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A B S T R A C T

Unperturbed transcription of eukaryotic genes by RNA polymerase II (Pol II) is crucial for proper cell function
and tissue homeostasis. However, the DNA template of Pol II is continuously challenged by damaging agents that
can result in transcription impediment. Stalling of Pol II on transcription-blocking lesions triggers a highly
orchestrated cellular response to cope with these cytotoxic lesions. One of the first lines of defense is the
transcription-coupled nucleotide excision repair (TC-NER) pathway that specifically removes transcription-
blocking lesions thereby safeguarding unperturbed gene expression. In this perspective, we outline recent data
on how lesion-stalled Pol II initiates TC-NER and we discuss new mechanistic insights in the TC-NER reaction,
which have resulted in a better understanding of the causative-linked Cockayne syndrome and UV-sensitive
syndrome. In addition to these direct effects on lesion-stalled Pol II (effects in cis), accumulating evidence shows
that transcription, and particularly Pol II, is also affected in a genome-wide manner (effects in trans). We will
summarize the diverse consequences of DNA damage on transcription, including transcription inhibition, in-
duction of specific transcriptional programs and regulation of alternative splicing. Finally, we will discuss the
function of these diverse cellular responses to transcription-blocking lesions and their consequences on the
process of transcription restart. This resumption of transcription, which takes place either directly at the lesion
or is reinitiated from the transcription start site, is crucial to maintain proper gene expression following removal
of the DNA damage.

The eukaryotic genome is transcribed by different RNA poly-
merases. These polymerases consist of multiple subunits, are structu-
rally alike and function in a similar manner although they all transcribe
a different part of the genome [1]. In this perspective, we will focus on
RNA polymerase II (Pol II), the RNA polymerase responsible for tran-
scription of protein-coding genes and synthesis of most non-coding
snRNAs and miRNAs [1]. Correct temporal and spatial regulation of
gene expression is crucial for proper cell function and homeostasis. To
safeguard this, transcription is tightly controlled at almost each step of
the dynamic transcription cycle, ranging from initiation, promoter
proximal pausing, productive elongation to transcription termination
[2,3]. However, the DNA template transcribed by Pol II is compromised
on a daily basis by numerous types of DNA damaging factors. Several
types of these DNA lesions can block or strongly impede progression of
Pol II and are therefore referred to as transcription-blocking lesions

(TBLs). If TBLs are not resolved properly, prolonged stalling of Pol II
can lead to severely disrupted cellular homeostasis due to absence of
newly synthesized RNA molecules or the appearance of mutant RNA
molecules [4,5]. In addition, prolonged stalled Pol II induces R-loops
and may result in collisions with advancing replication forks [6]. Al-
together, these TBLs may result in genome instability, severe cellular
dysfunction, premature cell death and senescence [7,8] which finally
may result in DNA-damage induced, accelerated aging [9].

1. The effects of different transcription blocking lesions on Pol II

TBLs can originate from both endogenous and exogenous sources.
The main examples of DNA damage of endogenous origin are by-pro-
ducts of metabolic processes in mitochondria. These reactive oxygen
species can for example generate 8,5′-Cyclopurine-2′-deoxynucleosides
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or 8-oxo-7,8-dihydroguanine (8-oxo-G) lesions [10–12]. Damage from
exogenous sources which cause TBLs include clinically used che-
motherapeutics like cisplatin which causes inter- and intrastrand
crosslinks, or ultraviolet (UV) radiation mainly causing 6-4 pyrimidine-
pyrimidone photoproducts (6-4PPs) and cyclobutane-pyrimidine di-
mers (CPDs) [13]. While all these structurally different types of damage
can interfere with elongating Pol II [9,14], the stalling is mechan-
istically different for these diverse types of lesions [15]. For example,
Pol II most likely does not stall at 8-oxo-G lesions itself but is affected by
base excision repair intermediates after the action of lesion-specific
DNA glycosylase, such as OGG1 [16–18]. Cisplatin-induced crosslinks
do not pass through the so-called Pol II translocation barrier. This im-
pairs delivery of this bulky lesion to the active site of Pol II and stalls
Pol II in front of the lesion [19]. In contrast, UV-induced CPD lesions
can pass the translocation barrier and therefore enter the active site of
Pol II. This results in direct stalling of Pol II, thereby completely cov-
ering the lesion with a 35-nucleotide footprint; 10 nucleotides down-
stream and 25 nucleotides upstream of the CPD lesion [13,20,21].
These UV-induced CPDs form a stable road block for Pol II, as shown by
extreme stability of CPD-stalled Pol II complexes, with half-lives of
approximately 20 h in vitro [22]. As a consequence of the different ef-
fects on elongating Pol II, the diverse types of lesions also trigger dif-
ferent response mechanisms such as transcriptional bypass for cyclo-
purines or transcription-coupled nucleotide excision repair (TC-NER)
for CPDs (Fig. 1) [13,23,24].

In this perspective we will give an overview on how cells cope with
TBLs and provide insight in the cell-wide consequences of DNA damage
on Pol II and transcription. First we will discuss how cells can efficiently
remove TBLs by using the dedicated TC-NER pathway. Furthermore, we
will discuss new insights on the consequences of TBLs in trans. These
effects include both TBL-induced signaling events but also effects of
DNA damage on non-lesion stalled Pol II by regulating the transcription
cycle or affecting splicing. Finally, we will discuss factors and

mechanisms involved in the last crucial step of overcoming the cyto-
toxic effects of TBLs; restart of transcription.

2. Transcription-coupled nucleotide excision repair

The concept of TC-NER was discovered almost three decades ago by
the observation that UV-induced DNA damage in an actively tran-
scribed gene was removed faster compared to damage in a non-tran-
scribed genomic region [25,26]. Follow-up studies showed that pre-
ferential repair of active genes was specifically observed in the
transcribed strand [25,27]. Since the discovery of TC-NER, many fac-
tors have been identified that play an important role in removal of TBLs
and their discovery resulted in a better understanding of the molecular
mechanism of TC-NER.

2.1. CSB senses lesion-stalled Pol II and initiates repair

TC-NER is initiated by recognition of lesion-stalled Pol II by the
three main TC-NER factors: cockayne syndrome protein A and B (CSA
and CSB) and UV-stimulated scaffold protein A (UVSSA) (Fig. 2)
[28–30]. CSB is considered to be a master regulator of TC-NER as it
plays a key role in recruitment of several proteins to the TC-NER
complex. For example, CSB is essential for translocation of CSA to the
nuclear matrix [31,32] and recruitment to the TC-NER complex [33]. In
addition, CSB, together with CSA, recruits other factors to the TC-NER
complex including the pre-mRNA splicing involved protein XAB2, nu-
cleosome binding protein HMGN1 and p300 histone-acetyl transferase
[33]. However, the exact mechanism of how this 1493 amino acid long
multifunctional CSB protein contributes to the repair of TBLs remained
elusive for a long period. While the C-terminal domain of CSB is re-
quired for its interaction with Pol II and translocation of CSA to the
nuclear matrix [34], the SWI2/SNF2 DNA-dependent ATPase activity
located in the central region of CSB was expected to play a crucial role

