7. IMGP IN PRACTICE: EXAMPLES AND EXPERIENCES

In this chapter we present some examples of (potential)
applications of IMGP. These exarrp‘les have been chosen deliberately
from fields other than capital budgeting and financial planning
(which are dealt with J.n more detail in Chapters 8, 9 and 10), in
order to dexmnstrate that the applibation potential of IMGP is not
limited to capital budgeting and financial planning. In fact, it
can be used in ahy declsion situation which meets the fairly
unrestrictive requirements described ln Chapter 6.

In Section 7.1 we dermnstrate the use }of IMGP by means of two
simple illustrations. In order to simulate the use of IMGP in
practice, we introduce in Section 7.2 an imaginarv decision maker,
facing a portfolio selection problem. Section 7.3 describes some
of our experiences with the implementation of IMGP in combination
with large scale linear prograrming models. Section 7.4 gives two
examples of the use of IMCP in decision problems with discrete
choice alternatives. IMGP can be used fruitfully in this case,
though with some minor modificatlons. Our conclusions are given in

Section 7.5.

7.1. Two Simple Exanples

Tn this section we demonstrate the use of IMGP by means of
two very simple examples. The first example concerns the choice
of an 'optimal' production combination of two product varieties
from an infinite number of alternatives. The second example deals
with a professor who has to decide how to allocate his time budget.
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Example 1: A Production Planning Problem

A brick factory can produce two brick varieties, but due to
the limited capacity of machines, kiln and drying-room and to the
limited availability of skilled personnel, these products cannot
be produced in any desired combination. We show the area of
feasible production combinations in Figure 7.1, where Xy and X,
represent the quantity produced of variety one and two, respectively

(both in millions). For the planning period concerned management
is not able to define a profit function in terms of X, and X5 due
to very uncertain conditions of the market and due to problems in
the factory, where a recently installed machine causes many
difficulties. Therefore management wants to consider both Xy and

X, as goal variables. We thus have
(7.1) d; (xl,xz) = X, and gz(xl,xz) = X,

Although the maximum production of variety one is equal to
18,000,000 it is the 'problem machine' that causes difficulties
when the production of Xy is raised over 14,000,000 units. In fact ‘
this machine runs best when approximately 12,000,000 units are
produced with it. On the other hand, the factory has contracts to
deliver 8,000,000 units of variety one. Although this variety has
been estimated as less profitable than variety two, management wants
to meet the contractual obligations because the customers concerned
also buy a lot of variety two and offer a promising buying potential
in the near future. Thus the preferences for g, (x) seem to be '

monotone non-decreasing for 4 (x) = x, < 12,000,000 and monotone

non-increasing for J, (X) = X, > 12,000,000. Therefore it is reason-
able to consider both g’{ = 12,000,000 and 9y = 8,000,000 as the
relevant aspiration levels for g, (x). There are no problems
whatsoever in the production of the fairly profitable second
variety. Management wants to produce as much as possible of this

second variety, thus to maximize 95 (xl,xz) .
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Figuré 7.1. A production planning problem

When g5 (x) is maximized, we have g‘é‘ = 18 and 94 (x) = 4. Because
this is a case of two goal variables (cf. Chapter 6), it is not
necessary to accept a value of d, (x) lower than grlnin = 4. NO
matter whai; minimal value for 95 (x) is required by the decision
maker (provided x € R), there is always a solution for which at the
same time g, (x) > 4. By setting 9. (x) equal to the most desired
production volume d, (%) = g’i‘ = 12, the value of 9 (x) becomes

95 (x) = 16, _which is at the same time (by similar reasoning) the
value of g:t;u.n_ Therefore, we must find a final solution in which
4<9,(x) <12 and 16 < g,(x) < 18. Together with the information
provided by the management we can list (step 2) the following
aspiration levels. For g, (%) the values 4, 8 and 12; for g, (x)

the values 16 and 18. The first potency matrix can be written as

' 12 18
(7.2) P

4 16




In the third step the first solution Sl is set equal to the pessi-

mistic solution Q and presented to the decision maker, together
with the potency matrix Pl The pessimistic starting solut:l_on S =N
and the ideal solution I, are indicated in Figure 7.1. This solu-
tion has to be evaluated by the decision maker and subsequently
integrated in the model. The successive steps towards the final

solution are shown in Table 7.1. and illustrated in Figure 7.Z2.

