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Abstract

Multiplicative interaction models, such as Goodman’s RC(M) association mod-
els, can be a useful tool for analyzing the content of interaction effects. However,
most models for interaction effects are only suitable for data sets with two or three
predictor variables. Here, we discuss an optimal scaling model for analyzing the
content of interaction effects in generalized linear models with any number of cate-
gorical predictor variables. This model, which we call the optimal scaling of inter-
actions (OSI) model, is a parsimonious, one-dimensional multiplicative interaction
model. We discuss how the model can be used to visually interpret the interaction
effects. Two empirical data sets are used to show how the results of the model
can be applied and interpreted. Finally, several multidimensional extensions of the
one-dimensional model are explored.

1 Introduction

The analysis of data sets with categorical variables often requires studying interaction
effects between these variables. If the relationship between the response variable and
the predictor variables is linear, the interaction effects can be studied using analysis of
variance (ANOVA). If this relationship is nonlinear, models from the class of generalized
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linear models (GLMs) are often used. Generalized linear models, which are extensions
of the general linear model, can be used to model various kinds of relationships between
variables and can account for nonnormality and nonlinearity. GLMs have been thoroughly
described in Nelder and Wedderburn (1972) and McCullagh and Nelder (1989). Including
all two-way interactions in a GLM may often require the estimation of a large number
of parameters, especially if there are many categorical variables and if they have many
levels. Because of the large number of parameters, the estimated individual interaction
effects are often not interpreted, and only their combined effect is tested for significance.

Models for representing interaction effects parsimoniously have been proposed before,
especially for the case of two categorical predictor variables. For example, Goodman
(1981) proposed row-column (RC(M)) association models for the analysis of two-way
contingency tables. RC(M) association models can be considered as a special case of
generalized additive main effects and multiplicative interaction (GAMMI) models, which
are mainly used in agricultural science (see, for example, Van Eeuwijk, 1995, 1996).
Similar models were proposed by Gabriel (1998). Algorithmic approaches for these kinds
of models were discussed by De Falguerolles and Francis (1992). These types of models
often use biplots (see, for example, Gower & Hand, 1996) to represent interaction effects
between two variables, by plotting the categories of both variables in a two-dimensional
space. Specialized models for the case of three categorical predictor variables also exist
(see, for example, Anderson, 1996; Choulakian, 1996; Siciliano & Mooijaart, 1997; Wong,
2001).

For the case of more than three predictor variables, Groenen and Koning (2006) pro-
posed the interaction decomposition model. They sketched an outline of an algorithm for
parameter estimation in this model and gave graphical representations of their results.
For log-linear analysis (a special case of generalized linear modeling) with more than three
variables, a variety of models were proposed by Anderson and Vermunt (2000). In their
article, the interaction effects are parsimoniously modeled by assuming the presence of
latent variables.

In this article, we use the methodology of optimal scaling for modeling interaction
effects parsimoniously. Optimal scaling (see, for example, Young, 1981; Gifi, 1990; Lint-
ing, Meulman, Groenen, & Van der Kooij, 2007) is a methodology originating from psy-
chometrics that assigns numeric values to categorical variables in an optimal way. Gifi
(1990) discusses a host of multivariate analysis techniques (multiple correspondence anal-
ysis, nonlinear principal components analysis, generalized nonlinear canonical correlation
analysis, etc.) all having in common that the variables are categorical and that some op-
timal recoding is being done. That is, the categories of the original categorical variables
are replaced by their so-called category quantifications, and from then on the variables
are considered to be quantitative variables. The word optimal refers to the fact that these
category quantifications are chosen in such a way that they help optimize the criterion.
Optimal scaling has also been applied in a regression context, with techniques such as
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MONANOVA (Kruskal, 1965), ADDALS (De Leeuw, Young, & Takane, 1976), MORALS
(Young, De Leeuw, & Takane, 1976), ACE (Breiman & Friedman, 1985), and generalized
additive models (Hastie & Tibshirani, 1990).