Fig. 1. CSB probes Pol II for lesion recognition. (1) During productive elongation Pol II may run into DNA damage or natural occurring pause sequences that
consequently impede Pol II forward translocation. (2) CSB recognizes and binds stalled Pol II. (3) Binding of CSB will result in an 80 ° bending of the DNA.
Consequently, the ATPase activity of CSB is suggested to pull on the template DNA thereby mediating Pol II forward translocation. (3, left and middle panel)
Translocation can be successful in case of natural occurring pause sites and less bulky DNA lesions, including oxidative damage, resulting in continuation of
productive elongation or transcriptional bypass respectively. After the CSB-mediated forward movement, CSB might be released from Pol II. (3, right panel) Pol II
cannot be translocated over bulky, transcription-blocking DNA lesions like UV-induced CPDs. This unsuccessful forward translocation of Pol II likely increases the
residence time of CSB and thereby functions as a trigger for the initiation of TC-NER as illustrated in Fig. 2.
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during TC-NER-mediated TBL removal [35] and was shown to mediate
chromatin remodeling after UV-induced DNA damage [35–37]. Inter-
estingly, its key function during TC-NER was only recently disclosed by
unraveling the structure of the yeast homolog of CSB, Rad26, in com-
plex with lesion-stalled Pol II using cryo-EM studies [38].

This lesion-stalled structure showed that Rad26 binds to DNA up-
stream of Pol II and the TBL, causing a CSB-mediated 80 ° bending of
the extruding DNA. Importantly, the 3′-5′ ATP-dependent translocase
activity of Rad 26 pulls the DNA away from Pol II in a similar manner as
Snf2, another member of the SWI2/SNF2 ATPase family, pulls DNA
from nucleosomes [39]. This “DNA pulling” is suggested to stimulate
forward translocation of Pol II over for example naturally occurring
pause sites or small blocking lesions (Fig. 1). However, Rad26 cannot
translocate Pol II over bulky DNA lesions that lead to a transcription
block, like CPDs [38]. This study provides important new insights in the
long lasting question how TC-NER, and CSB specifically, could dis-
criminate between normal paused Pol II and TBL-stalled Pol II in such a
way that TC-NER is only initiated when needed. Since Rad26 is highly

homologous to mammalian CSB, a similar key role for CSB in sensing
damage-paused Pol II in mammalian cells is proposed. Interestingly,
this model suggests that CSB is constantly probing Pol II to sense for an
obstruction, indicating that CSB interacts both with lesion-stalled as
well as unperturbed elongating Pol II. In line with this, it was observed
that CSB transiently interacts with chromatin in a transcription-de-
pendent manner in non-damaged conditions, most likely by binding to
Pol II. A larger fraction of CSB was bound when cells were challenged
with Pol II-stalling agents including UV-induced DNA damage or acti-
nomycin D [40]. Interestingly, the binding affinity of Rad26 to Pol II
upon stalling at TBLs was not increased in vitro [38]. This suggests that
the observed increased CSB binding in cells might be caused by its
prolonged binding to lesion-stalled Pol II, which could be the trigger for
TC-NER complex assembly and subsequent repair of the TBL (Fig. 1)
[22,38].

2.2. The role of CSA and UVSSA in TC-NER

A key protein which is recruited by CSB to the TC-NER complex is
DDB1- and Cul4-associated factor (DCAF) CSA [33] which forms the
CRL4CSA E3 ligase complex together with DDB1, Cul4A and Roc1 [41].
In this CRL4CSA complex, CSA is a dedicated substrate receptor, pro-
viding the complex its essential target specificity [42]. CSA contains a
seven-bladed WD40 propeller and binds via its helix-loop-helix motif to
DDB1 [28,42–44]. A recent study uncovered that the chaperonin TCP-1
ring complex (TRiC) interacts with CSA, especially those CSA proteins
that are not incorporated in CRL4CSA complexes. TRiC interaction is
important for stability of CSA and most likely mediates CSA handover
to DDB1 to form properly functioning CRL4CSA [45]. In unperturbed
conditions, the ligase activity of CRL4CSA is inhibited by binding of the
COP9 signalosome [41,46]. However, upon DNA damage, the COP9
signalosome dissociates, resulting in activation of CRL4CSA ligase ac-
tivity. Consequently, CSB, the substrate of the CRL4CSA ligase, is ubi-
quitylated and targeted for proteasomal degradation (Fig. 2) [47,48].
However, also other, yet unknown, targets of the CRL4CSA complex may
exist and function during TC-NER.

The third main factor in TC-NER initiation is UVSSA, which inter-
acts with both CSA and Pol II [30,49]. One of the roles of UVSSA during
the TC-NER reaction is to specifically recruit ubiquitin-specific protease

Fig. 2. A model of transcription-blocking lesion (TBL) removal by tran-
scription-coupled nucleotide excision repair (TC-NER). Step 1, UV-induced
TBLs result in stalling of Pol II and the inability of CSB to forward translocate
Pol II. This results in an increased residence time for CSB on Pol II and most
likely results in recruitment of the TC-NER factors CSA, UVSSA and USP7. Step
2, CSA is part of the CRL4CSA E3 ligase complex and is recruited to the stalled
Pol II complex via CSB resulting in polyubiquitylation of CSB. The deubiqui-
tylating enzyme USP7 is recruited to the TC-NER complex by UVSSA and sta-
bilizes CSB via deubiquitylation. Step 3, subsequently, TFIIH is recruited, most
likely via a direct interaction with UVSSA. As USP7 and TFIIH bind the same
domain of UVSSA, TFIIH binding might compete with USP7, resulting in the
loss of USP7 activity in the TC-NER complex. Step 4, the forward translocating
activity of CSB might counteract the reverse translocating helicase activity of
the XPB and XPD subunits of TFIIH. To overcome these counteracting forces,
either the ATPase activity of CSB needs to be inhibited, or CSB can be degraded
or evicted from the TC-NER complex. Increased CSB ubiquitylation due to ab-
sence of USP7 might contribute to one of these processes. Step 5, due to the loss
of CSB or its ATPase activity, TFIIH is able to efficiently reverse translocate
(backtrack) Pol II, while at the same time the TFIIH complex verifies the DNA
lesion. Step 6, following successful Pol II backtracking and damage verification,
the DNA lesion is efficiently removed by dual incision of the damaged strand by
the ERCC1/XPF and XPG nucleases. RPA binds the undamaged strand. Step 7,
the ssDNA gap is filled by DNA synthesis and ligated to finalize repair.
Subsequently, transcription has to be restarted. This can be initiated either
directly at the lesion or by new Pol II initiation at the transcription start site
when lesion-stalled Pol II is removed from the template DNA during the repair
reaction.
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7 (USP7) (Fig. 2) [30,49,50]. USP7 was, just as UVSSA, shown to be
crucial for TC-NER [30]. The deubiquitylating activity of USP7 plays an
important role in several different pathways following DNA damage.
For example, Mdm2, XPC, p53, ALKBH3 [51–54] but also many factors
outside the DNA damage response are described as USP7 substrates
[55]. In a large number of these processes, USP7 is recruited to its
substrate as part of a relatively stable complex. This seems to be a
common mode of action for USP7 and might be essential to specifically
target this abundant and pleiotropic deubiquitylating enzyme to its
substrate [56,57]. In addition, complex formation of USP7 stimulates its
deubiquitylating activity. This can be facilitated by remodelling its
structure to a more competent state mediated by its binding partner
[56,58–60]. Strikingly, in contrast to stimulation of USP7 activity fol-
lowing complex formation, the UVSSA-USP7 interaction was reported
to inhibit the deubiquitylating activity of USP7 [61]. Following in-
duction of TBLs, USP7 is specifically recruited via UVSSA to the TC-NER
complex, where it counteracts CRL4CSA-mediated CSB ubiquitylation,
thereby most likely increasing the half-life of CSB in the TC-NER
complex (Fig. 2) [30,50]. In addition, recently it was shown that USP7
also deubiquitylates UVSSA, which is important for efficient TC-NER
[62].

