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SUMMARY

Inflammatory mechanisms have been increasingly implicated in the origin of sei-

zures and epilepsy. These mechanisms are involved in the genesis of encephalitides

in which seizures are a common complaint. Experimental and clinical evidence

suggests different inflammatory responses in the brains of patients with epilepsy

depending on the etiology. In general, activation of both innate and adaptive

immunity plays a role in refractory forms of epilepsy. Epilepsies in which seizures

develop after infiltration of cells of the adaptive immune system in the central ner-

vous system (CNS) include a broad range of epileptic disorders with different

(known or unknown) etiologies. Infiltration of lymphocytes is observed in autoim-

mune epilepsies, especially the classical paraneoplastic encephalitides with antibod-

ies against intracellular tumor antigens. The presence of lymphocytes in the CNS

also has been found in focal cerebral dysplasia type 2 and in cortical tubers. Vari-

ous autoantibodies have been shown to be associated with temporal lobe epilepsy

(TLE) and hippocampal sclerosis of unknown etiology, which may be due to the

presence of viral DNA. During the last decade, an increasing number of antineu-

ronal autoantibodies directed against membranous epitopes have been discovered

and are associated with various neurologic syndromes, including limbic encephali-

tis. A major challenge in epilepsy is to define biomarkers, which would allow the

recognition of patient populations who might benefit from immune-modulatory

therapies. Some peripheral inflammatory markers appear to be differentially

expressed in patients with medically controlled and medically refractory and, as

such, could be used for diagnostic, prognostic, or therapeutic purposes. Establish-

ing an autoimmune basis in patients with drug-resistant epilepsy allows for effica-

cious and targeted immunotherapy. Although current immunotherapies can give

great benefit to the correctly identified patient, there are limitations to their effi-

cacy and they may have considerable side effects. Thus the identification of new

immunomodulatory compounds remains of utmost importance.

KEY WORDS: Innate immunity, Adaptive immunity, Epilepsy, Autoantibodies,

Encephalitides, Immunomodulatory drugs.

AcceptedMarch 24, 2017.
*Department of Neuroimmunology, Center for Brain Research Medical University of Vienna, Vienna, Austria; †Section for Translational Epilepsy

Research, Department of Neuropathology, University of Bonn - Medical Center, Bonn, Germany; ‡Brigham and Women’s Hospital and Harvard Medical
School, Boston, Massachusetts, U.S.A.; §The Broad Institute, Cambridge, Massachusetts, U.S.A.; ¶Department Neurology, Tampere University Hospital,
Tampere, Finland; #Department Neurology, University Hospital Basel, Basel, Switzerland; **Department Neurology, Erasmus UniversityMedical Center,
Rotterdam, The Netherlands; ††Nuffield Department Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom; and ‡‡IRCCS-Mario
Negri Institute for Pharmacological Research, Milano, Italy

Address Correspondence to Jan Bauer, Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, Vienna
A-1090, Austria. E-mail: jan.bauer@meduniwien.ac.at and Ettore Beghi, Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological
Research, Via Giuseppe LaMasa 19, Milan 20156, Italy. E-mail: ettore.beghi@marionegri.it

© 2017 The Authors. Epilepsia published byWiley Periodicals, Inc. on behalf of International League Against Epilepsy.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any med-
ium, provided the original work is properly cited.

57

IMMUNITYAND INFLAMMATION IN EPILEPSY (IIE2016)

http://orcid.org/0000-0001-5802-8047
http://orcid.org/0000-0001-5802-8047
http://creativecommons.org/licenses/by/4.0/


Immune mechanisms have been discovered in several
neurologic diseases, some of them associated with epi-
lepsy.1 These mechanisms are not only present in epilepsies
caused by infectious and central nervous system (CNS)
inflammatory diseases,2,3 but also in epileptic disorders not
associated with a clear inflammatory pathophysiology.4 The
exact role of the inflammatory phenomena (cause, effect, or
both) is a matter of intense investigation. Rapid activation
of proinflammatory cytokines and danger signals is
observed after acute epileptogenic brain injuries or after sin-
gle and recurrent seizures in both experimental and clinical
settings. On the other hand, there is evidence of chronic
overproduction of cytokines and other inflammatory media-
tors during epileptogenesis in animal models, implicating a
neuromodulatory role of inflammation and its potential
involvement in the generation of spontaneous seizures. The
contributions summarized in this article investigate the role
of immune mechanisms based on the results of recent and
ongoing experiments to help improve our understanding of
their role in epilepsy.

Innate Immunity in Epileptic

Disorders

(Jan Bauer, Jukka Peltola)
There is evidence supporting that several inflammatory

mediators have a specific role in temporal lobe epilepsy
(TLE) or in neocortical epilepsies associated with focal
malformations. Rapid activation of proinflammatory
cytokines, such as interleukin-1b (IL-1b), interleukin-6
(IL-6), and tumor necrosis factor-a (TNF-a), and danger
signals, such as high mobility group box 1 (HMGB1)-acti-
vating inflammasomes via Toll-like receptors (TLRs), is
observed after acute and chronic seizures in animal models
of acquired epilepsies.5 Brain-resident innate immune cells
such as microglia as well as astrocytes are pivotal genera-
tors of this inflammatory response. There is also evidence
of chronic overproduction of these molecules and other
inflammatory mediators (e.g., cyclooxygenase-2,