We describe a model for representing interaction effects in generalized linear models
with any number of categorical predictor variables in a clear and parsimonious way. It is
assumed that only main effects and two-way interaction effects are empirically relevant,
and we do not account for higher-way interaction effects, as they are often not required in
empirical applications. The main assumption of our model is that interactions between
categorical predictor variables can be modeled using continuous predictor variables on
which we have partial knowledge. This assumption leads to a model in which the estimated
parameters may be interpreted in terms of an optimal scaling of the categorical predictor
variables. Because of this assumption, we refer to our model as the optimal scaling of
interactions (OSI) model. The OSI model requires a number of parameters that is only
linear in the total number of categories of the categorical variables and quadratic in the
number of variables. By contrast, a standard two-way interaction model requires a number
of parameters that is quadratic in the total number of categories of the variables. With our
model, we construct one-dimensional graphical representations of the interaction effects,
which can help interpret these effects. As a one-dimensional model may be restrictive in
some cases, multidimensional extensions of our model are also explored.

The outline of this article is as follows. In the next section, we introduce some notation
and our optimal scaling of interactions model. Section 3 describes the application of our
model to two empirical data sets. In Section 4, we discuss multidimensional generaliza-
tions of our model. The final section summarizes our findings.

2 Optimal Scaling of Interactions Model

The model we propose is based on generalized linear modeling (see, for example, Nelder
& Wedderburn, 1972; McCullagh & Nelder, 1989). The observations yi, i = 1 . . . n are
assumed to be independently distributed with E(yi) = µi. Each yi has a distribution in
the exponential family, with probability density function given by

fY (y; θ, φ) = exp

{

yθ − b(θ)

a(φ)
+ c(y, φ)

}

, (1)

where a(.), b(.), and c(.) are given functions. The exponential family includes the normal,
Poisson, binomial, gamma, and inverse Gaussian distributions. The systematic part of
a generalized linear model consists of a predictor ηi, which typically is a linear function
of the predictor variables and the parameters. A link function h(.) relates the linear
predictor ηi to the response variable according to

ηi = h(µi). (2)
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Common link functions are the identity, inverse, logarithm, and logit functions. In prac-
tice, one often uses canonical links, such as a logarithm link in combination with a Poisson
error distribution. The canonical links can be derived from the theory of sufficient statis-
tics.

In this paper, we aim to model two-way interaction effects using a generalized linear
modeling framework. Suppose continuous predictor variables xj, j = 1, . . . , m are known.
Then, the main effects and the interaction effects of these variables can be modeled
according to

ηi = c +

m
∑

j=1

bjxij +

m−1
∑

j=1

m
∑

l=j+1

wjlsjlxijxil, (3)

where c is a constant term, bj is the main effect of variable xj , and sjl is the interaction
effect of variables xj and xl. The m × m upper-triangular matrix W = (wjl) specifies
which interaction effects are to be estimated in the GLM, with wjl = 1 if the interaction
between predictor variables j and l is taken into account and wjl = 0 otherwise. The
diagonal elements of W are not used, as these elements refer to main effects that are
already modeled by the second term in (3).

Here, we restrict ourselves to cases in which all predictor variables are categorical in-
stead of continuous, so that (3) cannot be used directly. The central assumption of our
model is that interaction effects between the categorical predictor variables can be mod-
eled in approximately the same way as interaction effects between continuous predictor
variables. To do so, we apply the idea of optimal scaling (see, for example, Gifi, 1990) to
the categorical predictor variables for modeling their interaction effects, hence the name
optimal scaling of interactions (OSI) model.

To be able to introduce optimal scaling in model (3), we need some notation. Let there
be m categorical predictor variables with each variable having kj categories. To code the
categorical predictor variables we use indicator matrices Gj with rows gij of length kj;
element l of gij has value 1 if observation yi belongs to category l of predictor variable
j and 0 otherwise. In the OSI model, we use separate optimally scaled variables for the
main effects and the interaction effects, so that

ηi = c +
m

∑

j=1

bjrij +
m−1
∑

j=1

m
∑

l=j+1

wjlsjlqijqil, (4)

where rj is the optimally scaled variable for the main effect of variable j, and qj is the
optimally scaled variable that is used for the interaction effects of variable j. In principle,
one could also use the same optimally scaled variables for both the main effects and the
interaction effects, so that rj = qj . However, we find this approach too restrictive, and
we therefore do not explore it here.