Even though UVSSA has high affinity for USP7, it also has functions
during TC-NER for which thus far no role for USP7 is described. For
example, the largest subunit of Pol II, RPB1, was shown to be ubiqui-
tylated in a UVSSA-dependent manner but this modification does not
lead to proteasomal degradation of Pol II [63]. However, thus far it
remains unclear whether this is a direct or indirect consequence of
UVSSA. In line with previously observed interactions between UVSSA
and subunits of transcription factor II H (TFIIH) [63], it was recently
shown that UVSSA directly interacts with the PH domain of TFIIH
subunit p62, via a short, highly conserved, acidic region in the central
part of UVSSA [64]. Interestingly, this acidic region in UVSSA was
identified as it was highly similar to the p62 PH-binding region of
global genome nucleotide excision repair (GG-NER) DNA damage
sensor XPC [64,65] (Fig. 2). This observation suggests that TFIIH is
recruited to TBLs by UVSSA following TC-NER initiation via a similar
mechanism as used by XPC to recruit TFIIH during GG-NER initiation
[63,64]. TFIIH, which is also involved in transcription initiation, is a
stable complex of ten subunits, including the helicases XPB and XPD
[66]. The ATPase activity of XPB was suggested to recruit TFIIH to
damage and initiate opening of DNA around the lesion. The helicase
activity of XPD helps to extend unwinding of the DNA in a 5′ to 3′
direction and is thought to verify the lesion with help of the weaker
helicase activity of XPB [67–71]. XPB is suggested to co-translocate
with XPD and helps to scan the non-damaged complementary DNA
strand since it has opposite directionality of XPD and thereby stimulates
unwinding and lesion verification (Fig. 2) [68,70]. XPA promotes lesion
recognition by enhancing stalling of XPB and XPD and helps to detect
chemically altered nucleotides [68,72]. After proper lesion verification,
TFIIH together with replication protein A (RPA) recruits the structure-
specific endonucleases ERCC1/XPF and XPG in the correct orientation
to excise the damaged strand [73,74]. Repair is finished by refilling the
gap with DNA synthesis and ligation (Fig. 2) [75,76].

2.3. New insights in the TC-NER pathway

The recently acquired insights on the mode of action of these TC-
NER initiation factors may have implications for current TC-NER
models. One of the most important findings is that CSB, mediated by its
ATP-dependent translocase activity, can discriminate between Pol II
stalled at a DNA lesion or at pause sites by constantly probing the Pol II
complex for its ability to forward translocate [38]. This indirect re-
cognition of lesion-stalled Pol II instead of detection of the DNA lesion
itself allows detection of a large spectrum of structurally different types
of DNA damage. However, at the same time this mechanism may result
in different outcomes for lesion-stalled Pol II, depending on the type of

DNA damage. For example, CSB forward translocation of Pol II could
promote transcriptional bypass of less bulky, oxidative damage like 8-
oxo-G lesions (Fig. 1) [24,38,77]. In contrast, upon stalling at bulky
lesions like CPDs, Pol II cannot be translocated by CSB, resulting in a
longer residence time of Pol II and CSB at the lesion, which eventually
results in initiation of TC-NER (Fig. 1) [38]. The increased residence
time of CSB suggests that CSB has to be stabilized, since it is normally
targeted for proteasomal degradation by the CRL4CSA complex fol-
lowing UV-induced DNA damage [48]. Protection from degradation
could be mediated by concerted action of UVSSA and deubiquitylating
enzyme USP7 and thereby likely provides time for CSB to recruit
downstream TC-NER machinery (Fig. 2) [30,49,50,63,78].

UVSSA was recently suggested to be involved in recruitment of
TFIIH to Pol II [63,64]. TFIIH, with its XPD 5′-3′ and XPB 3′-5′ helicase
activity [68], is hypothesized to bind downstream of Pol II for DNA
damage verification. This not only suggests that UVSSA and CSB bind to
opposite sides of Pol II, but also suggests that the helicase activity of
TFIIH might be involved in reverse translocation (backtracking) of Pol
II [38,70]. This would indicate that proofreading of the lesion and
backtracking of Pol II is mediated by the exact same complex, namely
TFIIH, assuring efficient subsequent removal of the TBL by excision. Of
note, in this model TFIIH-mediated backtracking of Pol II is counter-
acted by the Pol II forward translocating property of CSB (Fig. 2). It is
therefore tempting to speculate that after TFIIH recruitment, CSB needs
to be removed in order for Pol II to be efficiently backtracked by TFIIH.
Eviction of CSB from the TC-NER complex might be mediated by ubi-
quitylation, as CSB was shown to be degraded following CRL4CSA-
mediated ubiquitylation [48]. However, this may also be mediated by
other E3 ligases like BRCA1-BARD1, as this heterodimer was previously
implicated to ubiquitylate CSB and target it for proteasomal degrada-
tion [79]. Interestingly, USP7 and TFIIH are described to bind a similar
region of UVSSA [61,64], which might suggest competitive binding of
these proteins. This putative mutual exclusive binding of either TFIIH
or USP7 to UVSSA might suggest that USP7-mediated CSB deubiqui-
tylation activity is lost following TFIIH recruitment. This will result in
increased CSB polyubiquitylation, which subsequently might result in
removal of CSB from the TC-NER complex by proteasomal degradation.
This may enable TFIIH to reverse translocate Pol II and verify the DNA
damage [68,70].

Although it is tempting to speculate that CSB needs to be degraded
in order to allow Pol II backtracking and damage verification by TFIIH,
it cannot be excluded that the ATPase activity of CSB is inhibited, or
that CSB is evicted from the chromatin without being degraded. In line
with this last possibility, the C-terminal ubiquitin-associated (UBA)
domain of CSB, which interacts with ubiquitin chains, plays a role in
eviction of CSB from the TC-NER complex. CSB mutants lacking this
UBA domain remain trapped at TC-NER complexes, resulting in in-
creased UV-sensitivity and reduced transcription restart, indicating that
removal of CSB is a crucial step during TC-NER [34,80,81]. In line with
a specific role in eviction of CSB at later stages in the TC-NER reaction,
deletion of the UBA domain does not interfere with TC-NER complex
assembly or ATPase activity of CSB [80,81], although CSA translocation
to the nuclear matrix was affected [34]. However, thus far the exact
mechanism of CSB eviction and the ubiquitylated substrates which are
recognized by the UBA domain of CSB remain elusive. Future experi-
ments are necessary to test the above described model.

