8. ggIXESAL BUDGETING AND FINANCIAL PLANNING WITH MULTIPLE

In this chapter we first review some applications of multiple
criteria decision methods in capital budgeting and financial plan-
ning, as reported in the literature. We list a nurber of general
problems occurring in these applications. In Sections 8.2 - 8.4
these problems are discussed in more detail. It is especially shown

how IMGP might help to.solve these problems. Our conclusions are
glven in Section 8.5.

8.1. A Brief Survey of the Literature

In this section we present some examples of capital budgeting
and financial planning models which explicitly incorporate multiple
goals. These models have been chosen from the literature, so that
we will be able to demonstrate a series of technical problems often
occurring in this field of applications.

Non—-interactive Models

One of the easiest ways to deal with multiple goals is to
single out one of them which then has to be maximized, while requi-
ring minimum values for the other goal variables. Such an approach
was followed e.g. by Robichek et al. [1969], who extended the capital
buddgeting problem by imposing constraints on each period's level of
earnings induced by the accepted projects. The objections to such
a procedure are clear. It assumes that all goals formulated as
constraints are ex ante equally important, and moreover, that they
have absolute priority over the goal variable which is being maxi-

mized.
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During the very early stages of the development of goal program-
ming it was frequently suggested that this technique could be an im-
portant means in dealing with capital budgeting and financial plan-
ning involving multiple objectives. For instance, Tjiri et al.[1963]
argue that their linear programming model for budgeting and financial
planning could be combined with goal programming approaches to break-
even budgeting. Indeed, a considerable number of authors have emplovyed
goal programming in financial planning and capital budgeting models
(an extensive list of references can be found in Nijkamp and Spronk
[1979]) . There are some practical reasons to use goal programming
in these fields. In this respect, Ashton and Atkins [1977] state that
'it is natural in financial planning to speak in terms of targets
and goals; many of the indicators of company performance such as .
dividend cover, liquidity, or return on capital employed have target
ratios adopted by customs and practice'. Nevertheless, the employment
of goal programming is not without difficulties. Notably, its need
of a considerable amount of a priorr information to be given by the
decision maker should be mentioned. This shortcoming of goal pro-
gramming clearly paved the way for other procedures.

It has also been proposed that the concept of efficient solutions
(see Chapter 3) be used in financial planning problems incorporating

multiple goals. Sealey [1978] describes a bank financial planning
model which has been formulated as a vector maximum problem. The

relevant goal variables are assumed to be 'profit' and 'solvency',
where the latter is defined by two distinct (although related) goal
variables: (1) the capital adequacy ratio (defined as the ratio of
required to actual bank capital) and (2) the risk asset to capital
ratio. The instruments are the amounts to be invested in each of

the six available types of assets. Furthermore, the model is subject
to a number of constraints, relating to capital adequacy, diversifi-
cation, required reserves, and to the balance sheet. For this example,
>ealey has found a set of 17 efficient solutions, from which the

decision maker has to choose a final solution.

This approach seems attractive. Nevertheless, a few 1mportant
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disadvantages should be mentioned. For instance ; One may wonder
whether for a given goal wvariable , MOre 1s always preferred to less
(or vice versa). In many financial planning problems goal variables
such as 'growth size', 'level of liquidity', 'amount of lewverage' and
several (other) ratios are considered important. For none of these
goal variables is it obvious whether they should be maximized or
minimized. Of course, one may maximize (or minimize) these kinds

of goal variables subject to additional constraints on their range
of values. As will be shown in Section 8.3, there are more flexible
solutions to this problem. A more serious problem is the fact that,
1in general, the number of efficient solutions is very large. The
identification thus requires a considerable (and sometimes even
prohibitive) amount of computer storage and time. Furthermore, the
numoer of efficient solutions easily exceeds the information pro-
cessing capaclty of the decision maker. This problem may be solwved

by means of interactive procedures.

