6. INTERACTIVE MULTIPLE GOAL PROGRAMMING

6.1. Definitions and Assumptions

Interactive Multiple Goal Programming (IMGP) starts fraom the
assunmption that the decision maker has defined a number of goal
variables 94 (X)) «ony d. (x) , these being concave functions of the
instrumental variables Ryr eoer X (X in vector notation).

The decision maker's preferences with respect to the possible
solutions can be modelled, at least in principle, by means of a
preference relation which is reflexive, transitive and complete.

1)

as elements of the set A of feasible solutions. Furthermore, let us

These properties can be defined as follows. ' Consider a, o' and o
introduce the preference relation o @ o.! for any pair of elements

o and o' in A, having the lingquistic interpretation that o' is not
preferred to a. Reflexivity means that for all elements o in A,
o(>)o. The relation is transitive, if oc@ o' and o' @ o imply

o>y o . The completeness property holds if for any pair o, o' in
Awith o # o', either o @ o' or o' 0. Lf a preference relation
possesses these three properties (i.e. reflexivity, transitivity

and completeness), it is called a total quast ordering (cf. Rietveld
[1980] and Takayama [1974]). IMGP is not intended to model the total
quasi ordering for all elements of A. Instead, it aims at finding
the most preferred element (or subset of most preferred elements)

of A. A crucial assunption is that such a subset exists and can be

specified in terms of the goal variables.

1) We refer to Rietveld [1980] for a more detailed discussion on
preference relations in the framework of multiple objective

programming.
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Obviously, A corresponds to the image in goal va lue space of
the set R of feasible instrumental values in instrumental value B
space. The feasible region R assumed to convex, bounded and

closed.,

IMGP is less restrictive than most other, comparable interac-—
tive methods (we will return to this point later on). We will dis-
cuss some of the kinds of preference relations that may give rise
TO successtul application of IMGP.

First, the preference relation may be a lexicographic ordering
(see Chapter 4). This ordering may either be based on a hierarchical
ranking of the goal variables or on a hierarchical ranking of the
deviational variables going with a series of aspired goal levels.
Assume that for a goal variable (or deviational variable) of given
priority rank, alternative a yields a better value than does alter-

native o'. Assume furthermore that for the more important goal va-

1)

riables (deviational variables), alternative o does not yvield worse

values than does alternative o'. In this case, alternative o is

preferred to alternative o', without regard to the performance of

alternative o' for lower priority goals.

A total quasi ordering can also be tackled by means of IMGP if

the ordering is weakly convex. A preference ordering is weakly con-
vex 1if for any pair of alternatives o, o' in A, o @ o' implies

ta + (1-t)af @ o'y 0 <t <1, where o # o'. If a preference orde-
ring is representable by a real-valued preference function (see below),

1) As explained in Chapter 4, the maximization (minimization) of a
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then the quasti—concavity of the preference functionl) corresponds
to the weax convexity of the preference ordering. The condition of

weakly convex preference orderings ensures that the subset of most

preferred alternatives in the convex set A is connected (see
Takayama [1974]) .

As illustrated below for preference relations represented by
a real-valued preference function, the assumption of weakly convexity
allows for a great variety of different preference structures.

As shown by Debreu [1959], a total quasi ordering for all
elements of A can be represented by means of a real-valued continuous
preference function, if the set A is connected and the total cquasi
ordering is continuous. In general, a preference relation is
continuous 1f given an alternative o' which is preferred to an
alternative o, all alternatives o" which are very close to alterna-
tive o' are also preferred to o (see Rietveld [1980] for further
details).

In the remainder of this and in the following section 1t 1s con-
venient to assume preference relations that can be represented, in
principle, by means of a concave preference function. From the above
exposition it should be clear that we consider this assumption as a

sufficient but not as a necessary condition for the intended use of

IMGP (see also Section 6.4).

Given the concavity of the preference function f, quite a few
different preference patterns can be incorporatel. A number of exam-
ples are given 1in Figure 6.1, where £ is a function of one goal
variable g(x) only. Because f is generally not a known function of
g(x) ,it is very helpful if we know that f is either monotone increa-

sing (Figure 6.la) or nmonotone decreasing (Figure 6.1b). In these

1) A real-valued function defined over a convex set A c R’ is quasi-
concave if f(a) > f(a') implies fl tot+(1-t)a'] > £(a') for all
pairs o,a' in A and 0 < t < 1. _' ' '




cases, the maximization of £ can be accomplished by means of the
maximization (respectively, minimization) of g(x) subject to x € R.
In the cases sketched in Figures 6.1c - 6.1f, the solution procedure