2.4. Pol II degradation

In addition to backtracking and lesion bypass, cells have evolved an
additional mechanism to ensure clearance of lesion-stalled Pol II. The
largest Pol II subunit, RPB1, was shown to be degraded by the pro-
teasome following UV-induced DNA damage. This degradation is hy-
pothesized to be a ‘last resort’ pathway, which only happens in condi-
tions where TC-NER fails or when the damage load is too high [82–84].
Pol II degradation is a highly inefficient process, as cells have to
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generate new elongating Pol II complexes to restart transcription. In
addition, degradation may result in a global decrease of the total Pol II
pool that will likely influence transcription in general. However, de-
gradation of Pol II prevents severe cytotoxic effects caused by persistent
Pol II-stalling at DNA damage which forms genomic roadblocks for
advancing replication forks and other chromatin involved processes and
may induce the formation of R-loops [6–9,85]. In addition, degradation
of Pol II will make the DNA lesion accessible for another round of TC-
NER or for additional repair pathways to remove the TBL, for example
by GG-NER.

During the last resort pathway, RPB1 is polyubiquitylated by the E3
ubiquitin ligase NEDD4, which generates lysine 63-linked polyubiquitin
chains [86]. These chains are subsequently trimmed down by deubi-
quitylating enzymes until a monoubiquitin modification remains on
RPB1. This monoubiquitin can be extended with lysine 48-linked
polyubiquitin chains by the Elc1/Cul3 ligase complex. Next, this
chromatin bound, ubiquitylated RPB1 is recognized by the ubiquitin-
selective segregase valosin-containing protein (VCP/p97) which re-
moves RPB1 from the stalled complex and results in its proteasomal
degradation [46,82,87].

2.5. Clinical consequences and phenotypical differences

The above described new insights in TC-NER may also have im-
plications for understanding TC-NER-linked disorders. The importance
of functional TC-NER is clearly illustrated by the Cockayne syndrome
(CS), a human disorder with defective TC-NER, caused predominantly
by mutations in CSA and CSB [88]. CS is characterized by sensitivity to
UV light, progressive neurodevelopmental symptoms, growth and de-
velopmental problems, mental retardation and severe premature aging
[89–91]. Strikingly, UV-sensitive syndrome (UVSS), which is mainly
caused by mutations in UVSSA, is also characterized by absence of TC-
NER-mediated removal of UV-induced TBLs [92], but displays only
mild cutaneous UV sensitivity in sharp contrast to the premature and
developmental features observed in CS [74,78,93]. The phenotypical
differences between these two syndromes may partially be explained by
additional functions of CS proteins compared to UVSSA. For example,
CS proteins were proposed to be implicated in specific transcriptional
programs [94], transcription initiation [95], redox balance [96], repair
of double strand breaks [97,98] and maintenance of mitochondrial
DNA stability [99,100], while thus far no such roles are described for
UVSSA. Importantly, it was also suggested that the additional CS fea-
tures may be derived from a defect in repair of (endogenously pro-
duced) oxidative DNA damage interfering with transcription [25,101]
as it was shown that CS cells but not UVSS cells are sensitive to oxi-
dative DNA damage (Fig. 3) [102,103]. CSB deficient cells lack the
ability to forward translocate Pol II, which in case of an oxidative lesion
will result in the inability to bypass this lesion [38]. This might result in
persistent stalling of Pol II, thereby preventing access for base excision
repair proteins to remove the lesion (Fig. 3). On top of that, persistent
stalling of Pol II can eventually lead to collisions with replication forks
or result in onset of R-loops [7,104] which may contribute to the CS
phenotype. Recently, it was indicated that also UVSSA is involved in
repair of oxidative lesions [105]. However, in absence of UVSSA, CSB is
expected to still induce transcriptional bypass of oxidative lesions
which suggests that the reduced repair rate of oxidative lesions due to
loss of UVSSA might be less cytotoxic than persistently stalled Pol II
complexes (Fig. 3) [24,38,77,78,90]. It has to be noted that mutations
in CSA and CSB result in similar phenotypes [90], however thus far no
role for CSA in lesion bypass of oxidative damage has been reported. In
addition, loss of UVSSA might result in destabilization of CSB, due to
impaired recruitment of USP7 to the TC-NER complex. Stabilization of
CSB by UVSSA/USP7 might only be essential when the ATPase activity
of CSB is needed for prolonged time, for example on UV-induced lesions
to initiate TC-NER [38,78]. However this stabilization might not be
essential during the most likely more rapid lesion bypass of oxidative

lesions (Fig. 3). A different but not mutually exclusive explanation for
observed phenotypical differences between the TC-NER disorders might
be that CSA and CSB are involved in degradation or removal of Pol II
[106]. Absence of CS proteins might lead to persistent stalling of Pol II
with the lesion trapped in the active site thereby completely covering
the lesion and preventing repair. In contrast, UVSS cells might still be
able to remove Pol II from the lesion and repair UV-induced tran-
scription blocking lesions with alternative repair pathways. In this
scenario, 6-4PP lesions will be quickly repaired by GG-NER. However,
CPD lesions are less efficiently repaired by GG-NER and their pre-
valence might explain the UV-sensitivity and failure to restart tran-
scription as observed in UVSS cells (Fig. 3) [74].

To obtain a better understanding of the contribution of TBLs to the
phenotypes of TC-NER linked disorders, genome instability and DNA
damage-induced aging, it is of great importance to understand the exact
mode of action of the various TC-NER factors during the different stages
of this repair pathway. New insights in the spatio-temporal TC-NER
complex composition might give important indications when the dif-
ferent activities of TC-NER factors are crucial, or alternatively, when
specific factors need to be evicted from damaged chromatin to allow
progression to subsequent reaction-steps. In addition, more in-depth
experiments are needed to unravel the exact functions of TC-NER fac-
tors. For example, even though the E3 ligase activity of the CRL4CSA

complex is crucial for TC-NER, its exact role and substrates remain
elusive. In addition to this important ubiquitin-mediated regulation
[46], other post-translational modifications are expected to provide
additional layers of control to allow efficient damage recognition and
removal. For example, SUMOylation has recently been shown to target
CSB and this modification is essential for efficient TC-NER [34]. To be
able to explain the striking differences observed in TC-NER phenotypes
[74,78,93], it is important to identify putative differential activities of
TC-NER factors or changes in the TC-NER complex composition fol-
lowing exposure to different types of TBLs. For example, recently it was
shown that CSB is differentially ubiquitylated following UV-induced or
oxidative lesions [81], indicating that depending on the type of lesion,
the TC-NER complex is regulated in a different manner.