Interactive Models

Candler and Boehlije [1971] describe a two-period capital
budgeting model in which the alternative activities consist of (a)
two investment projects, to be undertaken either in period 1 or in
period 2, (b) the 'opportunity to put cash in the bank', (c) net
tax-free cash at the end of the planning horizon, (d) the value
of the assets at the end of the planning horizon, (e) dividends paid
to shareholders and (f) pollution. At the same time, the latter four
acitivities have been defined as goal variables, each of which has
£0 be maximized or minimized. Furthermore, the dividends have been
restricted to increase at a given (linear) rate. The outcomes of
existing operations have been assumed to be given and fixed and
consequently, independent of the investment projects. This problem

has been formilated as a deterministic vector maximum problem. The




feasible region of the acitivity wvectors x is described by linear

(in-) equalities in x. Some of the elements of x are integer. Because
the goal variables gj x), J=1, ..., 4; are at the same time activity
variables, they can only be expressed on a linear scale. Candler and
Boehlje aim at efficient (Pareto—-optimal) solutions, The ultimate
solution is to be found by an (unstructured) iterative and interactive
approach.

Chateau [1975] gives a numerical example of a capital budgeting
problem with multiple goals. The problem is to choose from a set of
investment projects, some of which are indivisible. Internal capital
rationing is assumed to have the hidghest priority. Furthermore, three
other goals are assumed (an acceptable level of cash, a desired level
of dividend disbursement, and a minimum target asset value). '

This problem has been formulated as a deterministic, mixed-
integer, goal programming model, employing pre-emptive priority
factors. Chateau shows the results for a variety of objective func-
tions, including the one originally used by Weingartner. Although
Chateau finds merit in the goal programming model's flexibility, he
also mentions a number of its disadvantages. In his opinion, 'the
ordering and weightings on a prior: ground and in absolute or rela-
tive terms may constitute a rigidity factor of the goal programming
approach'. 1) Not surprisingly, he proposes an interactive procedure.
However, for this he has chosen an approach which also requires very
detailed information from the decision maker, i.e. marginal rates of
suwpstitution for multiple criteria.

With regard to multiple objective decision mocdels, many inter-
active procedures have shown to be very powerful tools in the process
of searching for a final (compromise) solution. However, as mentioned

above, financial planners are accustomed to expressing their

1) Furthermore, Chateau seems toO suggest that goal variables should
be expressible in monetary terms. In our opinion, thlS is not al-
ways true for the goal programming formulation. |




preferences in terms of goals and targets. Therefore it seems useful
to search for interactive procedures which correspond to this use.

An attenpt in this direction was made by Ashton and Atkins [1977].

nunoer of goals which are being used in their financial planning
model. They developed a three-stage methodology which could deal
with these problems in an ad koc way. In their opinion (with which
we wholeheartedly agree) a specific methodology is necessary for
financial planning problems involving multiple cbjectives. Moreover ’

1n view of the possible applications in this field, the efforts to
find such a methodology seem to be justified.

alternatives available to the firm. Furthermore, this model includes
a number of accounting variables which correspond with the U.K. tax
law and accounting standards. For each of the planning periods, eight
goal variables are defined (six of which are ratios). Thus the problem
contains-a total of 64 goal variables. Such a large number of goal
varlables constitutes a source of difficulties in using multiple
objective programming methods.

In the above and in other financial planning and capital budge-
ting models, several technical problems may occur. In Section 8.2
we will pay attention to theﬁ)roblem of large numbers of goal varia-
bles. Section 8.3 is devoted to goal variables requiring special
treatment. Notably, this is the case for goal variables defined as
ratios or as chance constraints, and also for goal variables which
are nelther to be maximized nor minimized. In Section 8.4 we discuss
the problems caused by the occurrence of (0,1) variables, which are
used to represent indivisible capital investment projects.