=

«Q
Q
p

—p>  g(x) —» g(x)

Figure 6.1. The preference function f as a function of one goal variable only

is less straightforward, since f is neither monotone increasing

nor monotone decreasing in g(x). A natural idea is to split the

goal variable g(x) into two other goal variables, one to be maximized
(g, (x)), the other to be minimized (95 (x)) . For the example in

Figure 6.1c, this would give (assuming that g* is known)

Max{g1 (%) =9(x)} s.t. X €Rand g(x) < g*
(6.1) and

Min{ g, (x)

I} s.t. x€Rand g(x) > g*




In this way, the problem is divided into two problems. However, as
shown in Chapter 4, this formulation can be simplified by using the

two-sided goal programming formulation. In this case, we would get

Min{y++yh} y S.t.

(6.2) L
gx) -y +y =g*, and
..|_ —
y .y =0

In the same way, the problem in Figure 6.1d can be solved by mini-
mizing y , whereas the problem in Figure 6.le can be solved by
minimizing y+. The problem in Figure 6.1f is a little more compli-
cated because there two 'threshold values', i.e. g'i and g’5 , OCCUr.
In this case, two goal restrictions should be formulated. Then the
objective function to be minimized includes the deviational variable
YI associated with g¥, and the variable y; associated with g¥.

The above analysis assumes that the threshold values g¥*, g’{ and
g§ are known. If this is not the case, some complications arise

(cf. Nijkamp and Spronk [1978] for a discussion).

Interactive multiple goal programming needs no more a priori
information on the decision maker's preferences than other inter-
active multiple objective programming methods. However, although
accurate a priort information about the decision maker's preferences
may be difficult to obtain, there is usually some information con-
tained in most decision situations. It would be a pity to let this
information be unused. On the other hand, it must be realized that
the g priori information is not always fool-proof. Furthermore, the
decision maker may change his mind while dealing with the problem.
Interactive multiple goal programming tries to use the a priort
information in a fruitful manner, by offering the decision maker the
opportunity during the interactive process to reconsider his a
priori information. The a priori information used in this method

mainly consists of aspiration levels, but relative and pre-emptive
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priority factors can also be incorporated within the procedure.

In IMGP, the decision maker has to provide information about his
preferences on the basis of a solution and a potency matrix presented
to him. A solution is a vector of (minimum) values for the respectlive
goal variables. The potency matrix consists of two vectors, repre-

senting the ideal and the pessimistic solution, respectively. The

ideal solution shows the maximum value for each of the goal variables
separately, given the goal values of the pessimistic solution con-
cerned. The pessimistic solution lists a lower value for each of the
goal variables separately, either defined directly by the decision
maker or, in some cases in which this is possible and useful, derived
mathematically from known properties of his preference structure and
the set of alternatives. The decision maker merely has to indicate
whether or not a solution is satisfactory, and if not, which of the
pessimistic goal values should be raised. He does not have to speci-
fv how much these goal values should be raised. Nor is there any need
to specify weighting factors. (However, if he is able to specify

this kind of information, it can be used within the procedure). Then
a new solution is presented to him together with a new potency matrix.
The decision maker has to indicate whether the shifts in the solution

are outweighed by the shifts in the potency matrix. If not, a new
solution is calculated and so forth.

At this point it may be useful to pay more attention to the
definition of 'solution', as introduced above. Note that a 'solution'
has been defined as a vector of goal values, thus being a vector in
the goal value space (cf. Chapter 3). Obviously, a solution is not
necessarily feasible, i.e. there may be no vector x in the feasible
region of the space of instruments, which corresponds with this
solution (for instance, the ideal solution as defined above). In
IMGP, the goal values of a given solution are formulated as restric-
tions in the space of instruments, which are thus added to the set

of restrictions R, describing the region of feasible instrument
values.
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In the example shown in Figure 6.2a, 94 (x)= x, and I, (X) =

1
(which are both to be maximized), so that the instrument value

.

space and the goal value space are equivalent. It is easily seen
that the solution S is infeasible, i.e. there is no x in ABCDE for
which S can be obtained. However, in this case, if the goal values
of 5 are formulated as inequality constaints in the instrument value

space (ES and SC respectively), there is an infinite number of

xX-vectors ylelding a better solution than S.

In Figure 6.2b, the two spaces are not equivalent. We have de-

fined g, (x) = x, and J9,(x) = =X,, which are both to be maximized.