3. Genome-wide consequences of transcription-blocking lesions
on transcription

Since TC-NER is initiated via recognition of lesion-stalled Pol II,
most research on the effects of transcription-blocking DNA damage has
been focused on this specific, damage-engaged subset of elongating
polymerases [25,90]. However, in addition to direct consequences of
DNA lesions that impede Pol II forward progression - effects in cis -,
accumulating evidence shows that several important regulatory me-
chanisms exist that also affect non-lesion stalled Pol II in a genome-
wide manner - effects in trans -. Both these cis and trans-effects are
expected to be vital for cells to cope with the severe consequences of
TBLs [85,107]. In this section, we will focus on genome-wide regulation
of Pol II following DNA damage. We will discuss examples of TBL-in-
duced effects that result in specific transcriptional programs, induced
by either targeting the transcription cycle or by affecting mRNA spli-
cing. Especially the highly regulated process of Pol II-mediated tran-
scription offers several important control steps that can be targeted to
regulate transcription, prevent genome instability and reduce cyto-
toxicity following exposure to TBLs.

Pol II-mediated transcription is initiated by general transcription
factors that facilitate recruitment of Pol II and assembly of the pre-
initiation complex (Fig. 4) [108]. During initiation, the CDK7 kinase
activity of TFIIH phosphorylates serine 5 of the C-terminal domain
(CTD) of RPB1, the core catalytic subunit of Pol II. This allows Pol II to
engage the DNA template and start transcribing a short stretch of RNA
followed by a transient pause ∼60 bp downstream of the transcription
start site (TSS) (Fig. 4) [3,109]. The release of Pol II from promoter
proximal pause sites into productive elongation is mediated by the
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CDK9 kinase activity of the positive transcription elongation factor b
complex (p-TEFb). CDK9-mediated phosphorylation converts the DRB
sensitivity inducing factor (DSIF) into a positive elongation factor, fa-
cilitates the release of the negative elongation factor (NELF) complex,
and phosphorylates the CTD of RPB1 on serine 2 [3]. The different
phosphorylation statuses of Pol II also mediate the binding and release
of splicing factors as previously reviewed [110]. The CTD serves as a
‘landing path’ for the spliceosome and mediates co-transcriptional
splicing [110].

3.1. Effects on Pol II transcription upon UV damage

One of the first indications of TBL-induced genome-wide effects on
transcription was the observation that TATA-binding protein (TBP) is
sequestered at cisplatin‐ and UV‐damaged DNA. This results in a re-
duced availability of TBP to bind at promoter regions, subsequently
leading to less transcription initiation [111]. This observation was
followed by the discovery of another in trans effect, a massive depletion
of the hypophosphorylated initiating form of Pol II upon UV irradiation,
with a concomitant increase in the hyperphosphorylated elongating Pol
II [112]. Additional research indicated that this shift could be explained
by the inhibition of transcription initiation that was detected in UV-
treated cell extracts using in vitro assays [112]. Although this indicates
that DNA damage directly interferes with the transcription cycle, the
loss of hypophosphorylated Pol II can also partially be explained by
stalling of elongating Pol II at TBLs, thereby increasing the fraction of

hyperphosphorylated Pol II. In line with these early observations, more
recently published genome-wide Pol II ChIP-seq data showed that di-
rectly following UV-induced DNA damage, Pol II was cleared from the
promoter [113]. The loss of Pol II ChIP-seq reads near the promoter,
which most likely represent promoter paused Pol II, can be explained in
different ways: Either (1) promoter paused Pol II is released into the
gene body, (2) paused Pol II is specifically evicted from the chromatin
or (3) transcription initiation is inhibited.

As this study showed that in addition to the loss of Pol II, TFIIH
promoter-binding was reduced following UV irradiation, it was con-
cluded that there is less TFIIH available for transcription initiation
[113]. Reduced availability of TFIIH during transcription initiation
might be caused by the involvement of this general transcription factor
in the TC-NER reaction following DNA damage. In line with this hy-
pothesis, reduced promoter binding of TFIIH and Pol II following UV-
induced DNA damage could be rescued by depletion of CSB [113]. This
is an intriguing finding since the vast majority of repair-associated
TFIIH is active in GG-NER, which makes up the bulk portion of NER
[114]. This may suggest that specifically occupation of TC-NER-asso-
ciated TFIIH is causing inhibition of transcription initiation (Fig. 4). It is
interesting to note that, although most of the genes show a decrease in
promoter bound Pol II as a result of DNA damage, a specific subset is
shown to be regulated differently. Interestingly, this set of genes is
shown to have strongly increased binding of Pol II and consists of genes
mainly involved in the p53 response, DNA damage response and
apoptosis [113], indicating that this mechanism can stimulate the

Fig. 3. Differential processing of TBLs may explain differences in Cockayne Syndrome and UV sensitive syndrome. Less bulky lesions like oxidative damage
(top row) and transcription-blocking damage including UV-induced CPDs (middle row) will lead to stalling of Pol II. Inwildtype cells, CSB will bind TBL-stalled Pol
II and induce its forward translocation. In case of oxidative lesions, translocation of Pol II by CSB can successfully bypass the lesion making it accessible for
alternative repair, e.g. by BER. In contrast, CSB cannot translocate Pol II over TBLs and this will initiate TC-NER to remove the lesion and restart transcription. In
absence of CSB, TBL-stalled Pol II cannot be forward translocated. Therefore, Pol II may not be able to bypass oxidative damage nor trigger TC-NER and will most
likely remain stalled on the lesion. Persistent stalling can lead to transcriptional interference, cause replication-transcription collisions and form R-loops. CSB-
deficient cells are sensitive to both oxidative damage as well as TBLs most likely causing the severe Cockayne Syndrome phenotype. In absence of UVSSA, CSB is still
able to bind the DNA and probe Pol II for translocation. This will lead to successful bypass of oxidative damage similar as in wildtype cells. However, most likely due
to absence of UVSSA, CSB will be degraded more rapidly. However, as CSB-induced lesion bypass of oxidative damage might be a swift process, it is therefore not
expected to be influenced by the decreased CSB half-life. Since there is still CSA and CSB present in absence of UVSSA, lesion-stalled Pol II might be degraded or
displaced from the lesion. This will prevent persistent stalling of Pol II and makes the lesion accessible for repair by alternative repair pathways like GG-NER. As a
consequence, UVSSA-deficient cells are sensitive for TBLs but not oxidative damage, which might result in the milder UV-sensitive syndrome.
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expression of specific genes following TBL induction.

3.2. p-TEFb activation stimulates transcription of the 5′ end of genes

Another genome-wide effect on the transcription cycle following
UV-induced DNA damage is caused by activation of p-TEFb [115]. In
unperturbed conditions, a pool of p-TEFb is kept in an inactive state in
the 7SK snRNP complex [116–120]. Upon UV-irradiation, most likely
not as a direct effect of DNA damage but via the damage-induced Ca2+/
calmodulin signaling pathway, p-TEFb is released from its inhibitory
complex [116,121]. It was recently shown that a rapid increase of ac-
tive p-TEFb levels following UV exposure resulted in a wave-like release
of promoter paused polymerases into productive elongation on almost
all active genes (Fig. 4) [122]. This will increase the likelihood of Pol II
encountering a lesion, thereby promoting lesion-recognition and in-
itiation of TC-NER. A wave-like release might also partially explain the
loss of promoter bound Pol II directly after UVB irradiation as described
above [113]. Interestingly, such a de novo wave-release of Pol II into the
gene body [122] in combination with inhibited transcription initiation
[111–113] might be indicative for a “final” round of transcription to
‘sense’ TBLs and swiftly initiate repair. Recently it was suggested that a
significant population of lesion-stalled Pol II is released from the DNA
template during TC-NER [123]. This suggests that individual elongation
complexes will not engage in multiple rounds of TC-NER on successive
lesions and indicates that only the first encountered TBL in a gene will
be recognized. Such a scenario would result in preferential repair of
TBLs close to the transcription start site (Fig. 4). This hypothesis was
supported by a meta-analysis of previously performed excision repair
sequencing (XR-seq) data showing that most TC-NER is executed in the
beginning of genes [122,124]. This is an intriguing finding since TBLs
located more downstream will still inhibit gene expression when not
repaired properly. Preferential repair of the 5′ end of genes might

suggest that the genetic information encoded in this region is especially
important to preserve and might play an important role in the DNA
damage response.

