilrpdrtant disadvantage of the third
kind of methods is that they often generate a very large number of
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efficient solutions. Although preselection of efficient solutions
seems to simplify the decision problem, the efficlent set is nor-
mally practically unmanagable for the decision maker.

Many interactive procedures have been designed to overcome the
above-mentioned difficulties. Recent overviews are given a.o. by
Cohon [1978], Hwang and Masud [1979], Isermann [1979], and Winkels
[1979]. All interactive procedures progress from one solution (or
set of solutions) to another, guided by the desires of the decision
maker, which must also be expressed iteratively, 1.e. each time a
new (set of) solution(s) is defined. With respect to the nature of
the preference information to be given at each iteration by the de-
cision maker, the set of available interactive procedures can be
suwbdivided as follows.

(a) Methods in which the decision maker has to determine trade—-offs
among the goal variables at each iteration, given the coal

values in the current solution.

(b) Methods in which the decision maker has to choose the 'best'’
solution from a limited (discrete) set of (generally efficient)
solutions at each iteration. '

(c) Methods in which the decision maker at each iteration has to
define minimm or maxinum values for one or more of the goal
variables, which in most methods are translated into restrictions
reducing the feasible region.

The union of type (a), (b) and (c) methods will be denoted hereafter

as the class of 'interactive multiple objective programming' methods.

Methods of type (c) will be classified as 'interactive goal pro-

gramming' procedures. This classification of interactive progranmming

methods is illustrated in Figure 5.2 (see p. 124). The methods in
each class differ with respect to the accuracv required from the de-
cision maker expressing his preferences. Some methods need 'exact'
welghts to be assigned to the goal variables, other me:tely require

a range of weights (or present a series of weights from which the

decision maker can choose). In some methods only the best one from

a set of solutions must be selected, in others it stlffices to select
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lower goal value which does not necessarlly need to be exact.

Below, we will give a very short description and evaluation of
type (a) and type (b) methods, followed in Section 5.4 by a more
detailed description of type (c) methods.

Type (a) Methods

Type (a) methods provide a mechanism to find trade—offs among
the goal variables by interacting with the decision maker. A well-
known method of this type is described by Geoffrion et al. [19721,

tion as such is unknown to the decision maker, but he is assumed +0

be able to provide information on all possible trade-offs among the

goal variables. The optimization procedure used, in this case the
Frank-Wolfe algorithm (cf. Frank and Wolfe [19561), detenr
the kind of information required. This algorithm proceeds from

solution to solution via the 'steepest ascent' direction, i.e.

the direction with maximum marginal increase in the overall utility

dure to the one-sided goal programming model (cf. Chapter 4), thus
presenting the first interactive multiple objective programmin
procedure based on goal programming. Because 1n Dyer 's method the
goal levels themselves are considered to be determined a priort
by the decision maker, this method does not fall within our

Goals are being formulated in practice, but this does not necessarily
mean that the decision maker is capable of formulating a prior: any




Furthermore, goals formulated by the decision maker may change
during the process of formulating and solving the problem. The de-
cision maker may change his mind because of information obtained
during the process. We believe that goals a prior: defined by the
decision maker may form a rich source of information on his prefe-
rence structure. However, the decision maker should have the expli-
cit option to change these goals éluring the interactive process.
This type of approach is very intriguing, because it relates
interactive procedures to gradient methods. Moreover, in the linear
case, this approach only generates extreme points (cf. Hwang and
Masud [1979, p.121]), where an extreme point is a vector in the

feasible set R which cannot be expressed as a linear comblnation

of two other, mutually different wvectors of the feasible set.
Furthermore, the precise nature of the interactions with the de-

cision maker is rather obscure.

Type (b) Methods

For the class of type (b) methods a very attractive procedure
has been provided by Zionts and Wallenius [1976 ]. They also assume
an implicit utility function, on the basis of which the decision
maker gives his answers. Given a starting solution, which is
(arbitrarily) chosen from the efficient set, together with a set
of neighbouring efficient (corner) solutions, the decision maker
has to compare his preference for the starting solution with his
preference for each of its neighbours. From this preference informa-
tion, a new solution is derived, which again with its neighbours
is presented to the decision maker, and so forth.

