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Summary. The blood vessel wall has a number of self-

healing properties, enabling it to minimize blood loss and

prevent or overcome infections in the event of vascular

trauma. Endothelial cells prepackage a cocktail of hemo-

static, inflammatory and angiogenic mediators in their

unique secretory organelles, the Weibel–Palade bodies

(WPBs), which can be immediately released on demand.

Secretion of their contents into the vascular lumen

through a process called exocytosis enables the endothe-

lium to actively participate in the arrest of bleeding and

to slow down and direct leukocytes to areas of inflamma-

tion. Owing to their remarkable elongated morphology

and their secretory contents, which span the entire size

spectrum of small chemokines all the way up to ultralarge

von Willebrand factor multimers, WPBs constitute an

ideal model system for studying the molecular mecha-

nisms of secretory organelle biogenesis, exocytosis, and

content expulsion. Recent studies have now shown that,

during exocytosis, WPBs can undergo several distinct

modes of fusion, and can utilize fundamentally different

mechanisms to expel their contents. In this article, we dis-

cuss recent advances in our understanding of the compo-

sition of the WPB exocytotic machinery and how,

because of its configuration, it is able to support WPB

release in its various forms.

Keywords: endothelial cells; exocytosis; von Willebrand

disease; von Willebrand factor; Weibel–Palade bodies.

Weibel–Palade bodies: secretory organelles of the
endothelium

The main cargo of Weibel–Palade bodies (WPBs) is von

Willebrand factor (VWF), which is a large multimeric

adhesive protein that mediates platelet adhesion to the

endothelium and to the subendothelial matrix [1,2]. VWF

also acts as a chaperone for coagulation factor VIII in

plasma, and prevents its premature clearance, which is

critical for the maintenance of normal circulating FVIII

levels. VWF undergoes a complex series of post-transla-

tional modifications, including glycosylation, multimeriza-

tion, and proteolytic processing, and is the driving force

behind the formation of WPBs. Mutations in VWF that

affect its synthesis or processing and subsequent storage

in WPBs constitute the basis of von Willebrand disease

(VWD), which is the most common inherited bleeding

disorder, and is caused by quantitative or qualitative

defects in VWF. The topics of VWF biosynthesis, WPB

formation and VWD have been extensively covered in a

number of excellent reviews [3–5], and are therefore not

included in this review.

Alongside VWF, a considerable number of inflamma-

tory and angiogenic mediators are copackaged into WPBs

(Fig. 1C) [6,7]. Their simultaneous release from this vas-

cular emergency package will also direct leukocytes to

sites of inflammation and promote vessel repair. To tailor

its secretory response to the prevailing vascular condition,

the endothelium continuously transduces cues from the

local microenvironment into dynamic control over the

content of WPBs by selectively including or excluding cer-

tain cargoes. Conditions that mimic laminar flow lead to

a reduced angiopoietin-2 (Ang-2) content in WPBs [8].

Exposure to proinflammatory cytokines leads to upregu-

lation of chemokines such as interleukin (IL)-8, monocyte

chemoattractant protein-1, eotaxin-3, and IL-6, which are

packaged into newly synthesized WPBs [9]. Because

WPBs are long-lived storage organelles with a turnover of

~ 24 h [10–12], endothelial cells will accumulate distinct

populations of granules that differ in their levels of cotar-

geted WPB cargo [9,13]. Whether the degree of inclusion
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of cotargeted WPB cargo reflects the endothelial activa-

tion state at the moment when the WPB was synthesized,

or whether this is a result of stochastic variation follow-

ing gradual redistribution of contents over the WPB pop-

ulation through content intermixing, as been reported for

other long-lived organelles such as lysosomes [14], is cur-

rently unclear. Interestingly, it has been suggested that

subsets of granules can be subject to differential exocyto-

sis [15], although the mechanism behind this differential

release remains elusive.

The endothelial secretory pathway

VWF secretion from endothelial cells occurs via three

main routes: constitutive secretion and basal secretion,

both of which occur in the absence of stimulation, and

regulated secretion of WPBs in response to endothelial

activation (Fig. 2). Following its journey through the

early secretory pathway, VWF undergoes a sorting step

at the level of the trans-Golgi network (TGN): low molec-

ular weight (LMW) VWF multimers enter the constitutive

secretory pathway in small short-lived anterograde carri-

ers, which are immediately released at the plasma mem-

brane [16]. High molecular weight (HMW) VWF

multimers enter the storage pathway by condensing into

tubules, which are packaged in nascent WPBs that bud

off the TGN [17]. This compartment constitutes the relea-

sable pool of HMW VWF that is secreted upon secreta-

gogue stimulation. The proportion of VWF that is sorted

into either direction has long been a matter of debate,

partly because previous studies considered only constitu-

tive and regulated secretion [16,18]. Careful kinetic moni-

toring of VWF trafficking has revealed that the storage

pathway is also responsible for the majority of

unstimulated VWF release through basal secretion [12].