3.3. The role of gene size in response to DNA damage

The idea that the 5′ end of genes is important is supported by the
finding that transcription might be spatially restricted to the first 20 to
25 kb of a gene in response to UV [125]. TBL-induced expression of
shorter mRNAs is associated with a shift from expression of long
mRNAs to shorter isoforms, thereby incorporating alternative last exons
(ALEs) that are located closer to 5′ end of the gene (Fig. 4). Expression
of shorter isoforms will therefore result in damage-induced, altered
gene expression [125]. A key example of altered gene expression due to
switching to short isoforms is the Activating Signal Cointegrator 1
Complex Subunit 3 (ASCC3). Following UV-damage, the long ASCC3
isoform (over 370 kb, 42 exons) is replaced by expression of the short
ASCC3 isoform (25 kb) which only shares three exons with the long
isoform and has a unique terminal exon. Interestingly, the long ASCC3
isoform encodes the ASCC3 protein that is involved in repression of
transcription [125,126]. In contrast, the short isoform is functioning as
a non-coding RNA which is essential for proper transcription restart
[125]. These two isoforms have opposing effects on transcription and
the changed balance upon UV irradiation can regulate transcription
inhibition and restart. The importance of shorter transcripts following
TBL-induction might explain the observed preferential repair near
5′end of genes.

The concept that short genes are less susceptible to DNA damage is
more commonly observed in the DNA damage response. The human
genome consists of over 20.000 genes which vary greatly in gene size.
Assuming that TBLs are genome-wide dispersed in a stochastic manner,
long genes are more susceptible to gene inactivation due to direct

Fig. 4. Effects of transcription-blocking lesions in trans. (1) Basal transcription consists of initiation, pausing and elongation. General transcription factors help
Pol II to initiate transcription from the transcription start site (TSS). Pol II pauses on the promoter proximal pause site (orange, PPP) before being released into
productive elongation. (2) TBLs have different effects on transcription in a genome-wide manner. (2, left panel) Upon UV irradiation, transcription initiation is
inhibited, decreasing the formation of new pre-initiation complexes, resulting in transcription inhibition. (2, middle panel) In addition, p-TEFb is activated in-
dependent of transcription. Activated p-TEFb stimulates release of Pol II from the PPP into productive elongation. This might result in increased sensing of TBLs and
increased TC-NER. (2, right panel) Following UV-induced DNA damage, transcription switches to expression of shorter mRNA isoforms by using alternative last
exons. (3) Both increased pause release of Pol II from the PPP into productive elongation, in combination with Pol II release from the DNA template following stalling
at TBLs, as well as spatial restriction of transcription by the expression of shorter isoforms with alternative last exons, results in preferential transcription and TC-NER
in the 5′ end of genes. This might leave the distal part of genes accessible for repair by GG-NER.
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stalling of Pol II on a TBL than shorter genes [127,128]. A higher
chance for TBLs in long genes compared to short genes, which will be
especially relevant under physiologically relevant low damage loads,
was linked to a shift in gene expression in favor of small genes upon
DNA damage exposure [127,129]. Possibly, gene size has been selected
during evolution to maintain proficient expression of genes that are
important for proper cellular responses following exposure to tran-
scription-blocking DNA damage [129].

A clear example of a small gene that plays an important role fol-
lowing UV-induced DNA damage is the immediate early gene (IEG)
activating transcription factor 3 (ATF3) [130–133]. IEGs are in general
short genes and their expression can be rapidly induced following cel-
lular stress [130]. In line, also expression of ATF3 is strongly increased
following UV-induced DNA damage [131–133]. Upon expression, ATF3
is targeted to CRE/ATF-binding sites which are located near promoters
of specific genes, thereby inhibiting specifically the expression of these
genes [131,132]. Importantly, this ATF3-mediated transcription in-
hibition in trans needs to be resolved to allow proper transcription re-
start as discussed below in the transcription restart section. In addition
to ATF3, also BMI1 together with the E3 ligase UBR5 was recently
shown to repress Pol II elongation and nascent RNA synthesis at UV-
induced DNA lesions [134]. Together, the above discussed examples
show that different factors actively repress transcription in trans fol-
lowing DNA damage, either in general or by targeting a specific subset
of genes.

3.4. Alternative splicing enhances DNA damage signaling

In addition to the above described selection of alternative last exons,
which results in expression of smaller mRNAs following TBL induction,
also other alternative splicing (AS) mechanisms play an important role.
Damage-induced effects on splicing can induce specific gene expression
programs or may contribute to damage-involved signaling. AS-induced
expression of different isoforms following DNA damage, has thus far
been attributed to changes either in Pol II elongation rate (kinetic
coupling) [135,136] or in the interaction between Pol II and the core
spliceosome or splicing regulators (recruitment coupling)
[104,137,138].

An example of the kinetic coupling model is nicely illustrated by the
observed increase in phosphorylation of the C-terminal domain (CTD)
of Pol II, which slows down transcription elongation [135]. A reduced
elongation rate can result in exon inclusion [135,136] or skipping
[139,140]. UV-induced AS is a general mechanism regulating expres-
sion of many genes, including several genes specifically involved in
regulation of survival and apoptosis. For example, the ratio between
anti-apoptotic Bcl-xL and pro-apoptotic Bcl-xS, both isoforms of the Bcl-
x gene, is shifted towards the Bcl-xS isoform contributing to a higher
UV-induced cell death [135]. Interestingly, it was shown that UV-in-
duced AS also happens on non-damaged genes, indicative for an effect
in trans on Pol II and co-transcriptional splicing [135].

In line with the finding that regulation of AS by kinetic coupling is
regulated in trans, it was recently shown that ataxia telangiectasia and
Rad3-related (ATR) signaling plays an important role in UV-induced
hyperphosphorylation of the CTD of Pol II [141]. ATR is known to be
activated upon UV-irradiation in non-cycling cells, following excision of
the lesion-containing DNA during the XPF/ERCC1- and XPG-mediated
excision step of NER. The residual repair-intermediate, containing a
22–35 nucleotide long piece of ssDNA, is bound by RPA which is sub-
sequently recognized by ATR interacting protein (ATRIP)/ATR com-
plexes thereby triggering ATR signaling [74,142,143]. Of note, the
study on ATR signaling used keratinocytes in which the majority of
ssDNA intermediates will be generated via the much more active GG-
NER sub-pathway [114]. This suggests that stalling of Pol II itself may
not be the initiating event, but that Pol II is a target of the ATR-induced
effect on elongation speed [141].