3.2. Large Numbers of Goal Variables

In capital budgeting and financial planning, the number of
goal variables can easily become unmanageable. Even if the firm
considers a small number of goal variables to be important (say two
or three), these goal variables may need to be formulated for each
of the time periods within the planning horizon. It may also be
necessary to define the same kind of goal variables separately for
different divisions of the firm. It is clear that in this way, the
number of goal variables becames considerably greater than 'the
maglical number seven plus or minus two', which is often mentioned
in the literature on multiple criteria decision making, to be the
maximum number of goal variables which can be handled by the decision
maker (see Miller [1956] and Tell [1978]).
As far as we can see, there are three main ways to tackle this
problems:
(a) reduction of the number of goal variables, by replacing each
set of analogous goal variables by some kind of aggregate.
(b) reduction of the number of goal variables by removing
'insignificant' goal variables.
(c) division of the total set of goal variables in subsets, which are

considered sequentially.

We will next discuss each of these approaches in greater detail.

Replacing Sets of Goal Variables by Aggregates

A straightforward procedure to reduce the number of goal varia-
bles is to replace each set of analogous goal variables by some kind
of aggregate. Most aggregation procedures have no firm theoretical
basis. Nevertheless, some aggregators may be useful in practice. To
mention just a few, one could use the goal variables' average, or

only the goal variable defined for the end of the planning horizon,
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or the maximum growth rate of the goal variable, or the minimum,
and sO on. Of course it is necessary that the chosen aggregate has
some practical meaning to the decision maker. If such an aggregate
cannot be found for all sets of analogous goal variables, one has
to accept the presence of non-aggregated goal variables beside goal
variables which are aggregates of other goal variables.

An important objection to most aggregates is that the mutual
differences between the values of the goal variables concerned are
neglected. For instance, maximizing the average per period number of
employees over a given planning period may result in a very erratic
time-pattern of the employment. We will demonstrate an aggregate
which partly meets this objection. This alternative aggregate, which
1s génerally to be minimized, is defined as the maxinum deviation
from target (growth) values defined for the set of analogue goal 1
variables concerned. As an example, let us assume a firm planning
1ts capital investment expenditures for the periods t, t = 1, ., T.
Assume that the firm wants a growth rate of its cash flows
C e
In the period before the first planning period is denoted by CO .

t=1, ..., T; of at least 10 per cent a period. The cash flow
One way to formulate the firm's growth target is represented by

+ =t _ -
(8.1) Ct - Y + yt = (1.1) .CO for t=1, ..., T.

The aggregate mentioned above is, in this case, defined by

T
(8.2) d = Max {y;},

t=1

which can be calculated for any sequence of cash flows C
C 1!
flows are available, in which case the aggregate d might be mini-

ooy CT In normal planning models, several sequences of cash

mized over the set of alternatives. As pointed out in Chapter 4,

this in fact minimaxing procedure can also be adopted within a




programming framework. In the present case, this can be achieved
by adding the constraints (8.1) and furthermore

(8.3) diy:; for t =1, ..., T;

after which d can be treated as a normal goal variable.

Although this formulation is rather straightforward, some slight
but significant modifications can be made. To start with, the con-
straints (8.1) are often replaced by the constraints

..l...

e T Ye PYe S 11C, fort =1, ..., T

(8.4) C -

In (8.1), the growth targets are completely determined a priors,
whereas in (8.4) the targets depend on the preceding cash flow.

In connection with either (8.1) or (8.4), one might consider
to 'scale' the deviational variables yz and y;. For iristance, in
the case of (8.1), this could be achieved by multiplying all varia-
bles yt and y:; in (8.1) with a factor (1.1) C. The effect is that
the deviations from the targets are measured in proportion to the
target values, whereas the deviations in the unadapted form of
(8.1) are measured in a unit which is not.

Finally it should be stressed that, in our example, only the
negative deviations from the aspired growth levels were judged to
be undesirable. Of course, other possibilities do exist. Instead

of negative deviations, either positive deviations alone or both

the negative and the positive deviations 1) might be used.