The worst valuelfor gl (X) is reached in point G, whereas the worst
value for g, (x) is reached in point I. If we want to cambine these
two worst values in a solution S, this can be represented in the
goal value space, although the solution as such is infeasible.

However, in the space of instruments, no x-vector exists - whether

Q)

it
D

@ |

X

> 97X,

Figure 6.2. The relationship between solutions in the goal value space and in the instrument value
space
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feasible or not — which yields this solution. Again, formulating

these goal values as constraints added to the feasible region leaves
an infinite number of x-vectors which offer better solutions than

S (in this case, the set of these x-vectors is obviously equal to
the feasible region FGHI).

6.2. Description of the Procedure

At each iteration of Interactive Multiple Goal Programming

(IMGP), a new solution (as defined in Section 6.1) is proposed by

changing one or more elements of a former solution. The consequences

of these changes are then calculated. To simplify the explanation,

we first describe the method while assuming that at each iteration,

one and only one element of the solution will undergo a change. Next,
we will discuss a number of possible modifications of the method,

including the case in which more elements can change during the

same l1teration.

Step 0 - Given the requirements described in the preceding sec-—
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tion, identify the goal variables g. x),i=1, ..., m; as
functions of x, the vector of instrumental variables

XirXoy seey X . Then specify the feasible set R within which
an optimal solution must be found. If the decision maker's
preferences could be described by a real-valued preference
function £ (note,however, that we do not make any attempt

in this direction), this function should be a concave

function of both gi(_}_(_), 1=1, ..., m; and X, i=1, ..., nN.

An optimal solution is then defined by

Max £ = £(g, (%), ..., g_(X)), s.t.
(6.3)

X € R

To simplify our exposition, we assume further



so that we presuppose a higher value of each of the goal

variables is preferred to a lower value of (the same) goal

variable. )

Step 1 - Successively maximize each of the m goal variables s (%)
separately and denote the maxima by gi* and the m corres-

ponding combinations of the instrumental variables by
i* . .
X ,1=1, ..., m It is usually not necessary to accept

a value of g, (x) which is lower than g}, defined as

: 1 kK
(6.5) glim = Min {gi(_:’f_j )},
J=1,..,m

the lowest value of g. (x) resulting from the successive
2) Then, the final
solution S* must be found between the 'ideal' (but usually

infeasible) solution I, and the 'pessimistic' solution Q,

maximizations of the goal variables.

which are defined respectively as

= [g* X *
I [gl ]gz ’ll!'gm] and
(6.6)

r min min min]
gl ’g"'\ I"'Igm

(O
i

1) Note, that this assumption is only made to simplify ’Fhe exposj'.tlon .
Al]l preference relations satisfying the conditions discussed 1n
Section 6.1, can be included without any difficulties.

2) An obvious case, for which (6.5) is a valid limit on the choice
of S*, is for m = 2, i.e. bicriterion optimization. Other cases

are discussed in Appendix 6.a. If (6.5) is not applicable, the

grjr_n.n might be assessed directly by the decision maker.




To facilitate the notation, we include the ideal solu-

tion I and the pessimistic solution Q in the (2xm)

'votency matrix' P.

Step 2 - For each goal variable 9. (x) , the decision maker may have

138

defined aspiration levels g, - (3=2,... ,ki--l) with the

J
following property

(6.7) g < Gyp < iy < ees <Gy < I
L

Furthermore we define

- SN and
9i1 T Y4
(6.8)
— ok
Jik.” 93
1

In the following steps these goal values are used in
constructing trial solutions éi which have to be evaluated
by the decision maker. Because proposed goal levels are
sometimes regarded as too high, we need the auxiliary
vector ¢ with elements ch (7=1,...,m) corresponding to

the m goal variables. We define 6j as the difference of

the lowest level of gj (x) being rejected by the decision
maker and the highest level of gj (x) being accepted thus
far. At the first stage of the procedure, no proposals
have been made and consequently, no goal level has been

rejected. Therefore we put ch =0 for =1, ..., m during

the first step. However, if for a certain goal variable
J' no aspiration level has been specified, we define
Sj' = g’:']‘. - gIJT.E:'n for reasons which will become clear in
step 6.



which is thus equal +o the pessimistic solution defined in
(6.6) . Present this solution, together with the potency
matrix P1 r CTO the decision maker.

Step 4 - If the proposed solution is satisfactory for the decision

Step 5 — The decision maker then has to answer the following question:
'Given the provisional solution S,, which goal variable

—1
should be improved first' ?l)

Step 6 — Let us assume that the decision maker wants to augment the
J~th goal variable. Then construct a trial pessimistic so-
lution -§-i +1+ Which differs with respect to S, only as far
as the value of the j-th goal variable is concerned (deno-
ted by gj (X) S and gj (__}S) S respectively).

