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Abstract

The paper is concerned with a multi-criteria portfolio analysis of hedge fund strategies that are
concerned with �nancial commodities, including the possibility of energy spot, futures and exchange
traded funds (ETF). It features a tri-criteria analysis of the Eurekahedge fund data strategy index
data. We use nine Eurekahedge equally weighted main strategy indices for the portfolio analysis.
The tri-criteria analysis features three objectives: return, risk and dispersion of risk objectives in a
Multi-Criteria Optimisation (MCO) portfolio analysis. We vary the MCO return and risk targets,
and contrast the results with four more standard portfolio optimisation criteria, namely tangency
portfolio (MSR), most diversi�ed portfolio (MDP), global minimum variance portfolio (GMW),
and portfolios based on minimising expected shortfall (ERC). Backtests of the chosen portfolios for
this hedge fund data set indicate that the use of MCO is accompanied by uncertainty about the a
priori choice of optimal parameter settings for the decision criteria. The empirical results do not
appear to outperform more standard bi-criteria portfolio analyses in the backtests undertaken on
the hedge fund index data.

Keywords: MCO, Portfolio Analysis, Hedge Fund Strategies, Multi-Criteria Optimisation,
Genetic Algorithms, Spot prices, Futures pricees, Exchange Traded Funds (ETF).
JEL Codes: G15, G17, G32, C58, D53.

1. Introduction

The paper is concerned with a multi-criteria portfolio analysis of hedge fund strategies that are

concerned with �nancial commodities, including the possibility of energy spot, futures and exchange

traded funds (ETF). The primary purpose of the paper is to examine how expanding a portfolio

analysis from bi-criteria, which typically leads to a single criterion being optimal for hedge fund

strategies, to multi-criteria, which improves the �exibility in the choice of optimal strategies, but at

the possible expense of a single criterion being optimal.This leads to a horses for courses outcome,

which requires a wider and more sensible range of strategies to be considered.

Hallerbach and Spronk (2002) reviewed the bene�ts of incorporating the techniques of multiple

criteria analysis into �nancial decision making, in general, both at the level of the �rm and in

investment decisions. The focus in this paper is on investment decisions, namely the portfolio

selection decision. In the analysis, we contrast standard mean-variance bi-criteria portfolio selection,
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where the e�cient set is a frontier with multi-criteria portfolio analysis and the e�cient frontier

becomes an e�cient surface.

While it is not yet standard for there to be additional criteria in portfolio selection, there has

been recent growing discussion of the topic in the literature (see, for example, Steuer et al., (2007),

Steuer et al. (2013), Qi et al. (2015), and Utz et al. (2015)). Deb (2001, 2011) and Deb et

al. (2011) have considered the use of evolutionary algorithms in multi-objective optimization and

demonstrated applications in both product design and manufacturing, and in portfolio optimisation.

Pfa� (2016) has recently promoted the e�ectiveness of various packages available in the open-source

statistical software R library, as a pathway to the e�ective use of tri-criteria portfolio optimisation

as a �nancial decision tool. In the empirical analysis undertaken in this paper, we use the suggested

capabilities of the various libraries available in R.

Wallenius et al. (2008) reviewed the various areas of multiple-criteria decision making and

multi-attribute utility theory. They noted that evolutionary multi-objective optimization (EMO)

has emerged as a new �eld with strong ties to multi-criteria decision making. The application

of evolutionary algorithms starts with an initial population, and updates the population by using

processes designed to mimic natural survival-of-the-�ttest principles and genetic variation operators

to improve the average population from generation to generation in a stochastic manner. The goal

is to converge to a diverse �nal population of points that represents the nondominated set. This

approach is adopted in the paper and applied to a �nancial portfolio optimisation problem.

Markowitz (1952) developed portfolio theory as a bi-criteria model in the context of his mean-

variance model. The mean refers to e�orts to maximise the expected return of the stochastic

variable, which constitutes the porfolio's return, while the variance, which is Markowitz's risk

proxy, re�ects the endeavour to minimize the variance of the stochastic portfolio return. Hence, the

Markowitz portfolio selection criteria, which has remained the predominant model for the past six

decades, is a bi-criteria model re�ecting attempts to maximise the expected return of the portfolio,

while simultaneously minimising its variance.

There have been various attempts to modify Markowitz's portfolio selection model to combat

its perceived weaknesses. Allen et al. (2016) mention some of the problems attached to the issue

of estimation risk, and note that Markowitz (1959, p. 206) suggests that: �Problems concerning

the proper information to serve as the basic inputs concerning securities are outside the scope

of this monograph. There are no magic formulas to supplant the sources of information and the

rules of judgement of the security analyst�. Historical data are often used to estimate the required

means and covariances, but this leads to estimation risk which, in turn, can lead to extreme and

unstable portfolio weights over time. Michaud (1989, p. 3) suggests that: �The traditional MV

[mean-variance] procedure often leads to �nancially irrelevant or false 'optimal' portfolios and asset

allocations. In fact, equal weighting can be shown to be superior to MV optimization in some

cases�, and �MV optimizers are, in a fundamental sense, estimation-error maximizers�.