(x 10

)

Figure 7.2. All solutions from the starting solution up to and including the final solution

In this relatively smtple exarrple we have cmitted the defini-
tion and redefinition of the 6. 51 To be camplete we will now show
how the ch 's should have been defined during the successive itera-

tions. At the beginning, in step 2, we have § ] = 2 = 0. The propo—
sal solution (8,16) 1is accepted without rrodlfylng the proposed
goal leve ls. Consequently, *l and § 5 remain unchanged. The proposal
solution (8, 17) is judged to have a too strong influence on the
first goal va.rlable Thus 62 is set equal to 1. The new proposal
solution (8,16.5) is subsequently accepted and 62 is halved to
0.5. Finally, the proposal solution (10, 16.5) is accepted without

any problem, by which 61 remains zero When thls last proposal

solution would not have been acoepted dire ctly r O
became positive. '

1 would have also
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16.5]

16.5 ]

2,3,4,5

6,7,8

4,5

6,7,3

9,7,8

4,5

6,7,5

4

Table 7.1. Successive (proposal) solutions together with the opinion of the decision maker

evaluation

S, not satisfactory,

raise value g, (x)

shifts in P justified,
set ___5_2:__8_2 and P2=P2

S not satisfactory,

raise value g, (x)

shifts in P not
justified, lower

value g, (x)

shifts in P justified,

set 5,=5, and P,=P, .

S., not satisfactory,

raise value of g, (x)

shifts in P justifieq,

set §_4=§_4 and P 4=P 4

~ end of procedure
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Example 2: Allocation of a Time Budget

A professor has to decide how many days a week on the average
he will spend on research and on teaching and related activities
(meetings, preparations, exams, etc.), respectively. We assume the
nurber of courses and the number of students to be given and fixed.
Therefore time spent on teaching influences only the quality of
teaching and not the formal quantity. Let us denote the decision
variables by x (days of teaching) and by y (days of research).

Because a week has 7 days, we have

(7.3) X +y <7

If he does not want to be dismissed in the long run, he has to
spend at least one day a week on teaching activities. So we have

(7.4) x > 1

In his opinion, three days a week spent on teaching is optimal.

He does not mind spending more time on this activity, but he feels
that this additional effort will not .contribute significantly to
the quality of his teaching. Because he wants to maximize the
quality of this teaching (by simultaneously minimizing the risk

Oof being dismissed), one of his goals is:

7&5 ) prvorund -
(7.5) Mln{gl zl}
_ T - _
Ss.t. X zl + zl = 3

These desires can be translated into
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(7.6) Min {gz.::z }

A third goal variable is his current wealth, which he wants to be
as high as possible. Let us assume that each additional day spent
on research contributes 6 ducats to his wealth, where a day spent

on teaching contributes 2 ducats. He therefore wishes to maximize

(7.7) Max g,=2.x+6.y

The elaboration by means of IMGP is shown in Figure 7.4.

. . I . .
3 K maximum contribution to current wealth

' minimum time for optimal teaching

|
: constraint (7.4)

constraint (7.3)

free weekend target

— x = days spent on teaching

Figure 7.3. The time budget allocation problem
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Figure 7.4. Successive IMGP steps for the time budget allocation problem

In order to discover whether (and if So, to what extent)

these goal variables are conflicting, we construct (step 1) the
following potency matrix P

l »
g* 0
(7.8) D = | 2
1
min min
g 2 2

During the construction of this matrix, wer‘ deviated slightly from
the procedure described in Chapter 6 (step 1) inorder to take




account of non-unique optimum solutions L :

Let us assume that the professor (in step 2) has defined one

aspiration level for each of the goal variables, which are

respectively equal to 1 for Jy 1 0 for d and 26 for g3 , the latter

value representing his estimation of the minimum welfare needed to
survive.

In the third step, the most pessimistic solution, S, = (2,2,18),

W

1s presented to the decision maker, together with the potency
matrix Pl . We assue that he is not satisfied with S 1 (step 4) and
that first (step 5) he wants to have a free weekend which is as
long as pgssible (step 6). Thus we can construct the proposal

solution S 5 = (2,0,18) . In step 7 we calculate the corresponding

Wl

potency matrix P2 as

(7.9) D

|

2

Camparing (in step 8) this matrix with P., the decision maker

l 4
Jjudges that his possibilities of increasing his wealth have criti-

cally deteriorated. We thus have to set (in step 9) a new, but less
ambitious value for the second goal variable. By choosing this new

value exactly between the corresponding value in S ! and the
corresponding value in the rejected proposal solution, we get the

new proposal solution S

S, = (2,1,18) with the potency matrix

1) Note for instance that the minimization of g, = z"l' yields the

complete area between points (3,0), (7,0) and (3,4) . We solved
this problem by calculating a new pay-off matrix for the goaJ'.
variapbles 9, and, Jar given the optimum value for Iy * From this,

the worst values of J5 and gy were taken as corresponding to

the optimum for g,.




(7.10) B

Assuming that these shifts in the potency matrix are considered
Justified, we can define §_2 = -éZ and P2 = 52’ leaving the
decision maker with at least one free day a week.

