Monte Carlo Analysis of Skew Posterior Distributions: An Ilustrative Econometric STOR
Example

H. K. van Dijk; T. Kloek

The Satistician, Vol. 32, No. 1/2, Proceedings of the 1982 1.0.S. Annual Conference on Practical
Bayesian Statistics. (Mar. - Jun., 1983), pp. 216-223.

Stable URL:
http:/links.jstor.org/sici ?sici=0039-0526%28198303%2F06%2932%3A 1%2F2%3C216%3AM CA OSP%3E2.0.CO%3B2-O

The Satistician is currently published by Royal Statistical Society.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/rss.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archiveisatrusted digita repository providing for long-term preservation and access to |eading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It isan initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Thu Feb 14 07:03:27 2008


http://links.jstor.org/sici?sici=0039-0526%28198303%2F06%2932%3A1%2F2%3C216%3AMCAOSP%3E2.0.CO%3B2-O
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/rss.html

The Statistician 32 (1983)
© 1983 Institute of Statisticians

Monte Carlo Analysis of Skew Posterior Distributions:
an lllustrative Econometric Examplef

H. K. van DIJK and T. KLOEK

Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, Netherlands

Abstract: The posterior distribution of a small-scale illustrative econometric model is used to
compare symmetric simple importance sampling with asymmetric simple importance sampling.
The numerical results include posterior first and second order moments, numerical error
estimates of the first order moments, posterior modes, univariate marginal posterior densities
and bivariate marginal posterior densities plotted in three-dimensional figures.

1 Preliminaries

Our research is directed towards finding finite sample approximations for posterior moments,
functions of posterior moments and marginal posterior densities of parameters of econo-
metric models in multidimensional cases. For this purpose we make use of Monte Carlo
integration methods. The problem may be stated briefly as follows. Let 6 be an s vector of
interesting parameters and g(6) some function of 6, then

_ fg(6)p'(6]data) d6
Eg ()=, 0| data) do )

where p’(6|data) is a kernel of the posterior density. We are interested in the efficient
computation of the right hand side of equation (1).

So far our approach was to generate a random sample 61, . . ., O from a density 7(6)
and compute the posterior expected value of g(6) by

S (6 w(6y) @
g=1=1 -
§1 w(6s)

with w(8;)=p’(6;|data)/I(6;). The density I(0) is called the importance function. For details
see e.g. Hammersley and Handscomb (1964) and Rubinstein (1981). In two earlier papers
(Kloek and Van Dijk, 1978, hereafter KVD, and Van Dijk and Kloek, 1980, hereafter
VDK), we applied importance sampling in some Monte Carlo integration problems. In
these papers we emphasized as a condition for the feasibility of this approach that an
importance function can be found which is a reasonable approximation to the posterior

+ This paper is a companion to a forthcoming paper entitled: “Some Alternatives for Simple Importance
Sampling in Monte Carlo Integration”. In the present paper we emphasize a particular application. In the
other paper we emphasize the methodology of alternative Monte Carlo techniques. The authors wish to
thank G. den Broeder and E. Gerritsen for assistance with the necessary computer programs.
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density. Since this condition is not always satisfied in econometric applications we started
to investigate alternative approaches. In the present paper we discuss a particular econo-
metric application. We revisit the Johnston model, studied in KVD, but we consider a
different prior density. Our prior is again uniform, but on the interval (—2, +2) rather than
(0, +1) for each of the three parameters. The advantage of this choice is that we get more
insight in the integration problems of very skew distributions. As mentioned in KVD this
skewness is due to the contribution of the Jacobian to the likelihood, but in that paper we
eliminated much of the skewness by means of truncation. Apart from skewness the posterior
has some interesting features which are described in more detail in section 2. Finally we wish
to emphasize that this is a preliminary report (see the introductory footnote).

2 Some results

We take as an example the three-dimensional marginal posterior density of the structural
parameters B1, B2 and y2 of the Johnston model (see KVD, section 4). The prior for 81, B2
and ys is uniform on the interval (—2, +2) for all three parameters in the present paper.
Hence it is considerably less informative than in the KVD case. The prior for the covariance
matrix of the structural disturbances is one proposed by Malinvaud (for details see Malin-
vaud, 1970, pp. 248-9). The prior for the constant terms is uniform on a large region. In
this particular case of two stochastic equations the marginal posterior density of (81, B2, y2)
is equivalent to the concentrated likelihood function. For some technical details we refer to
Van Dijk and Kloek (1977).

We consider two families of importance functions: the multivariate Student density and
a product of a univariate Student and log Student densities. The log transformation is rather
obvious as a tool to introduce skewness. The problem is to find the proper direction(s) of
skewness. This is done in a rather ad hoc manner in the present case. More mechanical
procedures are a topic of current research.

A multivariate Student density of the s vector § may be wntten as

10|, V, D) =c{A+(0— ) V10— p)}~1/2(s+8) 3)
with

A2 T {L(s 4 A)}
=G|

where p is the centre of the distribution, ¥ a positive definite symmetric matrix and A the
degrees of freedom parameter. We consider two ways of assigning the parameters of (3).
In both cases the degrees of freedom parameter and a common scale parameter are fixed at
unity for the sake of convenience. The two cases differ in the following respects. Case I
consists of taking the posterior mode for u and minus the inverse of the Hessian of the log
posterior for V. This we shall name the Jocal approximation case. Case II consists of taking
the posterior mode for u in asymmetric importance sampling and the posterior mean as
estimate for p in symmetric importance sampling. The posterior covariance matrix is the
estimate for V. These posterior estimates for u and ¥ are obtained after a first round of
Monte Carlo. We name case II the global approximation case.