prostaglandins, complement system components, and
immunoproteasomes) in both glial cells and neurons, and
in cellular components of the blood–brain barrier, in
patients with TLE or malformations of cortical develop-
ment, suggesting a neuromodulatory role of inflammation
in epilepsy. Indeed, these inflammatory mediators were
shown to play a role in the mechanisms of seizures and
epileptogenesis in animal models.6–10 In particular, the
presence of IL-1b and HMGB1 has been shown in brains
of patients with various epileptic disorders, such as TLE
and focal cortical dysplasia (FCD).6,11,12 In addition to the
local formation of seizure-inducing molecules in the CNS,
molecules such as IL-1b, TNF-a, and IL-6 also might enter
the brain from the blood. For this to happen, a breach in
the blood–brain barrier (BBB) is necessary, and thus sei-
zure induction by peripheral molecules only can play a role
in disorders where the BBB is opened. In general, studies
on human epileptic brain show the presence of ultrastruc-
tural changes and abnormal tight junctions of vasculature
endothelial cells, indicating a breach in the BBB and the
possibility that serum proteins may reach the CNS par-
enchyma.13 An example of this may be children with feb-
rile seizures. Measurement of the above-mentioned
proconvulsant molecules in the plasma of these patients
shows a clear increase.14 In addition, in an animal model
of TLE, the BBB opening has been shown in the progres-
sion of the disease. The authors found albumin in the CNS
following status epilepticus (SE) and a positive correlation
between the extent of BBB opening and the number of sei-
zures.15 On the other hand, it is unclear to what extent
these molecules enter the CNS. Measurements of albumin
and a2-macroglobulin in the serum and cerebrospinal fluid
(CSF) of children with febrile seizures show that most chil-
dren have the same levels of albumin and a2-macroglobu-
lin in the CSF as controls but others clearly showed an
increase of these molecules in the CSF.16

It is still unknown whether and in which cell types IL-1b is
expressed in forms of epilepsy characterized by extensive
infiltration of adaptive immunity cells, such as Rasmussen
encephalitis (RE). Bauer and colleagues therefore analyzed
the presence of IL-1b in RE using immune histochemical
(IHC) studies, and they found selective presence of IL-1b in
microglial nodules in cortical gray matter as well as in sub-
cortical white matter, in agreement with a recent report by a
Ramashwamy et al.17 In the hippocampus, IL-1b was not
restricted to nodules, but was also present in surrounding
microglial cells. This immunohistochemical data were sup-
ported by in situ hybridization (ISH) studies with a probe for
IL-1b messenger RNA (mRNA), which showed specific sig-
nals in microglial nodules. Astrocytes showed a weak
immunostaining for IL-1b but were negative for IL-1b
mRNA, raising the possibility that astrocytes may import the
cytokine from the extracellular space, for example, via extra-
cellular microvesicles. In addition to using IHC and ISH stud-
ies, these authors measured IL-1b by western blot and

Key Points

•Inflammatory mechanisms have been implicated in the
origin of seizures in a number of encephalitides
•Activation of both innate and adaptive immunity seems
to occur in refractory forms of epilepsy
•Antineuronal autoantibodies have been discovered and
are associated with various neurologic syndromes,
including limbic encephalitis
•Immunomodulation demonstrates incomplete efficacy
with significant side effects
•The identification of new immunomodulatory com-
pounds remains of utmost importance
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enzyme-linked immunosorbent assay (ELISA) in frozen sec-
tions from seven RE patients. Both analyses, however, did
not show positive signals for IL-1b, suggesting that the
amount of recovered IL-1bwas under the detection level.

Adaptive Immunity in Epileptic

Disorders

(Jan Bauer, Maarten J. Titulaer)

Infiltration of T lymphocytes
Experimental and clinical evidence suggests a different

inflammatory response in the brain of patients with TLE,
where the innate immune component appears to be preva-
lent, as compared to other refractory forms of epilepsy with
prominent activation of both innate and adaptive immunity.
Because innate and adaptive immunity reciprocally affect
each other, it is important to recognize the presence and the
composition of the inflammatory milieu in epileptic disor-
ders.

Epilepsies in which seizures develop after infiltration
of cells of the adaptive immune system in the CNS are
an emerging group. It is increasingly recognized that this
group consists of a broad range of epileptic disorders
with different known and unknown etiologies (Fig. 1).
Infiltration can be extremely abundant, in which case the
epileptic disorder is designated as encephalitis. Examples
of these include herpes simplex virus encephalitis18 and
RE.19 A second group of epileptic disorders with domi-
nant infiltration of lymphocytes are the autoimmune
epilepsies (Fig. 1). These consist of classical paraneo-
plastic encephalitides with antibodies against intracellular
tumor antigens such as Hu and Ma2, as well as paraneo-
plastic and nonparaneoplastic cases with antibodies
against a large and still-expanding range of intracellular
and extracellular/membranous antigens, as discussed
later. The number of infiltrating lymphocytes in paraneo-
plastic cases with antibodies against the various oncoge-
nes is abundant. Moreover, most of these infiltrating
CD3+ T lymphocytes are cytotoxic20,21 and attack neu-
rons.22–24 Whereas in paraneoplastic cases infiltration is
severe, lymphocyte infiltration in other autoimmune
epilepsies, in particular, those with antibodies against
membrane antigens, is less abundant. Indeed, moderate
infiltration of cells in cases of leucine-rich glioma-inacti-
vated 1 (LGI1) encephalitis has been observed and lym-
phocytes are predominantly seen in the perivascular and
interstitial spaces in cases of N-methyl-D-aspartate recep-
tor (NMDAR encephalitis)24,25 (Fig. 1). Infiltration of
lymphocytes in the CNS has also been found in a speci-
fic subgroup of FCD, that is, those composed of dysplas-
tic neurons and balloon cells termed FCD type IIb by
the International League against Epilepsy (ILAE) classi-
fication system.12 In most of the FCD cases, infiltration

of T lymphocytes is relatively low. Bauer and colleagues
confirmed that cases of FCD IIb contain moderate to
high numbers of T cells and showed that some of these
infiltrating lymphocytes were cytotoxic in nature. Finally,
Aronica and colleagues recently reported that inflamma-
tory infiltrates can also be present in a newly identified
subgroup (type C) of cortical tubers.26 Bauer and col-
leagues support these findings, showing that CD3+CD8+

T lymphocytes are in close apposition to balloon cells,
thus suggesting that cytotoxic T cells might specifically
target these aberrant cell types.