The values of the continuous, optimally scaled predictor variables rj and qj are not
known in our model and need to be estimated. The rjs are related to the categorical
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predictor variables according to rj = Gjaj , where aj is a kj × 1 parameter vector that
contains the category quantifications for the main effects of variable j. The qjs are
constructed similarly as qj = Gjyj , with yj a kj × 1 parameter vector that contains the
category quantifications for the interaction effects of variable j. Instead of (4), the OSI
model may also be described as

ηi = c +

m
∑

j=1

bjg
′

ijaj +

m−1
∑

j=1

m
∑

l=j+1

wjlsjlg
′

ijyjy
′

lgil. (5)

In this way, the main effects appear in the same manner as in an ordinary GLM with
categorical predictor variables. For the interaction effects, the OSI model uses a multi-
plicative specification that is relatively parsimonious. The parameter vector yj reflects
the content of the interaction effects of variable j. The goal of the parameter sjl is to
estimate the size of the interaction effect between variables j and l. Therefore, we refer
to sjl as a scaling factor.

Once the category quantifications aj and yj are estimated and hence are known, the
optimally scaled variables can be treated as ordinary continuous variables. Then, the
parameters bj and sjl can be computed using the ordinary GLM in (3). Because the qjs
are not known, and the way the interactions appear in (4), the predictor ηi is a nonlinear
function of the model parameters. Therefore, the OSI model is not an ordinary GLM.
As the qjs are restricted by qj = Gjyj, and yj can be estimated from the data, the OSI
model can be seen as a GLM with optimal scaling of the categorical predictor variables.

Several parameter constraints, including location and scale constraints, are required
for model identification. We use the following parameter constraints, which originate
from the optimal scaling methodology and differ from the constraints typically used in
multiplicative interaction models. We impose that the optimally scaled variables rj and qj

have mean zero and variance one, which is a customary constraint in optimal scaling. For
the interaction effects, this results in the location constraints

∑n
i=1

g′

ijyj = 0 and the scale
constraints

∑n
i=1

g′

ijyjy
′

jgij = n. For the main effects, we impose that
∑n

i=1
g′

ijaj = 0
and

∑n
i=1

g′

ijaja
′

jgij = n. In addition, the value of the scaling factor sjl cannot be
estimated if wjl = 0; therefore, we set sjl = 0 whenever wjl = 0. Finally, simultaneously
changing the signs of the elements of yj and sjl for all l does not affect the predictor ηi.
To improve the interpretability of the model parameters, we simultaneously reflect the
yjs and the scaling factors sjl in such a way, that the sum of the estimated scaling factors
is maximized. To do so, each of the 2m possible combinations of reflections of the yjs is
considered, and the combination that maximizes

∑m−1

j=1

∑m
l=j+1

sjl is used to interpret the
model’s results.

Additional parameter constraints may be required if few observations are available, or
if wjl = 0 for many values of j and l. Whether such additional constraints are necessary
can be determined empirically, for example, by checking whether the estimated parameters
are unique maximizers of the log-likelihood function. This can be done by estimating the
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model parameters multiple times using randomly chosen starting values; if no additional
parameter constraints are necessary, the estimated parameters must be the same in every
instance.

The categorical predictor variables can have either a nominal or an ordinal measure-
ment level. For ordinal predictor variables, it is possible to impose their ordering on yj.
However, imposing such ordinality constraints may not be appropriate, as the interaction
effects can reflect nonmonotonic relations between the predictor variables and the response
variable. Therefore, we do not impose the ordering of ordinal predictor variables on the
model parameters. The OSI model can also be extended to include continuous predictor
variables, for example, by modeling the yjs as (spline) transformations of these continuous
variables. In that case, one again needs to consider whether such transformations need to
be monotonic. More information on splines and other nonlinear transformations is given
in Gifi (1990).

As the OSI model is not an ordinary GLM, a special algorithm for parameter estima-
tion is needed. In our implementation, the parameters are estimated by maximizing the
log-likelihood function using the BFGS quasi-Newton optimization routine in the MAT-
LAB Optimization Toolbox (version 3.0.4). Standard errors of the estimated parameters
are computed using the negative inverse of Hessian (the matrix of second-order partial
derivatives of the log-likelihood function), evaluated at the final parameter estimates.