1) In a slightly different way, Theil [ 1968, pp.265-271] shows how
to reduce the possibility of undesirably large fluctuations of
variables over time. The procedure he proposes is to add to
the objective function (to be minimized) the sum of the squares
of the successive period-to-period differences of the variables.
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Alternatively, the -decision maker may wish to formulate two target

growth levels, i.e. a minimally and a maximally desired level.

Removing insignificant goal variables

Generally speaking, goal variables specified in a decision
problem are not of equal importance. On the contrary, some goal
variables may be so important that they completely determine the
solution of the decision problem, dominating the other goal variables.
It would be of great help if these less important goal variables
could be detected before solving the decision problem.

Another situation arises if all feasible solutions of a
decision problem score almost equally well with respect to a given
goal variable. Also in this case, it might help to eliminate this
goal variable before solving the decision problem for its optimum.

These and other examples suggest that decision problems exist,
in which the use of a subset of the camplete set of goal variables
leads to the same (or approximately the same) solution as would
have been found by using the complete set of goal variables.

One approach to detect goal variables which might be omitted
has been proposed by Gal and ILeberling [1977] for the linear wvector

maximum problem. They give a procedure to identify redundant goal
variables, defined as goal variables which can be cmitted without
changing the set of efficient solutions. The identification of
redundant goal variables in linear vector maximum problems turns

out to be equivalent to the identification of redundant constraints
in linear systems (see Spronk arnd Telgen [1979]). These authors also
discuss some other relationships between multiple objective pro-

gramming and redundancy. 1)

1) For an in depth treatment of redundancy and linear programs,
see Telgen [1979 ].
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FOr instance they show that goal constraints, either formulated

a priori Or during an interactive process, may be technically re-
dundant. The advantage of identifying redundant goals and goal
variables is that the decision maker has to provide less information
about his preferences. However, it may be that the decision maker
does not want to remove this 'technical' redundancy, because he may
pe accustomed to expressing part of his preferences in terms of these
redundant entities, or even that he cannot be convinced of their
redundancy.

As shown by Tell [1978], factor analysis constitutes another
method for reducing the number of goal variables in a multiple
criteria decision problem. In this approach all original goal varia-
bles are transformed into a smaller set of factors, which are
subsequently treated as goal variables. This reduction of the number
of goal variables results in a loss of information. Because the
procedure provides insight into the amount of information lost
(see Tell [1978]),this loss can be traded off against the reduction
1n the number of goal variables. However, in our opinion the amount
Oof Information lost cannot be a reliable indicator of the importance

Of the information which is lost.

Subdividing the set of goal variables in subsets

Another possibility for dealing with a large nurber of goal
variapbles is to divide the set of goal variables in a number of
sucsets, each containing goal variables of approximately the same
lmportance. Several approaches to the thus defined problem have been
proposed. _

Analogous to the hierarchical optimization methods (see Section
5.4), one might - as in goal programming (see Chapter 4) - try to
obtain a lex:.cographlc orderlng over the subsets of goal variables.

For example, it could be arqued that the goal var:l_ables relatlng
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to the first planning period have pre-emptive priority over those
relating to the second planning period, and so forth. If such an
ordering has been obtained, the set of decision alternatives can be
reduced sequentially by evaluating this set first in terms of the
subset of the most important goal variables, then in terms of the
second most 1nmportant goal variables, and so on.

The generalized interactive procedure proposed by Spronk and
Zionts [1980] offers another possibility to deal with the above-
mentioned supsets of goal variables. In this procedure, minimally
desired values for the goal variables in one subset are determined,
subject to constraints on the values of the goal variables in the
other subsets, by means of one of the usual interactive procedures.
The outcomes for one subset of goal variables are defined as
constraints, subject to which the desired goal values in the other
supsets must be found. If no satisfactory solution can be found for
one supbset of goal variables, the constraints posed by one or more
of the other subsets must be rel?xed, and each of the subsets
1

concerned mast be reconsidered.