Returning to step 4 and 5, the professor argues that if he
cannot have a two-day weekend free he certainly has to increase
nis wealth by more than the current 13 ducats a week. Given this
information and the list of aspiration levels, we propose
__5_ 3 = (2,1,26) and calculate the corresponding potency matrix 53

(step 6 and 7), which is given by

(7.11) P

The professor judges these shifts in the potency matrix to be
acceptable. Thus we define 53 = S, and Py = P,. Next, in this
decision maker's opinion, the quality of his teachina should be

ensured. Therefore, we propose _8_4 = (1,1,26) and calculate the
potency matrix '

(7.12) P

Because he judges 2 days a week on teaching (i.e. zI = 1) a
minimum to guarantee good (although not optimal) teaching, he
accepts the shifts in the potency matrix implied by this require-

ment. Thus we have _8_4 = §4 and P4 = P4. Summarizing the current




Situation, he may continue to add requirements. For instance. he

may want to maximize time spent on teaching, which becomes 2.5
days of a six-day working-week, yielding 26 ducats. Similarly,

3’3‘, days of research with an increase in wealth of 26 ducats a week.
However, in our opinion it is unlikely that the decision make

wlll choose such a razor-edge solution. It is more natural that he

ACCepts S, and P 4 @S they are and decides, for instance, to work

>3 — 6 days a week, of which no more than 2 days spent on teaching,

earning 26 — 28 ducats a week.

7.2. Exp eriments with Imaginary Decision Maker

In order to demonstrate some of the convergence properties

IMGP, we introduce in this section the concept of an imaginarv

decision maker, who makes the necessary managerial choices. We

assumre that his preference structure can be described adequatel
by a concave preference function exactly known to us. We assume
the decision makexr to be able to give his judgements concermning
a solution proposed to him by the IMGP procedure, and moreover
to do so in a manner which is in complete accordance with the

preference function specified.

Given the a priori knowledge of the decision maker's preference
function, we can calculate an optimal solution of the problem at
hand. At the same time, we can execute the IMGP procedure oY
'interacting' with the imaginary decision maker. Then, the solution
obtained from the a prior: specified preference function can be
compared with the solution resulting from the interactive procedure.

In doing so we make three simpli fying assumptions, each of W nich
can be relaxed gquite easily. For the moment, we assume that the




decision maker does not specify any a priorz information. Further-

more, we assume him to give consistent answers without any errors.
Finally, within the IMGP procedure, the decision maker has to
indicate, given an accepted solution, which goal value should be
raised. In the present case, we introduce the assumption that the
decision maker first tries to drive the first goal variable to its
optimal value, next the second, third and following goal variables
respectively. This procedure of changing the value of a given goal
variable is concluded as soon as it reaches a value which is
sufficiently close to the optimal value.

The computer program for the described experiment has been
run on an IBM 370/158 conputer at the Technical University in Delft,
The Netherlands. In the program, which has been written in PL/1,
the MPSX package has been used to solve the linear programming
problems (see also Appendix 7.a).

Below, we give an example of an imaginary decision maker using

IMGP 1n order to find a solution for his portfolio selection problem.

Example 3: Selection of an Investment Portfolio

several authors have formulated the problem of portfolio




allowable concentration in any industry, two goals must be strived
for. The first goal is to maximize the expected return of the
portfolio, Ep. The second goal is to minimize the risk of the
portfolio, as measured by its market volatility. The market volati-

lity of a portfolio consisting of n securities is represented by

n
(7.13) B = ¢ x. .B.,
S
where X, 1s the fraction of the budget invested in security i, Bi 1s
the market volatility of security i and B the market volatility

P
of the portfolio. The market volatility of a security or a port-

folio measures its relationship with some stock market index common
to all securities. The market wolatility (or beta) of a security

1s often called the systematic risk of a security. Besides this

risk each security has its own unsystematic risk component, viewed
as a random variable with zero mean and standard deviation S - All
pairs of random variables representing the unsystematic risk are
assumed to have zero covariance and to be uncorrelated with the
market index. Lee wanted to account for the unsystematic risk of
the portfolio explicitly. Therefore, he introduced 'current dividend
yvield' as an additional goal variable 'to help us campensate for
having the income fund suffer some unaccounted for risk' (Ibid.
Pp. 227-228).

Given this framework, Lee formulated both a goal program for
a growth portfolio and a goal program for an income portfolio,
mutually only different with respect to their objective functions.
The first objective function was formulated to maximize expected
growth, to minimize market volatility and to maximize current
dividend vield in this order whicn was moreover pre—emptive. The
second objective function was also ordered by pre-emptive priority

factors, but in the reverse direction.




expected growth, one to minimize market volatility, and one to
maximize current dividend. The imaginary decision maker's preference

function was specified as

7.14) f(E ,B_ ,D,) =0.4E_+ 0.2B_ + 0.4D
( ) (Ep B/D, ) o D p’

where Ep ’ Bp and Dp are the portfolio's expected growth, market

volatility and current dividend yield respectively. For further
details on this experiment, we refer to Nijkamp and Spronk [1978].
All results are presented in Table 7.2, where the solution for the
a priori specified preference function (7.14), the solutions given
by Lee, and the unconditional optimal solutions for each of the

objective functions separately are also shown.

Besides the initial pessimistic solution, only nine proposal
solutions had to be evaluated by the imaginary decision maker.