One approach to this problem involves the application of Bayesian techniques to adjust for

estimation risk. Some of the original suggested adjustments were either based on the use of di�use

priors (see, for example, Barry (1974) and Bawa et al. (1979)), or `shrinkage' estimators. The latter

were explored by Jobson et al. (1979), Jobson and Korkie (1980) and Jorion (1985).

Roy (1952) developed his `safety-�rst' asset selection criteria, Markowitz (1952, 1959) considered

a number of downside risk measures as an alternative to mean-variance analysis, and Rockafellar
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et al. (2006, 2007a, 2007b) developed the mean-deviation approach to portfolios as an extension to

the classic mean-variance approach. They generalised the results to the one fund theorem, CAPM,

plus the derivation of market equilibrium for investors using di�erent deviation measures. More

recently, Zabarankin et al. (2014) have extended the CAPM with draw-down measures of betas

and alphas.

An evaluation of the relative e�ectiveness of naive diversi�cation relative to standard Markowitz

portfolio optimisation is provided by DeMiguel et al. (2009). A further contrast with the e�cacy

of down-side risk measures and dynamic optimisation strategies is provided by Allen et al. (2016).

The concern in the current paper is not with these issues, but with the merits of adding further

decision criteria to the basic Markowitz optimisation.

The paper is organised into �ve sections. The introduction is followed by a discussion of research

methods in Section 2, which discusses tri-criteria portfolio optimisation strategies in contrast to

variants of the Markowitz bi-criteria optimisation. Both general approaches are adopted in this

paper, beginning with tri-criteria MCO analysis, which is contrasted with various bi-criteria opti-

misation approaches, namely tangency portfolio (MSR), most diversi�ed portfolio (MDP), global

minimum variance portfolio (GMW), and portfolios based on minimising expected shortfall (ERC).

Section 3 introduces the data set, its characteristics, and research methods, while Section 4 presents

the empirical results, including an analysis of various back-tests. A conclusion follows in Section 5.

2. Models

Qi et al. (2015) suggest that a multi-criteria opimization criterion can be written as:

Zi = f1(x)

.

.

.

max{Zk = fk(x)}
s.t. x ∈ S,

(1)

where k is the number of objectives, and S ⊂ Rn is the feasible region in decision space. As

(1) has more than one objective, there is another version of the feasible region, Z ⊂ Rk in criterion

space, where Z = {z | zi = fi(x), x ∈ S}, with reference to which z = (z1, .....zk), is a criterion

vector. In criterion space, z̄ ∈ Z is not dominated if there does not exist an x ∈ S such that

fi(x) ≥ fi(x̄) for all i, with at least one strict inequality. Otherwise, z̄ is dominated. The set of all

nondominated criterion vectors is called the nondominated set, and is designated N . In decision

space, ¯x ∈ S is e�cient if its criterion vector ¯z = (f1(x̄), ...., fk(x̄)) is nondominated. Otherwise, x̄

is ine�cient. The set of all e�cient points is called the e�cient set, and is designated E. In the

form above, the purpose of (1) is to compute all of N and E for use by the decision maker.

In Markowitz (1952), the bi-criterion format is:

min{z1 = xT
∑
x} variance,

max{z2 = µTx} expected return,
s.t. x ∈ S

(2)
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where x ∈ RN , N is the number of securities considered, the xi components are the security

weights,
∑

is the covariance matrix, and µ is the vector of individual security expected returns.

2.1. A tri-criteria model

An additional objective can be added to (2) to form a tri-criterion model:

min{z1 = xT
∑
x},

max{z2 = µTx},
max{z3 = `Tx},
s.t . `Tx = 1.

(3)

Steuer et al. (2007) suggest that there are many candidates for a third criterion, but in the

analysis which follows we will use diversi�cation with respect to risk contributions of assets. Deb

et al. (2011) discuss practical problems encountered in the implementation of portfolio analysis,

suggesting that standard QP solvers face di�culties in the presence of discontinuities and other

complexities. They remark that genetic algorithms may be better placed to deal with these types

of issues.

The approach using evolutionary algorithms (EA) was discussed earlier by Streickert et al.

(2003). EAs are population based stochastic optimization heuristics inspired by Darwin's Theory

of Evolution. An EA searches through a solution space in parallel by evaluating a set (population) of

possible solutions (individuals). An individual gives a solution by representing the decision variables

wi, in our context the choice of portfolio weights. An EA starts with a random initial population

P0. Then the '�tness' of each individual is determined by evaluating the relevant objective function.

After the best individuals P
′

t are selected, new individuals for the next generation Pt+1 are

created from P
′

t . New individuals are generated by altering the individuals of P
′

t through random

mutation and by mixing the decision variables of multiple parents through crossover. Then the

generational cycle repeats itself until a breaking criteria is ful�lled, as shown in Figure 1, which is

taken from Streikert et al. (2003). This basic approach is shown in the right-hand section of Figure

1, labelled Fig. 1. EA scheme.
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A multi-objective EA scheme is shown in the middle section of Figure 1, labelled 'Fig. 2. Multi-

Objective EA'. Given the population-based search strategy and the simple selection strategy, EAs

can be readily extended to multi-objective optimization problems and then, by using selection based

on multiple objective values like the Pareto-dominance criteria, by adding an archive population,

At, used to maintain the currently known Pareto-front.

