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COMPLEXITY AND ACCURACY IN CONSUMER CHOICE: THE DOUBLE BENEFITS OF

BEING THE CONSISTENTLY BETTER BRAND

Abstract

This study investigates the impact of choice complexity on consumer utility and choice. The
authors find that for choices with up to seven alternatives and seven attributes choice
accuracy is affected by three context-based complexity effects but not by task-based
complexity. The results suggest that brands that are able to create products that outperform
competing products and that do so consistently across multiple attributes benefit from a
double bonus. Not only is their product more attractive to consumers, but the accuracy with
which consumers choose the product also increases, leading to a further increase in the

brand’ s market share.



INTRODUCTION

The accuracy with which consumers choose their products has important implications for
marketing. If consumer choices are not very accurate (i.e., their choices are a poor reflection
of their preferences), the impact of improvements in marketing mix variables on product
choice probabilities is likely to be low, and brands can find it difficult to position themselves
away from other brands. This situation is especially harmful to producers of products that are
in some way superior to competing products, because consumers may not take into account
the product’s strengths. In contrast, if consumer choices are accurate, marketing mix
variables may have a much higher impact on consumer choices and product differentiation
may be achieved more effectively. Consumers also benefit from greater choice accuracy
because the utility of the products they purchase will increase.

In this study we focus on choice set complexity as a potentially important driver of
variations in consumer choice accuracy (e.g., Johnson and Payne, 1985). To our knowledge,
we are the first to investigate the relationship between choice set complexity and choice
accuracy empirically. Another novelty of our analysis is that we combine and compare the
effects of task-based complexity with three types of context-based complexity. For this
purpose we have integrated complexity and accuracy measures in an empirical mixed logit
framework. Some simulation studies exist on the relation between complexity, effort, and
choice accuracy (Johnson and Payne 1985) and there is some recent empirical work on the
relationship between effort and accuracy (Haaijer et a. 2000) and between preference
uncertainty and complexity in judgement ratings data (Fischer et al. 2000). As far as we

know, however, no such empirical research exists in the area of choice.

We analyze the impact of complexity on accuracy in consumer utility (which is most

relevant for consumer welfare) as well as consumer choice probability (which is most



relevant for marketing mix effectiveness) and compare the effects of task-based and context-
based complexity (Johnson and Payne 1985). Task-based complexity refers to the number of
cognitive steps a consumer needs to choose an optimal product. It is expressed as the
combined effect of the number of attributes and the number of aternatives in the choice set.
Context-based complexity refers to the difficulty of the trade offs that consumers have to
make. We express this effect using three variables based on Shugan (1980): the variability of
the attribute utilities of the products in the choice set, the covariance between the attribute

utilities of these products, and the difference in total utility between these products.

In modeling terms, we allow for choice set specific variations in choice accuracy. To
model consumer choices we use a mixed logit specification (McFadden and Train 2000)
allowing for preference variation across individuals, with heteroscedasticity in the errors to
capture the differences in error variance across choice sets. We use the estimates as input for
two accuracy models in which the dependent variables are accuracy measures for consumer
utility and consumer choice probability respectively. The independent variables are the task-
and context-based complexity measures. This approach alows us to investigate the
relationship between choice accuracy and choice complexity more adequately than previous
approaches, because it allows us to formulate the measures of accuracy based on consumers
performance relative to optimal and random behavior. As a consequence, the approach can be
applied to compare accuracy across choice sets with different numbers of alternatives, which
would not be possible using earlier error variance measures applied by Dellaert et al. (1999)
and Haaijer et al. (2000).

Empirically, we investigate the impact of complexity on consumer choice accuracy
using consumer choices in experimentally manipulated choice sets of different levels of

complexity. We find that utility-based as well as choice probability-based accuracy are driven



by variations in all three context-based complexity indexes. In contrast, neither measure of
accuracy was significantly affected by variations in task-based complexity in the range of
choices in our study (3,4,5 or 7 dternatives with 3 or 7 attributes and varying levels of
attribute utility differences).

Managerially, these findings suggest that brands that are able to create greater utility
benefits for their products and choose a set of consistently attractive attribute levels benefit
from a double bonus. Not only is their product more attractive to consumers, but the accuracy
with which consumers choose their products also increases, leading to a further increase in
the brand’s market share. Behaviorally, our findings suggest that consumers increase their
effort in response to shiftsin task effects (possibly because they base their choice of effort on
the observed number of alternatives and attributes), but do not adjust their effort to changesin
context variables sufficiently to maintain the same level of choice accuracy. This result isin
line with Johnson and Payne’s (1985) suggestion that the effort involved in following a
certain choice strategy depends mainly on task variables, while the level of accuracy is driven
by context effects.

In the remainder of this paper we first discuss the theoretical and modeling basis for
our analysis (section 2). Section 3 covers our experimental study, describing the experimental
choice data and our estimation results. In Section 4, we present some conclusions, a

discussion, and suggestions for future research.