Given the first proposed constraint for Ep, a pessimistic

solution follows in which the lower bound of D has also been

P
increased. Because the optimal solution (a) is not excluded by this

proposal solution, the latter has been accepted by the decision

maker. The second solution has been obtained by raising E . This

P
solution is unacceptable because it excludes a Bp value smaller

than 0.608 and a Dp v_alue over 0.025. The next solution is obtained

by lowering the Ep value, which has been accepted. Then, the E

S
value is raised again, each time with a rise of half its previous

size (Sl) , until the required accuracy for Ep 1s reached in
lteration 6. In step 7 the value of Bp is lowered with & 5 = 0.68.

In step 8 the value of Bp is lowered with a value which is not

Bp specified in iteration 7. In this case § 5 has been divided by
two until a feasible Bp value could be proposed in iteration 8.
The same happens in iteration 9. The solution proposed in iteration
9 1s the final solution, because the required accuracy for B has

| P
been attained and because the Dp value has been driven close enough
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Table 7.2. IMPG applied to Lee’s model

description of the expected growth | market volatility | current dividend | comment
objective function * i
(a) solution for (7.14)
(b) growth portfolio (Lee)
(c) incame portfolio (Lee)
(d) max. expected growth
(e) min. market volatility
(f) max. current dividend
(0) initial pessimistic .0 .361 .0
sol.
(1) proposed constraints .338 .361 .0 §,=0. 338
pessimist. solutions 0.338 1.361 0.0027
potential solutions 0.677 0.346 0.029 ~ accepted
(2) proposed constraints . 507 .361 . 0027 csl'-=0. 169
pressimist. solutions 0.507 1.361 0.0029
potential solutions 0.677 0.608 0.025 rejected
(3) proposed constraints .423 . 361 . 0027 § 1-1“—0.085
pessimist. solutions 0.507 1.361 0.0023
potential solutions 0.677 0.462 0.028 accepted
(4) proposed constraints . 465 . 361 .0023 cslmO . 043
pessimist. solutions 0.465 1.361 0.0026
potential solutions 0.677 0.471 0.026 accepted
(5) proposed constraints . 486 .361 .0026 61=—"0.021
pessimist. solutions 0.486 1.361 0.0028
potential solutions 0.677 0.565 0.0268 accepted
(6) proposed constraints . 497 . 361 . 0028 §,=0.011
pessimist. solutions 0.497 1.361 0.0028 |
potential solutions 0.677 0.584 0.025 accepted
(7) proposed constraints .497 | 0.681 .0028 §,=0.681
pessimist. solutions 0.497 0.681 0.0028
potential solutions 0.534 0.584 0.013 | accepted
(8) proposed constraints . 497 0.596 .0028 ,=0.085
pessimist. solutions 0.497 0.596 0.0028
potential solutions 0.502 0.584 0.0048 accepted
(9) proposed constraints . 497 | 0.585 .0028 - 5,=0.011
pessimist. solutions 0.497 0.585 0.0028 |
potential solutions 0.498 0.584 0.0030 accepted
(final solution)
(a) solution for (7.14) 0.4975 0.5844 .00285

* goal values belonging to optimal solutions and proposed goal constraints.

** pessimistic and potential goal values.
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to its optimal value.

The relatively favourable results with the above and other
exanples (cf. also Nijkamp and Spronk [1978al) cannot be generalized
without some reserves. Clearly, the number of iterations needed
depends on the number of goal variables, the exact shape of the
preference function and the required accuracy. Furthermore, we
assumed that the decision maker did not specify any a priori
information. If this is the case, the effect on the method's
convergence speed cannot be determined beforehand, because such
information may either accelerate or decelerate the process. Finally,
in this example we introduced an ad soc hierarchical ranking of the
goal variables to be changed. First, the expected arowth was driven
to 1ts optimal value, then the market volatility and finally the

current dividend. It may be that another order of changing the goal

values may accelerate or decelerate the process.

/.3. Some Empirical Results

Just before the publication of this study, a project was started
in which IMGP was used to help investigating the conflicts between
a numoer of goal variables with respect to a large scale input-output
model descrilbing the economic—environmental system of Western Europe.
First, a pilot study was carried out with a simplified version of
this input-output model (cf. Hartog, Nijkamp, and Spronk [1980]).
Because not all results of the main study were available at the:
time of publication of the present study, we confine ourselves here
to a summary of the results of the pilot study. The simplified
version of the input—output model consists of 160 relations in 130
structural variables describing three conventional sectors and one
sector for the abatement of pollution (see for further details

van Driel et al [1980]). To start with, the following goal variables
have been defined by the analysts.

(1) wages
(2) consumption

(3) minimum growth of consumption
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(4) maximum growth of capacity
(5) nuisance (defined as the amount of unabated pollution)

(6) production of the pollution abatement sector.