In this method, the demand on the decision maker's ability to
express his preferences is rather small, which is of course a very
important advantage. On the other hand, the method may sometimes
need a considerable amount of iterations. Also, there is a possibi-
lity of suboptimization if a certain proposal solution is surrounded
by efficient corner solutions with approximately the same preference

level as the proposal solution. The fact that only corner solutions
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are generated may in itself be a disadvantage. Nevertheless . we
consider this procedure to be one of the most promising and viable
interactive procedures.

Another interesting representative of this type of methods is
given by Steuer [1977]. At each iteration the decision maker is
confronted with a limited set of efficient corner solutions, from
wnich he has to select the 'best'. Given his choice, a new set is
calculated and presented to the decision maker. This procedure has
a numoer of attractive properties, e.g. the kind of answers needed
from the decision maker does not seem to be very difficult, and it
converges within a finite number of steps. A problem with this
procedure 1s that the set of efficient corner solutions is often
very large. Therefore, it is necessary to cbtain at least some
a prrori information about the decision maker's preferences.For this
reason, Steuer (Ibid.) asks the decision maker to specify lower and
upper bounds on the 'weights' of the individual goal variables.

An approach which only generates efficient extreme points
might sometimes be inconvenient (cf. Vincke [1976]). This is also
valid in cases where the number of efficient corner solutions 1is
few. Then the appproximation of an optimal (non-corner) solution by

a neighbouring corner solution may be too i1naccurate.

In the next section, we will present a sample of type (C)
procedures which are rather well suited for the kind of problems we
are dealing with in this study. Therefore, and for reasons which
will become clear in the next section, we dismiss the methods of
types (a) and (b). It should be noted, however, that other decision

problems may exist, in which type (a) and type (b) methods should be

preferred to those of type (¢). _
what do the decision makers themselves say about the types of

methods that can be used to express their preferences? Same empirical
evidence exists. Dyer [ 1973] asked a numpber of students to campare
the Geoffrion approach (see above) with a trial-and-error procedure.
All students found the trial-and-error procedure equally or more




difficult than the Geoffrion approach. Moreover, the students’
confidence in the results provided by the latter approach, was as
high as the confidence in the results obtained by trial-and—-error.
Wallenius [1975] experimented with the help of business students
and managers. He compared the STEP-method, the Geoffrion approach,
and also a trial-and-error procedure and found that the first two
procedures were not judged to be better - and in some cases even
worse - than the trial-and-error procedure. To make the empirical
evidence even more inconclusive, Benson [1975] found that type (c)
methods are generally preferred to the other types.

In our opinion, a more detailed comparative study of inter-
active procedures is highly necessary. Such a project has been

recently proposed by Despontin and Spronk [1979].

5.4, Interactive Goal Programming Methods

In this section the interactive multiple objective programming
methods which we labeled 'interactive goal programming’ (tyPe (c))
methods in the preceding section are considered in more detail.

One broad subclass of interactive goal programming methods which

we have found in literature (type (cl)) is based on the calculation
of a campromise solution which has a minimum distance (given a
particular distance measure) to the ideal solution. Given such a
compromise, the decision maker has to define a set of goal levels

(or relaxations of the levels in the campromise solution), which

are then translated into restrictions and added to the underlying
programming model. Next a new ideal and a new compromise solution

are calculated, and so forth. Another subclass of interactive goal
programming methods found, type (c2), consists of procedures which
first find an 'optimal' value for one goal variable. Then, given

this optimal value (which is formulated as a :r:estriction) , an optimal
value for the second goal variable is strived for, and so on. As will
become clear in this and the next section, there are several reasons
to look for an interactive goal programming procedure outside these
two subclasses (see Figqure 5.2). “ 4
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Successive Relaxation of Compromise Goal Values: Type (cl) Methods

Quite a number of interactive procedures are based on the STEM
procedure developed by Benayoun et al. [1971]. This procedure con-
sists of a calculation phase and a decision phase. Given the goal
variables gj (_}_g) , ] =1, . -. ., m; the ideal solution is calculated

(as defined in Chapter 3), yielding goal-values

(5.1) gt :Max{gj(__zg_) 'x € R} for 3 =1, ..., m.

Then, the distance to this ideal point is minimized by using the

following minimax formulation (cf. also Section 4.3).