THEORY AND MODEL
The premise that choice complexity may affect the accuracy of choice outcomes is not new.
For example, Johnson and Payne (1985) used simulations to show that the accuracy of

different choice rules depends on the complexity of the choice task. Bettman et al. (1990)



examined the cognitive processing requirements associated with various decision rules and
concluded that individuals may switch to simpler, less accurate choice rules as choice task
complexity increases. Only recently researchers have begun to incorporate variations in
accuracy in models of consumer choice. In particular, random utility theory offers a
conceptual framework for modeling variations in consumer choice accuracy, because it
introduces a random error component in the consumer utility function that can capture
unexplained variation in consumer choice behavior (DePaima et al. 1994, Louviere 2001).
Some recent studies have acknowledged the role of random error variation in modeling
consumer choice and have alowed for differences in unexplained variance in consumer
utility functions. These studies use the heteroscedastic logit model (Allenby and Ginter 1995)
and parameterized versions of this (Dellaert et a. 1999, Haaijer et a. 2000). However, in this
stream of research little attention has been paid to defining a behavioral basis for observed
differences in consumer choice accuracy.

In this paper we investigate the effects of complexity on consumer choice accuracy
both theoretically and empirically. Figure 1 presents the structure of the anaysis and the
aspects of the theory discussed in this section. First, we define two choice accuracy measures,
one based on consumer utility, which is more relevant for consumer welfare, and one based
on choice probability, which is relevant for marketing managers interested in marketing mix
effects on product performance (section 2.1). Secondly, we define four different sources of
choice set complexity that we analyze (section 2.2). These are based on previous research in
psychology and marketing. Thirdly, the expected relationships between consumer choice
accuracy and choice set complexity are discussed (section 2.3). Fourthly, we discuss the

heteroscedastic mixed logit model that provides the preference estimates and error term



variances which are the basis for constructing the choice accuracy and choice set complexity

measures from the data (section 2.4).

- INSERT FIGURE 1 ABOUT HERE -

Choice accuracy

Johnson and Payne (1985) define several measures of accuracy of choice heuristics, two of
which we adapt for our purposes. Our first measure expresses the accuracy of the consumer
choice in terms of achieving the highest possible utility. The second measure expresses
choice accuracy in terms of the probability of choosing the optimal product, based upon the
discrete distinction between an ‘accurate’ choice (of the product yielding highest utility) and
‘inaccurate’ choice (of a sub-optimal product).

For a given consumer with given preferences and choice strategy, the first measure is

defined as:

Utility Accuracy (UAc): The expected value (EV) gain of the chosen product over random

choice, relative to the EV-gain of the optimal choice over random choice.

Formally this measure is expressed as follows.

(1) U A c= EVstrategy - Evrandom
EVoptimaI - Evrandom

Here EViawom iS the average utility of all the aternatives in the choice set, EVogima IS the

maximum utility that can be achieved by choosing the best alternative from the choice set



(given the consumer’s preferences), and EVaraegy IS the probability weighted mean utility of

the different alternatives given the consumer’ s choice strategy.

The second measure is defined as;

Choice Probability Accuracy (CPAc): The gain in the percentage of correct choices over

random choice, relative to the gain of optimal choice over random choice.

Thisis formally expressed as:

CP, ey - CP
(2) CP A c= Srategy random
CPoptimaI - Cprandom

Here CPg«raegy iS the probability that the consumer chooses the best aternative, given his
preferences and his choice strategy. If the choice set contains J alternatives, CPrangom €quals
1/J, the choice probability of each alternative under random choice. CPoyima equals 1, the

probability to choose the best aternative if the consumer always makes an optimal decision.

The accuracy measures UAc and CPAc depend on the utility values of the alternatives
in the choice set and on the consumer’s decision strategy. Both will be captured in the mixed
logit model in section 2.4, and the estimates of this model will be used to estimate the UAc
and CPAc measures various consumers. The UAc and CPAc can be used to compare choice
sets of different composition such as different numbers of aternatives, something which is
not possible for the error variance measure theoretically suggested by DePalma et al. (1994)

and empirically estimated by Dellaert et al. (1999) and Haaijer et al. (2000).



From a consumer point of view, UAc is the most relevant measure, since it indicates
welfare loss, capturing the fact that choosing a sub-optimal product is amost as good as
choosing the optimal product. From the producer’s point of view, however, CPAc is the more

relevant measure, since it is directly related to market shares.

Sour ces of choice set complexity

Task-based complexity

The idea of describing the complexity of a choice task in terms of a set of basic cognitive
processes required to make a choice has been suggested by several authors such as Huber
(1980), Johnson and Payne (1985) and Bettman et a. (1993). Their work draws on Newell
and Simon (1972) who suggest that choice strategies can be constructed from a small set of
so called elementary information processes (EIP's), which represent cognitive steps that
individuals have to take to make their decisions. Examples of EIP's are ‘Read’, ‘Compare’,
‘Add’ and ‘Eliminate’. Individuals choice strategies can be described by combining such
elementary cognitive processes. Based on this approach, a measure of decision effort can be
developed in terms of the number of EIP's required to select a preferred aternative from a
given choice set.

EIP's can be used to compare the complexity of choice problems or to compare the
effort required by different choice strategies. We will use them for the former purpose only,
to construct a measure of the task-based complexity of a choice set. For each choice set we
calculate a score (TASK) based on the minimum number of EIP's required to choose the
utility maximizing alternative with certainty. Theoretically, different operations may receive

different weights, due to differences in the time required to perform them. However, since



previous research has suggested that the effort differences between EIP' s are relatively small
(Bettman et al. 1990), we assign equal weightsto all elementary processes.