The OSI model has several relationships with existing models for interaction effects.
A standard GLM with two-way interaction effects can be described as

ηi = c +
m

∑

j=1

bjg
′

ijaj +
m−1
∑

j=1

m
∑

l=j+1

wjlg
′

ijBjlgil, (6)

where Bjl is a kj × kl parameter matrix of interaction effects between variables j and l.
The OSI model can be obtained from the full two-way interaction GLM by imposing that
each interaction matrix Bjl equals a matrix B̄jl with

B̄jl = sjlyjy
′

l. (7)

Thus, the OSI model implicitly approximates each matrix of interaction effects Bjl by a
matrix of rank one.

The OSI model also resembles a few multiplicative interaction models that have been
proposed previously. If there are only two categorical predictor variables, the OSI model
is equivalent with the generalized additive main effects and multiplicative interaction
models discussed by Van Eeuwijk (1995, 1996), which are a generalization of the RC
association models discussed by Goodman (1981). For the case of log-linear analysis (that
is, generalized linear modeling with link function ηi = log(µi) and a Poisson probability
distribution), the OSI model is equivalent with equation (20) of Anderson and Vermunt
(2000); they interpreted the yjs as latent variables.
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3 Empirical Applications

To determine how the OSI model performs in practice, we apply it to two empirical data
sets. We also compare its usefulness with other models and show how the interaction
effects can be visually represented and interpreted.

3.1 STAR Data Set

The first data set we use is based on the STAR data set, which can be found in the
“Ecdat” package in the R programming language. This data set contains the results
of 5,748 Tennessee primary school students on tests of math and reading skills. The
data were collected as a part of the Student/Teacher Achievement Ratio (STAR) project
(see http://www.heros-inc.org/star.htm for additional information). This project
investigates the effects of class size on the performance of primary school students. Each
student was assigned to either a small class (13 to 17 students per teacher), a regular size
class (22 to 25 students per teacher), or a regular-with-aide class (22 to 25 students with
a full-time teacher’s aide). The data set also contains personal background characteristics
of the students, the level of experience of the teacher, and the school at which the test
was taken.

The aim is to explain the results of the math skills test using six categorical predictor
variables that are also in the STAR data set. We will focus on the two-way interaction
effects of these predictor variables.

• Class size: A categorical predictor with levels “small”, “regular”, and “regular with
aide”

• Teaching experience: A categorical predictor with levels “< 5 years”, “5-9 years”,
“10-14 years”, “15-19 years”, and “> 19 years”

• Sex: A categorical predictor with levels “boy” and “girl”

• Race: A categorical predictor with levels “white” and “black”

• Free lunch: A categorical predictor with levels “Free lunch” and “No free lunch”

• School id: A categorical predictor with 79 levels, which identifies the school at which
the test was taken.

The effects of the variables Sex and Race are combined, so that a new predictor variable
(denoted by “Sex, race”) with four levels is obtained. We do not take the interaction effects
of “School id” into account in our analysis, as the levels of this factor have no meaning
to the reader; only the main effects of “School id” are modeled. In addition, “School
ID” is modeled as a random factor (the schools used in the study are a sample of the
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Table 1: Residual degrees of freedom, log-likelihood values, and values of the Akaike
information criterion of various models for the STAR data set

Model Residual df Log-likelihood AIC
GLM with main effects only 5659 -29,483.34 59,144.68
OSI model 5647 -29,450.89 59,103.78
GLM with all two-way categorical interactions 5624 -29,433.69 59,115.38

Table 2: ANOVA table with all two-way interactions for STAR data set

Source Type III sum sq. d.f. Mean sq. F p-value Partial η2

School ID 2,230,156 78 28,591.7 17.04 0.000 0.191
Class size 50,189 2 25,094.3 14.96 0.000 0.005
Teaching exp 16,425 4 4,106.3 2.45 0.044 0.002
Sex, race 80,821 3 26,940.3 16.06 0.000 0.008
Free lunch 158,946 1 158,945.8 11.53 0.001 0.017
Class size × Teaching exp 71,125 8 8,890.6 5.30 0.000 0.007
Class size × Sex, race 16,631 6 2,771.7 1.65 0.129 0.002
Class size × Free lunch 209 2 104.6 0.06 0.940 0.000
Teaching exp × Sex, race 47,845 12 3,987.1 2.38 0.005 0.005
Teaching exp × Free lunch 1,737 4 434.3 0.26 0.904 0.000
Sex, race × Free lunch 23,268 3 7,755.9 4.62 0.003 0.002
Error 9,436,513 5,624 1,677.9
Total 13,115,339 5,747

population of schools in Tennessee), whereas all other predictor variables are fixed factors.
The math score is a continuous variable and ranges from 320 (worst performance) to 626
(best performance), with an average score of 486. As the response variable is continuous
and approximately normally distributed, generalized linear modeling with an identity link
and a normal error distribution (which is analysis of variance) seems most appropriate.