This most likely reflects gradual, stochastic turnover of

WPBs, as VWF retention in this pathway correlates with

the reported half-life of these granules [10,12]. It suggests

that the secretory machinery of WPBs at baseline is

already in a certain degree of readiness that supports low-

level, spontaneous release. It also reconciles earlier and

recent observations that the bulk of VWF released by

resting endothelial cells is of a high multimeric nature

[18,19].

Apart from the degree of multimerization, another dis-

tinction between the constitutive and basal/stimulated

secretion pathways can be made on the basis of the polar-

ity of release. In vivo, the apical side of the endothelial

cells faces the vascular lumen, which results in VWF

secretion directly into the circulation. VWF unfurls and

assembles into ultralarge VWF strings that can be up to

several millimeters in length. Entanglement of several of

these strings leads to the formation of spiderweb-like net-

works that function as adhesive platforms for platelets

[20]. In this way, VWF strings act as polymeric force sen-

sors that, upon flow, expose a shear-dependent binding

site for platelet glycoprotein Ib [4]. Basolaterally released

VWF is deposited in the subendothelial matrix, where it

mediates platelet adhesion when the matrix is exposed fol-

lowing damage to the vessel wall, either directly or via

self-association with plasma VWF [21,22]. Over three dec-

ades ago, the idea had already arisen that secretion of

such functionally distinct pools of VWF may differ in

polarity, but previous studies addressing the polarity of

endothelial VWF release remained inconclusive because

they did not consider the contribution of spontaneous

release of regulated secretory cargo via the basal route

[23,24]. A recent study has now convincingly shown that
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Fig. 1. Weibel–Palade bodies (WPBs), secretory organelles of the endothelium. (A) Endothelial cells containing characteristic elongated WPBs

visualized by von Willebrand factor (VWF) immunostaining. (B) WPB ultrastructure, with a longitudinal section (left) showing internal striations,

and a cross-section (right) showing bundles, which represent densely packed VWF tubules. (C) Cartoon representation of WPB cargo. Ang-2,

angiopoietin-2; Eo-3, eotaxin-3; GROa, growth regulated oncogene a; IGFBP7, insulin-like growth factor-binding protein 7; IL-6, interleukin-6;

IL-8, interleukin-8; MCP-1, monocyte chemoattractant protein-1; OPG, osteoprotegerin.
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constitutive release of LMW VWF mainly occurs basolat-

erally, whereas basal and stimulated release of HMW

VWF from WPBs primarily occur at the apical face [19].

Stimuli and signaling cascades

WPB exocytosis is triggered by a wide range of physiolog-

ical (stress hormones, e.g. epinephrine; proteases, e.g.

thrombin; biogenic amines, e.g. histamine and 5-hydroxy-

tryptamine; and shear stress) and pathological (e.g. bacte-

rial toxins) signals (reviewed in [6]) that use Ca2+ or

cAMP as second messengers (Fig. 3). As part of an inte-

grated response to vascular injury, Ca2+-mediated secret-

agogues such as histamine and thrombin locally promote

a prothrombotic, proinflammatory state by instanta-

neously causing release of large quantities of VWF and

other WPB constituents, while simultaneously increasing

endothelial permeability and vascular tone [25,26]. In con-

trast, cAMP-mediated stimuli such as epinephrine and

vasopressin act systemically, increase endothelial barrier

function, and, when applied to cultured endothelial cells,

induce a slow but sustained release of WPBs [27–30]. This
pathway can be clinically exploited to correct prolonged

bleeding times in patients with mild hemophilia A or

VWD through administration of the vasopressin analog

DDAVP, which mobilizes VWF from its endothelial

stores following activation of vasopressin-2 receptor

(V2R) [28,31]. Despite their distinct kinetic and physio-

logical profiles, Ca2+-dependent and cAMP-dependent

pathways converge at the same effector pathways, which

control actin remodeling and tethering and fusion of

WPBs, albeit in some cases with different outcomes

(Fig. 3).