Another large group of epileptic disorders in which infil-
tration of lymphocytes can be found are the cases of TLE
with hippocampal sclerosis (HS) with unknown etiology.
Bauer and colleagues presented data confirming that in
some of these cases, infiltrating T cells are as numerous as
in definitive limbic encephalitis (LE). Their preliminary
results also revealed that especially one subgroup, that is,

Figure 1.

Comparative T-cell inflammation in epilepsy. Staining for CD3+ T

cells in (A, bar: 100 lm) HSV encephalitis, (B) anti-Ma2 Ab parane-

oplastic encephalitis, (C) Rasmussen encephalitis, (D) anti-GAD65

Ab encephalitis, (E) anti-LGI1 Ab Encephalitis, (F) anti-NMDAR

(NR1) Ab encephalitis. (G) FCD IIb with few T cells (H) TSC. This

case contains only very few infiltrating lymphocytes (I) idiopathic

TLE, (J) FCD IIb. Here the parenchyma reveals the presence of

many T cells (K) TSC type C, with many T cells (L) postinfectious

TLE. Numbers of inflammatory T cells are extremely high. All

images have the same magnification. Single T lymphocytes are indi-

cated by arrowheads.

Epilepsia ILAE
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postencephalitic TLE cases, contained high numbers of
infiltrating CD3+CD8+ T lymphocytes (Fig. 1) with a smal-
ler subgroup of Granzyme-B+ T cells.

The Role of Viral DNA in Human

TLE

(Jan Bauer, Albert J. Becker)
The reason for the high numbers of lymphocytes in pos-

tencephalitic TLE cases is unknown. Such inflammation
might be due to the presence of viral DNA in the CNS. High
human herpesvirus 6 (HHV-6) DNA load has been detected
in surgical tissue of patients with TLE, and viral DNA is
most commonly present in patients with previous inflamma-
tory brain diseases.27 However, detection rates have been
found to vary considerably among studies. Becker and col-
leagues, in an initial limited series of 38 pharmacoresistant
TLE patients versus 10 autopsy controls, detected HHV-6
DNA in 55.6% of the TLE patients with a history of
encephalitis, including mesial temporal sclerosis (MTS) and
gliotic hippocampi without substantial neurodegenera-
tion.27 They did not find HHV-6 DNA in lesion-associated
TLE or nonlesional MTS with or without a history of com-
plex febrile seizures (CFS). These data prompted them to
carry out a subsequent large-scale analysis of viral DNA/
RNA spectrum in an extended series of TLE biopsies.28 In
addition to all Herpesviridae, the group examined the pres-
ence of potentially relevant neurotropic RNA viruses. DNA
and RNA were extracted from 346 fresh-frozen epilepsy
surgery tissue samples. Fresh-frozen hippocampal tissue
samples from 62 patients without chronic CNS disease
served as controls. Real-time polymerase chain reaction
(PCR) and nested PCR were performed for Herpesviridae
and RNA viruses, respectively. In addition, they analyzed
the clinical records of the patients for the presence of earlier
signs of inflammatory brain reactions. Their results revealed
HHV-6B DNA in 9.8% of the TLE patients and in 12.9% of
the control samples. Intriguingly, however, the TLE sam-
ples were found to have a higher virus concentration. In
patients with clinical signs of previous brain inflammation,
HHV-6B DNA was observed in 15.0%, whereas only 6.3%
of the samples from patients without febrile seizures or
meningoencephalitis were positive for HHV-6B DNA. A
meta-analysis of the eight HHV-6 PCR studies revealed
similar results. To summarize, the biopsy-based study of
Becker and colleagues revealed no differences in frequency
of HHV-6B DNA detection between TLE patients and con-
trols. However, the higher virus load in TLE patients and
the increased detection rate of HHV-6B DNA in patients
with previous inflammatory brain reactions may be in line
with a potential promoting role of HHV-6 in TLE patients
with a history of encephalitis. It is interesting to note that
especially postencephalitic TLE cases revealed increased
presence of cytotoxic lymphocytes, as presented by Bauer

and colleagues. As such, new coordinated multicenter
attempts should be helpful to shed more light on the role of
HHV-6 as well as other neurotropic viruses in the emer-
gence of TLE. The abundance of viral nucleic acids in
epileptic hippocampal tissue represents an aspect that
requires particular attention by future studies.

The Role of Immunologic

Biomarkers in Refractory

Epilepsy

(Wassim Elyaman)
Considerable progress has been made in identifying cir-

culating epilepsy biomarkers in animal models of epi-
lepsy.29 However, a major challenge is to define biomarkers
in human epilepsy to allow the recognition of appropriate
patient populations that might benefit from immunomodula-
tory therapies. Elyaman and colleagues proposed the
hypothesis that peripheral inflammatory mediators are dif-
ferentially expressed in patients with medically controlled
and medically refractory epilepsy and, as such, could be
used as a biomarker for diagnostic, prognostic, or therapeu-
tic purposes. To characterize the regulation of circulating
inflammatory mediators in epilepsy, Elyaman and col-
leagues assembled a multidisciplinary team that includes
epileptologists, immunologists, epigeneticists, and compu-
tational biologists to generate comprehensive proteomic
and transcriptomic data of peripheral (blood) and central
(surgical tissues) adaptive and innate immune cells of a
large pool of patients with epilepsy. Findings from these
studies may give insight into the complex role of inflamma-
tion in the generation and exacerbation of epilepsy. In addi-
tion, it should yield new molecular targets for the design of
antiepileptic drugs, which might not only inhibit the symp-
toms of this disorder, but also prevent disease pathogenesis.