3.3. Goal Variables Requiring Special Treatment

In this section we deal with three types of goal variables
which require special treatment. Goal variables defined as ratios
of two linear functions of the instrumental variables become non-
linear in the instruments, but can be handled by IMGP. Similarly,
chance constraints can be treated as goal constraints being modified
in an interactive manner. Finally, goal variables that are nej.ther

to be maximized nor minimized can also be handled by IMGP.

1) Although no such application has been made yet, it seems that
this generalized interactive procedure is useful in solving
decentralization problems.
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Ratto Forms

In financial planning it is not unusual to use goal variables
that are defined as ratios (see Ashton and Atkins [1977]). Well-
known examples are 'return on investment',' price—-earnings ratio',
'quick ratio', 'debt to equity ratio', 'times interest earned’' and
'inventory turnover ratio'. Ratios, being non-linear functions of the
instrumental variables, can generally not be treated by means of
linear multiple objective programming methods. Linear goal programming
(and consequently IMGP) are exceptions, as they can deal with ratios
of linear functions of the instrumental variables, be it in a less
straightforward way than is often assumed. Consider for example the

goal variable

(8.5) g(x) = >t d

and assume that a target value of g(x) = 1 has been defined. This
might be translated by the non-linear goal restriction

(8.6) Sl ~ Y +v =1

An incorrect, but often proposed formulation of the some problem
would yield

(8.7) (3x+2) - u+ +u = (2x+4),
which can be written as
(8.8) x--u++u_=2

As shown for example by Awerbuch et al. [1976], substituting the
linear formulation (8.8) for the non-linear formulation (8.6) is
not, in general, correct. In our example, multiplication of both
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sides of (8.6) by the factor (2x+4) shows that (8.6) and (8.8) are

+ +

equivalent only if u = (2x+4).y and u = (2x+4).y , in which case

(8.8) again becomes non-linear in the instrumental variable Xx.

If aspired goal levels are defined as 'hard' constraints, little
1)

problems arise with the non-linearity of ratios.”’ For instance, con-

sidering the target in the above example as a hard constraint would
vield

(8.9) 3x+2 > 2x+4, or x > 2

Problems arise only if the deviations from the target ratio are
either to be maximized or minimized. In that case, the deviational
variables become relevant, and the fractional form of the ratios
and the deviational variables should be taken into account.

Fortunately, several procedures for dealing with fractional
forms are available. Because IMGP uses a separate programming model
for each goal variable, any procedure intended for the maximization
of only one fractional goal variable might be considered. For
instance, Charnes and Cooper [1962] transform the fractional problem
into a straight linear programming problem, Joksch [1964] proposes
parametric methods to solve the fractional problem, and Bitran and
Novaes [1973] solve the problem by solving a series of linear
programs differing with respect to the objective function only.

If there is more than one fractional goal variable to be
optimized within the same program, the problem becomes more compli-
cated. In fact, most multiple objective programming methods cannot
really cope with it. Kornbluth [1973] provides a survey of the pro-

1) Provided that the denaminator of the ratio assumes either positive
values only or negative values only. Probably all ratios used in
capital budgeting and financial planning have denaminators assu-
ming positive values only. Cases in which the denaminator can be-
cane both positive and negative may give rise to disjunctive con-
straints.
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blems and suggests some solution procedures. Kornbluth and Steuer
[1980 ] discuss the nature of the efficient set if several, fractional
goal variables are involved. They also provide an algorithm to find

1)

all weakly efficient™ solutions if several fractional goal varia-

bles are involved.

As mentioned above, IMGP circumvents the problem of several
fractional goal variables by defining a separate goal program for
each goal variable, which is to be optimized subject to hard con-
straints on the values of the other goal variables. Nevertheless,
situations may arise in which the number of fractional goal varia-
bles becames too large to handle. As shown by Ashton and Atkins
[1980 ] and Charnes and Cooper [1977 ], the minimax metric can be used
to solve this simultaneous occurrence of the ratio problem and the
problem of large numbers of goal variables. This will be illustrated

in Chapter 9 by means of a financial planning model.