Together these studies show that in addition to direct impediment of

the forward translocation of elongating Pol II by the lesion [13,16–21],
the elongation rate of Pol II is also affected in trans by ATR. A reduced
transcription elongation rate will subsequently lead to AS events [136],
resulting in induction of specific isoforms following DNA damage
[135,141]. Whether and how this ATR and DNA damage-induced Pol II
hyperphosphorylation is different from the canonical hyperpho-
sphorylated (Pol IIO) remains currently unknown. Of note, most likely
ATR affects Pol II in an indirect manner as there are no target sequences
known in the CTD for this DNA-damage kinase. Interestingly, in addi-
tion to reducing Pol II elongation rate, ATR activation may also affect
different axillary factors involved in AS [144–147].

In addition to the above described AS events according to the kinetic
coupling model, TBLs also result in AS following the recruitment model
[104,137,138]. For example, UV irradiation- or camptothecin-induced
TBLs induce co-transcriptional exon skipping of for example theMDM2,
CHEK2 and MAP4K2 transcripts [137,138]. This damage-induced AS is
linked to the loss of interaction between EWS, a member of the TET
family of RNA and DNA-binding proteins, and its target RNAs [137].
The loss of interaction between these co-transcriptional binding part-
ners might be mediated by the lost interaction between EWS and the
spliceosome-associated factor YB-1 upon DNA damage [138]. Also in
Drosophila cells, camptothecin induces AS which is mediated by ATR
activation and results in proteasome-mediated degradation of splicing
regulator Tra2 [146]. Interestingly, in addition to damage-induced AS
by targeting splicing regulators, it was recently shown that also the core
spliceosome is affected following the induction of TBLs. Pol II stalling
on TBLs promotes chromatin displacement of late-stage spliceosomes
[104], composed of U2, U5 and U6 small nuclear ribonucleoproteins
[148], and initiates a positive feedback loop centered on the signaling
kinase ATM. The initial spliceosome displacement results in an in-
creased R-loop formation through hybridization of pre-mRNA with
template DNA [104,149]. Interestingly, R-loop formation near the TBL
leads to a non-canonical activation of the protein kinase ATM, which
signals to impede core spliceosome organization even further, conse-
quently resulting in increased intron retention and altered splicing in a
genome-wide manner [104,150].

4. Regulation of transcription restart

Even when TBLs are successfully repaired, their induction is ex-
pected to remain highly cytotoxic if transcription is not properly re-
sumed. Therefore, transcription restart is important to assure proper de
novo mRNA production and to maintain cellular homeostasis [85].
Transcription restart was thus far mostly assumed to reconvene at the
lesion where Pol II was stalled, as soon as the TBL is removed by TC-
NER [25,151]. However, as discussed above, also a significant part of
TBL-induced transcription inhibition is caused by effects in trans that
have direct consequences for the mode of transcription restart. For
example, if the TBL-induced block in transcription initiation is reversed
[111–113], this will result in transcription restart by new initiation
events at the promoter. In line with these findings, genome-wide ana-
lyses of nascent RNA sequencing data [152] showed that transcription
recovery of RNA synthesis occurred as a wave in the 5′-3′ direction
following UV- or camptothecin-induced TBLs. This indicates that a
significant part of transcription restarts at the beginning of genes
[127,128], which could provide time for the GG-NER pathway to re-
move TBLs at the more distal parts of genes before the transcription
machinery encounters these lesions [127]. This could result in a smooth
progression of transcription once restarted. Transcription restart at the
promoter might be caused by recovery of in trans-mediated transcrip-
tion initiation blockage but may also indicate that transcription does
not always resume from the position where it was initially stalled (in
cis). In line with the latter, it was recently suggested that a significant
population of lesion-stalled Pol II is released from the DNA template
during the TC-NER reaction [123], indicating that the observed tran-
scription resumption from the 5′ end of genes might also be a common
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mechanism for transcription inhibition in cis.
Of note, these findings do not exclude that transcription can also be

restarted at the site of the lesion itself which is in line with several
factors suggested to be involved in backtracking or 3′-end RNA pro-
cessing [25,107]. Furthermore, transcription resumption directly at the
repaired lesion seems to be the most efficient restart mechanism since
the same Pol II complex is able to continue with transcription of the
already partially synthesized mRNA.

4.1. Factors involved in transcription restart

Thus far, several factors have been suggested to be involved in
backtracking of Pol II to allow repair. To resume transcription from this
backtracked position it is crucial that protruding nascent RNA is
cleaved so that the 3′ end of the RNA is properly realigned with the
DNA in the active site of Pol II [153]. This reaction is mediated by
transcription factor II S (TFIIS) which is suggested to stimulate the in-
trinsic 3′–5′ exonuclease activity of Pol II [21,153–155]. TFIIS is re-
cruited in a CSA- and CSB-dependent manner [33]. The Ccr4-Not
complex further supports recruitment of TFIIS and enhances its cleaving
activity thereby suggesting that TFIIS and Ccr4–Not jointly reactivate
arrested Pol II [156]. Absence of TFIIS results in significantly decreased,
but not completely absent, transcription resumption. This can be ex-
plained by the fact that remaining intrinsic cleavage activity of Pol II is
sufficient to cleave the RNA and restart transcription. Even though this
restart will happen in a less efficient manner, it is most likely sufficient
to prevent increased UV-sensitivity upon depletion of TFIIS
[153,157,158]. The intrinsic cleavage activity of Pol II might also ex-
plain the observed differences in the role of TFIIS in transcription re-
sumption [157,158], but this may also be caused by the presence of the
redundant TFIIS paralogue TCEA2, which is not solely expressed in the
testis as originally described [159]. In addition to its stimulating
function on TFIIS, Ccr4-Not was suggested to directly promote tran-
scription elongation by binding to the emerging transcript, thereby
stimulating Pol II to resume transcription after repair of a lesion [160].
Despite that TFIIS and Ccr4-Not are implied in Pol II backtracking to
allow resumption of transcription, it cannot be excluded that their role
in facilitating RNA cleavage of the protruding RNA may also be in-
volved in release of Pol II from chromatin following TC-NER initiation
[123].

Another factor which was shown to stimulate transcription restart is
elongation factor ELL which binds to TFIIH via the CDK7 subunit of the
CDK-activating kinase (CAK) complex. Thus far, the exact function of
ELL during transcription restart remains unknown. However, it was
hypothesized that ELL functions as a docking protein, thereby enabling
other proteins to bind and stimulate transcription resumption. ELL was
shown to be specifically involved in transcription resumption since
depletion of ELL does not affect TC-NER [161]. This uncoupling of re-
pair and transcription restart might also indicate that ELL is involved in
transcription restart at the TSS as a consequence of damage-induced
transcription inhibition in trans [161].