Antibodies and Epilepsy

(Maarten J. Titulaer)
In the past 30 years >30 antineuronal autoantibodies

(ANABs) have been discovered.30 These ANABs are associ-
ated with various neurologic syndromes, which include LE,
epilepsy, cerebellar degeneration, peripheral (poly)neuropa-
thy, Lambert-Eaton myasthenic syndrome (LEMS), opso-
clonus-myoclonus syndrome progressive encephalomyelitis
with rigidity and myoclonus (PERM), and stiff-person syn-
drome (SPS). At present, it is unclear how the formation of
these antibodies is triggered. The induction of antibodies
against the NMDAR has been associated with post-herpes
simplex virus encephalitis,31–33 but for other antibodies such
an association is absent. The exact role of these antibodies in
seizure induction remains the focus of research. These investi-
gations have already revealed important mechanistic insight
for a minority of antibodies.
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In the nineties, voltage-gated potassium channel (VGKC)
antibodies were described in association with neuromyoto-
nia.34 In the following years, these antibodies were found to
be present in patients with LE and in Morvan’s syndrome.35

More recently, it was shown that about half of these antibod-
ies are directed against proteins complexed with the VGKC
rather than the channel itself. Most patients have been found
to have antibodies against LGI1.36,37 A smaller group has
antibodies against contactin-associated protein-like 2
(Caspr2), which is situated in the juxtaparanodal loop of
myelin surrounding axons.37,38 Only a minority of patients
have antibodies against contactin-2.37 Recently, a propor-
tion of patients with positive VGKC-complex antibodies
but negative LGI1 and caspr2 antigen specific tests have
been found to contain antibodies against the internal surface
of the VGKC.39 The clinical significance of these particular
antibodies is unclear, but currently there is no evidence for a
pathogenic role for a positive VGKC test in the absence of
LGI1 or Caspr2 antibodies.40 Therefore, the term VGKC is
not useful and diseases should be referred to by their con-
firmed target antigen.

Mechanistically, anti-LGI1 antibodies seem to affect the
binding of LGI1 to disintegrin and metalloproteinase
domain-containing protein 22 (ADAM22), and thereby pre-
vent proper signaling of the presynaptic VGKC and the
postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionic acid (AMPA) receptor.41 The mechanism of anti-
caspr2 antibodies has not been studied yet, but pathologic
investigation of a caspr2 encephalitis brain showed
immunoglobulin and complement deposition associated
with neurodegeneration in the hippocampus.42 This anti-
body and complement deposition–associated neurodegener-
ation was also found in hippocampi of patients with anti-
LGI1 encephalitis, suggesting that, at least in these particu-
lar cases, the caspr2 and LGI1 antibodies can induce neu-
rodegeneration via antibody-dependent complement-
mediated cytotoxicity.24 All LGI1 and caspr2 sera contain
(non–complement-activating) IgG4 subclass antibod-
ies.43,44 In addition to IgG4, IgG1 or IgG2 subclass antibod-
ies were found to some extent in 42% of LGI1 and 63% of
caspr2 sera. These IgG1 and IgG2 antibodies are comple-
ment-activating and therefore might be responsible for the
hippocampal neurodegeneration described in some
patients.24,42

Because the antibodies against surface antigens have
been discovered only recently, knowledge of the exact
pathophysiologic mechanisms of such antibodies is still
expanding. Anti-NMDAR antibody was the first antibody
to be discovered reacting to an extracellular antigen.45

Anti-NMDAR encephalitis at present is also the most fre-
quent autoimmune epilepsy. Most of the mechanistic
insight for anti-NMDAR antibodies has been described by
Dalmau and colleagues.46–48 In vivo, the antibodies seem
to affect the localization of NMDAR on the synapses of
inhibitory neurons, by breaking the link with EphrinB2.49

This change in localization somehow leads to internaliza-
tion of the NMDAR and a net decrease in NMDAR.48,50

In vitro and in vivo studies in mice reveal that the
decrease of NMDAR on the synapse is reversible after
removal of antibodies.51 Furthermore, in vivo experiments
suggest that an overload of EphrinB2 ligand can prevent
the NMDAR internalization, and partially prevent the
clinical phenotype. This could offer alternative symp-
tomatic treatments in the future. Unlike in LGI1 and
Caspr2 encephalitis, no major pathologic effect on indi-
vidual receptor function or cytotoxic or complement-
mediated effects have been found.24,25,52 A question there-
fore remains why IgG complement–activating subclass
antibodies from NMDAR encephalitis patients do not
seem to induce complement-mediated pathology.