Uncertainty and Chance Constraints

As 1s the case with many other planning and decision problems,
financial planning is. beset with uncertainty. Besides the uncertainty
with respect to the technical coefficients and the availability of
resources, the specification of the goal variables and the specifi-
cation of the targets may also be of an uncertain nature.

A straightforward way to deal with uncertainty is to use the
expected values ('best estimates') of the uncertain parameters to
calculate a solution which would be 'cptimal' for a risk-neutral

decision maker, and to carry out a postoptimality analysis to give

1) Defined as solutions for which no other solutions can be found
that are strictly better with respect to all goal variables. For
Instance, two solutions with goal value vectors (7,3,2) and
(7,4,2) are both weakly efficient. However, only the first
solution is efficient in the sense defined in Chapter 3.
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the presumably risk—-averse decision maker an idea of the risks he

is running. Deshpande and Zionts [1980] and Gal [1980] among others,
have pald special attention to the postoptimality analysis of the
goal variable specification.

From a theoretical point of view a more elegant approach would
be to treat all uncertain parameters as random variables, for which
a well-defined propbability distribution function can be specified.
Given such information, stochastic programming methods might be used.
Several research efforts have been directed towards the translation
of random goal variables into stochastic goal programming models
(see e.g. Charnes and Cooper [1963], Contini [1968], Lane [1970],
and Ieclercqg [1979]). A well-known example is the use of charce
constraints. Assume that the target value b of the goal variable

rcﬁ(x) has to be reached with a probability of at least 1-e. We thus

have

(8.10) P(J(x) >b) > l-g
Assuming that g (x) is normally distributed, or employing a non-
parametric relationship such as Tchebysheff's inequality, this desire

can be translated by means of the deterministic equivalent

(8.11) E(G(x)) + ke.a(g(g)) > b

It is easily seen that such a formulation can be adopted within a
goal programming framework, and can thus be handled by means ot
IMGP. Minimization of €, i.e. minimizing the probability of not
achieving the target value b, can be accomplished by repeatedly

solving

(8.12) . Min{y }, s.t.




while systematically changing k&: . Obviously, if vy > O the ke value
should be lowered. If v = 0, ke might be raised.

Many other stochastic problems can, and have been formulated
1n goal programming. For an overview we refer to the authors men-
tioned above. Notwithstanding the existence of these stochastic goal
programming models, very few applications have been reported in the
literature thusfar. This may be explained by the fact that stochastic
progranming methods are relatively complicated. Furthermore, the
input data required by these methods are generally hard to obtain.
Notably, the decision maker has to specify a probability distri-
bution function (or, in some cases, two or three parameter values
of this function) for any uncertain entry in the goal programming
model, and has to specify the interdependencies between these
uncertain entries. Furthermore, he should specify his risk attitude.
Therefore, despite their theoretical attractiveness, these stochastic
goal programming models easily become unmanageable in practice.

Nevertheless, uncertainty should not be neglected. Depending
upon organizational setting of the planning problem (time available,
budget, information processing capacity of decision maker etc.),
any possibility to deal with uncertainty should be considered. In
some situations, the assessment of probability distribution functions
may be feasible. In other cases, postoptimality analysis may be
carried out fruitfully. However, it should be stressed that, in a
given planning problem, the decision maker himself may have developed
his 'own' measures and procedures for coping with uncertainty. A
clear example in financial planning is the widespread use of several
ratios as representatives of the flexibility, profitability and
endurance of the financial structure. Instead of trying to convince
the decision maker not to use his (perhaps) crude measures, one
might as well try to translate these measures so as to incorporate
them within the planning model. What is the correct procedure to
follow depends largely upon the planning situation at hand, the
evaluation of which will be one of the analyst's most difficult and

hazardous tasks. In any case, if the 'practical' solution is chosen,
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one might consider adopting the decision maker's measures of risk

as additional goal variables in the programming model.