Increases in the intracellular free Ca2+ concentration

([Ca2+]i) occur after activation of phospholipase C (PLC)

by ligand-bound G-protein-coupled receptors (GPCRs)

[32]. Dose-dependent, subsecond release of WPBs in

response to ionophores or caged Ca2+ implies that sus-

tained elevation of [Ca2+]i is a sufficient transduction sig-

nal to drive WPB fusion independently from additional

receptor-triggered signaling [26,33]. In nearly every regu-

lated secretory system, a vesicle-associated Ca2+ sensor is

responsible for coupling transient elevations in [Ca2+]i to

the soluble N-ethylmaleimide-sensitive factor attachment

protein receptor (SNARE) fusion machinery, but, so far,

such a WPB-localized Ca2+ sensor has not been identified

[34]. However, a number of other Ca2+-sensing mecha-

nisms have been reported to couple cytosolic Ca2+ to the

endothelial exocytotic response. When Ca2+ is associated

with the Ca2+-sensor calmodulin (CaM), the Ca2+–CaM
complex binds to the N-terminus of the guanine nucleo-

tide exchange factor (GEF) RalGDS, thereby unleashing

its GEF activity towards the small GTPase RalA [35].

Activated RalA most likely coordinates a tethering step

by promoting Arf6-dependent phospholipase D1 (PLD1)

activity [36]. Local modification of phospholipids by

PLD1 generates plasma membrane microdomains that

recruit the Ca2+-binding and phospholipid-binding

apical

WPB

UL-VWF

Golgi

basolateral

constitutive secretion basal secretion regulated secretion

Fig. 2. The endothelial secretory pathway. von Willebrand factor (VWF) secretion occurs via three pathways: (i) constitutive secretion of low

molecular weight VWF, which is primarily released at the basolateral side of the endothelium; and (ii) basal and (iii) regulated secretion of high

molecular weight VWF from Weibel–Palade bodies (WPBs), which is primarily directed towards the apical surface. From the large number of

WPBs that undergo exocytosis upon stimulated release, ultralarge VWF (UL-VWF) multimers emerge that assemble into VWF strings on the

apical side of the endothelium.
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AnxA2–S100A10 complex, which, in its turn, links WPBs

to membrane fusion sites through the WPB-localized teth-

ering factor Munc13-4 [37–39]. Ca2+-mediated VWF

secretion is also dependent on rapid changes in the actin

cytoskeleton that lead to the formation of parallel stress

fibers, a process that is primarily regulated by GTPases

of the Rho family [29,40,41].

Triggering of the GPCR-coupled V2R and b2-adrener-
gic receptors activates cAMP-dependent protein kinase A

(PKA) after conversion of ATP to cAMP [27,28]. PKA is

critically involved in VWF secretion by activating a num-

ber of effector pathways [42], such as tethering of WPBs

through the RalGDS–RalA pathway and the AnxA2–
S100A10 tethering complex [30,35,38], and via phospho-

rylation of zyxin during contractile ring assembly [43].

During cAMP-mediated stimulation, a subset of WPBs

avoid release by clustering together around the micro-

tubule organizing center, as a result of dynein–dynactin-
dependent retrograde transport activated by PKA [42,44].

Whether this is a stochastic process that serves to limit

the secretory response or whether these WPBs represent a

specific subset of granules that are actively set aside, e.g.

according to their recruited membrane components, state

of maturation, or localization [15], is still unclear. The

exchange protein that is directly activated by cAMP is

also activated during cAMP-mediated WPB release, and

catalyzes the activation of the small GTPase Rap1

[45,46]. Via a complex of its downstream effectors phos-

phatidylinositol 3-kinase and the Rac exchange factor

PREX1, activated Rap1, in its turn, promotes activation

of the Rho GTPase Rac1 [47]. The Rap1–Rac1 pathway

is thought to promote secretion by rearranging actin into

thin cortical bundles in close apposition to the plasma

membrane and/or by regulating the formation or contrac-

tility of actin on the fusing WPB membrane [43].

Protein kinase C (PKC) is a key signaling mediator for

a number of endothelial agonists that trigger secretion of

VWF. Phorbol esters, such as phorbol 12-myristate 13-

acetate (PMA), are potent (non-physiological) stimulators

of VWF secretion that directly activate PKC by mimick-

ing the action of diacylglycerol [25]. Histamine, vascular

endothelial growth factor (VEGF) and Shiga toxin 1B
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Fig. 3. Signaling cascades in Weibel–Palade body (WPB) exocytosis. Ca2+-mediated and cAMP-mediated secretagogues that trigger WPB exo-

cytosis use distinct and common signaling circuits that converge at effector pathways that control anchoring, tethering, vesicle fusion, and actin

contractility. AC, adenylyl cyclase; ATP, adenosine triphosphate; CaM, calmodulin; [Ca2+]i, intracellular free Ca2+ concentration; DAG, dia-

cylglycerol; EPAC, exchange protein that is directly activated by cAMP; Gb3, ceramide trihexoside; H1R, histamine H1 receptor; IP3, inositol