The process of multi-objective optimization permits two goals to be reached. On the one hand,

the solutions should be as close to the global Pareto-optimal front as possible and, on the other,

the solutions should also cover the whole Pareto front. The �rst goal is often achieved through

elitism by replacing random individuals in Pt with individuals on the Pareto front At, as shown in

the middle diagram of Figure 1, labelled 'Multi-Objective EA'. The second goal can be achieved

by punishing individuals who are too close together (Fitness Sharing).

Memetic Algorithms (MA) serve to extend EA by adding an arbitrary (possibly problem speci�c)

local search heuristic before evaluating the population Pt, as shown in the third section of Figure

1 labelled 'Fig. 3. Memetic Alg'.

3. Data and Research Methods

3.1. Data

The data consist of hedge fund strategy index data taken from EurekaHedge 1. We use the

equally weighted monthly series, in which the monthly index values are the respective mathematical

means (average) of the monthly returns of all hedge fund constituents in the index at that time.

Unlike other indices, they are not asset weighted, or median returns. The returns reported in the

data base, as well as being included and calculated for indices, are monthly returns provided by

hedge funds on a monthly basis. The returns are measured in terms of the gain/loss of the total

portfolio values by performance (net of all fees).

The equally-weighted return for each hedge fund strategy ReturnS is calculated as:

ReturnS =

n∑
i=1

(
Returni

n

)
, (4)

where n is the number of funds included, and Returni is the return on an individual fund. The

indices simply give an overview of the average performance of hedge funds, without attempting to

highlight monthly in�ows and overweight the performance of certain funds. Equal weighting also

encompasses funds denominated in di�erent currencies, such as US dollar, euro and Japanese yen.

The index is purely an average of the performance of the constituent funds in their local currencies.

Only `unique' funds are selected for the index, with no duplicate share classes, currency de-

nominations, onshore, and o�shore versions of the same fund or series. If Eurekahedge discover

new funds with historical performance, these funds are immediately included in the index and all

returns are rebalanced accordingly. If a fund dies, its track record remains permanently in the

1(see:http://www.eurekahedge.com/Indices/)
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index. Furthermore, since the rationale behind the Eurekahedge suite of indices is relative bench-

marking, rather than making them investible, funds that are closed for further capital in�ows are

also included in an index.

We have adopted these Eureka hedge fund strategy indices for the purpose of the multi-criteria

portfolio analysis because hedge fund returns are likely to have non-Gaussian return series with

long tails. The third investment criterion is the dispersion of risk objectives and the prior was that

dispersion is a likely characteristic of hedge fund returns. Bali et al. (2013) suggest that hedge

funds' extensive use of derivatives, short selling, and leverage and their dynamic trading strategies

create signi�cant nonnormalities in their return distributions, and O'Doherty et al. (2016) discuss

the problems this leads to in hedge fund performance assessment.

We adopt nine series for the empirical analysis: The Eurekahedge Long Short Equities Hedge

Fund Index (Bloomberg Ticker - EHFI252), Eurekahedge Arbitrage Hedge Fund Index (Bloomberg

Ticker - EHFI285), Eurekahedge CTA/Managed Futures Hedge Fund Index (Bloomberg Ticker -

EHFI286), Eurekahedge Distressed Debt Hedge Fund Index (Bloomberg Ticker - EHFI287), Eureka-

hedge Event Driven Hedge Fund Index (Bloomberg Ticker - EHFI288), Eurekahedge Fixed Income

Hedge Fund Index (Bloomberg Ticker - EHFI289), Eurekahedge Long Short Equities Hedge Fund

Index (Bloomberg Ticker - EHFI252), Eurekahedge Macro Hedge Fund Index (Bloomberg Ticker -

EHFI253), Eurekahedge Multi-Strategy Hedge Fund Index (Bloomberg Ticker - EHFI254), and the

Eurekahedge Relative Value Hedge Fund Index (Bloomberg Ticker - EHFI255) (see the appendix

for further details).
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Figure 2. Plots of Eurekahedge Fund Strategy Indices
Monthly Arithmetic Returns

(a) Arbitrage and CTA/Managed Futures

(b) Distressed Debt and Event Driven

(c) Fixed Interest and Long/Short Equity

(d) Macro and Multi-Strategy

(e) Relative Value
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Figure 3. QQ plots of the Eurekahedge Strategy
Return Series

(f) Arbitrage and CTA/Managed Futures

(g) Distressed Debt and Event Driven

(h) Fixed Interest and Long/Short Equity

(i) Global Macro and Multi-Strategy

(j) Relative-Value
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These indices should provide a relatively accurate indication of hedge fund strategy returns,

and are interesting candidates for a tri-criteria portfolio analysis. However, they are not directly

investible, and an investor located in a particular currency domain would be subject to further

currency translation e�ects, as they would need to transform all returns in a common currency

from the multi-currency denominated indices. Further description of the composition of the Eureka

Hedge Strategy Indices is given in the Appendix.