More not always preferred to less and Vice Versa

Several goal variables may occur in financial planning problems,
which are neither to be maximized nor minimized. Goal variables as
the 'growth of accounting earnings over time', 'the amount of cash
held', as well as several goal variables defined as ratios will
generally not have to be maximized or minimized. Instead, the values
of these goal variables will have to meet certain upper and lower
limits defined by the decision maker or, alternatively will have
to be as close as possible to a given target value. It may even be
that the decision maker cannot define such lower limits, upper
limits and target values a prioyz. A clear example of the latter
type 1s formed by capital rationing constraints. The exact positioning
of the latter constraints depends upon the evaluation and preferences
of the decision maker, and thus should be considered as an output

rather than an input of the decision proces.

Most interactive procedures can only deal with these situations
in a fairly crude way, i.e. by maximizing a goal variable, subject

to a rigid a priori defined constraint on the goal variable's value,
or by minimizing the distance to such a constraint. Since it is based
on goal programming. IMGP offers a much more flexible approach. An
overview of possible objective functions in goal programming has been
given in Section 4.2. In Chapter 9 we will illustrate how IMGP can
handle goal variables which are neither to be maximized nor minimized.

8.4. Indivisibility of Projects
Financial planning models very often include discrete (0, 1)
variables to represent the yes-no options inherent in the selection

of capital investment projects. As is well-known, the inclusion of
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these types of variables calls for the use of special solution
procedures other than the simple rounding of continuous solutions
obtained after neglecting the discrete nature of the (0,1) variables.
Obviously, this does not only hold for single objective programming
models, but for multiple objective programming methods as well. For
exanmple, consider the case with goal variables

9, X)) =x, + 15.x, + 3x,, and g, (X) = X, - X,. Assume that the

2 3’ 1 3
following integer solutions are feasible:

x, = (0,0,0)
X, = (1,0,0)
x. = (0,1,0)
Xy = (0,0,1)

The representation of these solutions in goal value space is given

in Figure 8.1. It is obvious, that solutions B', C', and D' are

- ‘ D! ..

Figure 8.1. The set of feasible (0,1) solutions represented in goal value space
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non-dominated. The example also shows that the set of efficient
solutions cannot be obtained in the same way as in the corresponding
continuous problem, i.e. by means of a parametric analysis of the
weights in a linear combination of the goal variables. Such an
analysis would yield the solutions B' and D', but would neglect

solution C'. Procedures to generate all efficient solutions in

integer multiple objective programming methods have been proposed
by Bowman [1976], and by Bitran [1978] for the (0,1) integer problem.
The computational experiences reported thus far are not very promi-
sing. Furthermore, the set of all efficient solutions may again be
too extensive to be of much value to the decision maker (see Chapter
3) .

Very few interactive multiple objective progranming methods
have been adapted for the integer case. For instance, Zionts [1977]
has proposed an extension of the Zionts-Wallenius algorithm (see
Chapter 5), in order to include integer variables. The extension
consists mainly of a branch and bound procedure connected with the
interactive procedure. These ideas have been developed further by
Villarreal et al [1980]. A difficulty to bear in mind in these branch
and bound procedures is the implicit nature of the decision maker's
preference function. However, Villarreal et al. (Ibid) suggest that
after exploring a certain number of nodes, the decision maker's
preference function may have been approximated precisely enough to
consider the problem comparable with single objective problems.

Tee [1978] and Iee and Morris [1977] studied the integer version
of goal programming including pre—enptive priorities. They presented
integer goal programming methods based on the cutting plane, branch
and bound, and implicit enumeration approaches. The performance of
these methods in a series of test problems was measured by means of
two indicators :the number of iterations and the computation time
(on an IBM 370-158) required for solving a problem. On the basis of
their experiments, Iee and Morris (Ibid) conclude that the branch
and bound algorithm of goal programming is far more efficient than
the cutting plane method, especially for the mixed integer case.
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Furthermore, 'in the implicit enumeration method, the time required
for solution increases dramatically as the number of variable in-
creases '.For example, a problem with 25 constraints, 19 (0,1)-varia-
bles, and 10 pre—emptive priority factors was only solved after 919
seconds of CPU-time and 19855 iterations. For problems having more
than twenty variables, Lee and Morris found it difficult ' to obtain
the optimal solution within a reasonable time limit’.