Min v, s.t.

v > wW. (gF=g. (X for - l, ..., m;
> 3@5 gj(____)) . ,

(5.2)
v > 0, and

X € R

The relative weights wj are calculated in a rather mechanical way

by means of

( ) WJ m p]
L P,
j ! =l j
where ggn_:un is the minimm feasible value of gj (x) during the

successive optimizations of all m separate goal variables, and c?_
denotes the coefficient of the instrumental variable X, in gj (x) .
The compromise solutions g(j? of (5.2) are proposed to the
decision maker. If some gcj) values are satisfactory and others not,
the decision maker has to accept (and to define) a certain amount

of relaxation Agk for goal variables k, the value of which is already
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(5.4)

where ¢ refers to the set of goal variables of which the value was

judged to be unsatisfactory are introduced in the next calculatory

phase and sO oOn.
Instead of this rather straightforward way of determining the

weights W other procedures can be followed. Fandel [1972] and
Nijkamp and Rietveld [1976] aimed at identifying an optimal solution
while taking account of trade-offs between goal variables. The
essential idea of their methods is that each efficient solution is
associated with a set of weights for the set of goal variables

(cf. Nijkamp and Rietveld [1976, p.7]). As in STEM, they then
calculate efficient caompromise solutions on the basis of which the
decision maker has to determine a set of relaxations as in (5.4).
Basically they use the same 'pay-off' information as in (5.1). Fraom
such a pay-off table, a vector of weights can be derived which links
the solutions in this table to a parametric program. These weights
are then used to calculate a new compromise solution.

Fichefet [1976 ] proposes a combination of STEM and goal pro-
gramming, which he labeled GPSTEM, to deal with the situation in
which there are m decision makers, each having formulated one goal
variable. In the first step of GPSTEM, each decision maker has to
specify in advance a satisfactory level Sj for the goal variable
with which he is concerned. In order to find an initial compromise,

the following program is solved.

(5.5)
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On the basis of the solution of this program a set of parametric
programs is solved (one for each decision maker). The solutions are
used to construct a goal value matrix B which is confronted in a
bimatrix game with the usual STEM-type pay-off matrix A (see (5.1)).
The equilibrium solutions of this game are finally used to derive

an efficient compromise solution, on the basis of which the decision
makers have to determine a set of relaxations as in (5.4).

The essence of the STEM-type methods is that by using the
pay-off table information, an efficient compromise solution is
calculated on the basis of which the decision maker has to define
a set of relaxations. Although these methods are rather elegant, it
1s not clear why they use such fairly mechanical and even complicated
procedures to calculate the compromise solutions, which only serve
as. a point of reference for the decision maker, i.e. to help him to
formulate his set of relaxations. Moreover, the decision maker has
no opportunity to revise the relaxations if he does not like the
consequences, other than by repeating the entire interactive proce-
dure.

The concept of ideal solutions is obviously very valuable. A
numoer of very interesting contributions to the 'theory of ideal
solutions' has been delivered by Yu and Zeleny (see e.g. Yu [1973]
and Zeleny [1976]). The latter proposes an interactive procedure
based on the adaptive displacement of ideal solutions, which is in
fact an interactive multiple objective programming procedure of

type (a), as discussed in the preceding section.

Sequential Optimization: Type (e2) Methods

Several methods proceed by searching for an 'optimal' value
for one goal variable. Then, with the former optimal goal value
imposed as a constraint, an 'optimal' value for the second goal
variable is found, and so on. '

Van Delft and Nijkamp [1977 ] discuss hierarchical optimization
methods which are based on the assumption that the set of goal
variables can be ranked in an ordinal way as 'most important',
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'next most important', etc. After such a hierarchical rank order
has been established, a series of constrained programming problems

has to be solved. First, the most important goal variable, 94 (%)

is maximized by

(5.6a) Max g, (x)

Then, given the optimal value, g’{ , a tolerance limit is defined,
which is formulated as an inequality constraint added to the already
existing set of constraints. Then, the next most important goal

variable g,(x), is maximized, subject tO the new set of constraints

by

(5.6Db) s.t. Xx € R, and

where Bl (0 < By < 1) is the tolerance parameter associated with g"l" :

For the derived maximum g*, the tolerance parameter 62 is defined,
which is followed by the constrained maximization of S (x), as '
described below.

Max g, (%)

(5.6C)

This procedure continues up to the point where all goal variables
have been dealt with. If all .tolerance paralreﬁers are set Feq_ual to
1, the procedure is quite similar to the sequential method described
bv (4.4). '
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An unambiguous ranking of the goal variables is necessary to
have the procedure work properly. In our opinion, it is very hard

if not impossible tO obtain an appropriate ranking. Is one goal

variable considered more important than another if (a) the first
goal variable 'should be handled first', or (b) if the first goal
variable has pre-emptive priority over the other (why then tolerance

parameters?) , or (c) if the first goal variable has a higher 'weight'
than the second? In order to use these hierarchical methods properly,

one should be sure apout the decision maker's notion of 'one goal

variable being more important than another’.