—1+1 —1
If 'cS'j = 0 no proposed value of 9 (x) has been rejected thus
far, by which we can propose the next higher aspiration level
listed in step 2. If ch > 0, a value of g.(x) which exceeds
the current solution by an amount ch has been rejected by

the decision maker. In this case, definez)

(6.10) g. (X) = g(X)S t ;2-63

1) Later, we will discuss the case in which the decisign maker
wants to raise more than one goal variable at one time.

2) Here, the decision maker may wish to define a new aspiration
level. In our opinion, it is wise to give him explicitly the

opportunity to do so.



wWhen a provisiocnal value for g. (x) has been calculated

J —
in one of both above-mentioned ways, we introduce the
restriction:
(6.11) J. (X) > g. (X))
J ) T 254

and proceed to step 7.

Step 7 - Compine the restriction formulated in step 6 or in step

Step 8 - Confront the decision maker with §-i and 5

Step 9 -

9 with the set of restrictions describing the feasible
region Ri . Next calculate a new potency matrix, as in

step 2, but subject to the new set of restrictions. Label

this potency matrix Pi e

n one
5,1 On the

If (8b) the decision
maker considers this sacrifice +o be Justified, accept

the proposed solution by putting

Sigq = S;,, and Pipg = P. 1+ Furthermore, in the computer

algorithm (see Figure 6.3), put ch = %, Gj (which is only

relevant for § ; > 0) and return to step 4. If (8a) the

decision maker considers the sacrifice unjustified, the

proposed value of 9; (X) is obviously too high. Therefore,
drop the constraint added in step / and proceed to step 9.




(6.12) J (X = 9; (X))o %.éj

—1+1] —1
As in step 6, we add the restriction that gj (x) must equal
or exceed the new proposal value and go to step 7 in order
to calculate a new potency matrix lgi g
If the decision maker is unwilling to indicate a single goal varia-
ble which should be improved in value, one could present him the
option to define a set of goal variables which should be augmented
in value at the same time. Then, the procedure must be modified
slightly. These modifications have been included in Figure 6.3, and

are discussed below.

Changing more than one Goal Value Simultaneously.

Step 5*%- Instead of one goal variable, more than one goal variable

to be augmented is chosen.

Step 6*- Find proposal values for all goal variables selected in 5%
in the way a new value was calculated for the single goal

variable in 6.

Step 7*- Before calculating the potency matrix Pi +1 the set of
restrictions is extended with the restrictions formulated

in 6%*.

Step 8%~ If the decision maker considers the sacrifices too heavy
to approve the solution, he should indi caEe which of the
goal variables, having a higher value in Si1 than 1n Sy

should be reduced in 9%.




(0) |ldentify the instruments, the goal
| variables and the Feamble region.

(1) [Calculate the poteny matrix P1.

(2) |Collect a Eriori ifomqfion about

'the decision maker's preferences.

Define §; for | =|,...,m. That is,
if for a glven goal varlable i no
csplrdhon level has been defined,

ser 87 =g I glm'” Otherwise,

6|"‘"’O

(3) | Present the starting solution ST and
the potency matrix P1 to the decision
 maker.

» (4) | Is the proposal solution satisfactory ?

no .l

(5) [ Let the decision maker indicate which
goal variables should be augmented.

(8¢) | Remove from the (6) | Calculate the proposal solution S; +1.

 list in (2) all If- g:(x) should be augmented, fhe

. | "~
aspirationlevels value of 51 is important. If §;=0
| that have become the a priori information in (2) is used
' unattainable. | 6 > 0,g:(x ) =gi(x)e +3.8:
(7) Clcula’re the potency mcfrix ﬁi’ + 1 ?

(8b) | ' (8) [ Does the decision maker consider the

change from 3: to S| +1 to be cccepmble

VS < to justify the change from P; to F’I +17

NO J

(8a) | Let the decision maker indicate which

of the justly changed goal values should
be reduced.

for all aug-
mented gi(_x_).

(9) | Forall j, for wich fe proposal
value g:(x )§ must be reduced,

and redefine

(x)a =q. +

Figure 6.3. A flow chart of the extended interactive multiple goal programming procedure
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Step 9*%- Calculate a new proposal solution by reducing all goal

variables indicated in 8% in the same way that the single
goal variable was reduced in 9.