The parameter estimates are presented in Table 1. It is seen that the posterior densities
for B1 and B2 are skew because the modes and means differ considerably. Also the local
approximation of V¥ fails to hold globally in at least two respects. First, the posterior standard
deviations for B; and Bs are for the global case roughly eight times as large as their local
approximations. Second, the posterior correlation between Bs and g is positive in the global
case, while the local approximation indicates that it is negative.
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Table 1. Estimates of importance function parameters® p. and ¥V

1 M2 K3
Posterior mode (=FIML) 0-46 0-09 0-36
Posterior mean —0-57 —-0-31 0-30
vL v2 vs
Local approximation in mode 0-10 0-04 0-11
Posterior standard deviations 0-78 0-33 0-14
riz ris ras
Local approximation in mode 0-88 0-17 —-0-16
Posterior correlations 0-93 0-25 0-35

a The square roots of the diagonal elements of ¥ are denoted by
v (lower case). Note that the local approximation of vs reported
here differs slightly from the value presented in KVD (Table 1).
The present values are computed on a DEC 2050 computer in
double precision. The correlation coefficients of the parameters are
denoted by r.

Table 2. Numerical error estimates of posterior means of
structural parameters for alternative Monte Carlo methods?

SSIS ASIS Best
method

Case I (local approximation)

B1 4-44 13-28 SSIS
B2 5-99 7-10 SSIS
V2 3:-34 5-44 SSIS
Case II (global approximation)

B1 0-67 0-55 ASIS
B2 0-60 0-63 SSIS
Y2 0-58 0-44 ASIS

a SSIS =symmetric simple importance sampling;
ASIS =asymmetric simple importance sampling.

Table 2 presents results for the numerical error of the posterior means of i, 82 and ys
for the Monte Carlo methods. As a measure of numerical error we take the ratio ( x 100) of
the standard deviation of the Monte Carlo estimate of the posterior mean (see KVD,
section 6) and the posterior standard deviation given in Table 1. This relative measure of
numerical inaccuracy has been chosen, since we are more concerned to estimate a posterior
mean accurately if the posterior variance is small, than if it is large.

We consider two methods. The first is symmetric simple importance sampling (SSIS), as
described in our earlier papers. The second method is asymmetric simple importance
sampling (ASIS). We generate random drawings as follows. Standard Student random
drawings (s1, 52, s3) are generated. Next we use the transformation s1*=1—e51, so*¥=1—e52,
s3*=s3. Finally the values of s1*, so* and s3* are rotated in the usual way with estimates of
the’posterior mode and the local approximation (case I) and the global approximation (case
II). This introduction of skewness is rather ad hoc. We are currently investigating more
mechanical procedures.

The results of Table 2 clearly indicate that the local approximation of ¥ is a poor starting
point for computational efficiency. Comparing the Monte Carlo methods it is seen that
SSIS gives the lowest error when the local approximation is used, but that asymmetric
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importance sampling is better in two out of three cases for global approximation. We want
to stress that these numerical results are rather preliminary. We have taken the results for the
different methods after roughly 15 minutes CPU-time in order to avoid large sampling
errors in the estimates of these numerical errors. However, a careful comparison consists
of recording the number of function evaluations; the numbers of accepted and rejected
drawings using identical random number sequences, etc. This has still to be performed.

Next we present the univariate marginal posterior densities for 81, B2 and y2 and bivariate
marginal posterior densities for (81, B2), (81, v2) and (B, y2) in Figure 1 and Figures 2a, 2b
and 2c. These have been computed by making use of the formulae given in KVD, section 7,
but with asymmetric simple importance sampling.

Y2
Fig. 1. Univariate marginal posterior densities for 81, B2 and y2.
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Mode (B1, B2) = ( .46, .09)
Mean (B1, B2) = (-.57, -.31)
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Fig. 2a. Bivariate marginal posterior densities for (81, 82).
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Mode (Bz, Y2) = (.09, .36)
Mean (B2, Y2) =(-.31, .30)

Fig. 2¢. Bivariate marginal posterior densities for Bz, v2).
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Figure 2a clearly illustrates the effect of the Jacobian |1—B;—Ba|” (compare KVD,
sections 2 and 4). If B; and B2 are both negative, the Jacobian is greater than unity. Figures 1,
2a and 2b indicate that the constraint B; > — 2 truncates the posterior. Figure 2c has a more
regular shape, though rather skew in the direction of S2. .

We conclude this section with two remarks.

1. For the local approximation case we performed a sensitivity analysis with respect to
the common scale parameter of the covariance matrix. However, the search for an optimal
value of such a parameter is computationally rather costly, when one has to run the same
computer program for different values in a rather wide interval.

2. We generated structural disturbances from a multivariate normal process around the
posterior mode and re-estimated the marginal posterior densities by means of Monte Carlo.
Roughly the same results occur. Thus, specification errors, which are probably present in
Johnston’s model, are not the main cause of the problem.
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