Clinical Aspects of Immunity in

Epilepsy

(Stephan R€uegg, Maarten J. Titulaer)
From an epileptologic point of view, LE is the most

important immune syndrome associated with the newly dis-
covered ANABs. The main features of the syndrome are
subacute onset of working memory deficits, altered mental
status, confusion, delirium, or psychiatric symptoms. Fur-
thermore, one can find progressive impairment of con-
sciousness up to coma. For the possibility of an LE, at least
one of the following observations should be present: de
novo seizures or even status epilepticus, a new focal neuro-
logic deficit, CSF pleocytosis, or MRI features suggestive
of encephalitis. Excluding alternative causes for the
patient’s condition is also important. Swift recognition of
the disorder is key because there are effective therapies and
data increasingly suggest that early start of treatment is
associated with better outcome.30,53 Excellent reviews on
this topic have been published recently.54–58

Another important antibody associated with epilepsy
was the entity directed against the cytosolic enzyme gluta-
mate decarboxylase (GAD). GAD catalyzes the conver-
sion from glutamate to c-aminobutyric acid (GABA), and
the presence of antibodies against GAD are associated
with epilepsy,59 stiff person syndrome (SPS), and LE60,61

(Table 1). Most of the early detected ANABs (detected
before 2007) recognize intracellular epitopes and were
associated with tumors causing paraneoplastic syndromes,
whereas those ANABs identified more recently are less
frequently paraneoplastic and are directed mainly toward
antigens at the cell membrane. Anti-GAD antibody
encephalitis is an exception because the antibodies against
intracellular antigens are induced in the absence of a
tumor. A controversial transient extracellular availability
at the synapse has been suggested to explain their
pathogenicity.62 Since 2007, many new ANABs have
been discovered (Table 2) and the clinical diversity of the
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ANAB-mediated syndromes has largely expanded, main-
taining the link with epilepsy in most of these ANABs.
These aspects are discussed in brief below.

Anti-NMDAR encephalitis
In 2013, Titulaer et al.53 presented a large cohort of 577

patients, including 212 children, with NMDAR encephali-
tis, and reported precise data on clinical features, treatment,
and outcome. The majority (81%) had a good outcome
(modified Rankin outcome scale 0–2), whereas 6% died.
Prognostic factors predisposing to a good outcome in both
adults and children were early onset of treatment and nonad-
mission to an intensive care unit. Relapse risk was 12%
within the first 24 months, but relapses tended to be milder
than the initial manifestation. The EEG phenomenon of “ex-
treme delta brush” (extensive frontal beta activity superim-
posed on almost generalized rhythmic high-amplitude delta
activity) occurs in about 30% of severely affected intensive
care unit (ICU)–bound patients and is thought to be specific
for the disorder.63 Psychiatric symptoms are important in
the early course of the disease, as 75% of adult patients are
seen initially by a psychiatrist.64 These symptoms were the
initial manifestation in 59% of the national French cohort
(n = 111), with 40% experiencing hallucinations and 23%

depression. A minority of these patients were drug resistant
for antipsychotics or antidepressants. Referral to a neuro-
logic (intensive care) unit was for many other causes like
evolving seizures and status epilepticus and, in particular,
for development of a neuroleptic malignant syndrome in 21
patients. Forty percent of the patients were first hospitalized
in psychiatric institutions, however, more than half of these
patients also had at least one neurologic sign and further
38% developed neurologic symptoms within days. These
findings confirm previous studies of anti-NMDAR
encephalitis cases at psychiatric wards65 and ask for careful
neurologic (re-)examination of patients with new-onset, rel-
atively acute psychiatric illness.66 In young children, sei-
zures and dyskinesias are the initial symptoms in half of the
patients. In this group, psychiatric features as presenting
symptoms, however, are less frequent (about one- third).53

The symptoms of the disorder evolve gradually and seem to
resolve in reverse order of onset.67

Anti-LGI1 encephalitis
Shortly after the discovery of the LGI1-associated LE,

Irani et al.68 reported a unique epileptic syndrome of “facio-
brachial dystonic seizures” (FBDS), with other groups
reporting similar semiologies in the same context.69 These
seizures are very short, lasting about 1–3 s, and consist of
short dystonic stiffening of one arm and grimacing of the
ipsilateral mimic musculature, or, less frequently, the leg.
They may occur up to 50–100 times per day and, in 70% of
cases, they precede the onset of LE by an average of
35 days. About 10% of patients do not develop LE. Due to
their unusual and characteristic semiology, FBDS may be
missed or misinterpreted as “psychogenic” or “tics.” Elec-
troencephalography (EEG) rarely shows epileptic abnor-
malities.68 LGI1 encephalitis is the second most frequent
autoimmune encephalitis, with an incidence of slightly less
than one per million.40 It is infrequently (10–15%) associ-
ated with tumors (thymoma, lung cancer), and is slightly
more prevalent in men and in patients >50 years. Seizures
are either focal in the early stages (FBDS or stereotypic
focal seizures with dyscognitive or autonomic features)68 or
generalized tonic–clonic, a late symptom as part of an LE.
With the onset of LE, memory loss, confusion, and person-
ality changes are frequent.70 Mild to moderate hypona-
tremia (115–130, most over 125 mmol/L) is present at onset
in two thirds of patients. The outcomes can be serious, as
65% of patients have persistent mild to severe cognitive def-
icits.40,71 In addition, 13% of patients develop a cognitive
encephalopathy without seizures.43 After adequate treat-
ment, anti-LGI1 encephalitis evolves into chronic epilepsy
in one in seven patients.