Wwith this set of goal variables, a number of experiments have bheen

carried out with decision makers (in this pilot study these were

interested scientists being familiar with this kind of problem

both in theory and practice) trying to achieve a satisfactory

solution for the problem at hand. The results of these experimen
are rather encouraging. Each iteration costs some 30 seconds of
CPU time (see Appendix 7.6 for details) needed to recalculate the
potency matrix by means of solving 6 fairly similar linear qgoal
programs 1) . Although it is not strictly necessary for interactive
procedures to have such a low 'return time', it can be seen as an
important advantage. This is because the decision maker, at the
terminal display, can easily experiment with different compbinations
of the goal variables, without high COStTS and within a relatively
short period. In Table 7.3, we give a condensed description of the

third session at the terminal desk of a decision maker (see Hartog

et al [1980] for a more detailed description).

Tt is not necessary for a decision maker tO continue the inter-
active procedure to the extent that the present decision maker did,

i.e. to proceed until a unique (or nearly unique) final solution

occurs. One might as well stop at an earlier iteration, being left

with a number of 'scenarios' all satisfying the min
specified by the decision maker. The choice out of these sCenarios

imum conditions

performance can be ascribed to the relatn:.ve )
simplicity of IMGP, combined with some attractive prigegttis of.
the MPSX-package. Note for instance, that from iteratlioO

| | ly with respect tO SOMe
teration the goal programs change Only Wiltil ==
;ight-hand sidgovalues "~ so that each optimization can greatly

benefit from earlier optimal solutions.
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can be made by a committee or otherwise.

An examination of the detailed results associated with the
final result attained by this decision maker showed that nearly
all instrumental variables within the model behaved according to
smooth growth paths. However, because no goal variable had been
included to take care of a balanced distribution of activity over
the industrial sectors, some undesired effects occurred in this
respect. In fact, this was one of the learnina effects mentioned
in Chapters 5> and 6, which resulted in discussions and proposals
for new goal variables. Other learning effects have led among
others to the proposal to delete the sixth goal variable as being
an improper one because its value can be raised by switchina to
heavily polluting sectors. Furthermore, the nuisance coal variable
was proposed to be defined differently.

On the basis of the results of this pilot study, it has been
decided to continue the experiments, usina the full version of the
abovementioned input-output model, a slightly revised set of goal
variables, and with the aid of decision makers who are responsible

for the kind of decisions simulated by the model (see Hartog and
Spronk [19801]).

7.4. IMGP Applied to Discrete Decision Prablems

With some minor modifications, IMGP can also be applied to
discrete decision problems with explicitly given alternatives. In
this section we give two illustrative examples. The first example
concerns the selection of a single alternative fram a set of mu-
tually exclusive investment projects, each of which 1s described
by its performance with respect to four criteria. The second
example concerns an enterprise which is planning to build a new
factory. There are 20 candidate locations, all of which are des-
cribed in terms of seven criteria, some of which are measured on

an ordinal scale.
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Example 4: Selecting a Capital Investment Project

1)

This example of a multiple criteria decision problem with

only a limited number of alternatives involves a laundry which is
opening a new laundrette, to be equipped with 20 washing machines.
For the latter, a number of alternative types is available. The
decision maker believes four goal variables to be relevant in the
choice from the set of alternatives, i.e. purchase price, electricity
consumption, water consumption, and washing time. Each of these goal
variables is to be minimized. There are 33 different types of washing
machines, which are described in Table 7.4.

Although Interactive Multiple Goal Programminc loses one of its
attractive properties in this case (i.e. by the simple calculation
of the respective optima of the goal variables no reduction of the
set of alternatives can be obtained here), it can still be used as
a systematic procedure to reduce the set of feasible actions by
adding and tightening constraints on the values of the goal variables
and showing the consequences. An 'ideal solution' is defined as before.
A 'pessimistic solution' now lists, for each of the goal variables,
the worst (in the present case, the highest) value amongst all
available alternatives. The solutions are represented by row vectors

with their elements representing the price of a washing-machine,

1) The case on which this example is based has been designed by
Professor A. Torn. A more detailed description of this case,

together with its solution by means of various procedures
other than IMGP, can be found in Carlsson et al. [1980].
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Table 7.4. Alternative types of washing machines

* For the most used program

177

altermative unit price total was- electricity  water con- (proposal)
number in dollars hing time* consumption® sumption* solutions by which
in minutes in kwh in litres alternative 1is
rejected
1 509 74 1.4 114 S,/ S,
2 425 80 1.4 110 §3, 83
3 446 72 1.5 135 S3s Sy
4 564 65 1.5 118 Syr S,
5 547 53 1.7 140 S,r S,
6 450) 68 1.5 135 Sar Se,
7 473 65 1.5 130 83, final solution
8 484 56 1.6 115 §4, §4
9 456 68 1.5 130 §3, 86
10 488 72 1.5 114 S3r Sq
11 530 55 1.6 135 S,r S,
12 477 76 1.4 110 S3r Sy
13 589 53 1.5 130 S,/ S,
14 534 61 1.3 122 S,r S,
15 536 57 1.6 110 §2, 52
16 494 72 1.4 135 Sz, 55
17 425 65 1.7 120 §3, S4,
18 555 53 1.6 125 S,1 S,
19 543 57 1.5 120 S,r S,
20 515 68 1.4 130 S5r S,
21 452 76 1.4 112 §3, S3
22 547 68 1.4 120 §2, 82
23 421 76 1.3 130 S3» S,
24 498 68 1.5 120 Sy S, .
25 467 65 1.6 130 §3, 84,
26 595 50 1.7 135 Sor Sy
27 414 68 1.6 125 S4 54
28 431 66 1.6 110 Sy, Sy
29 452 72 1.4 115 §3, Sq
30 408 77 1.5 119 §3, S,
31 478 59 1.7 110 §4, 84
32 395 76 1.4 120 .§3, S3
33 543 57 1.4 135 21 5)