Table 1 contains the results for the one-dimensional OSI model, a standard GLM with
only main effects, and a standard GLM with full two-way interaction effects. From this
table, we can observe that the OSI model accounts for most of the interaction effects, as the
difference in log-likelihood between the OSI model and a full two-way interaction model is
relatively small. Therefore, a full two-way interaction model does not seem necessary. In
addition, the OSI model has a lower value for the Akaike information criterion (AIC) than
either a model with only main effects or a full two-way interaction model. Table 2 gives
the ANOVA table for the model with full two-way interactions. This table shows that
the interactions of “Teaching experience” with “Class size” and “Sex, race” are relatively
large and statistically significant at the 5% level.
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An important objective of the OSI model is interpreting the two-way interactions.
Therefore, we focus on the interaction effects in this paper and do not report the estimated
main effects aj and bj . To interpret the interactions, we can construct visualizations of the
estimated model parameters, which should provide an understanding of the interaction
effects. The yjs may be graphically represented using an interaction plot that shows
the elements of these parameter vectors. In such a figure, each level of each categorical
variable is represented by a single parameter. Such an interaction plot is similar to a one-
dimensional version of a biplot (see Gower & Hand, 1996) used in, for example, principal
components analysis and correspondence analysis. The scaling factors sjl constitute a
matrix, which can be shown in a simple table.

Figure 1 shows the interaction plot and the estimated scaling factors of the OSI model
for the STAR data set. To improve the interpretability of this figure, the estimated
category quantifications are shown in a separate axis for each predictor variable. The
estimated standard errors of the scaling factors are shown in parentheses in Figure 1.
Using these results, we can interpret the content of the interaction effects as follows. The
values of the scaling factors sjl determine the relative importance of the interaction ef-
fects; large absolute values of these scaling factors correspond to large interaction effects.
The scaling factors in Figure 1 show that the interaction effects between “Teaching ex-
perience” and “Class size” (s12 = 3.861) and between “Teaching experience” and “Sex,
race” (s23 = 2.265) are relatively large and statistically significant. The content of rel-
evant or statistically significant interaction terms can be determined using the yjs. If
the corresponding scaling factor is positive, pairs of categories of different variables with
quantifications yj of the same sign have positive estimated interaction effects. For the
interaction between “Class size” and “Teaching experience”, y1 and y2 show that there
are fairly high positive estimated interaction effects between a high level of teaching ex-
perience and regular size classes; this is also true for a high level of teaching experience
in combination with black students. Therefore, we can conclude that teachers with more
than 15 years of experience appear more capable of handling regular size classes and classes
with black students than other teachers. It seems best to assign small classes and classes
with few black students to less experienced teachers. There is also a strong interaction
between “Sex, race” and “Free lunch”. The variable “Free lunch” is mainly determined
by the household income of the student. There appear to be more severe negative effects
of having a low household income on math performance for white students than for black
students.

3.2 General Social Survey Data

The second data set used in this paper is based on the 1994 General Social Survey (Davis &
Smith, 1996). This data set contains the responses of 899 respondents on four questions
on attitudes of the labor roles of women and was also used in Anderson and Vermunt
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Figure 1: Interaction plot and corresponding scaling factors sjl of the OSI model for
the STAR data set. The estimated standard errors of the scaling factors are shown in
parentheses.
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Table 3: Residual degrees of freedom, deviance values, p-values, and values of the AIC of
various models for the General Social Survey data set

Model Residual df Deviance p-value AIC
GLM with main effects only 187 1,063.25 0.00 1,089,25
OSI model 175 277.85 0.00 327.85
GLM with all two-way categorical interactions 136 117.93 0.87 245.93

(2000). The four questions were as follows:

1. Woman earning money: “Do you approve or disapprove of a married woman earning
money in business or industry if she has a husband capable of supporting her?”
(approve, disapprove).