Anti-Caspr2 encephalitis
More rare than LGI1 encephalitis, anti-Caspr2 encephali-

tis has been reported in about 100 patients to date. Every
fifth patient has paraneoplastic disease (lung, colon cancer,

Table 1. Antibodies associated with epilepsy: state of art

in 2010

Antibody Epitope location (Non-)paraneoplastic Refs

Anti-Hu Intracellular Paraneoplastic 118,119

Anti-Ma1;

Ma2/anti-Ta

Intracellular Paraneoplastic 120,121

Anti-amphiphysin Membranous Paraneoplastic 92

Anti-Ri Intracellular Paraneoplastic 122

Anti-AMPAR

(GluR1/2)

Membranous 2/3 Paraneoplastic 73

Anti-GABABR Membranous 1/2 Paraneoplastic 123

Anti-GAD Cytosolic ca. 10% Paraneoplastic 59

Anti-AMPAR

(GluR3)

Membranous Nonparaneoplastic 124

Anti-NMDAR

(NR1/2)

Membranous 1/3 Paraneoplastic 45

Anti-LGI1 Membranous 10% Paraneoplastic 36

Anti-Caspr2 Membranous 20% Paraneoplastic 37

Table 2. Antibodies associated with epilepsy discovered

since 2010

Antibody Epitope location (Non)paraneoplastic Refs

Anti-mGluR5 Membranous Paraneoplastic 79

Anti-DPPX-6 Membranous Rarely paraneoplastic 82

Anti-GABAAR Membranous Merely non-paraneoplastic 88

Anti-glycineR Membranous Non-paraneoplastic 95,125

Anti-GABAAR Membranous Merely non-paraneoplastic 90
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thymoma). There is strong preponderance of male
patients (60–95% in different series), mainly older than
age 60. Patients can present with LE, ataxia, peripheral
nervous system involvement (neuromuscular hyperex-
citability, including neuromyotonia, or pain) or a combi-
nation of peripheral and central symptoms and signs,
such as Morvan’s syndrome.44,71,72 Seizures occur in
50–90% of patients.44

Anti-AMPAR encephalitis
After a first series of 10 patients,73 there are now >50

patients reported with AMPA encephalitis, which has a
paraneoplastic (thymoma, lung cancer) background in two
thirds of these patients.73–75 There is female preponderance
and patients tend to be older than 40 years of age. The fol-
lowing four types have been reported: (1) a confusional type
with predominant agitation up to psychosis; (2) a mainly
amnestic form; (3) an epileptic form with generalized and
more rare focal seizures, with impairment of consciousness;
and (4) a fulminant type with a severe course. Seizures
occur in 20–40% of patients only, and patients tend to
relapse although treatment response is good even in these
recurrent episodes.72,74

Anti-GABABR encephalitis
This form of encephalitis is increasingly recognized and

among the most prevalent after NMDAR and LGI1
encephalitis. More than half of cases are paraneoplastic,
mainly associated with small cell lung cancer. Of interest,
anti-GABAB receptor antibodies are absent in large cohorts
of patients with small cell lung cancer, indicating that the
presence of the antibodies can exert their pathogenic effect
in the absence of a tumor. There is preponderance of male
patients older than 40 years who present with seizures (par-
tial complex, secondarily generalized seizures, or frequently
refractory status epilepticus [SE]). In addition, patients have
memory loss, confusion, and severe insomnia. Rare symp-
toms include ataxia and opsoclonus/myoclonus syn-
drome.76–78

Anti-mGluR5 encephalitis
Encephalitis mediated by antibodies against the metabo-

tropic glutamate receptor subtype 5 (mGluR5) is always
paraneoplastic and associated with Hodgkin’s lymphoma.79

The signs of this extremely rare condition (only seven
cases reported) include marked and subacute memory
loss, depression, delusions, hallucinations, and psychosis
together with tumor symptoms of cachexia, fever, and
night sweats. The combination of encephalitis, depression,
delusion, and cachexia led to the term “Ophelia syn-
drome,” coined by the author of the first case (his own
daughter).80 Antibodies against the mGluR1 receptor cause
a completely different neurologic, cerebellar (ataxic) syn-
drome despite large homology of the mGluR1 receptor
with the mGLuR5 receptor.79,81

Anti-dipeptidyl-peptidase-like protein-6 (DPPX)
encephalitis

This is a rare syndrome where antibodies against the epi-
tope DPPX of the voltage-gated potassium channel Kv4.2
cause classical symptoms of LE with confusion, memory
loss, psychosis, or depression, but additionally brainstem
signs (eye movement disturbances, ataxia, dysarthria, dys-
phagia, and respiratory failure), sleep difficulties, and myo-
clonus. As a unique clinical hallmark, profuse and difficult
to treat, noninfectious diarrhea precedes LE weeks to
months in two thirds of cases.82–84 This may result from the
expression of the epitope in both intestinal cells and neu-
rons. Seizures are rarely observed (about 15%). The anti-
bodies have also been found in cases of progressive
encephalomyelitis with rigidity and myoclonus (PERM).85

Anti-GABAA(b3/c2)R-encephalitis
LE associated with antibodies against GABAA receptor

subunits b3 and c2 is rare and, in two thirds of cases, affects
men between 3 and 74 years. The reason for this gender dis-
parity is unknown but interesting, since male predominance
in autoimmune disorders is rare. One might speculate that
female sex hormones, such as allopregnanolone, or oral con-
traceptives may consolidate c2-subunits86 and be protective
against seizures and SE. GABAA receptors, especially the
extrasynaptic, can be modulated by neurosteroids with sex-
hormone–like structure.87 About 20% of patients have can-
cer. Main symptoms are the ones typical for LE, but 50–70%
of patients have severe seizures, up to almost intractable SE.
In addition, some patients also have SPS or opsoclonus/my-
oclonus syndrome. Response of seizures and SE to immuno-
suppression is remarkable, whereas classical antiseizure
drugs are ineffective against epileptic activity.88,89

Anti-GABAA(a1/c2) R encephalitis
A second type of anti-GABAA receptor antibody has been

reported recently. These antibodies were discovered in a
large cohort of patients tested for autoimmune CNS disease.
The antibodies were directed against the receptor subtypes
a1 and c2, and high titers are associated with both seizures
and memory impairment in 47% of patients, in 33% with
hallucinations, and 20%with anxiety.90 A clear encephalitic
syndrome could not be identified and important clinical
information on these patients (titers in CSF, course of dis-
ease, effect of treatment, etc.) were lacking; thus these anti-
bodies may not cause LE sensu stricto.91