1,4,5-triphosphate; PAR1, protease-activated receptor 1; PI3K, phosphatidylinositol 3-kinase; PIPa, phosphatidylinositol 4,5-bisphosphate;

PIP2, phosphatidylinositol 4,5-bisphosphate; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C; PLD1, phospholipase D1;

SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; Stx1B, Shiga toxin 1B; V2F, vasopressin-2 receptor; VEGF,

vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; b2-AR, b2-adrenergic receptor.
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(Stx1B) elevate [Ca2+]i in a PLC-dependent manner, and

simultaneously either signal through the Ca2+-indepen-

dent PKCd (VEGF and histamine) or utilize the Ca2+-

dependent PKCa (Stx1B and histamine) [32,48–51].
Among its targets are components of the SNARE

machinery, the assembly of which is partly regulated

through PKC-dependent phosphorylation events [52].

Nevertheless, several ambiguities remain that suggest that

PKC is not always essential for VWF secretion. Both

VEGF and histamine activate PKCd; however, broad-

range PKC inhibition or specific depletion of PKCd sig-

nificantly reduced secretory responses after VEGF but

not after histamine administration [48]. PKCa is activated

by Stx1B as well as by histamine, but is only essential for

Stx1B-induced release; inhibition of PKCa did not block

histamine-induced VWF secretion and, in some studies,

even enhanced it [48,51,53–55]. Paradoxically, three inde-

pendent studies showed that blocking Ca2+ signaling,

which entirely abolishes VWF release induced by both

histamine and PKCa-dependent Stx1B, was not sufficient

to fully inhibit VEGF-induced VWF secretion

[32,48,50,53]. The difference in requirement for PKC and

Ca2+ raises intriguing questions about how common sig-

naling pathways activated by different agonists are differ-

entially utilized and integrated to control secretion.

Exocytotic machinery of WPBs

After emerging from the TGN, immature WPBs initially

are secretion-incompetent because they have yet to

acquire (parts of) the exocytotic machinery [56]. In a mat-

uration-dependent manner, WPBs recruit several GTPases

of the Rab family, including Rab27A, several Rab3 iso-

forms, and Rab15 [37,56–58]. Rab GTPases are molecular

switches that cycle between a GDP-bound ‘off’ state and

a membrane-associated, GTP-bound ‘on’ state, and gener-

ally contribute to defining organelle identity [59]. In their

active GTP-bound state, the Rabs are responsible for the

subsequent recruitment of a set of effector proteins

(MyRIP, Munc13-4, and Slp4-a) to the WPB. This pro-

cess correlates with the acquisition of secretion compe-

tence [56], and enables WPBs to interact with the

cytoskeleton and/or plasma membrane (Fig. 4) [56,58,60].

MyRIP is a Rab27A-specific effector that binds actin,

directly and via the actin motor protein myosin Va, and

tethers WPBs to the actin cytoskeleton in the cell periph-

ery [41,60,61]. The actin cytoskeleton plays opposing roles

in the release of WPBs. On the one hand, it is necessary

for peripheral distribution of WPBs, which is important

for releasability and depends on myosin IIa [62]. On the

other hand, actin acts as a barrier [29,40], and, by

anchoring WPBs to the actin cytoskeleton, MyRIP acts

as a brake during exocytosis [41,56,60]. Munc13-4 binds

both Rab27A and Rab15, and promotes exocytosis by

tethering WPBs to release sites on the plasma membrane,

which contain the annexin A2–S100A10 complex [39,58].

Slp4-a interacts with Rab3 isoforms and Rab27A, in an

activity-insensitive manner with the latter, and promotes

WPB exocytosis [56] by providing the link between the

WPB and members of the SNARE complex [63]. From

this all, it becomes clear that, during acquisition of secre-

tion competence, WPBs recruit a cocktail of Rabs and

Rab effectors that individually perform opposing func-

tions during secretion. Upon exocytosis, they engage in a

tug of war in which the balance of effectors, their levels

of activation by upstream signaling events and the effi-

cacy of their downstream mechanisms decide the proba-

bility of release [56].