Other Options Available

In IMGP, there are more options available to the decision maker.

One option considers the fact that, in general, interactive proce-
dures induce learning effects (cf. Chapter 5). This implies that
the decision maker may change his mind during the interactive
process or may feel that he has made some errors. This is the main
reason why the decision maker must have the opportunity to return
to an earlier iteration or even to restart the whole process. As

in most interactive procedures, these options can be given in IMGP
without any difficulties.

An example of a learning effect occurs, for instance, when
the decision maker recognizes that a proposed shift in a single
goal variable is outweighted by a simultaneous shift in two or more
other goal variables. He may then wish to return to the preceding
solution to ask for such a simultaneous shift. He may also require
additional information regarding the state of the problem. IMGP
offers several possibilities. First, the total 'pay-off' matrixl)
underlying the potency matrix may be presented to the decision maker.
Second, depending on the method used, the optimizations may produce
a considerable amount of dual information on the state of the
problem (cf. also Chapter 4). Third, to measure the above-mentioned
simultaneous shifts of goal variables, one may introduce a proxy
goal variable, such as, for instance, the sum of all other goal
variables. Of course, many other devices to provide information

regarding the state of the problem can be proposed.

3k .
1) The pay-off matrix is the matrix of goal values g. (__}_{_j ) » with
i=1l, «e., mp and J =1, «o.y M 143



6.3. IMGP in Linear Terms

Given the fairly modest requirements described in Section 6.1,
many methods are avallable for use within the IMGP procedurel) . For
instance, many mathematical programming techniques may be useful. As
an illustration, we describe IMGP in linear terms (with respect to
the instruments x), by which it becomes accessible for linear (goal)
programming routines. The additional advantages of such a linear
format of IMGP are discussed at the end of this section.

I1f the feasible region R can be described by means of linear

restrictions, and the goal variables g, (x), 1 =1, ..., m; are

linear or piecewise linear and concave in the instruments x, IMGP
can use standard linear programming routines.

The calculatory steps in IMGP consist of the computation of
the potency matrices. The first potency matrix, P 17 is calculated
in step 1. Whenever the lower bounds on the values of one or more
of the g, (x) are augmented (in step 6*) or when some of these bounds
are decreased (in step 9), the accompanying potency matrix is
calculated in step 7. In all three cases the structure of the problem
is identical. Each of the goal variables must successively be maxi-
mized (or minimized) within the feasible region R and conditioned

by a set of lower bounds (or upper bounds) on the values of the goal

variables. The problem can thus be written as

Max(c.q.Min) {g, (x)}, s.t. #
(6.13) X € R, and for i=1, ..., my;

gj(_}_'_(_) > (__<___)§] for 3 =1, ..., m;

1) Even if all requirements are not fulfilled, IMGP can sometimes
be used, although with a few modifications. For example, in
Section 7.4, we demonstrate the use of IMGP in decision problems
with a finite number of alternatives (a situation which is in
conflict with the convexity condition on the feasible region).
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where c‘jj denotes the proposed value of g. (x) for the problem at hand.
It is possible to formulate the set of problems in (6.13) in
another, but also uniform way, i.e. as minimization problems diffe--
ring only in the coefficients of the objective function. In this
approach, which is closely related to the goal programming formula-—

tions in Chapter 4, we formulate for each of the goal variables two

restrictions
~T - n .
gj(_}_c_) - V. + V. = 4. for 3 =1, ..., m; and
(6.14) J 7))
(%) Wy % for § =1
A\ X)) - . . . QX — JF ® ¢ e g 7
gj___ Yj Yj gj ] m

L -

where J; denotes the proposed value of I3 (X) in the problem at hand,

and g’:']f its maximum value (or minimum value) in the first solution
S, (thereby only constrained by x € R). The y+

the overattainment and underattainment with respect to the aspired

and y values measure

sk
levels § and g. The problem can then be formulated as a goal pro-
granmming problem. ILet us assume that J: (x) should be maximized,
given a set of proposed values for the goal variables. This maximi-

zation problem can be translated as

F gl g0 HL .Y st

Os o Y. +H0L Y Y. I S

Shnk B I LA

(6.15) X € Rand s.t. (6.14)
oa-jlf = 1 and oc; = 0 if f is a decreasing function of gj (%)
oe;._ = (0 and oc; =1 if £ is an increasing function of gj (X)

The non-Archimedean (cf. Charnes and Cooper [1977] and Chapter 4)
weighing factors Ml and M2 have the property M1 >>> M2 by wnich

pre-emptive priority is given to attain the proposal values “c‘jj ,
j=1, ..., m before 94 (x) can be maximized by means of the minimi-

o
zation of yj . We assumed that the variables gj (x) could be formulated

145



in such a way that f was monotone non-decreasing Or monotone non-

o,

increasing in gj (x) . In the first case, the proposal value gj must

be considered as a lower bound (which means ?j must be zero) and in

the second case, <"jj must be considered as an upper bound (by which

3’"7_...F must be zero). In (6.15) we assumed d; (x) was to be maximized.