Anti-amphiphysin encephalitis
Anti-amphiphysin encephalitis has been very rarely

reported. About 40% of cases were paraneoplastic and
mainly caused by small lung cell and breast cancer. Men
were more frequently affected, and mean age of onset is
54 years. The classical form includes memory loss, cogni-
tive decline, mood changes, depression, and sometimes hal-
lucinations up to a frank psychosis. Seizures occur in about
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40% of patients (generalized > focal with impairment of
consciousness). Some patients also experience brainstem
signs, like vertigo, cranial nerve palsies, and ataxia.92,93

Anti-glycineR encephalitis
Although about 3% of two large cohorts of adult patients

with newly diagnosed and established epilepsy harbored
antibodies against glycine receptors,94 only three young
boys younger than age 6 years have been reported to have
(sub-)acute encephalitis, focal seizures, and even SE associ-
ated with these antibodies.95–97 The anti-glycine receptor
antibodies are normally linked to SPS and PERM.98

In summary, the incidence of all types of encephalitis
is estimated at 1:15,00099 and the LE caused by
ANABs is probably around 1:100,000, although exact
epidemiologic data are lacking. The incidence of sei-
zures in these cases strongly varies according to the
specific type of ANABs (Table 3). Conversely, ANABs
are found in about 1–3% of patients with newly estab-
lished epilepsy, but in a higher proportion (10–15%) in
pharmacoresistant patients.94,100,101 This remains an
important area of uncertainty because the significance of
the presence of ANABs in patients with epilepsy alone
is still poorly understood, as is the value of antibody
testing in high-throughput cohorts, without further
exploration of the significance of these positive results.
Are they merely bystander or a reliable surrogate mar-
ker for pharmacoresistance when these patients were
treated only with antiseizure drugs but not immunomod-
ulating agents? Such treatments yielded remarkable ther-
apeutic effects in one study of highly selected patients,
but prospective randomized controlled studies are still
lacking.102,103

Treatments in Autoimmune

Encephalitis

(James A. Vardley)
The first-line treatment of autoimmune encephalitis com-

bines steroids with either plasma exchange or intravenous
immunoglobulin (IVIG) or, occasionally, both. Second-line
treatments are with cyclophosphamide and rituximab.53 The
best evidence for treatment of autoimmune encephalitis is
presented in NMDAR-Ab encephalitis, as this is the most
common.53 Around 50% of NMDAR-Ab patients respond
to first-line treatment with a “good outcome” of an modified
Rankin scale (mRS) of 0–2 at 24-month follow-up. In the
remaining 50%, a good outcome can be achieved by sec-
ond-line treatment. There are nuances in this data, as only
50% of patients studied retrospectively had follow-up data
at 24 months. Second-line treatment also halved the relapse
incidence in 25% of patients, and early treatment was asso-
ciated with a higher chance of a better outcome, something
that has been mirrored in a small prospective cohort in LGI-
Ab encephalitis.104 Evidence for rituximab is equivocal in
LGI-Ab encephalitis but these data are on a small sample
size.105

In other antibody encephalitides, because of their rarity,
there is a less clear idea of treatment responses. In general,
around 70% of patients respond to treatment. Here, factors
associated with a poor outcome include coexistent tumor,
delay to treatment, and poor initial functional status. In addi-
tion, the higher mortality seen in cases associated with anti-
bodies such as GABAA, GABAB, and AMPA-receptor
antibodies can be explained by the more frequent occur-
rence with tumors.106

Next-Generation Targeted

Immunomodulatory Therapies

(James A. Vardley)
More specific targeted therapies are an attractive pro-

spect, as the broad immunosuppressive therapies have a
wide range of side effects that contribute significantly to
morbidity. Efforts have been made using the following med-
ications or interventions.

Immunoabsorption
Plasma exchange is well established as a treatment

option, but a trial of immunoabsorption (IA) was recently
reported.107 Eighty-six percent of patients with ANABs
improved, whereas patients with intracellularly targeted
antibodies antigens did not. Antibody clearance was also
interesting, with titers decreasing by 97% (serum) and 64%
(CSF) 4 days after IA and falling further to 98% (serum) and
88% (CSF) at 4 weeks, showing a prolonged treatment
effect. It is worth noting that this is higher than reported in

Table 3. Frequency of seizures during/after limbic

encephalitis (LE)

Antineuronal antibody Frequency of seizures Incidence of LE

Anti-GABABR-IgG1 90% Low to medium

Anti-GAD-IgG 25–100%a High

Anti-Hu-IgG 60–100% Low to medium

Anti-GABAAR-IgG1>3 50–100% Medium

Anti-LGI1-IgG4>2>1 90% Medium to high

Anti-NMDA1/2R-IgG1 70% High

Anti-GABAA(b3/g2)R-IgG1>3 47% Medium

Anti-Caspr2-IgG4>1 20–65% Low to medium

Anti-Ma1/2-IgG 30–40% Low to medium

Anti-AMPAR-IgG1 33% Low to medium

Anti-DPPX-IgG 15% Low

Anti-mGluR5-IgG 20% Very low

Anti-amphiphysin-IgG 10–20% Low

Anti-CV2/CRMP5-IgG Rare Low to medium

Anti-glycineR-IgG Rare Low

aDepending on the definition of acute immune LE.
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plasma exchange series108; however, those prior studies
were published 20 years ago and recruited patients with
intracellular antigens. The precise clinical effect of IA is
confounded by the coadministration of immunotherapy in
this study, but it does appear to be an effective treatment
alongside standard immunotherapy and spares the use of
precious transfusion products required with plasma
exchange and avoids the associated side effects.