If two choice sets have the same number of products and the same number of
attributes per product, both will have the same task based complexity, even if attribute values
differ between the choice sets. Differences in attribute values can be captured in measures of
context-based complexity, which depend on the relative utility position of alternatives and

their attributes.

Context-based complexity

Based on Shugan (1980) we distinguish three choice set based measures of choice
complexity. The basis of these measures is the notion that an alternative’s utility to the
consumer is the weighted sum of contributions from the utility of all attributes. To make a
comparison between two alternatives, Shugan's model assumes that the consumer studies a
random sequence of attributes and considers the corresponding attribute utilities of the two
alternatives under comparison. This process continues until the consumer can conclude which
alternative gives the highest utility. The (context based) complexity of the choice is driven by
the number of attributes that need to be selected so that, with some confidence level given a
priori, the choice based upon comparing attribute utilities in this subset is the same as the
choice based upon full utility maximization.

The number of attributes that needs to be compared depends positively on the
variance of the difference between the utilities of the competing levels of a randomly chosen
attribute. It depends negatively on the absolute value of the mean difference between the
utilities of the randomly chosen attribute. At a more detaled level, the variance of the

difference of utilities can be separated into the sum of the variances of the utility of the
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randomly chosen attribute for each of the two aternatives, minus two times the covariance

between the attribute utilities of the two alternatives. According to this analysis, context-

based complexity is affected by three factors:

1. Variance of a randomly chosen attribute utility for each aternative (VAR): the higher
this variance, the higher choice complexity.

2. Covariance between the attribute utilities of the two aternatives (COV): the higher
this covariance, the lower choice complexity, and

3. (The absolute value of the) difference in utility between alternatives (DIF): the larger

the difference in utility between alternatives, the lower choice complexity.

The relationship between consumer choice accuracy and choice set complexity

Based on our analysis of the various factors that make up choice set complexity, we now
address the question how complexity may affect choice accuracy. The simulation analysis of
Johnson and Payne's (1985) shows that with equal effort, consumer choice accuracy is
inversely related to choice complexity. The effect of complexity on accuracy then depends on
how consumers adapt their choice strategy and their effort level. In particular, if consumers
respond to increased complexity by increasing their effort, the accuracy of their decisions
may be stable (or even improve) if complexity increases. Results of Haaijer et al. (2000)
suggest that in general consumers' effort responses to increases in choice set complexity are
not sufficient to maintain equal choice accuracy. Fischer et a. (2000) analyze consumer
preference judgements. They find that, if judgement tasks become more complex in terms of
variance, responses take more effort and become less accurate. The latter finding suggests
that increases in VAR in a choice context may also lead to less accurate choice responses.

Dellaert et a. (1999) find that logit model error increases when price based utility trade-offs
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increase. This effect also suggests that increases in VAR (i.e., higher price variance), and
possibly decreases in COV (i.e., lower correlations between price and other attributes), lead
to less accurate choices. To the best of our knowledge no empirical results are available on
the relationship between complexity shifts in terms of TASK and DIF and the accuracy of
consumers’ choices.

Therefore, based on the little empirical evidence that is available we expect choice
accuracy to decrease with VAR and to increase COV. We have no ex ante expectation for the
effects of DIF and TASK-based complexity on choice accuracy. However, based on the
findings with respect to VAR and COV, one might expect that as a general trend consumers
are under-responding to changes in complexity, in particular to context-based complexity
variables. This would imply that increases in DIF would lead to greater choice accuracy,

while increasesin TASK would lead to lower or equal choice accuracy.

A random coefficients heteroscedastic logit model of consumer choice
The model used to analyze the consumers choice data and to obtain the preference
parameters required for the analysis of the relation between accuracy and complexity is based
on the well-known multinomial logit model. To accommodate heterogeneity across
respondents, we alow for random variation in the attribute coefficients, and use a random
coefficients specification. We use the following notation:

i respondent (i=1,...,N), N isthe total number of respondents

s choice situation (s=1,...,9), Sisthe total number of choice situations

k attribute (k=1,...K), K is the total number of attributes considered in all choice

situations.

j dternative (j=0,1,..,J(s)), J(s) is the number of alternativesin choice situation s
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X = (%1.-.-,%)" vector of attribute values of alternative j, X; does not include a constant.
Attribute values of attributes that are not considered (in a given choice situation), are set to
zero (by normalization).

Let the utility of alternative j to respondent i be given by:

3) Vi = X' i=1,...3(9)

The consumer choices in the data al contain the option of not choosing any of the
products offered, referred to as the ‘none’-option. Let alternative j=0 be this none-option, and

let its utility to respondent i be given by:

(4) Vio = 3o
The none-option differs from the other alternatives in the sense that it does not have any
attribute values."

The vector of marginal utilities of the attributes 3=((31,...,[3«)' and the utility of the
none-option 3o may vary across respondents. This will reflect heterogeneity in preferences.
McFadden and Train (2000) show that with such heterogeneity, the mixed logit specification
is aflexible tool, which can approximate choice probabilities in alarge class of random utility
models. We assume that the random coefficients (3o and (3 are drawn from the following

distribution;

(5) Bk = b + uk, k=0,...K,

1 Equivalently, the utility of the none-option could be normalized to 0, and a respondent specific base level
utility (not varying over choice sets or aternatives) could be added to the utility values of the other aternatives.