J ke
Minimization of g, (x) can easily be achieved by replacing y, in

*
(6.13) by y..

Advantages Related to the Linear Format

As suggested in (6.14) and (6.15), IMGP can make straightforward
use of goal programming routines. That is, for each proposal solution,
a set of goal programs can be formulated. These differ mutually only
with respect to one element in the objective function, being the
yf, i=1, ..., mto be minimized. By means of these goal prodgrams,
a potency matrix based on the proposal solution can be constructed.
This has to be carried out for each new proposal solution. However,
the goal programs belonging to different proposal solutions only
differ with respect to some of the right-hand side constants, being
the goal levels which have been changed. Clearly, this formulation
gives access to specific goal prograrming routines as proposed
for example by Lee [1972], (see also Chapter 4). However, standard
linear programming packages can also be used. PL/I programs using
IBM's MPSX - package are given by Ouwerkerk and Spronk [1978] and
Hartog et al. [1979].

A main advantage of the linear format of the problem is that
each solution of a goal program contains useful information about
the effects of a shift of the right-hand side constants (see Chapter
4) ., In an extensive overview, Isermann [1977 ] arques that duality
1n multiple objective linear programming is even more relevant than
in standard linear programming. Besides the economic implications
of duality, he illustrates its decision-oriented relevance. He
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shows how information from the dual may be employved in the decision
maker's search for a compromise solution. In the same sense
kornbluth [1978] proposes a method in which information from the

(fuzzy) dual 1s systematically used in an interactive way.

Furthermore, the linear format of IMGP has all the advantages
of goal programming, as discussed in Chapter 4. In its linear format,
IMGP may also benefit from the widespread attention paid to linear
programming, both in theory and practice. Special procedures
developed for linear prodramming may also be useful in linear IMGP.
As an example, procedures to identify redundant constraints in a
linear progranmming problem may be used to identify 'redundant goal
constraints' and redundant 'goal variables' (cf. Gal and Ieberlina
[1977] and Spronk and Telgen [1-979]) :

6.4. Existence, Feasibllity, Uniqueness and Convergenc

A 'solution' is identified by a vector of minimum (or maximmm)
values imposed on the respective goal variables. It is easily seen,
that given the ideal and the pessimistic solution, there is always
at least one combination of the goal variables which is bounded
by the ideal and the pessimistic solution, for which a feasible
combination of the instrumental variables exists. For instance,
consider the vector of goal values which is determined by _J_{__i* ,
the combination of instrumental variables which maximizes the 1-th
goal variable, s (X) . By definition, this vector is bounded both
by the ideal and the pessimistic solution. By the convexity of R,
also the convex cambinations of the 3{_;"_ are feasible.

During the successive iterations of IMGP, the goal values in
the successive solutions are repeatedly shifted upwards by the
decision maker, thus adding new constraints to the existing set of
constraints. Because R is convex in X and because the newly added
constraints are linear in x, the part of the feasible region R which

remains feasible after adding the constraints (denoted by R.,
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i=1,2,...;) remains convex in x. This means that at each iteration
of IMGP there exists a vector of goal values, which is bounded by
the ideal and the pessimistic solution of the reduced feasible

region, for which a feasible combination of the instruments exists.

Glven the assumptions underlying IMGP, a most preferred solu-
tion 1is not necessarily unique. Notably, the assumption that the
decision maker's preferences can be modelled by means of weakly
convex preference relations is not a sufficient condition to
guarantee a most preferred solution. For instance, even satisficing
behaviour can be represented by weakly convex preference relations.

However, if the preference relations have the dominance propertyl) ’

it is easily seen that IMGP vields efficient solutions.

The next question is whether IMGP converges to a most preferred
solution (either unique or not). Of course, the convergency proper-
ties partly depend on the abilities of the decision maker. We there-
fore first assume that the decision maker is able to answer the
questions posed by IMGP, that his answers are consistent, correct
and finally that his preferences do not change during the interac-
tive process of IMGP. Given these assumptions it can be shown that

IMGP terminates in a finite number of iterations within an e—-neigh-

bourhood of a most preferred solution.