its total washing time, its electricity consumption and water

consumption, respectively. The first potency matrix 1s given by

395 50 1.3 110

(7.13) Py = '
505 80 1.7 140 |

Given the pessimistic solution, i.e. the lower row of P 1 the decision
maker has to indicate which goal value should be decreased in value.
et us assure that he wants the price to be lower than $ 595 per
machine but that he does not specify how much lower. We then set a
proposal price of ($ 595 + $ 395) / 2 = § 495 (all other (pessimis-
tic) goal values remaining equal) and calculate the potency matrix

associated with this proposal solution as

- 395 56 1.3 110
(7.16) P. =
494 80 1.7 135

Thus by taking $ 495 as an upper bound for the price the decision
maker is willing to pay for one machine, one has to drop the alter-
natives with a lower washing time than 56 minutes (i.e. alternatives
5, 11, 13, 18 and 26). On the other hand, by accepting this bound
on the price level, alternatives with a higher water consumption
than 135 litres (alternative 5) can also be left out of consideration.
Of course, it is up to the decision maker to accept this restriction
on the price level and its consequences. If he does not accept this
restriction we calculate a new proposal price limit exactly between
$ 595 (which was too high) and $ 495 (which appeared to be too low).
However, let us assume that the decision maker accepts this solution.
Besldes the already mentioned alternatives, we can a155 drop the
numoers 1, 4, 14, 15, 19, 20, 22, 24 and 33. Thus, in total, the
numoer of alternatives is reduced from 33 to 19 (cf. Table 7.4).

Glven the lastly accepted pessimistic solution, the decision
maker again has to indicate which goal value should be reduced in
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to specify the desired reduction. Let the upper bound on washing time

(7.17) P. =
484 59 1.7

Confronted with this proposal solution, the decision maker argues
that the minimal electricity consumption (1.6 kwh for the most used
program) is too high. This means that the imposed maximum value on
washing time (60 minutes) was chosen too low. (We alreadv know that
the maximum value on washing time in the preceding accepted solution
(80 minutes) was considered to be too high). Therefore, given the
lastly accepted solution (i.e. the lower row of (7.16)), we propose

a new solution by limiting washing time to an upper limit of 70

minutes. The implied potency matrix is given by

-] 56 1.5 110
(7.18) P, =
?i 68 1.7 135

Assuming that the decision maker accepts this proposal and its

consequences (if he does not, the upper bound on washing time 1s
further reduced to (70+80) /2 = 75 minutes), the number of alter-
natives remaining to be analyzed becomes 9 (10 altermatives are
to be dropped: 2, 3, 10, 12, 16, 21, 23, 29, 30 and 32).

Iet us next assume that the decision maker, given the accepted
solution in (7.18), wants to limit electricity consumption to 1.5

kwh at most for the most intensive washing program.

This implies

450 65 1.5 130

g )
{

(7.19) 4 -
473 68 1.5 135




The decision maker accepts this proposal (so that only alternatives
6, 7 and 9 remain) and wants to reduce water consumption to at most

130 litres per washing program. We then get

- 65 1.5 130
(7.20) P =

68 1.5 130

This proposal is also accepted. Only two alternatives, 7 and 9 are

retained. The decision maker decides to choose the altermatives with

the lowest electricity consumption, given by

(7.21) S = [473 65 1.5 130]

This is also the final solution.

Example 5: Locating a Factory

An enterprise is planning to build a new factory for the
production of storage batteries. There are twenty possibilities for
the location of this new factory. Each alternative has been described
in terms of its contributions to the goal variables which management

considers to be relevant in this situation. These goal variables are

g, = capacity of the factory, expressed as the annual number of
units produced (in millions). Between certain limits, management
wants the capacity to be as large as possible.

g, = COsts of establishing the new factory (purchase of land and cost
Oof construction). Of course management wants a value of this

variable which is as low as possible.

g4y = score for the quality of the facilities provided by the local
government (subsidies, advice, licences). These scores are

presented on an ordinal scale of increasing priority: ——, -

/ 4

0, +, ++. The element —- represents a strongly negative outcome
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for the local facilities concerned, whereas the element ++
represents a strongly positive outcome.

d, = Score for the possibilities to attract skilled labour (again
represented on an ordinal scale with --, -, 0, +, ++).