In the final phase of exocytosis, the WPB fuses with

the plasma membrane; this is catalyzed by a ternary com-

plex of SNARE proteins that are positioned on the two

opposing membranes. SNARE proteins can be function-

ally classified as t-SNAREs, which are found on the tar-

get membrane, and v-SNAREs, which are found on the

donor/vesicle membrane. The exocytotic SNARE complex

consists of a v-SNARE of the vesicle-associated mem-

brane protein (VAMP) family on the donor (i.e. WPB)

membrane, and two t-SNAREs (one SNARE helix from

a syntaxin, and two SNARE helices from a SNAP25

homolog) on the acceptor (i.e. plasma) membrane

(Fig. 5). Together, they assemble into a four-helix bundle

that, when it rolls up, brings donor and acceptor mem-

branes together in a zipper-like motion, thereby largely

overcoming the energy barrier that normally prevents

fusion of membranes. WPBs contain two v-SNAREs,

VAMP3 and VAMP8, of which only VAMP3 has so far

been shown to support stimulus-induced WPB release

[64,65]. t-SNAREs that take part in WPB release include

the SNAP25 homolog SNAP23, syntaxin-3, syntaxin-4,

and most likely also syntaxin-2 [52,63,66,67]. Owing to

their promiscuous nature, various combinations of these

SNAREs exist: in endothelial cells, syntaxin-4 engages

with SNAP23 and VAMP3 or VAMP8 [65,67], and syn-

taxin-3 primarily interacts with VAMP8 and SNAP23

[67]. The SNARE partners of syntaxin-2 are still

unknown. This suggests that endothelial cells can employ

at least three (syntaxin-4–SNAP23–VAMP3, syntaxin-4–
SNAP23–VAMP8, and syntaxin-3–SNAP23–VAMP8)

and possibly more distinct SNARE complexes for release

of WPBs. Interestingly, whereas syntaxin-4 is localized on

the plasma membrane, syntaxin-3 is found on WPBs [67],

suggesting that, in certain cases, WPBs can also function

as the acceptor compartment during fusion.

The formation of SNARE complexes is controlled by

syntaxin-binding proteins (STXBPs), several of which

take part in WPB release. The Slp4-a interactor STXBP1

promotes VWF secretion and interacts with syntaxin-2 or

syntaxin-3 [63], potentially controlling two separate

downstream mechanisms for exocytosis. Munc18c (also

known as STXBP3) controls the assembly of syntaxin-

4-containing SNARE complexes. Depending on a (de)

phosphorylation switch controlled by PKCa and protein

© 2018 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis
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phosphatase 2B, phosphorylated Munc18c releases its

grip on syntaxin-4 and allows the latter to engage with

VAMP3 [52,68]. STXBP5 was initially implicated in the

WPB exocytotic machinery as a genetic modifier of circu-

lating VWF: a polymorphism encoding the non-synon-

ymous N436S substitution in STXBP5 is linked to lower

VWF plasma levels [69]. In endothelial cells, STXBP5 is a

negative regulator of WPB release, and interacts with syn-

taxin-4 but not with SNAP23 [70]. Possibly, the C-term-

inal VAMP-like domain acts as a decoy for syntaxin-4,

producing a non-fusogenic dead end, thereby lowering

the number of syntaxin-4-containing SNARE complexes

that can support exocytosis. Interestingly, the N436S vari-

ant of STXBP5 attenuates VWF secretion in endothelial

cells [70], although the mechanism through which this

substitution inhibits release is still unclear. The SNARE

machinery is therefore highly dynamic and, according to

its configuration, may promote or attenuate secretion, but

exactly how all of these individual components together

orchestrate WPB release remains unclear. Moreover, it

raises the question of why endothelial cells utilize so

many different SNARE complexes for exocytosis of the

same secretory organelle.

Secretory modes of WPB exocytosis

Several different modes of stimulus-induced WPB exocy-

tosis have been reported (Fig. 5A). Initially, a lipidic

fusion pore is formed at the interface of vesicle and

plasma membrane that establishes an aqueous channel

between the WPB lumen and the extracellular space [71].

Recordings of fusion pore dynamics of serotonin-loaded

WPBs by he use of amperometry revealed that this

transient structure exists for only a limited time (usually

< 200 ms) before it rapidly expands within tens of mil-

liseconds [72]. With its pore expanded fully, the WPB

undergoes full fusion, resulting in the delivery of soluble

granule cargo into the lumen and collapse of the vesicle

membrane together with its associated membrane compo-

nents into the plasma membrane [26,73]. In a subset of

cases, the WPB fusion pore does not expand fully, but

the pore lingers in a restricted state for some seconds

before closing prematurely. The restricted diameter of the

pore during this ‘lingering’ mode of fusion, so-called lin-

gering-kiss exocytosis, acts as a molecular size filter: small

cargoes, such as chemokines or the integral membrane

protein CD63, are able to traverse the narrow pore that

prevents the passage of larger cargo proteins such as

VWF, VWF propeptide, and P-selectin. After resealing of

the unexpanded fusion pore, these proteins are selectively

retained in spherical WPBs, which probably owe their

rounded morphology and the disruption of the orderly

bundling of VWF tubules to the hydration of their

paracrystalline interior [74].