2. Men should perform outside the home: “It is much better for everyone involved if
the man is the achiever outside the home and the woman takes care of the home
and family.” (strongly agree, agree, disagree, strongly disagree).

3. Men should earn money: “A man’s job is to earn money; a woman’s job is to
look after the home and family.” (strongly agree, agree, neither agree nor disagree,
disagree, strongly disagree).

4. Men should not stay at home: “It is not good if the man stays at home and cares
for the children and the woman goes out to work.” (strongly agree, agree, neither
agree nor disagree, disagree, strongly disagree).

From this data set, we construct a contingency table, so that we can apply log-linear
analysis (generalized linear modeling with a log link and a Poisson error distribution)
with the four questions as predictor variables.

Table 3 gives results of a GLM with only main effects, the OSI model, and a full
two-way interaction model for this data set. Figure 2 shows the interaction plot and the
estimated scaling factors of the OSI model. The deviance values in Table 3 show that
the OSI model does not fit the data, as it is too restrictive. In addition, the values of
the Akaike information criterion indicate that a model with full two-way interactions is
preferable to the OSI model. Nevertheless, the results of the OSI model can still help
us interpret the interaction effects. As all estimated scaling factors are positive, the
interaction plot shows that the respondents tend to have similar opinions for items 2,
3, and 4. The similarities are largest between items 2 and 3 (s23 = 1.288) and between
items 3 and 4 (s34 = 0.817). The categories of item 1 appear inverted compared to the
other three variables. This was to be expected, as a negative response to item 1 implies a
conservative attitude towards gender roles; for the other three items, a positive response
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Figure 2: Interaction plot and scaling factors sjl of the OSI model for the General So-
cial Survey data set. The estimated standard errors of the scaling factors are shown in
parentheses.
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indicates such a conservative attitude. The reported scaling factors are all statistically
significant different from zero and correspond to fairly large effects. For example, for a
respondent who responds “strongly disagree” to items 2 and 3, the additive interaction
effect between these two items on ηi is 1.288 ×−1.485 ×−1.473 = 2.82. For a log-linear
model, the expected frequency µi is calculated as µi = exp(ηi). Therefore, the estimated
interaction effect between items 2 and 3 increases the probability of responding “strongly
disagree” to both items by a factor of exp(2.82) = 16.8.

4 Multidimensional Extensions

The one-dimensional OSI model (5) is relatively straightforward to interpret. However,
as can be seen in the analysis of the GSS data set, this model may yield an inadequate
fit for some data sets. In that case, a less restrictive model may be considered. Here, we
discuss several ways to generalize the one-dimensional OSI model to a multidimensional
model, which should provide a better fit. We also discuss what identification constraints
are required for such models and how they are related to previously proposed models.

The most natural generalization of the one-dimensional OSI model consists of allowing
for multiple optimally scaled variables per categorical predictor variable. We use this
approach for our general multidimensional model, so that it is given by

ηi = c +

m
∑

j=1

bjrij +

m−1
∑

j=1

m
∑

l=j+1

wjl

P
∑

p=1

sjlpqijpqilp, (8)

where qijp is the score of person i on the p-th optimally scaled variable for categorical
variable j, and sjlp is the coefficient of the p-th optimally scaled variable for the interaction
between categorical variables j and l. By writing this model in terms of the categorical
predictor variables, it can be also described as

ηi = c +

m
∑

j=1

bjg
′

ijaj +

m−1
∑

j=1

m
∑

l=j+1

wjlg
′

ijYjSjlY
′

lgil, (9)

where Yj and Sjl are matrices of sizes kj × P and P × P respectively, with P the di-
mensionality of the model. The matrix Sjl is constrained to be diagonal. For P = 1, (9)
simplifies to the one-dimensional OSI model.