Although these results are discouraging, especially for
applications in large-scale financial planning and capital budgeting
models, some hope does exist. That is because many variants of the
above-mentioned integer programming methods do exist, which have not
vet been studied for their capability to tackle goal programming

with pre—emptive priorities .

After the above exposition, it will be clear that one cannot
expect IMGP handling integer variables without any probléxns . Never-
theless, we believe that IMGP is relatively promising for the solution
of integer multiple objective programming problems. Since the compu-
tational steps of IMGP consist of the solution of a series of single
objective optimization problems, any normal integer programming
method can be employed. Y’
the constraints on the values of the goal variables formulated during
the interactive process can often be used fruitfully to facilitate

Within these integer programming methods,

the search for an optimal solution. In this respect, the results of

1) The same holds for other interactive goal programming methods

of type ¢ (cf. Section 5.4), as for instance the hierarchical
procedure proposed by van Delft and Nijkanmp [1976].
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our experiments with a financial planning model including 21
(0,1)-variables and 163 constraints are rather encouraging (see
Section 9.4). Nevertheless, more experiments are necessary in order
to be able to draw more definite conclusions about the computational
performance of IMGP in integer multiple cbjective programming pro-
blems.

As has already been indicated, the presence of integer variables
also causes same difficulties in IMGP. A first problem is how to
find a suitable solution to start the interactive process. As shown
in Appendix 6.a, the minimal (maximal) values of the goal variables
reached within the efficient set constitute a good starting point.
Because the calculation of the efficient set for integer programming
problems in general, and for the (0,1) programming problem in
particular, is not yet technically feasible for problems of a more
than very moderate format, this method of finding a starting solution
should be disregarded. Instead, one might proceed by asking the
decision maker to define 'least attractive' values for the goal
variables. If an integer solution can be found which satisfies these
very modest conditions, the vector of 'least attractive' values can
be nominated as the starting solution. Alternatively, the starting
solution can be defined as the minimal (maximal) values of the goal
variables within the feasible region.

As arqued above, the calculation of the potency matrix con-=
sisting of a series of individually optimal goal values obtained,
subject to a set of minimally desired goal values, is no more
difficult than the solution of the corresponding single objective
integer programming problem. However, compared with the continuous
case, it is often more difficult to interpret the meaning of the
potency matrices, and of shifts in these matrices after a change 1in
a minimally desired goal value. To illustrate this point, let us
return to the exanple in Figure 8.1. Assume that the first potency

matrix is given by
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(8.13) P =

If the decision maker wants a value for I, of at least 2, the

potency matrix

(8.14) P, =

will result. Assume next, that alternative C' in Figure 8.1 does
not exist, that the same potency matrix as in (8.13) is used, and
furthermore, that the decision maker again desires a value for 9,
of at least 2. In this case the same potency matrix as in (3.14)
occurs. Thus from the shifts in the potency matrix it cannot be
concluded that the tightening of the goal value excludes possibly
valuable alternatives. This can only be verified by recalculating
the potency matrix P2 for a series of values for 9, (e.g. using
the § procedure described in Chapter 6, yielding the g ! values
1.5, 1.25, 1.125, etc.).

The above shows that the implementation of IMGP in integer

problems appears to be technically quite simple, but is certainly
not without some pitfalls. In our opinion, the integer case

constitutes a fruitful area for further research.

8.5. Conclusion

In this chapter, a number of capital budgeting and financial
planning models éxplicitly dealing with a multiplicity of goals
were discussed. It appeared that a series of technical problems
frequently occur in this field of application. These problems relate
to the number of the goal variables, the nature of the goal varia-

bles, and to the existence of indivisible projects. It was suggested
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that IMGP can fruitfully be used to tackle a number of these pro-
blems. This ability will be illustrated in the following chapter.
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