The time series plots of monthly Eurekahedge Fund Strategy Index returns, shown in Figure

2, reveal that most hedge fund strategies showed a large fall in returns around the middle of

2008, at the height of the Global Financial Crisis. This was not the case for strategies involving

CTA/Managed Futures and Global Macro strategies.

The descriptive statistics for the hedge fund strategy returns, as shown in Table 1, suggest that

the mean monthly return varies from around 0.6% to almost 0.9% for Distressed Debt, while the

maximum can be as high as 8.97% for Long/Short Equity, or as low as -9.4% for Distressed Debt.

The standard deviations of the returns vary from just under 1% to 2.1%, while the skewness is

negative for 7 of the 9 series. Arbitrage, Distressed Debt, Event Driven and Fixed Interest are

the strategies with the most pronounced excess kurtosis. The standard deviation of the monthly

returns varies from 1% to 2%, while the coe�cient of variation varies from a low of around 1.6%,

in the case of Arbitrage, to a high of almost 3%, in the case of Long/Short Equity. This is relevant

to our third opimisation criteria in which we seek to minimise the dispersion of risk.

QQ plots of the Eurekahedge Strategy return series are shown in Figure 3. The most striking

feature of the QQ plots is the extreme deviation of returns in the lower tail from a Gaussian

distribution. The strategies involving Arbitrage, Distressed Debt, Event Driven, Fixed Interest,

Long/Short Equity, Multi-Strategy and Relative Value, all deviate sharply below the QQ plot line

in their left tails, while, in contrast, Global Macro deviates above the line. Global Macro similarly

deviates above the line in its upper tail. This is an issue for portfolio optimisation based on the

use of the �rst two moments. It will be interesting to see if the addition of a third optimisation

criterion, based on risk dispersion, changes the empirical results signi�cantly.

3.2. Research Methods

In order to undertake the empirical analysis, we use the R language and environment for sta-

tistical computing and graphics. A number of packages are used from the R library, including:

Multiple Criteria Optimization Algorithms and Related Functions (MCO), Financial Risk Mod-

elling and Portfolio Optimisation with R (FRAPO), Scatterplot3d, Akima, Fields, Rmetric's pack-

age fPortfolio, Econometric tools for performance and risk analysis (PerformanceAnalytics), and

Cone Constrained Convex Problems (CCCP). Pfa� (2016) demonstrated that it was possible to

combine these libraries in R to undertake multi-criteria portfolio optimisation. The paper draws

on his computer code, and has been modi�ed for the purposes of our analysis.

As was discussed in Section 2.1, we are seeking to achieve nondominated solutions that are

consistent with Pareto e�ciency. We can obtain positions on the e�cient frontier, either by use of

the previously discussed genetic algorithms or by means of multi-criteria classical decision optimi-

sation. Our data set of 9 Eurekahedge fund strategy returns will constitute the asset universe to

be analysed on the basis of the standard mean return and total covariance risk, together with the

third criteria of diversi�cation with respect to risk contributions of assets.
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Pfa� (2016) considers the multi-criteria optimisation in the following terms:

minimize fm(ω), m = 1, 2, ...., M ;

s.t. gj(ω) ≥ 0, j = 1, 2, ..., J ;

hk(ω) = 0, k = 1, 2, ..., K;

ωLi ≤ ωi,≤ ωUi , , i = 1, 2, ..., n.

(5)

As discussed in Section 2.1, the problem has M (con�icting) objective functions and n con-

strained variables (weights). A solution ˆω ∈ Ω is e�cient in the Pareto or nondominated sense if

there is no ω ∈ Ω, so that fk(ω) ≤ fk(ω̂) for k = 1, ...., p, and fi(ω) < fi(ω̂) for some i ∈ {1, ...., k}.
We use the R package MCO to implement a genetic NSGA-II algorithm to �nd solutions which

lie on the Pareto e�cient front, and cover the permissible range. However, the process is not

guaranteed to �nd optimal points that are actually on the frontier.

We use multi-criteria optimisation with three objectives; mean return, volatility, and dispersion

of risk contributions. The target mean return is set at 6%, and the targeted volatility at 4%. We

subsequently vary the target parameters for returns to 2% and 4% to explore how that impacts on

the empirical results.

A number of comparisons are made with alternative asset allocation strategies. We use code

from the fPortfolio and PortfolioAnalytics packages available on R-Forge, which provide appropriate

optimisation routines. For example, the objective to minimize portfolio variance is a quadratic

problem of the form:

minimize

ω
ω

′ ∑
ω, (6)

where
∑

is the estimated covariance matrix of asset returns, and ω is the set of weights.