13



(6) U = (Uio,Ui,-..,Uik) ~ N(0,0)

The unobserved characteristics of the respondent enter via uyk, which are drawn from a
multivariate normal distribution with mean zero. Note that (% is respondent specific but not
choice situation or alternative specific. Respondent’si choices are al assumed to be based on
the same 3. The parameters in the (K+1)" (K+1) matrix, O, are to be estimated. For
computational convenience, it is assumed that O is diagonal, so that only (K+1) standard
deviations ? need to be estimated. The 3, and (3 (or the uy) vary neither with choice
situations, nor with alternatives, and are independent across individuals.

In constructing a choice probability model, we follow the usual random utility

framework. Choices are based upon the sum of ‘true’ utilities V;; and error:

(7 Uijs=Vi+ gjs j=0,...,J(8), s=1,...,S

Respondent i chooses alternative ¢ in choice situation s if and only if Uies 2 Ujs for all
aternatives| in that choice situation.

There are two unobserved random variables in this model, with quite different
interpretations. The u; reflect unobserved heterogeneity across respondents; they are
respondent specific and do not vary across choice sets or aternatives. They thus reflect a part
of consumer preferences which is consistent across different choices. On the other hand, the
ajs vary independently across al choice sets and all alternatives. We refer to them as “errors’.
In the terminology of Fischer et al. (2000), they could also be called preference uncertainty,
leading to inconsistent choice behavior. The essentia characteristic of the model — which is

typical for the mixed logit model, the mixed probit model and other random coefficients

14



models used in the literature — is that the distinction between the two is identified due to this
correlation structure, justifying the interpretation. The unobserved heterogeneity terms u; fit
with perfectly accurate choice behavior of the respondents, while the g;s capture preference
uncertainty, choice inconsistencies, evaluation errors, optimization errors, etc. One way to
interpret this, is to see the multinomial logit framework as a tool to approximate the choice
probabilities obtained by some decision rule other than perfect full information comparison of
all utility values Vjj. The size of the g (i.e., the variance of the gjs relative to the variance of
the Vjj) then determines the extent to which the actual decision strategy deviates from
perfectly rational choice based on full information. Simpler decision strategies then lead to a
larger role for the errors.

In a standard multinomial logit framework the g;s are assumed to be Generalized
Extreme Vaue type | (GEV(l)). They have the same variance (i.e., are homoscedastic),
which, by normalization, is set equal to p%6. The interpretation of the error terms given
above, however, makes it plausible that different choice sets can have different levels of error
variance. For example, different levels of complexity may lead to different levels of
consumer choice consistency for different choice sets, since they lead to the use of different
choice strategies. This is in line for example with what the results of Fischer et a. (2000)
would predict. They find that if evaluation of the alternatives becomes more difficult, ratings
require more effort but still become less consistent. To capture this effect, we incorporate a
specific form of heteroscedasticity: the variance of the gjs can be choice set specific (i.e.,
dependson s).

To achieve this in a flexible way, we code each choice set to be a specific choice
gituation s and to have a separate scale parameter | s that is inversely related to the error

variance in that choice set. For this purpose we assume that:
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1. gjsisindependent of exogenous variables (X) and random coefficients ([3,(30),
2. dll gjs are independent,

These assumptions imply that, conditional on the random coefficients (3o and (3, the

choice probabilities are given by:?

(8) Pis(clBi0,f3;1 ) = P(i chooses alternative c in situation s 3o,13)

= exp(l sVic)/Sj=1,...,J(s) exp(l sVij)

This reduces to the familiar multinomial logit choice probabilitiesif | s= 1 for all choice sets

s=1,...,S

(9 Pi(clBo,3;l =1) = exp(Vie)/ Si=1,...x9 exp(Vi)

The summation in the denominator is over the J(s)+1 aternatives in the given choice
situation s (including the none-option). For different choice situations, the choices of
individual i are independent conditional on (3o,/3. Thus the conditional probability for

individual i with choice situationss=1, ..., S given 33, to choose J(i,1), ..., J(i,9) is:

(100 LGBl 9= O, Ps3i.9IR0f;l o)

Estimation

16



To identify this model with multiple scale parameters, we set | ; = 1. We use smooth
simulated maximum likelihood to estimate the model. Conditional on (3o and (3, the likelihood
contribution of a given respondent is given by (10). This is a product of multinomial logit
probabilities that are easy to compute. The unconditional likelihood contribution is the
expected value of the conditional contribution, with the expectation taken over the joint
density of [3pand (3. Thisisa(K+1)-dimensional integral for which no analytical expression
can be given. It can be approximated by a simulated mean using draws of standard normal
error terms, which can be transformed into 3oand (3 using (5) and (6). We use T independent
draws for each observation, with independent draws across observations. T is chosen prior to
estimation; the results we present are based upon T = 50. The likelihood contribution L; =

E{LCi(B03;! o)} isthus approximated by
)
LS =UT g LC (B3l s,
t=1

where the 3¢ [3; are the parameter values corresponding to the draws.