Tocilizumab
B cells are thought to be crucial to the ongoing immune

response in patients with ANABs. IL-6 is a cytokine thought
to be a key player in B-cell maturation and terminal differ-
entiation into plasma cells, which secrete copious anti-
body.109 A study of neuromyelitis optica (NMO) with
aquaporin-4 antibody–positive patients identified IL-6 as a
key cytokine for B-cell maturation and disease-specific
antibody production.110 Preliminary data using Tocilizu-
mab, an anti-IL-6 monoclonal antibody, in NMO and
autoimmune encephalitis is encouraging, and more work
must be done to assess the efficacy of this as a standalone
second-line therapy.111

Low-dose IL-2
A Korean group has treated patients with tocilizumab in

combination with low-dose IL-2 to stimulate T regulatory
cells, which is known to reduce T-cell activation and attenu-
ate B-cell maturation in germinal centers, with encouraging
results.112 A caveat is that it is impossible to untangle the
effect of individual treatments when multiple ones are given
contemporaneously. This study is further hampered by
small sample size and the absence of confirmation of neu-
ronal surface antibodies in some of the patients.

Bortezomib
Plasma cells are key components of the humoral immune

response. Bortezomib was originally designed as a treat-
ment for myeloma and functions by inhibiting proteasome
function in cells.113 This is thought to affect the immune
system in a variety of ways, but plasma cells, due to their
protein synthesis, are strongly dependent on proteasomal
function. Bortezomib, therefore, is hypothesized to cause an
accumulation of proapoptotic factors and targeted cell
death, especially in plasma cells. This treatment has been
trialed in NMDAR-Ab encephalitis in two refractory
patients and demonstrated promising initial results.107 Fur-
ther studies with carefully selected patients are needed.

Immunomodulatory treatments are not without adverse
side effects. Adverse effects of immunoabsorption include
colonization of catheter tip with coagulase-negative staphy-
lococci and venous air embolism.107 Upper respiratory tract
infection and pharyngitis or nasopharyngitis can be fre-
quently observed in patients receiving tacilizumab.114 In
these patients, clinical laboratory abnormalities include
neutropenia and elevated aminotransferase levels. One of

the most common side effects of bortezomib is peripheral
neuropathy that is predominantly sensory with burning
paresthesia, hyperesthesia–hypoesthesia, neuropathic pain,
and weakness.115

Conclusions and Future

Directions

Anti-inflammatory drugs have been reported to control
seizures in drug-resistant epilepsy and in selected epilepsy
syndromes even in the absence of a clear inflammatory
basis. An autoimmune etiology is increasingly identified
among patients with epilepsy in whom no unequivocal
causes are detected with the present diagnostic aids. In addi-
tion, seizures can initiate brain inflammation in glial cells
and promote BBB disruption independent of leukocytes or
blood-borne inflammatory molecules.116 However, with
one exception,117 the present evidence of seizure reduction
by anti-inflammatory drugs in humans relies mostly on case
reports or small series. In these cases, a chance association
between the disease and biological markers of altered
immunity is still possible. We cannot even confirm that drug
resistance has an autoimmune basis in these patients
because a more rigorous investigation of immune mecha-
nisms is typically performed in patients with the most severe
disease varieties. Research in the field of autoimmune
epilepsies is at a fast pace, with multiple new autoantibodies
discovered every year. Numerous questions must be
answered. These can be divided in those regarding basic
mechanisms and those regarding clinical evaluation and
therapy. For instance, at present it is completely unclear
why antibodies such as anti-LGI mostly target the limbic
regions but almost no pathologic or clinical changes are
found in regions that also have high concentrations of the
target antigen such as the cerebellum. Some of the more
basic questions that therefore need to be addressed in the
future are the concept of antibody formation, the mecha-
nisms by which the antibody gains access to the CNS, and
the reason that the BBB (for instance in anti-LGI encephali-
tis) seems to be breached mostly in limbic structures. Fur-
thermore, the association of herpes simplex virus with anti-
NMDAR antibodies suggests that viral infection, at least in
some patients with anti-NMDAR encephalitis, might facili-
tate a break in tolerance giving rise to disease. It is still
unclear whether other antibody-associated limbic epilepsies
are also secondary to a primary (viral) infection.

From a clinical point of view the search for further anti-
bodies is required because this may decrease the number of
patients with clinical, MRI, and CSF findings of LE but no
identifiable ANABs. At the same time, it is important that
awareness of characteristic clinical syndromes is improved
to allow for early identification and treatment, given the
beneficial effect of prompt treatment on outcome. In addi-
tion, the question should be asked whether it is useful that
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patients with pharmacoresistant epilepsy are mandatorily
screened for ANABs and what antibody results warrant
which types of treatment. Establishing an autoimmune basis
in patients with drug-resistant epilepsy may help investigate
the efficacy of drugs active on the immune system.

The first-line treatment of autoimmune encephalitis com-
bines steroids with plasma exchange and/or IVIG. However,
these treatments have been assessed only in observational
studies. To improve therapeutic interventions, it is impor-
tant to collect treatment data from prospective controlled
randomized trials; however, this is problematic given the
rarity of these conditions. Finally, immunomodulation
demonstrates impressive but incomplete efficacy with sig-
nificant side-effect profiles as shown earlier. For these rea-
sons, the identification of new immunomodulatory
compounds with better tolerability and safety profile
remains of utmost importance.
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