Apart from these heterotypic fusion modes (fusion

between different compartments, i.e. WPB and plasma

membrane), homotypic fusion modes (i.e. WPB–WPB)

have also been described. During compound fusion, sev-

eral individual WPBs coalesce intracellularly prior to

release, and then collectively undergo exocytosis as a sin-

gle entity. The first evidence for this mode of fusion in

endothelial cells was provided by measurements of mem-

brane capacitance, which is proportional to cell surface

area, stepwise increases of which are attributable to the

addition of membrane during the fusion of secretory

organelles. A significant proportion of discrete membrane

plasma membrane
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Fig. 4. The Weibel–Palade body (WPB) exocytotic machinery. Rab effector complexes mediate anchoring of WPBs to the cytoskeleton, tether-

ing to the plasma membrane, and interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) fusion

machinery. The Rab27A–MyRIP–myosin Va complex anchors WPBs to the actin cytoskeleton. Munc13-4 can be recruited by Rab GTPase-

dependent (Rab15/Rab27A) or by Rab-independent mechanisms, and tethers WPBs to membrane fusion sites via the annexin A2–S100A10

complex. The Rab27A–Slp4-a complex docks WPBs and forms the link between the WPB and the SNARE complex via members of the syn-

taxin-binding protein (STXBP) family. VAMP, vesicle-associated membrane protein.
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capacitance increases observed after evoking of WPB exo-

cytosis with high levels of [Ca2+]i were too large to be

accounted for by the fusion of a single WPB, and could

only be explained by fusion of an accumulated structure

made up of several WPBs [33]. Morphological studies of

such intermediate structures have shown that they consist

of enlarged, rounded structures, termed secretory pods,

which contain disordered VWF tubules [75]. Secretory

pods are prominent features following extended stimula-

tion with PMA, but the occurrence of similar structures

has also been demonstrated in vivo in response to acti-

vated FX or histamine in toads and rats, respectively

[76,77]. Despite the loss of tubular organization of VWF

multimers in the spherical secretory pods, VWF strings

can eventually emerge from the extruded material [78].

Finally, by monitoring of the redistribution of EGFP–

A

secondary
WPBs

post-fusion WPB

fusion pore
opening

full fusion

lingering kiss

cumulative/sequential fusion

v-SNAREs

VAMP3/8SNAP23

t-SNAREs

syntaxin-2/3/4

BiiBi

compound   fusion

expansion

secretory
pod

closure

Fig. 5. Secretory modes of Weibel–Palade body (WPB) exocytosis. (A) Cartoon of a WPB with WPB-localized v-SNAREs (blue) engaging with

target membrane-localized t-SNAREs (pink and green), thereby bringing together donor and acceptor membranes. Top: a narrow fusion pore

is formed that permits release of small cargo. Lingering-kiss fusion resulting from premature closure of the fusion pore results in large cargo

(von Willebrand factor [VWF]) being retained in a collapsed granule, whereas expansion of the fusion pore results in full fusion followed by

explosive release of ultralarge VWF strings. Top right: compound fusion of WPBs, possibly including lingering-kiss end-products, leads to the

formation of an enlarged secretory pod that eventually undergoes fusion at the plasma membrane. Bottom left: cumulative or sequential fusion,

in which a primary granule undergoes fusion at the plasma membrane, which is followed by secondary fusion events in the postfusion WPB,

ultimately leading to extensive, ginger root-like fusion structures. (B) Two models of SNARE-mediated cumulative fusion. (Bi) Sequential

fusion events are supported by cognate SNARE assemblies on individual, prefusion WPBs. (Bii) Cumulative release is supported by rapid

membrane mixing, recruiting plasma membrane SNARE components into the postfusion WPB. SNARE, soluble N-ethylmaleimide-sensitive

factor attachment protein receptor; VAMP, vesicle-associated membrane protein.
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CD63 through the membranes of fusing granules, a

related but mechanistically distinct mode of homotypic

WPB fusion, termed sequential or cumulative exocytosis,

was observed [79]. In this mode, a postfusion WPB is

used as a membrane fusion site for subsequent cumulative

fusion of additional WPBs, culminating in the ginger

root-like fusion structures that were observed in ultra-

structural studies [76,80].