The Law of Large Numbers implies that for large T, LS will approximate L;. Instead
of maximizing the sum of the log likelihood contributions, the sum of the log of the
approximated likelihood contributions is maximized. Since the g;s are not simulated, the
simulated likelihood function is a smooth (differentiable) function of the parameters to be
estimated. The resulting simulated maximum likelihood estimator is asymptotically
equivalent to the ML estimator provided that T® ¥ fast enough (see Hgjivassiliou and Ruud
1994, for example). This implies that standard ways of obtaining ML estimates, standard

errors, etc. can be used.

2 Throughout, we also condition on the given product characteristics X, without mentioning this explicitly.
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Complexity measures

Since preferences are heterogeneous across respondents, Vi and the three context based
complexity measures vary across respondents. In testing the expected relationships between
accuracy and complexity we work with both the average respondent and with randomly
chosen respondents (using estimates of the parameters in (5)-(6)). For a respondent with
preference parameters by , attribute utilities of alternative j are given by Vijx= Xijbik and the

average attribute utility of alternative | is given by

K
m, = @/ K)avijk = (UK) Vj

k=1

The three context-based measures for the complexity of comparing alternativesj and |’ can be

written as

K K
(9 VAR=(1/K)a (Vi - mj)2 + K)a Vi - mj')z
k=1 k=1

(10) Cov = (1/K)é. Vi - M)V - M)

k=1

(11) DIF=[Vj-Vj |

Accuracy measures

The componentsin UAc in (1) now can be written as follows:

J(s)
(12) EViandom= 1/ J (s))é V; (average utility)

j=

18



(13)  EVoptima = MaXj=1,...39 Vij, (optimal utility),

¢ 0
MONS exp(l V. ) 3

(14) EVimwe=a &V, (probability weighted mean utility).

éJ és)
21 © A
ei=l u

13(9)/(1-J(9), and

exp(maszl ..... J(s) (I sVii »

J(s) !

3 el V)

=1

( 15) CPS[ rata;y =

The accuracy measures UAc and CPAc depend on the utility values Vjj of the alternatives in
the choice set. The heteroscedastic mixed logit choice model implies that preferences are

heterogeneous, implying that different respondents have different UAc and CPAC.

EXPERIMENTAL ANALYSIS OF THE IMPACT OF COMPLEXITY ON ACCURACY

Data

A conjoint choice survey was designed to examine the impact of shifts in complexity on
consumer choice accuracy empirically. Consumers were asked to choose between various
hypothetical yogurt products. The description of these products was based on attributes of
yogurt products available in various stores and self-service restaurants, interviews with expert
consumers and attributes used in previous research (Ter Hofstede et a. 1999). The survey
varied the level of complexity by introducing severa different versions. The preamble to the

survey asked respondents to imagine that they were having lunch in a self-service restaurant
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and deciding which yogurt to buy for dessert. They were instructed that yogurts were
identical on all attributes not mentioned in the aternatives and that they were available in all
their favorite fruit-flavors. Respondents also had the base option of not choosing any of the
yogurt products in the choice set.

The survey was divided into 2 parts of 8 choice sets each. The first part consisted of 8
choice sets of two alternatives and the base of not buying either of the aternatives. The
alternatives of the choice sets were constructed based on a randomized main effects only 2°
fraction of a 2 full factorial design with its fold-over (see Louviere and Woodworth 1983).
This first part of the survey was identical for all respondents. For the second part of the
survey respondents were randomly assigned to one of 6 treatment conditions. Respondents in
each of the 6 groups were presented with a further 8 choice sets. Choice sets in the different
conditions were constructed so as to vary systematically their TASK, VAR, COV and DIFF
scores (see sections 2.1 and 2.2). In particular, differences in complexity were created by
altering the number of attributes (condition 1), the number of alternatives (conditions 2 and
3), both the number of alternatives and covariance between alternatives (condition 4), and the
relative difference in attribute levels in the choice sets (condition 5). One control condition
(condition 6) identical in structure to the choices in the first part of the survey was included
also. Table 1 summarizes this structure. Table 2 provides the attributes and their levelsin the
different conditions. These attributes and their levels were selected based on an exploratory
analysis of the different yogurt products available in several self-service restaurants and some
interviews with regular yogurt consumers.

Choice sets in condition 1 of the second part were constructed on the basis of a 22 full
factorial design in 4 profiles with its fold-over. This design was repeated once in a different

order to construct 8 choice sets. Choice sets in conditions 2 and 3 were constructed starting
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from the same 2° fraction of a 2’ full factorial as used in part one. Additional aternatives (3
and 5) were added to the choice sets by randomly assigning alternatives from this same
design. Strictly dominated alternatives were swapped with alternatives assigned to other
choice sets. Condition 4 differed from the previous two in that one dominated aternative was
added to the choice sets used in part 1. These alternatives differed from one of the
alternatives in the choice set in terms of only one of the 7 attributes, which was set at the less
attractive level. Choice sets in conditions 5 and 6 were constructed identically to those in part

1

-INSERT TABLES 1 AND 2 ABOUT HERE-

Respondents in the survey were participants in an ongoing consumer panel in the
Netherlands. The panel consists of approximately 2000 individuals and is largely
representative of the Dutch population in terms of age, sex, income, education and
geographical location. It runs on a weekly basis and respondents participate voluntarily.
Respondents for this study were screened on being yogurt consumers. Of the 978 membersin

this subgroup atotal of 909 completed the survey successfully.