Choueifaty and Coignard (2008) and Choueifaty et al. (2013) have explored the theoretical and

empirical properties of diversi�ed porfolios. Choueifaty et al. (2013) present the mathematical

properties of the diversi�cation ratio and most diversi�ed portfolio (MDP), and investigate the

optimality of the MDP in a mean-variance framework. The Diversi�cation Ratio (DR) is the ratio

of the portfolio's weighted average volatility to its overall volatility. The measure captures the

concept of diversi�cation, whereby the volatility of a long-only portfolio is less than or equal to the

weighted sum of the asset's volatilities. The DR of a long-only portfolio is greater than or equal to

1, and equals unity for a single asset portfolio.

They consider a universe of N risky assets {S1, ....., SN , with volatility σ = σi, correlation matrix

C = (ρi, j) and covariance matrix
∑

= (ρi,j , σiσj), with 1 ≤ i, j ≤ N. Let ω = (ωi) be the weights

of the long only portfolio, σ(ω) its volatility, and (ω | σ) =
∑
i ωiσi its average volatility. The

diversi�cation ratio DR(ω) of a portfolio is de�ned as the ratio of its weighted average volatility

and its volatility:

DR(ω) =
(ω | σ)

σ(ω)
. (7)

Choueifaty et al. (2013) develop the properties of the most diversi�ed portfolio (MDP) and
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demonstrate that, in this long-only setting, maximising the DR is equivalent to maximising the

Sharpe ratio. For the purposes of comparison, we calculate the MDP and its Sharpe ratio.

The R package, portfolioAnalytics, has other routines that can be applied in a portfolio mean-

variance optimisation framework such as, computing the tangency portfolio on the e�cient set,

which in our subsequent analysis we will refer to as MSR. We can also compute the global minimum

variance portfolio, which we term PMGV.

Boudt et al. (2008) explored the estimation and decomposition of downside risk for portfolios

with non-normal returns. The portfolio returns are de�ned as rp = ω
′
µ and the portfolio variance

as m2 = ω
′ ∑

ω, meaning that
∑

is the covariance matrix. Given the assumption of Gaussian

distributions, the Value-at-Risk (VaR) and Expected Shortfall (ES) of the portfolio can be computed

as:

V aRα = −ω′
µ+
√
m2Φ−1(α),

ESα = −ω′
µ+
√
m2

1
αφ[Φ−1(α)],

(8)

where φ(·) is the density and Φ−1(·) is the quantile function of the standard normal distribution.

Boudt et al. (2008) demonstrate how to use asymptotic expansions to account for the asymmetry

and heavy tails in �nancial returns to accommodate non-Gaussian distributions, and note that these

metrics are included in the R package performanceAnalytics. We use this metric to calculate risk-

parity optimisation where ES is the expected shortfall. We compare all multi-criteria optimisation

results (MCO) with all these other metrics, and also compare their Sharpe ratios. The empirical

results are presented in Section 4.

4. Empirical Results

We analyse the nine series of Eurekahedge fund returns using the R package MCO to undertake

a trivariate portfolio analysis with a target rate of return of 6%, and a target volatility of 4%, while

minimising the dispersion of risk contributions. As we are working in three dimensions, compared

with the customary two-dimensional portfolio analysis, the tri-dimensional analysis produces an

e�cient or Pareto optimal surface, as opposed to an e�cient frontier. The map of this surface is

shown in Figure 4.
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Figure 4. Surface of Pareto E�cient Solutions

In order to obtain a visual feel for how the genetic algorithm is faring, and to check that the

values make intuitive sense, we exported the values of the three criteria �ans� generated by the

analysis, and explored their pairwise behaviour. Table 2 provides descriptive statistics for the

return, risk, and dispersion of the 500 portfolios generated by the analysis. The mean monthly

return of our created portfolios is 1.54%, the mean risk is just under 1%, and the mean dispersion

is 0.023. The coe�cient of dispersion is lower for returns at 0.066, higher for risk with a value of

0.12, and much higher for dispersion with a value of 0.39. We then produced some pairwise graphs

of the three metrics to check

Table 2. Summary Statistics of the Return, Risk and
Dispersion of the Generated Portfolios

Statistics Return Risk Dispersion

Mean 1.54909 0.968101 0.233474
Standard Deviation 0.102686 0.124511 0.0919030

Minimum 1.35370 0.785550 0.117111
Maximum 1.73356 1.24914 0.562545

Coe�cient of Variation 0.0662883 0.128614 0.393632

that they are behaving in an intuitively sensible way. The graphs are shown in Figure 5. The

results are re-assuring in that, when we combine risk with return in the 500 generated portfolios,

we do obtain a positive relationship, so that we cannot gain a greater return without taking on
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Figure 5. Pairwise Graphical Analysis of the
Joint Behaviour of Return, Risk and Dispersion
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greater risk. The relationship between return and dispersion, depicted in the middle diagram

in Figure 5, shows that if we operate in the top left-hand corner of the diagram, we can generate a

greater return by taking on more dispersion.