Another problem is the assessment of the tolerance parameters

Bj’ j =1, ..., m. As shown in van Delft and Nijkamp [1977], the
parameters can be assessed by means of an interactive procedure,

in which the 'optimal' values of the tolerance parameters are
calculated one by one, in hierarchical order. Such a procedure
implicitly assumes the decision maker to be able to define trade-offs
between more and less important goal variables, which must be valid
in the optimal solution, although the optimal solution is unknown

at the time of defining these trade-offs. Obviously, in the case

of two goal variables, this problem does not exist because then the
tolerance limit of the most important goal variable can be traded-off
directly against the value of the less important goal variable,

again in an interactive way.

Benson [1975] proposes a procedure which starts by asking the
decision maker to specify a set of minimally acceptable goal levels.
Next, the decision maker is asked to identify which of the specified
goal levels is the least satisfactory. Then the goal variable con-
cerned is maximized subject to the constraints on the other goal
variables. If this maximm value is judged to be unsatisfactory,
some of the goal levels specified for the other goal variables must
be relaxed. If satisfactory, the obtained solution is either optimal
or the ’value of the former least satisfactory goal variable 1s now
too high. In the latter case, the decision maker is asked to specify

the maximal amount of relaxation which is acceptable for this goal



variable. Then the procedure is repeated by again asking the decision
maker what is now the least satisfactorv goal value, and soO on.

Also in this method, it is hard to specify an 'optimal' wvalue
for one goal variable without knowing the optimal values for the
others. Besides, there is very little help available to the decision
maker to specify the optimal value (i.e. the allowable relaxation)
of the formerly least satisfactory goal variable. The notion of a set
of minimum goal lewvels to start with is very attractive, although in
this case, by letting the decision maker specify these minimum levels,
1t may be hard and time consuming to find an initial set which 1is
feasible. Also, these minimum values may have to be adapted in a
downward direction during later stages of the procedure. These
problems can be circumvented by defining (and specifying) these
minimumm goal values in a slightly different way (cf. Chapter 6). A
clear advantage of this method is that, in principle at least, it
can also solve non-linear models.

Monarchi et al. [1973] developed a procedure in which for every
goal variable g, (x), j =1, ..., m; an aspiration level aj ,
=1, ..., m; is defined by the decision maker. The aspiration lewels
may be desired upper bounds, lower bounds, razor-edge targets (cf.
Chapter 4), or bounds of intervals within which the most preferred
values of the goal variable concerned are contained, or, alternatively,
are not contained. For each goal defined in this way, a dimensionless
indicator of attainment dj is defined, which in general is a non-
linear function of a goal variable which in its turn may be non-linear
in the instrumental variables. At each iteration, one principal
problem and m, auxiliary problems are solved, where m; is the number

1
of goal variables the value of which has not yet been restricted in

earlier iterations (mlm, mznn-l , m3==m-2 y...). At the first iteration,
the principal problem is toO

m
(5.7) Min 2 d.
j=1

s.t. X € R,
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and the auxiliary problems are

m
Min 2 d.
j=1 -
373
(5.8) s.t. X € R, and
. > g.,
95 (x) > 95
for J' =1, ..., m. These problems are solved by means of a non-linear

goal programming routine. The results are presented to the decision
maker, who, on the basis of this information, revises one of the
aspiration levels, which is then added as a constraint to problems
(5.7) and (5.8). After dropping the indicator dj , (which belongs to
the restricted goal variable) from the ocbjective functions, these
problems are solved again. On the basis of the results, the decision
maker again adds a restriction to the problems, and so forth.

The method described has the attractive properties that it can
1ncorporate goal variables which neither have to be maximized nor

minimized, and that it can solve non—-linear problems. Disadvantages
are that linear problems are translated into non-linear problems

(which demand a lot of computer time), the difficulty to specify
aspiration levels on the basis of the data generated by the method,
and the possibility of finding inconsistent constraint sets when

solving auxiliary problems (cf. also Hwang and Masud [1979]).