First, starting from an accepted solution S, the next solu-
tion will be accepted after a finite number of steps.
Let us define A, as the subset of A (see Section 6.1) of which the
elements meet the minimally required goal levels defined by S.. We

1) A hpreference relation has the dominance property if for all
pairs o,0' in A holds that o is preferred to o' if all goal
values of o equal or exceed the corresponding values in a'.
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know that -S-i 1s preferred to all preceding solutions and that S.
i

can be 1mproved. Thus the following condition must have been met .

(6.16) Jo0.' € Ai[OL'®OL, Yo € {A—Ai}]

Let us next assume that the decision maker wants to improve S, by

raising the value of 9, (%} thus obtaining a new solution Siype 1F

the preferences of the decision maker can be modelled bv means of

a lexicographilic ordering (see Section 6.1), the elements of Ai

(the subset of A defined by S, +1

+1
) will satisfy condition

T : _ |
(6.17) Vo' € Ai-}-l[a @ o, Vo € {Ai Ai+l}]

If the preferences of the decision maker can be modelled by means

of a weakly convex ordering as defined in Section 6.1, the elements

of Ai N will satisty

1

(6.18) Vo € {A.-A, . }3a' €A, [0 @ o] ]
Let us assume, that given §. and given either (6.17) or (6.18),
Iy (x) can be increased by an amount of 3\‘. > 0. As described in
Section 6.2, a first proposal solution S:
augmenting the value of Iy (x) in __S__j._ by a given amount, which will
be called d here. If d < A, the proposal solution will be accepted;
otherwise, the proposal will not be acceptedl) . Then a new proposal
solution is calculated by halving the value of d. If (d/2) < X the

proposal solution is accepted. If not, the value of d is divided by

24 and so forth. Clearly, the proposal solution i1s accepted as soon

as (d/2") < X which for A > 0 occurs at a finite value n. Thus we

is generated by

1) Whether d exceeds )\ has to be judged by the decision maker.: For
this evaluation, he uses, among other things, the information
presented in the potency matrices.

149



have shown that each new solution 5., , 1S reached in a finite num-

ber of steps.

Next, we show that only a finite number of solutions has to be
calculated before a final solution is obtained, in which the values
of the respective goal variables differ less than some predetermined
e > 0 from the respective goal values in a most preferred solution.
At each iteration of IMGP at least the value of one goal variable
is raised. Because there is a finite number (m) of goal variables,
it is sufficient to show that an arbitrary goal variable Iy (%)
reaches a most preferred value gi (ignoring a small distance of at
most e:k) within a finite number of iterations. Assuming, that the
decision maker ha§ not defined any aspiration level for Iy (X), we
only know that gr]zm < g]cz < g]’; , where g]’: again is the maximum value
of e (x) for x € R. As descrl:bed in Section 6.2, a proposal solution

is calculated as E'jk = (g}";-giun) /2. Fram the (correct) answer of the

decision maker we can deduce whether gi < §k ox g]cz < §k . We then
know that either gx}r(u.n < gi < E'jk or c'jk < gi < g}";. At the next itera-
tion in which Fe is chosen to be raised, a new proposal solution 1is
chosen exactly in the middle of the chosen region. Thus, the range
in which gi mist be found is exactly halved each time the decision

maker is consulted. This means that the e-neighbourhood of gﬁ is
reached when

(6.19) (g*--gilin)
< g

o7 k!

where n 1s the number of times the decision maker gives his opinion
on §k. In general, this €, ~neighbourhood will be attained in less
steps. This is because the aspiration levels which have been defined
a priort may be of great help during the search procedure. Further-

more %’2 1s influenced by the values required for the other goal
variables.

v
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6.5. Concluding Remarks

In Chapters 3 and 5 we proposed several characteristics for
describing interactive procedures, relating, among other things,
to the class of problems which can be handled, the nature of the
communication process between decision maker and decision model,
and the technical properties.

First, we outline the type of problems which can be handled
by interactive multiple goal programming. The convex set of feasi-
ble actions (R) 1s given and fixed over time. However, if this set
changes over time, the interactive procedure should not be started
all over again. This is because the solution obtained for the un-—
changed (old) problem can be used to make an advanced start. The
set R needs to be convex. However, with the loss of some attractive
properties of IMGP, mutually exclusive actions can also be handled
(see Section 7.4). In IMGP, the goal variables are assumed to be
measurable and known functions of the instrumental variables. The
examples in Section /.4 show how to include a goal variable which
has to be measured on an ordinal scale. IMGP can be used (depen-
ding on the desires of the decision maker), to generate a unique
final solution (within €), an efficient solution or a satisficing
solution. The method i1s not suiltable for generating the complete
set of efficient solutions. Instead, it aims at finding the effi-
cient solution, which is considered (by the decision maker) to be
the 'best' element within the set of all efficient solutions.