Finally, the bottom diagram in Figure 5 combines dispersion with risk, and reveals that there

are potential gains to be made if we operate in the bottom left-hand quadrant of the diagram. In

this segment, we can combine relatively low dispersion with low risk. The segment to be avoided is

the top right-hand side of the diagram, where we combine high risk with high dispersion. Hence,

the tri-criteria relationships reveal the possibility of bene�ts from considering the three metrics.

The relationships in the lower diagrams in Figure 5 are clearly non-linear, even though the diagram

shows a superimposed linear regression line. This also suits our purposes, as non-linearity increases

the potential diversi�cation bene�ts.

We explore the relationship between the characteristics of these portfolios using the non-

parametric Spearman's rank correlation coe�cients. The Spearman's rank correlation between

return and risk is very high, with rho = 0.959, which is highly signi�cant. The Spearman's rank

correlation coe�cient between return and dispersion, has a value of rho = 0.142, which is also highly

signi�cant. However, the Spearman's rank correlation coe�cient between risk and dispersion has

rho = -0.013, which is insigni�cant.

The e�ect of combining these e�ects is shown in Figure 6, which provides an image plot of the

e�cient set with contour lines superimposed. The e�cient portfolios lie in the upper left-hand

quadrant of Figure 6, in which area the investor can maximize return while minimizing the

Figure 6. Contour Plot of the E�cient Set

risk and the dispersion of risk. The balance between the three will be determined by the

investor's preferences, which we have not yet speci�ed. An indication of the relative attractiveness
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of a multi-criteria investment strategy, as compared with a more standard bi-criteria strategy, will

be explored via the Sharpe ratio scores for the various strategies.

A comparison of the portfolio value outcomes in a backtest of the di�erent strategies over time is

shown in Figure 7. MCO represents the multi-criteria portfolio which, in this �rst case, has a target

rate of return of 6% and a target risk of 4%. It can be seen that it produces the highest value in

Figure 7 from 2005 to 2010 when it is overtaken by MDP, the Most Diversi�ed Portfolio. The next

most valuable strategy in portfolio value terms is ERC, the Expected Short Fall portfolio. MSR

represents the tangency portfolio with the e�cient frontier, and produces a value that is similar to

that of the Global Minimum Variance portfolio, GMW. From the middle of 2010 its moves above

GMW.

Figure 7. Backtest Comparison of Allocation Strategies,
MCO Return Target 6% Volatility 4%

Table 3 summarises the average return, risk, Sharpe Ratios, and Value-at-Risk, VaR, of these

portfolio strategies. It con�rms that MDP produces the highest average return, in percent per

annum (p.a.), followed by MCO, ERC, MSR and GMV. However, the risk is lowest for MSR, at

0.034 in Standard Deviation terms p.a., followed by GMV at 0.035, MDP at 0.039, ERC at 0.40,

and MCO at 0.041. MDP has the highest Sharpe Ratio at 1.864 and the lowest VaR at 1.313. MSR

has a Sharpe Ratio of 1.768 and VaR of 1.340, followed by MCO with a Sharpe Ratio of 1.744 and

VaR of 1.514. ERC has a Sharpe Ratio of 1.710 and VaR of 1.547, while GMW has a Sharpe Ratio

of 1.710 and VaR of 1.488.

The di�culties in choosing an optimal portfolio strategy are evident in these various outcomes.

The MDP approach optimises the Sharpe Ratio, and in this data set with the given parameter

settings, produces the highest return, highest Sharpe Ratio, minimum VaR, but only the third

lowest standard deviation. The GMW strategy produces the lowest return, the lowest Sharpe

ratio, the second lowest standard deviation, and a median VaR. MCO, the multi-criteria approach,
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produces the second highest return, the highest standard deviation, a median Sharpe Ratio, and

the second highest VaR.

Table 3. Return Risk Characteristics of Alternative
Strategies, MCO Return Target 6% Risk 4%

Statistics MCO MSR MDP GMW ERC

Return (p.a.) 0.071 0.061 0.072 0.059 0.069
StdDev. Risk (p.a.) 0.041 0.034 0.039 0.035 0.040

Sharpe Ratio 1.744 1.768 1.864 1.688 1.710
VaR (p.a.) 1.514 1.340 1.313 1.488 1.547

In order to explore the sensitivity of the results to the target parameter settings, we switched

the target rate of return to 2% p.a. and kept the target risk at 4%. In terms of the values of the

portfolios in the backtest, as shown in Figure 8, MCO dominates, while the weakest performance

in terms of value of the portfolio is given by GMW, the global minimum variance portfolio. The

combined metrics shown in Table 4 present a di�erent picture.