As 1s evident from the above overview, there are quite a few
interactive goal programming methods available. All of them share
the advantage that the decision maker can express his preferences
in terms of goal values. This seems to offer a close correspondence
to everyday practice, in which decision makers are accustomed to
thinking in terms of 'goals' and 'targets' (cf. also Chapters 2 and
4) .

Interactive goal programming methods are not limited to efficient

extreme points, which was one of the disadvantages of the procedures
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described in the preceding section. Moreover, aspired levels of goal

variables which are non-linear in the instruments can be formulated

in a straightforward manner by introducing restrictions (e.g. goal
Chance constraints or target ratio values, (cf. also Chapter 8).
Another advantage of interactive goal prograrmming methods is
that the feasible region is reduced step by step. This may sinmplify
the computational efforts (which in themselves are not very cumber-
some 1n these types of methods) 2 . Moreover, each ilteration reduces
the size of the decision problem, i.e. the number of alternatives

still to be evaluated. In general, this is not true for the inter-
active procedures of types (a) and (b).

There are two sides to every coin. Methods of type (¢) also
have their disadvantages. In the case of the STEM-based methods it
1s not clear why more or less complicated procedures are used for
the calculation of successive compromise solutions, which only serve
as a point of reference for the decision maker. Moreover, the decision
maker has complete freedom in defining the goal level relaxations
which are required at each iteration. This seems attractive, but may
1n fact lead to inconsistencies, even lore so as the relaxations
cannot be revised after they have been formulated. As will be shown
in the next chapter it is possible to guide the decision maker in his
choice of the aspired goal levels without affecting his freedom of
choice. The main disadvantages of the sequential optimization methods
are again the lack of assistance for the decision maker determining
aspired values of the goal variables, and the fact that the optimal
value of one goal variable must be determined without knowing
(often not even approximately) what the values of the other goal

variables will be. Interactive Multiple Goal Programming (IMGP),

1) For instance because some of the constraints become redundant
if certain goal levels have to be met (see Spronk and Telgen
[1979] and Telgen [1979]). On the other hand, the introduction
of goal levels as constraints increases the computational efforts.
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the method described in Chapter 6, tries to circumvent this problem
by starting with a set of minimum goal levels which are satisfied

by a whole set of alternatives. The decision maker is then asked

to raise these goal values step by step, whereby it is not necessary
to first drive one goal variable tc its optimum, then the next, and

SO on. It 1s not necessary to define 'razor-edge' goal values.

Instead mininmum values are to be given for which (in the decision
maker's ppinion) it is certain that they do not exclude the optimal
solution. In defining these values the decision maker can use several
sources of information, such as the displacement of the ideal solution

resulting from the definition of new minimum goal values. The latter

may even be revised in later iterations.

5.5. Conclusion

In this chapter we have shown that interactive procedures may
be helpful in cases where it is too difficult or too costly to
obtain all the a pr7ort: information necessary to solve a given
multiple objective programming problem. We have divided these inter-
active multiple objective programming methods into three tvpes,
depending on the kind of information to be delivered by the decision
maker: .

(a) determination of trade-offs among the goal variables, gilven a
particular solution

(b) determination of the subset of 'best' from among a given set of
efficilent solutions

(c) specification of aspired goal values, given a particular solu-
tion. '

Within each type, methods differ a.o. with respect to the required

accuracy of the information to be given by the decision maker.

In our opinion, each of the three types of methods has a right
of existence, given the fact that different decision situations may
need different methods. On rather theoretical grounds, we have made
a plea for type (c) methods. This type can be further subdivided,

for instance, into methods which successively relax the goal values
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in subsequent compromise solutions, and into sequential optimization
methods. Our classification of interactive programming methods has
been illustrated in Figure 5.2. In the next chapter we describe a
new method, which tries to avoid the disadvantages and toO combine
the advantages of the already available interactive goal programming
methods.

multiple objective programming methods |
(see five options described in section 3.5.)]

option 5: interactive multiple __ option 4: collection of sufficient]
lobjective programming methods (chapters 5-10) | | information to reach an optimal
T ' — | solution.

type (a): section 5.3.

b other 'option4' methods

type (b): section 5.3. goal programming (cpter4

type (c): interactive goal programming methods (section 5.4.)

(c1): successive relaxation of compromise goal values |

(c2): sequential optimization

(c3): interactive multiple goal programing,
described and illustrated in chapters 6-10

Figure 5.2. Classification of interactive multiple objective programming methods
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