A number of questions remain. First, what is the

molecular basis for all of these different release mecha-

nisms? The specificity of membrane fusion during exocy-

tosis is mediated by the interaction of SNAREs on

secretory organelles with their cognate SNAREs on the

target membrane. In cases of homotypic fusion, such as

during secretory pod or cumulative exocytosis, this would

require the formation of a trans-complex consisting of v-

SNAREs and t-SNAREs that are positioned on opposing

WPBs (Fig. 5Bi). Within the extensive set of SNAREs

that have, in one way or another, been implicated in the

WPB exocytotic machinery, the pair composed of

VAMP8 and syntaxin-3 has been shown to sustain homo-

typic fusion modes in cells in which both were found on

secretory organelles [65,67,81,82]. An alternative explana-

tion is offered by the rapid transfer of plasma membrane

proteins to fusing WPBs through membrane mixing, such

as was observed for Rab35 [79]. Possibly, this confers

plasma membrane identity to the postfusion WPB, includ-

ing the acquisition of components of the fusion machin-

ery from the plasma membrane, such as the cognate

SNAREs for WPB-localized VAMPs (Fig. 5Bii). This

also raises the possibility that secretory pods represent an

intermediate state during cumulative fusion into WPBs

that have previously undergone lingering-kiss exocytosis.

Second, what is the use of all these distinct modes of

exocytosis? Indirect or incomplete fusion modes are, in

certain cases, energetically favorable. Homotypic fusion

modes can serve to concentrate cargo release at hotspots

when access to fusion sites on the membrane becomes

limiting. It may also augment the secretory response by

providing indirect access to the plasma membrane to a

pool of WPBs situated deeper into the cytoplasm [80].

Lingering-kiss fusion not only saves vesicle reformation

and retrieval of vesicle membrane proteins, but may also

help in preserving a delicate balance between endocytosis

and exocytosis by limiting membrane expenditure. Exocy-

tosis–endocytosis coupling is pertinent to the choice of

secretory mode, as pharmacological blocking of compen-

satory endocytosis resulted in a shift from full fusion

towards cumulative exocytosis, possibly because of the

inability to retrieve membrane components from the post-

fusion WPBs [80]. Distinct fusion modes also allow the

endothelium to fine-tune its secretory response to specific

vascular conditions: lingering-kiss fusion releases only a

subset of molecules, such as chemokines, whereas pro-

thrombotic cargo is not released [74]. Postfusion entangle-

ment of VWF tubules in both compound and cumulative

fusion structures does not preclude the eventual forma-

tion of VWF strings, but results in shorter strings when

cumulative fusion is promoted [78,80].

Content expulsion

Secretory cargo expulsion is dependent on lateral tension

in the plasma membrane; relaxation of this tension

through the addition of new membrane from fusing gran-

ules opens the fusion pore and provides a force to drive

secretory cargo out; this is followed by full collapse of the

vesicle into the plasma membrane [83]. However, the

near-solid VWF paracrystal presents a significant barrier

to release, as its enormous size and state will naturally

resist discharge and membrane collapse. Recent studies

have shown that endothelial cells, depending on their type

of activation, can utilize fundamentally different modes of

secretory content expulsion.

The rapid process of content expulsion during Ca2+-

mediated full fusion of WPBs bears the hallmarks of a

jack-in-the-box mechanism that is often observed when

condensed, polyionic molecules such as VWF need to

undergo a phase transition before release [84]. Exchange

of ions and entry of water molecules into the vesicle inte-

rior through the stalk-shaped fusion pore leads to hydra-

tion of the vesicle core and rapid neutralization of the

acidic milieu of the WPB [26]. Dissolution of the proton

gradient and other cationic species such as Ca2+ that are

crucial for the condensed tubular packing of VWF [85,86]

will result in loss of shielding of negative charges in

VWF. The consequential charge repulsion within and

between VWF multimers leads to decondensation of

cargo, as shown by the swelling of the granule and

increased separation between VWF tubules [71]. This is

followed by an explosive discharge of ultralarge VWF

multimers and other cargo on a subsecond timescale, con-

sistent with a mechanism in which VWF tubules act as

electrostatic springs [26,73,87,88].

An alternative mechanism of VWF expulsion has been

observed in response to Ca2+-independent secretagogues,

such as cAMP-mediated agonists or phorbol esters. Prior

to fusion, local rearrangements of cortical actin lead to

the formation of actin frameworks that appear to encage

WPBs. The formation of such frameworks is dependent

on the tension-sensitive focal adhesion protein zyxin fol-

lowing its phosphorylation by PKA, and positions WPBs

close to the membrane [43]. Then, shortly after opening

of the fusion pore, an actomyosin ring is assembled coat-

ing the distal end of the fusing granule, a process that

involves de novo actin polymerization [43,89]. Inhibition

of the myosin IIa-dependent contractility of the acto-

myosin ring prevented VWF release from fusing WPBs,

while not affecting the secretory fate of P-selectin [89]

(but not in [62]), leading to the hypothesis that contrac-

tion of such rings provides the necessary physical force to

squeeze VWF out of the fusing granule. It is currently
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unclear what initiates actomyosin ring formation on the

postfusion WPB, but the involvement of the tension sen-

sor zyxin [43] suggests that changes in local (membrane)

tension, such as on a swelling granule, may be an impor-

tant factor in this process. Actomyosin ring contractility

is regulated by phosphorylation of myosin IIa, which has

been shown to involve zyxin-dependent recruitment of

casein kinase II [62]. Interestingly, zyxin depletion did not

impair VWF release by thrombin or histamine, which is

consistent with the observation that actomyosin rings do

not play an important role in expulsion of VWF during

Ca2+-mediated WPB exocytosis [43,87].