Results

To caculate the appropriate measures of choice accuracy and complexity, first the
heteroscedastic random coefficients model was estimated using data from all conditions in
part 1 and 2. The model alowed for heterogeneity in taste between respondents as well as
different random error scales (I ) for all choice sets. The estimates of the means and the

standard deviations of the random coefficients are presented in Table 3. All the means were
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significant at the 95% confidence level and had the expected signs. The standard deviations
of all random coefficients were rather accurately determined, with their confidence intervals

bounded away from zero, indicating significant preference heterogeneity across respondents.

- INSERT TABLE 3 ABOUT HERE-

The error scales | s for all choice sets were also estimated and are presented in Table
4. A likelihood ratio test of the model against the homoscedastic case with | ¢ = 1 for al s
showed that heteroscedasticity is highly significant (a Chi-squared test value of 388.72 at 55
degrees of freedom). Thisisin line with the results of Dellaert et al. (1999) and Haaijer et al.
(2000), who also observed significant variations in error scales over choice sets of different
complexity.

Table 4 aso presents the values of the different complexity measures calculated from
the model for each choice set, for the consumer with average preferences. There is
considerable variation in the values of these measures, as was intended through the structure
of the experiments. The correlation coefficients of all pairs of measures all were smaller than

0.40, except for the correlation between VAR and COV which was 0.66.

- INSERT TABLE 4 ABOUT HERE-

The complexity measures were then used to explain the UAc and CPAc scores

calculated for each choice set, again for the consumer with average preferences. The UAc

and CPAc scores are thus based on the heteroscedastic logit model estimates in Table 3 and

the values of | in Table 4. The results of the two linear regressions are presented in Table 5.

22



For both the UAc and CPAc measure, al parameters for the context based complexity
measures were significant and had signs as expected. Accuracy decreased with VAR
(variance of the attribute utilities in the choice set aternatives) and increased with COV
(covariance between the attribute utilities in the choice set alternatives) and DIF (difference
in utility between the alternatives in the choice set). The TASK complexity measure was not
significantly different from zero. Thus, accuracy decreased significantly as VAR-, COV- and
DIF-based complexity increased, but was not affected by TASK-based complexity.
Therefore, consumer utility accuracy and marketing mix response in terms of choice

probability accuracy did not decrease significantly as task-complexity increased.’

- INSERT TABLE 5 ABOUT HERE -

The results in Table 5 are based on preferences of the average consumer. The model
allows us to compute accuracy measures and complexity measures for a consumer with
arbitrary preferences, on the basis of which the regressionsin Table 5 can be repeated. To see
whether the results in Table 5 are sensitive to choosing the average consumer, we randomly
drew 500 vectors of preference parameters from their estimated distribution in Table 3, and
redid the regressions for the 500 consumers. The results are summarized in Table 6. The
findings are in line with those in Table 5. Little effect of task-based complexity is found on

UAc and only a minor effect on CPAc. VAR has the expected negative effect in most cases

% To test the sensitivity of the results to the definition of our proposed measures of VAR, COV and DIF, we also
ran regressions using some alternative specifications for these measures based on the average and sum of all
possible comparisons as well as the minimum required number of comparisons per choice set. The results were

identical in sign and similar in terms of significance for all measures.
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(94% and 91% respectively), and this is significant in 58% of the 500 regressions explaining
UAc and 57.6%0f the regressions explaining CPAc. COV has the expected positive effect on
UAc for 98% of the 500 consumers, and thisis significant in 73.2% of all cases. The effect of
COV on CPAc, is aso positive in most cases (91%), and significant in 50.2% of the cases.
The strongest results are those concerning DIF: the utility difference between the products
has the expected positive effect on both UAc and CPAc (92% and 90.2% respectively). The
effect is significantly positive for 78% of the regressions explaining utility based accuracy
and for 88% of the regressions explaining choice probability based accuracy. Thus we can
conclude that at the individual level the findings are very similar to those at the aggregate
level.

- INSERT TABLE 6 ABOUT HERE -

In summary, both utility based accuracy (UAc) and choice probability based accuracy
(CPAC) are affected significantly by shifts in all three measures of context-based complexity.
Across the two measures we observe that context-based complexity affects consumer choice
accuracy more strongly than task-based complexity. The latter finding suggests that
consumers may adapt the effort they put in their decision strategy in response to shifts in task
variables (numbers of alternatives and attributes), but not in response to shifts in context
variables. Such behavior may explain why accuracy is affected by context variables but not
by task variables. This explanation is also in line with Johnson and Payne’s (1985) suggestion
based on their simulations that the effort involved in following a certain choice strategy
depends on task variables only, while given effort, level of accuracy is driven by context

effects.
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CONCLUSION AND DISCUSSION

We have investigated the relationship between choice set complexity and choice accuracy,
using experimental choice data that varied in terms of choice set complexity. To distinguish
choice accuracy variation from consumer preference heterogeneity, we have used a
heteroscedastic mixed logit framework. We have assumed that preferences are respondent
specific and do not vary over choices for a given respondent, while choice errors are
independent over choices. By including choice set specific variances of the choice errors, we
allow for accuracy variation in a flexible way. To our knowledge, we are the first to
investigate the relationship between choice set complexity and choice accuracy empirically.
Our analysis is aso the first to combine and compare the effects of various sources of
complexity (TASK, VAR, COV and DIF) on several measures of accuracy (UAc and CPAC).
For this purpose we have integrated the complexity and accuracy measures in an empirical
mixed logit framework. Our analysis supplements previous simulation studies on the relation
between complexity, effort, and choice accuracy (e.g. Johnson and Payne 1985) and recent
empirical work on the relationship between effort and accuracy (Haaijer et al. 2000) and
between preference uncertainty and complexity in judgement ratings data (Fischer et al.