For the general multidimensional model (9), we impose similar location constraints as
for the one-dimensional model, so that

∑n
i=1

g′

ijaj = 0 and
∑n

i=1
g′

ijYj = 0′. For the
main effects, the scale constraints are

∑n
i=1

g′

ijaja
′

jgij = n; for the interaction effects,
we require that

∑n
i=1

g′

ijyjpy
′

jpgij = n, where yjp denotes the p-th column of Yj. In
addition, we must set sjlp = 0 for every wjl = 0. Furthermore, just as in the one-
dimensional OSI model, we change the signs of yjp and, correspondingly, sjlp in such a
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way that the elements of
∑m−1

j=1

∑m
l=j+1

Sjl are maximized. Finally, in a multidimensional
model, it is often convenient to ensure that the amount of explained variation decreases
with the dimension, so that the first dimension is the most important one. For the general
multidimensional model (9), we accomplish this by requiring that the diagonal elements
of

∑m
j=1

∑m
l=1

|Sjl| are decreasing.
Determining the number of degrees of freedom in model (9) may be somewhat difficult,

as the degrees of freedom are influenced by characteristics of both the model and the
research design (that is, the values of the predictor variables in the data set). However,
if all interaction terms are present in the model (that is wjl = 1 for all j < l), and
the number of observations is sufficiently large, the number of parameters in the general
multidimensional model equals 1+Pm(m−1)/2+(1+P )

∑m
j=1

kj, and the total number
of parameter restrictions is (P + 2)m. In that case, the number of degrees of freedom
required by this model is given by

df = 1 + (1 + P )

m
∑

j=1

kj − (1 + 2P )m +
1

2
Pm(m − 1). (10)

Graphically representing the results of (9) in a way similar to Figures 1 and 2 would
require several plots; we believe such a representation would be hard to interpret. Instead,
one can construct a biplot for each interaction term separately, which should be straight-
forward to interpret. To do so, one may calculate a compact singular value decomposition
of B̄jl = wjlYjSjlY

′

l, so that UΣV′ = wjlYjSjlY
′

l, where Σ is P × P diagonal matrix,
and U and V are orthogonal (so that U′U = V′V = I). Matrices U, Σ, and V that meet
these requirements must exist, as the rank of B̄jl cannot be greater than P . A biplot can
then be constructed by plotting UΣ1/2 and VΣ1/2 simultaneously in one figure.

Restricted Multidimensional Models

For some data sets, the general multidimensional model (9) may require prohibitively
many parameters, leading to instability of the estimated parameters. In addition, inter-
preting the estimated interaction effects using graphical representations may be difficult
if there are many predictor variables. In such cases, alternative generalizations of the
one-dimensional OSI model with fewer parameters can be considered. Here, we discuss
three such generalizations, which consist of restricting the parameters in Sjl to be equal
for each interaction term or for each dimension.

First, we can restrict the elements of Sjl to be equal across dimensions, which leads
to the model

ηi = c +

m
∑

j=1

bjg
′

ijaj +

m−1
∑

j=1

m
∑

l=j+1

wjlsjlg
′

ijYjY
′

lgil. (11)
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The location and scale constraints of the general multidimensional model are also used for
this model. As for any orthogonal rotation matrix T, YjY

′

l = sYjTT′Y′

l, simultaneously
rotating the matrices Yj does not alter the values of ηi. Therefore, rotation restrictions
are also required for this model. We require that

∑m
j=1

Y′

jG
′

jGjYj is diagonal, thereby
imposing P (P − 1)/2 parameter restrictions on the Yjs.

A second type of restricted model can be obtained by imposing that Sjl = S for every
interaction term, so that

ηi = c +

m
∑

j=1

bjg
′

ijaj +

m−1
∑

j=1

m
∑

l=j+1

wjlg
′

ijYjSY′

lgil, (12)

where S is diagonal. Here, the scale constraint
∑n

i=1
g′

ijyjpy
′

jpgij = n cannot be imposed
without loss of generality. Instead, we impose the constraint

∑m
j=1

∑n
i=1

g′

ijyjpy
′

jpgij =
mn. For log-linear modeling, this model coincides with equation (24) of Anderson and
Vermunt (2000), though the parameter restrictions used in their article are different.

Finally, one may consider restricting the parameter matrices Sjl to be equal for every
interaction term and for every dimension (so that Sjl = I), essentially removing these
parameters from the model. In that case, the model is

ηi = c +
m

∑

j=1

bjg
′

ijaj +
m−1
∑

j=1

m
∑

l=j+1

wjlg
′

ijYjY
′

lgil, (13)

and we obtain the interaction decomposition model proposed by Groenen and Koning
(2006). Here, the sizes of the interaction effects are determined by the parameter matri-
ces Yj. The same location and rotation constraints as in (11) can be imposed; however,
no scale constraints can be imposed on the Yjs without loss of generality. If the esti-
mated interactions effects are of a similar size, the results of (13) can be conveniently
visualized using a biplot in which the Yjs are simultaneously plotted in a P -dimensional
space. However, if various interaction interaction effects differ in size significantly, the
visualization may break down, and the model may fit poorly.