Je = Score for the‘ quality of the transportation network to be used
py the factory (again represented on an ordinal scale with
-, =, 0, +, ++).

Jg = estimated size of the total local market (measured in millions
of units sold per year). Of course, management prefers a rmore
voluminous market to a smaller one.

g, = score for the possibilities to enter the local market (again

represented on an ordinal scale with -, -, 0, +, ++).

The 'industrial profiles' (see Paelinck and Nijkamp [1976]) of the
20 possible locations are given in Table 7.5. None of the alternatives

is a priori dominated by another. The first potency matrix can be

written as

(7.22) p. =

and the first solution as

(7.23) s, = [11,50,~,~=,~=,10,~]

Assure management's first wishes are that the quality of the local
governmental facilities should not be too low (g3 > -) and that there
are not too many difficulties in attracting labour (g 42 -) . We then

have

4,

(7-24) _§_2 — [ll,S ,_,"’_“’10,“"]

As can be seen in Table 7.5, the profile numbers 2, 8, 10 and 13
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Table 7.5. Profiles of the location alternatives

profile (scoring) values of the goal variables (proposal) solutions
number by which profile is

9, 9o 93 Iy Je 96 9~ rejected

o, iy,

1 30 48 0 - + 40 — §_3, §4, §4
2 29 50 - — 4+ 25 + S, 8,
3 28 44 0 + + 45 -— 5,85, 8,
4 27 40 +H @ ++ - 20 - _é (two  times), S1
5 26 41 - 0 + 5 + S, final solution
6 25 46 0 0 ++ 10 ++ Scr Sg
7 24 40 + + 0 10 + S, S, 8,
8 23 43 -—- + 10 0 S,r S,
9 22 38 - + + 10 - S,
10 .. 21 37 - - - 15 + __?_2, §_2
11 20 35 0 + O 50 ++ __s__3, _5__3
12 19 41 +  + o+ 20 4+ __5__3, s,
13 18 36 - + + 25 0 _5__3, S5
14 17 32 0 0 -- 35 4+ S, 8,
15 16 28 0 0 + 45 + S, S,
16 15 25 0 0 0 30 0 S,8,
17 14 26 0 ++ ++ 15 + :_3, §_3
18 13 24 — ~ — 30 - -—5-2' S,
19 12 23 + ++ + 10 + -5-3' __s__3
20 11 20 O + 0 15 - Sy Sy
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30 20 ++ 4+ ++ 55 ++
(7.25) | 3

11 48 - - - 10 --

As can be read from P, and Table 7.5 we have, by rejecting profile

nunber 2, rejected the factory with the highest construction costs.
Therefore we define

(7-26) _§_2 — [11’48’“’“’“"’10’_"]’ al"ld P2 — P2

Management next wants a capacity of at least 20 million units per
vear to meet the export orders (g1 > 20) . For the same reason, it
would like to have the best possible transportation facilities
(g > ++). We thus get

oy,

(7.27) S, = [20,48,-,=,++,10,--]

As can be seen in Table 7.5, there is only one profile (number 6)
left in this solution, by which the potency matrix reduces to

25 46 - - ++ 10 —-

T )
I

(7.28)

25 46 - - ++ 10 —-

in the results of a less perfect transportation system. The model

then proposes the solution

i,

(7-29) _§_3 —_— [20’48’“,",0,10’“_]

There are more profiles left in this solution, viz. the numbers

1, 3, 5, 6 and 7. The potency matrix can be written as
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040+ 55 4

24 48 - = 0

Management considers the proposal good enough to justify the shifts

in the potency matrix, by which we can formulate

(7.31) __8__3 - [24,48,-,-,0,10,--] and P3 = P3

In the following step, transportation is required to be slightly
better and the possibility to enter the local market must be 'not
too bad’ (g7 > (0). This solution is judged to 'outweigh' the shifts

in the potency matrix. Then the fourth solution is determined as

(7.32) = [25,46,-,0,+,10,+],

24
for which the fifth and sixth profiles are still feasible. Finally

management wants to face a local market which exceeds the 10 million

units sales in §4 Consequently, the final solution becomes
(7.33) __S__5 = [26,41,-,0,+,55,+],
which is the fifth profile.

7.5. Conclusions

To i1illustrate the (potential) use of IMGP, we have presented
some exanples. Many more examples could have heen given, as IMGP
can be used for any linear programming problem with two or more goal
variables or with one goal variable and some 'soft' constraints,
and also for any other problem which meets the fairly unrestrictive
requirements described in Chapter 6. In addition, IMGP can be used
for some problems which do not meet these requirements (such as

discrete evaluation problems), though with a minor modification.
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Nevertheless, these and other examples are not well suited to
draw a balanced conclusion on the merits and demerits of IMGP in
practice. As 1s the case with most other interactive procedures,
the number of experiences with IMGP in practice is still very
limited. Although many practitioners appear to be very interested
in interactive procedures, it will take some time before the
performance of these procedures can be evaluated in practice. In
the meantime, the evaluation of IMGP and other interactive proce-
dures might be based on a theoretical framework, e.g. as provided
in Section 5.1.