2000).

We find that all three context-based complexity measures significantly relate to
choice accuracy with signs that indicate that increased complexity leads to less accurate
choice. We find no effect of task-based complexity on choice accuracy. An interpretation of
this result is that larger task-based complexity may be compensated by increased consumer
choice effort, while larger context-based complexity is not. The current data do not alow for
a direct test of this hypothess. In future work we hope to extend our research in this

direction. Indirectly, our findings also provide empirical support for Shugan’s (1980) analysis
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of the possible effects of choice set composition on cognitive costs. We observe that accuracy
decreases as context-based complexity increases. This finding is in line with Shugan’s
suggestion that cognitive cost increases with VAR and decreases with COV and DIF, if oneis
willing to assume that cognitive effort is costly and that consumers trade off the desired level

of choice accuracy against effort.

An implication of our findings for marketing management is that if brands are able to
distinguish themselves in terms of utility (DIF is large; the brand has a high product utility)
and compose a consistent set of attributes (VAR is small) that outperforms the competition on
multiple attributes (COV is large), they can gain additional leverage on their preferential
position. The reason is that consumers not only prefer these brands (utility is high) but aso
choose the brands more accurately. Thus, these brands have the double benefit of being better
as well as being selected more accurately. On the other hand the market share effects of price
or product changes can be small if brands are positioned closely to one another (DIF is small)
and their own or relative attractiveness varies over attributes (VAR is high and COV is low).
The reason is that consumers choice responses in the latter situations are found to be less
accurate, i.e. consumers choices are less well in line with consumers underlying
preferences. These inaccuracies may be of benefit to inferior brands, e.g., brands that do not
manage to innovate their products over time. Such brands may find that they can maintain a
higher market share than if consumer choices were fully accurate. In fact, such brands may
benefit from increasing complexity to consumers. For example, by looking for attributes in
which they outperform the market leader these brands may be able to increase VAR and

decrease COV, thereby increasing the complexity of the consumer choice.

Finally, we believe that the general notion of separating out the average response of a

consumer to marketing mix variables from the consistency with which this consumer
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responds to these variables deserves further investigation. In this area the possible impact of
aiding consumers in making better decisions (i.e. decisions that are more in line with their
underlying preferences), for example by means of information technology or peer-to-peer
information exchanges, on choice accuracy seems to be a promising opportunity for further

research.
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Tablel

Description of choicetask per experimental condition

Number of Number of Number of Attribute level Number of

Choicesets  attributes  alternatives* variation observations
Base 8 7 2 Base level 909 (all)
Condition 1 8 3 2 Base level 153
Condition 2 8 7 4 Base level 163
Condition 3 8 7 6 Base level 137
Condition 4 8 7 3 Base level 164
Condition 5 8 7 2 High difference 145
Condition 6 8 7 2 Base level 147
(control)

* Excluding the base dternative
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Table2

Attributes and levels used in the experiment

Description of levels

Attribute Present in Base condition High difference condition
conditions
Price 1-6 NLG 1.90 NLG 2.10
NLG 1.50 NLG 1.30
Fruit content 1-6 10% fruit 15% fruit
5% fruit 5% fruit
Biological 2-6 Contains biological cultures  Contains biological cultures
cultures
Contains no biological Contains no biological
cultures cultures
Artificial 2-6 Contains artificial flavoring ~ Contains artificial flavoring
flavoring
Contains no artificial Contains no artificial
flavoring flavoring
(al natural) (al natural)
Creamy taste 2-6 Creamy taste Creamy taste
Regular taste Regular taste
Fat content 1-6 0.5% fat content 0.5% fat content
3.5% fat content 7.5% fat content
Recyclable 2-6 Yogurt container is Yogurt container is
packaging recyclable recyclable
Y ogurt container not Y ogurt container not
recyclable recyclable
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Table3

Choice modd estimates*

Parameter Estimate t-value
Intercept -2.611 -11.982
Price -0.974 -11.288
Fruit content 0.154 11.794
Biological cultures 0.292 9.028
Artificial flavoring -0.889 -11.866
Creamy taste 0.365 10.411
Fat content -0.385 -12.762
Recyclable packaging 0.568 11.015

Standard deviations of
random coefficients

SD intercept 1.670 12.629
SD price 0.444 8.684
SD fruit content 0.074 8.655
SD biological cultures 0.113 3.230
SD artificial flavoring 0.575 11.618
SD creamy taste 0.469 11.041
SD fat content 0.286 12.847
SD recyclable packaging 0.123 4,102

*Results for heteroscedastic random coefficients model, for estimates of error scae differences
between choice sets (eqg. 8) seevalues of | in Table 4; log-likelihood = -11831.56, BIC = 11616.97.
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Table4