Another important process during transcription restart is resolving
ATF3-mediated transcription inhibition, which has been shown to affect
approximately 5000 genes [131,132]. Interestingly, CSB and the
CRL4CSA E3 ligase complex, possibly together with the E3 ubiquitin
ligase Mdm2, were shown to ubiquitylate ATF3 [131]. The subsequent
proteasomal degradation of ATF3 at CRE/ATF sites relieves the ATF3-
mediated transcriptional repression. This finding also suggests that on
top of absence of functional TC-NER in CSA and CSB-deficient cells, loss
of transcription restart might be partially explained by maintained
transcriptional repression of ATF3-regulated genes and consequently
contributes to the severe phenotype observed in CS patients [131,132].
Interestingly, in addition to the well-described function of CSB on
stalled Pol II, this finding suggests that CSB has an additional function
at the promoter. This might be in line earlier with observations that CSB
is involved in regulating gene expression [94].

4.2. Chromatin remodeling factors involved in Pol II restart

Histone chaperones and ATP-dependent chromatin remodelers are
responsible for histone sliding, eviction and insertion to remodel
chromatin and facilitate different DNA transacting processes. Several
remodeling factors were identified to be specifically involved in NER-
mediated repair [162]. In addition to their role in repair, several of
these chromatin involved factors were also shown to play a key role in
the restart of transcription [163,164]. For example, nucleosome
binding protein HMGN1 and p300 histone-acetyl transferase were
shown to be recruited to the TC-NER complex [33]. These factors are
hypothesized to induce sliding of upstream nucleosomes resulting in a
more open chromatin structure, which might facilitate Pol II back-
tracking [25,165,166].

In addition, the histone chaperones Histone regulator A (HIRA) and
Facilitating Chromatin Transcription (FACT) were identified to remodel
histones following TBL induction, a process that was shown to be es-
sential for transcription restart [167,168]. HIRA is recruited to sites of
DNA damage where this histone chaperone deposites histone variant
H3.3 near the damage [167]. Histone 3.3 is normally involved in pro-
moting transcription or removing inhibitory factors via specific marks
[169] and might promote transcription restart via this mechanism. The
other chaperone, FACT, consists of the SPT16 and SSRP1 subunits and
was shown to exchange histone H2A and H2B which stimulates Pol II
transcription along chromatin by destabilizing nucleosomes [170]. In-
terestinlgy, only the SPT16 subunit of the FACT complex was shown to
be important for transcription restart, in line with SPT16-dependent
accelerated H2A/H2B exchange at the site of damage [168]. This sug-
gests that SPT16 increases plasticity of chromatin via enhanced in-
corporation of histone H2A/H2B [171], thereby promoting transloca-
tion of Pol II either to enhance repair, reverse translocate Pol II from the
lesion or restart transcription after repair [168]. In addition to these
two histone chaperones, proteins involved in post-translational mod-
ifications of histones may promote transcriptional restart. For example,
the lysine methyltransferase DOT1L normally methylates H3K79, a
histone mark that regulates transcription [172,173]. DOT1L knock-out
cells show increased UV-sensitivity coupled to a deficient recovery of
transcription restart following TBL induction without affecting TC-NER
[174]. These DOT1L effects can be rescued by treatment with Tri-
chostatin A, which relaxes the chromatin structure, suggesting that
DOT1L promotes transcription initation by opening up chromatin of
UV-repressed genes and is therefore essential for transcription restart
[174]. Interestingly, HIRA and DOT1L are not necessary for transcrip-
tion restart in response to the reversible transcription inhibitor DRB
[167,174], indicative for a specific regulation of transcription restart
following removal of TBLs. In line with this additional layer of control
during the cellular response to TBLs, it was observed that transcription
restart can be regulated in a gene-specific manner [127].

5. Outlook

The development of new sequencing approaches, including nascent
RNA-seq [127], XR-seq [124] and ChIP-seq [113,122], has resulted in
important new insights in the underlying mechanism of transcription
inhibition in response to UV-induced DNA damage. In addition to the
direct physical block of Pol II once encountering a TBL (inhibition in
cis), accumulating evidence shows that the highly regulated transcrip-
tion cycle is targeted at different key steps to efficiently induce tran-
scription inhibition in a genome-wide manner (inhibition in trans).
Examples are inhibition of transcription initiation [112,113] or induc-
tion of immediate response genes (IEGs) like ATF3 that inhibit tran-
scription by binding to their response elements near promoters
[131–133]. Most likely many more cellular processes that are involved
in transcription inhibition following TBL induction await their dis-
covery. One of the main questions that remains, is why transcripition is
inhibited in a genome-wide manner, while cells are equiped with a
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highly efficient TC-NER pathway that can directly resolve lesion-stalled
Pol II. Apparently, additional back-up mechanims are required for
proper cell surival following DNA damage. It is tempting to speculate
that these mechanisms have evolved to prevent persistent Pol II stalling,
as lesion-stalled Pol II repair intermediates might be more toxic for a
cell than the actual TBL itself, for example due to the induction of R-
loops [7,8] or transcription-replication collisions [6]. Importantly, by
affecting a specific subset of genes, these genome-wide regulatory sys-
tems allow cells to regulate transcription of genes essential for cells to
cope with TBLs. As a consequence, TC-NER activity is focussed on re-
pair of these important genes that are not inhibited in trans.

It has been shown that different types of TBLs have different out-
comes on the impedement of Pol II in cis [15]. Therefore, it seems lo-
gical that also transcription inhibition in trans could be differentially
affected depending on the type of damage. In line with this idea, re-
cently a rapid accumulation of Pol II near promoters and enhancers was
observed following oxidative damage [175]. This is in sharp contrast to
rapid release of paused Pol II into productive enlongation observed
following UV-induced DNA damage [122]. The differential response
between these types of DNA damage could be explained by differences
in the activation mechanisms of these pathways. Some of the in trans
effects are induced by the initial stalling of Pol II at a lesion, including
release of the core spliceosome and subsequent ATM activation [104].
In contrast, UV-induced p-TEFb activation by release from its inhibitory
complex is a direct consequence of the UV-damage and is thus activated
independent of transcription [122]. To obtain a better insight in the
biological relevance of the mechanism of transcription inhibition, it is
important to study whether different types of TBLs have different out-
comes on transcription inhibition in trans. In addition, TBLs may also
have strikingly different outcomes in different cell types and organs
[74,176,177]. This is clearly illustrated by extreme damage-sensitivity
of photoreceptor cells in retinas of TC-NER-deficient mice or neurode-
generation in CS patients [178,179]. These differential cellular out-
comes to TBLs may be explained by differences in transcription levels,
replication or activity of DNA-repair pathways. However, also the
presence of multiple mechanisms to inhibit transcription might explain
the differential response and sensitivity of different tissues to TBLs.

Improved insights in different modes of transcription inhibition,
both in cis and in trans, is crucial to understand the molecular me-
chanism of transcription restart. For example, a large contribution of
transcription inhibition in trans will most likely result in restart from the
TSS, while stalling of Pol II in cis might result in transcripiton re-
sumption by the same Pol II and RNA molecule that was stalled at the
TBL. Even though transcription will be restored in both cases, the
molecular mechanisms to restart transcription and the involved factos
will be completely different for restart at the beginning of genes com-
pared to transcription resumption at the TBL.
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