We are convinced that this type of interactive procedures can
be used fruitfully in practice, provided the organizational setting
of the decision problem and the wishes of the decision makers are
taken into consideration. IMGP has a number of properties which,
from a practical point of view, seem to be attractive. A detailed
evaluation of IMGP based on both practical and theoretical
considerations is given in Section 10.1.

At this point, it is important to note that a fully operational
set of computer programs has become available for the implementation
of IMGP in linear goal programs. These camputer programs have been
developed for a specific problem (see Section 7.3), but may be used
for any other linear goal problem. The set of computer programs '
has been designed such that the decision maker can use a computer
terminal display and thus be in conversational contact with the
computer system. In this way the decision maker can evaluate the
outcomes implied by his earlier choices, and can accordingly express
the desired changes in the linear programs, which are then solved
by the camputer. A description of this set of interrelated computer
programs is given in Appendix 7.D.
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Imaginary Decision Maker

In this appendix, we describe 1) the structure of the computer
program used for the experiments involving an imaginary decision
maker using IMGP. As mentioned in Section 7.2, we assume here that
the imaginary decision maker's preference function is linear in the
goal variables. The program consists of three subprograms, written
in PL/I and using the MPSX-package. The first subprogram reads
the data and generates the input for the MPSX-package. MPSX expects
input in a certain format and in a certain order. To fulfil these
requirements, we use the input generator EIMIC (cf. Lebret [1977]).
The second subprogram calculates an optimal solution for the
imaginary decision maker's preference function and saves the basis
of their simplex solution for subsequent problems. These first two
subprograms can also be used for standard linear and multiple goal
progranming. The third subprogram simulates the decisions made by
an lmaginary decision maker using IMGP.

In each of the three subprograms, the following 'standard'

terms are used.

NP = number of problems, i.e. number of goal variables
DD = data set name
PP = problem name: there are always NP+1 problem names. Problem

names PP| |1l up to and including PP||NP correspond with the
NP goal variables. Problem name PP||NP+1 corresponds with
the imaginary decision maker's preference function.

TT = name of the right-hand side colum

name of the 'bounds' which can be used within MPSX

&
I

1) A full description of this camputer program can be found in
Ouwerkerk and Spronk [1978].




subprogram 1 generates

input for MPSX

subprogram 2 converts
the input, optimizes |
AAGOAL Il NP + 1, and]

saves the basis

subprogram 3 calculates
first potency matrix

ls
pessimistic

solution satis-

actonr

= End of program

Change one of the |

| right-hand side values |
Calculate the new |

potency matrix B

s _
es _ proposed _ Nno
solution accep-

table ?

Figure 7a.1. Structure of the computer program
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Appendix 7.b. An Operational Computer Program for IMGP

In this appendix we give a brief description of the computer
programs (and their interrelationships) which can be used for the
implementation of IMGP. The design of this interrelated set of
programs is such that the decision maker, using a computer terminal,
is in conversational contact with the computer system (in the case
of our experiments the IBM 370/158 at the University of Technology
in Delft, The Netherlands). Structured programming has been used,
having the advantage that parts of the program can be tested (and
changed) independently of other parts. The linear programs are
solved by means of calls to the IEBM's MPSX/370-package [1977],
embedded in PL/I computer programs. These modules are coordinated
by means of command procedures.

In Figure 7b.1 we give a sketch of the system of programs.
Given a new multiple criteria decision problem, the following
programs have to be carried out once. The data have to be trans-
formed into the required MPSX input format by means of a matrixX
generator. Then a PL/I computer program using MPSX, calculates the

first potency matrices. The outcomes of the linear programs, which
have to be solved in order to calculate this potency matrix, are
stored in the dataset PROBFILE A. The potency matrix itself 1is
stored in a dataset which can be displayed to the decision maker.

After these initial operations, the decision maker can choose
between two command procedures, 'START' and 'RESUME', which are

essentially the same, except for one point, START copies the data
of the linear programs underlying the first potency matrix (stored
in PROBFILE A) to the dataset PROBFILE B and displays the first
potency matrix to the decision maker. RESUIME does not include such
a copy command, thus leaving the dataset PROBFILE B as it was after
the last iteration of the preceding session. Accordingly, it displays

the accampanying potency matrix to the decision maker. Clearly, START
is used when a new decision maker starts tackling the problem, or

when a decision maker wishes to recommence the entire interactive
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Figure 7b.1. The system of computer programs used for the implementation of IMGP




procedure. RESUME 1s used when a decision maker wants to continue
the session after a break.

Thus both START and RESWME display a potency matrix, together
with a sequence of questions which have to be answered by the
declsion maker. The first question is whether the presented solution
1s satisfactory or not. If the decision maker states it is
satisfactory, he can subsequently ask for a detailed (hardcopy)
description of the results. If not, he has to indicate which goal
variable should be changed in value and to what amount. These data
and the dat