Model (13) is a special case of (12), which can be obtained by setting sp = 1 for all p;
the results of these two models may appear to be almost identical, although they are not
equivalent. Model (13) can be obtained from (12) by multiplying the elements of each yjp

with
√

sp, but this is only possible if all sp are nonnegative, so that (12) is more flexible
than (13).

Experimentation with these multidimensional models suggests that unique parameter
estimates that maximize the log-likelihood function may not always exist for models (11)
and (13). In that case, the parameter estimates that optimization algorithms produce
may fail to converge to finite values and could approach infinity instead. This effect does
not appear to occur in the one-dimensional OSI model or in model (12).
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Table 4: Maximum degrees of freedom associated with various models

Model Degrees of freedom
Main effects only GLM 1 +

∑m

j=1
kj − m

One-dimensional OSI model (5) 1 + 2
∑m

j=1
kj − 3m + m(m − 1)/2

General multidimensional model (9) 1 + (1 + P )
∑m

j=1
kj − (1 + 2P )m + Pm(m − 1)/2

Restricted multidimensional model (11) 1 + (1 + P )
∑m

j=1
kj − (2 + P )m + m(m − 1)/2 − P (P − 1)/2

Restricted multidimensional model (12) 1 + (1 + P )
∑m

j=1
kj − (1 + P )m − P (P − 1)/2

Restricted multidimensional model (13) 1 + (1 + P )
∑m

j=1
kj − (1 + P )m − P (P − 1)/2

Full two-way interaction GLM 1 +
∑m

j=1
kj − m +

∑m−1

j=1

∑m

l=j+1
(kj − 1)(kl − 1)

Table 4 gives an overview of the maximum numbers of degrees of freedom for a number
of models, based on the location, scale, and rotation constraints that were described
previously. The values in this table are upper bounds on the actual degrees of freedom;
they can only be attained if all interaction terms are taken into account, and both the
number of observations and the number of variables are large enough. Whether the model
parameters are identified can often be determined empirically. This can, for example, be
done by calculating the matrix of second-order partial derivatives of the log-likelihood
function at the final parameter estimates and then checking whether this matrix is positive
definite, which is a necessary condition for parameter identification.

5 Discussion

Optimal scaling is a useful methodology for modeling the effects of categorical predictor
variables (see, for example Gifi, 1990). In this article, we have applied this methodology to
modeling two-way interactions effects in generalized linear models. The resulting optimal
scaling of interactions (OSI) model is a multiplicative interaction model that can help
interpret the content of interaction effects. This model has the additional advantages
that it requires fewer parameters than a full two-way interaction model and that it can
be used to construct (graphical) representations of the interaction effects. The OSI model
can be seen as an extension of several models for parsimoniously representing interaction
effects, including Goodman’s RC(M) association models and models that were proposed
by Anderson and Vermunt (2000) and Groenen and Koning (2006).

Using two empirical data sets, we have shown how the OSI model can be applied in
practice and we have compared its usefulness with other models. Based on the results, the
one-dimensional OSI model appears to be most useful, as it is easy to apply and appears
to give good results. Multidimensional models may lead to representations that are not
so easy to interpret. Based on our experience with these models, we recommend using

16



the one-dimensional OSI model. We believe that this model can be useful for interpreting
interaction effects in an applied setting.

An advantage of the one-dimensional OSI model is that it uses different sets of pa-
rameters to model the strength of an interaction term (using the scaling factors sjl) and
the content of an interaction term (using yj). This separation helps to understand the
results. A limitation of the one-dimensional OSI model is that it may have an inadequate
fit for some data sets. This problem can be solved by applying one of the multidimen-
sional extensions in Section 4. In some cases, however, degenerate solutions may occur
that are avoided in the one-dimensional OSI model. Clearly, the models presented in
this paper are not capable of taking three-way or higher interaction effects into account.
Multiplicative interaction models can also be constructed for modeling higher-way terms,
as was done in Van Eeuwijk and Kroonenberg (1998) for three-way interactions effects.
However, we believe that two-way interactions are the most important ones to explore in
practice.
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