WPBs in health and disease

Circulating levels of VWF vary widely across the human

population [90]. The clinical manifestations at the far

ends of this distribution highlight the pivotal role that

VWF plays in vascular health. Low levels of plasma

VWF lead to bleeding, such as in the inherited bleeding

disorder VWD [5]. In some cases, this is the result of

mutations in VWF that lead to altered WPB morphology

and decreased releasability, such as is evident in VWD

blood outgrowth endothelial cells [91]. Increased levels of

circulating VWF are associated with cardiovascular mor-

bidities, such as coronary heart disease, ischemic stroke,

and venous and arterial thrombosis [92,93], which are

pathologies for which the risks are reduced in VWD

patients [94]. The variation in VWF plasma levels across

the population is largely genetically determined [95]. Pop-

ulation-based linkage analyses in healthy individuals have

identified a number of genetic loci that are associated

with VWF levels, including the ABO locus and the clear-

ance receptors CLEC4M and STAB2, but also genes

encoding several components of the SNARE machinery

(STX2 and STXBP5) [69,96]. One of the SNPs in

STXBP5 that was linked with higher VWF levels is also

associated with venous thrombosis [97]. Variants in both

STX2 and STXBP5 are also associated with VWF levels

and disease severity in VWD patients [98]. Together, these

findings show that SNARE-mediated secretion from

WPBs is an important determinant of VWF plasma

levels. This fits with the current consensus that most cir-

culating VWF, which primarily consists of high-multimer

VWF, originates from the storage pathway rather than

from constitutive secretion [12,18,19]. Whether this arises

from the basal compartment or stimulated compartment

may be less evident. Several of the Rab-associated and

SNARE-associated regulators of stimulated WPB exocy-

tosis also affect the basal secretion of VWF [56,63,67],

suggesting that the same SNARE fusion machinery is also

responsible for basal release. Basal secretion accounts for

the bulk of VWF that endothelial cells produce and

release over time. How reflective this is of the situation

in vivo, in which some areas of the vasculature may be

under the continuous influence of low-level stimulation by

hormones such as epinephrine or vasopressin, is unclear.

However, on the basis of extrapolation of the ratio of

basal to stimulated release from cultured endothelial cells,

the area of vascular bed that needs to be to be maximally

activated at any given time to match what is secreted

basally makes it unlikely that stimulated release con-

tributes significantly to steady-state VWF levels [19].

Another pathology that may arise from disturbed

release from WPBs is angiodysplasia, which is a common

complication in VWD patients that causes recurrent gas-

trointestinal bleeding through small vascular malforma-

tions in the gut. Recent studies have shown that VWF

regulates angiogenesis, extracellularly by controlling the

cell surface expression of aVb3 integrin and/or indirectly

by influencing the release of one of its WPB coresidents,

the angiogenic mediator Ang-2 [99]. In the absence of its

storage compartment, such as occurs in severe type 3

VWD, Ang-2 is secreted constitutively, promoting vessel

destabilization. Apart from Ang-2, a number of other

angiogenic mediators, such as insulin-like growth factor-

binding protein 7, galectin-1, and galectin-3, are found in

WPBs [7,100], and may be subject to similar dysregulated

release in the absence of VWF, potentially further con-

tributing to pathological angiogenesis.

Conclusions and future directions

Endothelial cells control secretion from their WPBs by

using a remarkably complex exocytotic machinery, the

outlines of which are now starting to become clear. How-

ever, our knowledge of the exact composition of this

machinery is incomplete and, importantly, we are still a

long way from understanding how all of these compo-

nents are able to direct the different modes of WPB

fusion. Also, we currently do not understand how expan-

sion of the fusion pore is regulated or what drives content

expulsion in response to different endothelial activation

states. To obtain a deeper understanding of these pro-

cesses, we will need to determine the changes to the char-

acteristic ultrastructure of WPBs during fusion and

content expulsion, and to link these changes to individual

components of the exocytotic machinery. Understanding

the mechanism and purpose of the endothelium’s ability

to fine-tune its secretory response to vascular events

would potentially allow us to exploit this mechanism for

therapeutic benefit in the treatment of hematological and

cardiovascular diseases.
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