' nication process between decision maker and
decision model has been structured in such a way that it has same
attractive prope

ties. The decision maker has only to provide a

limited amount of information, although he has the option to give
more information (and thus to cammand the interactive process) when-
ever he wishes to do so. Notably, if the decision maker has defined
aspiration levels and pre-emptive priorities, these can be incorpo-
rated in the interactive process quite easily. Moreover, IMGP glves
the decision maker the opportunity to reconsider this information
during the interactive process. At each iteration, the method pro-
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vides a large amount of information concerning the state of the Yo~
blem. Depending on the decision maker at hand, this information may
be translated in various ways. An important advantage of IMGP (angd
most other interactive procedures) is that the decision maker can
give his preferences on the basis of well-specified solutions and
is not obliged to answer any hypothetical question (cf. Chapter 5),
We can be very short about the technical properties of IMGP.
In the computational phases of IMGP any solution procedure which
meets the fairly modest requirements mentioned in sections 6.1 alnda
6.2 can be employed. As already mentioned in Section 6.4, IMGP con-
verges within a finite number of iterations to a final solution
which is known to exist and to be feasible. The computer time per
iteration and the number of iterations needed to reach a final Slogy
lution depends, among other things, on the problem to be solved and

the solution procedure chosen.
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Appendix 6.a. Suitable Starting Solutions

The minimal goal levels 417 j =1, ..., m; included in the
Starting solution S 1 (see (6.9)) determine the subset Rl of the
Feasible region R in which the final solution S* is to be found.

i co—determines the difficulty of the decision

oroplem. Therefore the time spent on finding values for gj 17 that

nake R, as small as possible, may be worth-while. Of course the 941
Tust be chosen so as not to exclude any of the most preferred solu-
Clions. Given R and given some elementary knowledge of the decision
aker's preferences (see below), suitable values for g. , can often

J
Oe derived in a straightforward manner. These mathematically derived

values for gj ! (which will be discussed in more detail below) may
Offer valuable insight into the decision problem. For instance by
shoWing that certain solutions (those excluded by the gj 1) need

Not pe evaluated because they are dominated by solutions included
in R1 . On the othér hand, the mathematically derived wvalues for gj 1
have often no meaning at all for the decision maker, because he may

have defined higher values for the goal variable, which he considers

—learly, the size of R

as 'necessary conditions' to be met by the final solution(s).

In this appendix we consider the case in which the decision
maker's preference ordering has the dominance property described in
Séction 6.1. ’Ihis means that we have to find maximal values for the
minimal goal levels 951 in such a way as not to exclude any efficient
solution. In other words we have to find for each goal variable g1
3 =1, ..., m; its minimal value within the efficient set. The mini-
mal value of a goal variable within the efficient set is scmetimes
but not always, equal to its minimal value at the points for which
the other goal variables reach their maximum, as defined in (6.5).
Dessouki et al. [1979] show that the minimal value within the

efficiént set can be found in the closed interval defined by the
minimal value within the feasible region R and the minimal wvalue
defined by (6.5). The same authors propose a simple procedure to
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find the minimal goal values within the efficient set:

(i)  Select an arbitrary vector of instruments _>5_l which ylelds an

officient solution and calculate the value of the goal varia-

ble concerned (say gk) :
(i1) Select el > 0 and try to find a vector _}_5:_2 for which

e (52) < 9% (351) - ¢' and _g(_}g_z) is efficient.

(iii) If a wvector __}_{_2 exists, which yields an efficient solution,

select 5:2 > El.

If no such __}_{_2 exists, select ? > gl

In both cases, repeat step (ii).

The minimal goal values defined by (6.5) as well as the associated
instrument vectors are obtained in the first step of IMGP. Clearly,
these vectors of instruments can be used to define .__}_c_l in the above
procedure. Dessouki et al. (Ibid) implement the second step of their
procedure by solving a quadratic programming problem. The same task
can be performed by maximizing I (X) subject to

(6a.1)

and checking whether the resulting optimal solution x2 is efficient.

Tests to check whether a given vector of instrumentsis efficient, are

provided among others by Zionts and Wallenius [1980] and Wendell and
Ilee [1977].
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