Figure 8. Backtest Comparison of Allocation
Strategies, Target Return 2% Risk 4%

The highest return, as previously mentioned, comes from the MCO strategy, but it also produces

the highest standard deviation, the second lowest Sharpe Ratio, and the highest VaR. The MDP

approach provides the second highest return, median standard deviation, the highest Sharpe Ratio,

and the lowest VaR. Table 4 shows the return and risk characteristics of the portfolios selected

under the various strategies when the MCO strategy was a target of 2% return and 4% risk.
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Table 4. Return Risk Characteristics of Alternative
Strategies, MCO Return Target 2% Risk 4%

Statistics MCO MSR MDP GMW ERC

Return (p.a.) 0.073 0.061 0.072 0.059 0.069
StdDev. Risk (p.a.) 0.043 0.034 0.039 0.035 0.040

Sharpe Ratio 1.693 1.786 1.864 1.688 1.710
VaR (p.a.) 1.565 1.340 1.313 1.488 1.547

MCO again dominates the backtest, in terms of returns, with an average return of 0.073 p.a.,

but MDP is not far behind with 0.072 p.a.. The other metrics, MDP dominates, with a median

standard deviation 0.039, highest Sharpe Ratio of 1.864 and lowest VaR of 1.313. In contrast, MCO

has the highest standard deviation of 0.043 p.a., a Sharpe Ratio of 1.693 and the highest VaR of

1.565.

We performed one further set of analyses and set the target for MCO at 4% risk and 4% return.

The results of the backtest of the values of the portfolio strategies are shown in Figure 9. The MCO

strategy again dominates the backtest in terms of the portfolio values, but on the other metrics

relating to risk, as shown in Table 5, it does not fare so well. It has the highest standard deviation

of 0.042 p.a., median Sharpe Ratio of 1.736, and second highest VaR at 1.508 p.a. .

Figure 9. Backtest Comparison of Allocation
Strategies, Target Return 4% Risk 4%
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Table 5. Return Risk Characteristics of Alternative
Strategies, MCO Return Target 4% Risk 4%

Statistics MCO MSR MDP GMW ERC

Return (p.a.) 0.073 0.061 0.072 0.059 0.069
StdDev. Risk (p.a.) 0.042 0.034 0.039 0.035 0.040

Sharpe Ratio 1.736 1.786 1.864 1.688 1.710
VaR (p.a.) 1.508 1.340 1.313 1.488 1.547

Once again, MDP has the best relative performance, with a return of 0.072%, standard deviation

of 0.039 p.a., which is the median, highest Sharpe Ratio of 1.864, and lowest VaR at 1.313 p.a..

The three sets of results achieved by varying the MCO return and risk targets reveal that it

is not easy to implement a multi-criteria portfolio optimisation strategy, in practice. If we set a

relatively high target return of 6%, with a target risk of 4%, then Table 3 shows that the backtest

indicates an achieved return of 0.071%. Paradoxically, if we lower the target return to 2%, but

maintain the target risk at 4%, Table 4 shows that the backtest reveals we achieve a higher return

of 0.073%.

However, the target return of 6% and a risk target of 4% produces the lowest standard deviation

of the three strategies considered, at 0.041 p.a. This strategy also produces the highest Sharpe ratio

of the three target settings of 1.744. The lowest VaR of the three MCO strategies considered is

produced by using a target of 4% return and 4% risk, with a value of 1.508 p.a. in the backtest.

However, the highest Sharpe Ratio of 1.744 is produced by the �rst MCO strategy of a target return

of 6% and target risk of 4%.

Table 6 provides a summary of the empirical �ndings and their potential contradictions. The

highest returns of 0.073 p.a. shown in bold in Table 6, are provided by an MCO strategy with a

Table 6. Return Risk Characteristics of Alternative Strategies

Statistics MCO Ret 6%

Risk 4%

MCO Ret 2%

Risk 4%

MCO Ret 4%

Risk 4%

MSR MDP GMW ERC

Return (p.a.) 0.071 0.073 0.073 0.061 0.072 0.059 0.069

StdDev. Risk (p.a.) 0.041 0.043 0.042 0.034 0.039 0.035 0.040

Sharpe Ratio 1.744 1.693 1.736 1.786 1.864 1.688 1.710

VaR (p.a.) 1.514 1.565 1.508 1.340 1.313 1.488 1.547

lower target return of 2% and 4%, respectively, than the strategy in the �rst MCO column, which

has a target return of 6%. The three di�erent MCO strategies produce larger standard deviations

than all the more customary, bi-criteria strategies. The Sharpe ratios are less conclusive, though

MDP with a Sharpe ratio of 1.864 is clearly optimal on this metric. The MCO strategy, though

aimed at reducing dispersion, does not produce a low VaR. All the VaRs for the bi-criteria strategy,

as shown in bold in Table 6, are lower than the three VaRs produced by the various MCO strategies.

5. Conclusion

The paper was concerned with a multi-criteria portfolio analysis of hedge fund strategies that are

concerned with �nancial commodities, including the possibility of energy spot, futures and exchange
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traded funds (ETF). The paper examined the relationships between �ve alternative investment

strategies. The �rst, MCO, used multi-criteria portfolio optimisation, while the other four use bi-

criteria optimisation, namely MSR, MDP, GMW and ERC. The empirical results for this sample of

EurekaHedge hedge fund data are inconclusive. One paradox is that setting a lower target return

in the MCO analysis, 2% in this case, with a target risk of 4%, achieves a higher return of 0.073%,

as does the MCO analysis with a target return of 4% and a target risk of 4%, which also achieves

0.073%.