Complexity measures and scale parameter estimates

Choiceset TAXK J K VAR Ccov DIFF
and

guestion

Base 1 41 3 7 2.352 0.816  0.007 1.000*
Base 2 41 3 7 2.356 0.814  0.001 1.104
Base 3 41 3 7 2.354 0.815  0.003 1.140
Base 4 41 3 7 2.308 0.838  0.097 1.148
Base 5 41 3 7 2.349 0.817  0.013 1.130
Base 6 41 3 7 2.141 0.921  0.430 0.910
Base 7 41 3 7 2.216 0.884  0.279 0.972
Base 8 41 3 7 2.355 0.814  0.002 1.208
1.1 17 3 3 4.247 1.807 0.378 1.509
1.2 17 3 3 4.004 1928 0.863 1.603
1.3 17 3 3 4.436 1713  0.000 1.528
1.4 17 3 3 4.383 1739  0.106 1.563
15 17 3 3 2.167 0.797  0.087 1.383
16 17 3 3 2.211 0.776  0.000 1.811
1.7 17 3 3 2.109 0.827  0.205 1.260
1.8 17 3 3 1.917 0.922 0587 1.569
2.1 83 5 7 2.460 1193  0.002 1.604
2.2 83 5 7 2.178 0.771  0.017 1.704
2.3 83 5 7 2.676 1224  0.043 1.374
2.4 83 5 7 1.433 0.587  0.013 1.662
25 83 5 7 2.278 1.103  0.004 1.316
2.6 83 5 7 2.115 0.732  0.000 1.881
2.7 83 5 7 2.062 0.945  0.099 1.141
2.8 83 5 7 2.860 1294  0.000 1.919
3.1 125 7 7 2.959 1286  0.001 1.596
3.2 125 7 7 1.894 0.833  0.012 1.540
33 125 7 7 2.292 0.990  0.089 1.355
3.4 125 7 7 1.610 0.714  0.030 1.523
35 125 7 7 2.676 1224  0.043 1.288
3.6 125 7 7 2.214 0.987  0.000 1.611
3.7 125 7 7 2.278 1.103  0.004 1.521
38 125 7 7 1.433 0.587  0.013 1.198
4.1 62 4 7 2.105 0.901  0.245 1.198
4.2 62 4 7 1.547 0.651  0.041 1.692
4.3 62 4 7 2.355 0.814  0.002 1.576
4.4 62 4 7 2.544 1262  0.003 1.212
45 62 4 7 2.356 0.814  0.001 1.622
4.6 62 4 7 2.354 0.815  0.003 2.265
4.7 62 4 7 2.629 1237  0.026 1.407
4.8 62 4 7 2.352 0.816  0.007 1.698

4Not estimated, but normalized to 1.
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Table 4, continued

Choicesat TAXK J K VAR cov DIFF

& Question

51 41 3 7 4271 0.959 0.085 1.204
5.2 41 3 7 4,194 0.997 0.240 0.616
53 41 3 7 4.314 0.937 0.000 1.154
54 41 3 7 4179 1.004 0.269 1.114
55 41 3 7 4,215 0.987 0.198 0.564
5.6 41 3 7 3.686 1.251 1.256 0.686
57 41 3 7 3.945 1.122 0.739 0.298
5.8 41 3 7 4,313 0.937 0.001 1.165
6.1 41 3 7 2.141 0.921 0.430 0.940
6.2 41 3 7 2.308 0.838 0.097 1.026
6.3 41 3 7 2.355 0.814 0.002 1.182
6.4 41 3 7 2.216 0.884 0.279 0.992
6.5 41 3 7 2.356 0.814 0.001 1.342
6.6 41 3 7 2.354 0.815 0.003 0.849
6.7 41 3 7 2.349 0.817 0.013 1.060
6.8 41 3 7 2.352 0.816 0.007 1.226
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Table5

Accuracy model estimates: average consumer*

Constant ~ TASK** VAR cov DIF Adj. R

UAc 0.495 0.002  -0.088  0.327 0.051 0.498
(7.252) (0.380) (-3.684) (4.984)  (5.794)

CPAC 0.342 -0.005 -0.102  0.289 0.118 0.658

(3.655) (-0.811) (-3118) (3.222)  (9.729)

* OL S regressions based upon 56 observations; t-values in parentheses.

*+ TASK divided by 10
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Accuracy model estimates: 500 randomly drawn consumer s*

Table6

Constant  TASK** VAR cov DIF
UAc
Mean point estimate 0.610 0.003 -0.068  0.202 0.041
Standard deviation of the 0.249 0.012 0.076 0.151 0.033
point estimates
Proportion positive point 0.996 0.568 0.060 0.988 0.920
estimates
Mean standard error 0.075 0.005 0.027 0.071 0.010
Proportion of coefficients
correct and significant - 0.254 0.580 0.732 0.780
CPAC
Mean point estimate 0.456 -0.008 -0.073  0.173 0.085
Standard deviation of the 0.182 0.011 0.073 0.137 0.055
point estimates
Proportion positive point 1.000 0.268 0.090 0.914 0.902
estimates
Mean standard error 0.095 0.006 0.035 0.092 0.013
Proportion of coefficients
correct and significant - 0.412 0.576 0.502 0.888

* 500 OL S regressions based upon 56 observations each.

*+ TASK divided by 10
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