The MDP strategy, which maximises the Sharpe Ratio, does relatively well in terms of this data

set, producing the highest Sharpe Ratio of 1.864, as would be expected, but also providing the

lowest VaR at 1.313 p.a., and the second highest return at 0.072%. Thus, the MCO criteria have

the merit of adding an additional goal to the analysis, but at the cost of complicating the choice of

optimal settings.

It is not clear, a priori, what would be the appropriate return and risk targets. Thus, MCO is

an interesting extension of portfolio choice, but it is not clear whether it adds much in the way of

additional value, while considerably complicating the choice of target settings. Furthermore, the

use of genetic algorithms does not guarantee that the suggested solutions will lie on the e�cient

frontier.

The paper examined, among other issues, how expanding a portfolio analysis from bi-criteria,

which typically leads to a single criterion being optimal for hedge fund strategies, to multi-criteria,

which improves the �exibility in the choice of optimal strategies, but at the expense of a single

criterion being optimal. This important outcome requires a wider and more sensible range of

strategies to be considered rather than determining an optimal strategy based on a limited number

of possibilities.

An extension of the paper could incorporate dynamic variances and covariances to enable a

dynamic analysis of hedge fund strategies, which would give even greater �exibility and optimality

in terms bi-criteria and multi-criteria portfolio analysis.
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Appendix

The Eurekahedge Long Short Equities Hedge Fund Index (Bloomberg Ticker - EHFI252) is
an equally weighted index of 1114 constituent funds. The index is designed to provide a broad
measure of the performance of underlying hedge fund managers The index is base weighted at 100
at December 1999, does not contain duplicate funds and is denominated in local currencies.

The Eurekahedge Arbitrage Hedge Fund Index (Bloomberg Ticker - EHFI285) is an equally
weighted index of 90 constituent funds. The index is designed to provide a broad measure of the
performance of underlying hedge fund managers who invest with an arbitrage strategy. The index
is base weighted at 100 at December 1999, does not contain duplicate funds and is denominated in
local currencies.

The Eurekahedge CTA/Managed Futures Hedge Fund Index (Bloomberg Ticker - EHFI286)
is an equally weighted index of 503 constituent funds. The index is designed to provide a broad
measure of the performance of underlying hedge fund managers who invest with a cta/managed
futures strategy. The index is base weighted at 100 at December 1999, does not contain duplicate
funds and is denominated in local currencies.

The Eurekahedge Distressed Debt Hedge Fund Index (Bloomberg Ticker - EHFI287) is an
equally weighted index of 29 constituent funds. The index is designed to provide a broad measure
of the performance of underlying hedge fund managers who invest with a distressed debt strategy.
The index is base weighted at 100 at December 1999, does not contain duplicate funds and is
denominated in local currencies.

The Eurekahedge Event Driven Hedge Fund Index (Bloomberg Ticker - EHFI288) is an equally
weighted index of 124 constituent funds. The index is designed to provide a broad measure of
the performance of underlying hedge fund managers who invest with an event driven strategy.
The index is base weighted at 100 at December 1999, does not contain duplicate funds and is
denominated in local currencies.

The Eurekahedge Fixed Income Hedge Fund Index (Bloomberg Ticker - EHFI289) is an equally
weighted index of 337 constituent funds. The index is designed to provide a broad measure of the
performance of underlying hedge fund managers who invest with a �xed income strategy. The index
is base weighted at 100 at December 1999, does not contain duplicate funds and is denominated in
local currencies.

The Eurekahedge Long Short Equities Hedge Fund Index (Bloomberg Ticker - EHFI252) is
an equally weighted index of 1114 constituent funds. The index is designed to provide a broad
measure of the performance of underlying hedge fund managers who invest with a long short
equities strategy. The index is base weighted at 100 at December 1999, does not contain duplicate
funds and is denominated in local currencies.

The Eurekahedge Macro Hedge Fund Index (Bloomberg Ticker - EHFI253) is an equally weighted
index of 238 constituent funds. The index is designed to provide a broad measure of the perfor-
mance of underlying hedge fund managers who invest with a macro strategy. The index is base
weighted at 100 at December 1999, does not contain duplicate funds and is denominated in local
currencies.

The Eurekahedge Multi-Strategy Hedge Fund Index (Bloomberg Ticker - EHFI254) is an equally
weighted index of 250 constituent funds. The index is designed to provide a broad measure of
the performance of underlying hedge fund managers who invest with a multi-strategy strategy.
The index is base weighted at 100 at December 1999, does not contain duplicate funds and is
denominated in local currencies.

The Eurekahedge Relative Value Hedge Fund Index (Bloomberg Ticker - EHFI255) is an equally
weighted index of 74 constituent funds. The index is designed to provide a broad measure of the
performance of underlying hedge fund managers who invest with a relative value strategy. The index
is base weighted at 100 at December 1999, does not contain duplicate funds and is denominated in
local currencies.
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