

1

A Lagrangian Relaxation Approach Based on a Time-Space-

State Network for Railway Crew Scheduling

Ying Wanga, Zheming Zhangb, Dennis Huismanc,d, Andrea D'Arianoe, Jinchuan Zhanga,*

a School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

b Hangzhou Pi-Solution Information Technology Co., Ltd, Hangzhou 311121, China

c Econometric Institute and Erasmus Center for Optimization in Public Transport, Erasmus University Rotterdam,

P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands

d Process Quality and Innovation, Netherlands Railways, P.O. Box 2025, NL-3500 HA Utrecht, The Netherlands

e Department of Engineering, Roma Tre University, Rome 00146, Italy

Econometric Institute Report EI2018-45

Abstract: The crew scheduling problem is an important and difficult problem in railway crew management. In this

paper, we focus on the railway crew scheduling problem with time window constraints caused by meal break rules. To

solve this optimization problem, a solution method is proposed based on a time-space-state network and Lagrangian

relaxation. In this method, the "hard constraints" corresponding to the crew rules are described as the state of vertices

in the time-space-state network. Based on the network, this problem is modeled as a network flow model, referred to

as an initial model. To break the symmetry and improve the strength of the formulation, five valid inequalities are

added. To solve the problem, we relax the coupling constraints by Lagrangian relaxation. The resulting subproblems

are shortest path problems in the time-space-state networks. We propose a Lagrangian heuristic to find a feasible

solution. Finally, the solution method is tested on real-world instances from an intercity rail line and a regional railway

network in China. We discuss the effects of additional valid inequalities and the effects of different length of meal time

windows.

Keywords: Scheduling; Meal time window; Time-space-state network; Lagrangian relaxation

*Corresponding author.

E-mail address: jchzhang@bjtu.edu.cn (J.C. Zhang).

2

1 Introduction

Crew management is an important aspect of railway operations, while the crew scheduling problem (CSP) is a core

problem in crew management. This paper focuses on the crew scheduling problem with Chinese meal break constraints.

In many papers, meal break constraints set limits on the times of having meals and the time length of meal break.

However, in Chinese railway operation, the meal break constraints not only set limits on these two aspects but also set

limits on the time window to have a meal. For a day duty that lasts from morning to afternoon, there must be a meal

break for lunch in a given time window. For the lunch break, the time window usually starts at 11:00 am and ends at

1:00 pm. While for a night duty that lasts from afternoon to evening, there must be a meal break for supper in a given

time window usually between 5:00 pm to 7:00 pm.

In the CSP, most of the crew rules constrain accumulated time of some activities, the maximum working time of a

duty and maximum consecutive driving time. In contrary to the crew rules on the duration of certain activities, the meal

break rules constrain the start and end moments of certain activities. The former constrains on “relative time”, while

the latter constrains on “absolute time”. In this paper, we call the former type of constraints “duration constraints”, the

latter type “moment constraints” and both of them “mixed time constraints”. Obviously, the CSP is an optimization

problem with “mixed time constraints”. In this paper, we apply a time-space-state network to describe the “mixed time

constraints”.

The CSP is usually modeled as a set covering model based on a connection network. Sherali (2006) compared two

typical network constructions: connection network and time-space network. The former uses the arcs to represent

feasible connections between train tasks, while the latter focuses on representing train tasks and leaves to the model

the decision on the connections, as long as these are feasible due to time and space considerations. Fig. 1 gives an

example of the same problem while constructing different types of networks.

A

B
t

s

V1

V2 V3

V4 V5

V6 V7

V8

V9V0

V10

V11

On/Off-duty arc

Task arc

Connection arc

Virtual source/sink

Task s arrival/departure

vertex

V12

V13

(a) Example of a connection network

A

B
t

s

V1

V2 V3

V4 V5

V6 V7

V8

V9V0

V10

V11

On/Off-duty arc

Task arc

Ground arc

Virtual source/sink

Task s arrival/departure

vertex

V12

V13

Overnight arc

(b) Example of a time-space network

Fig. 1 Example of different types of networks to represent the same crew scheduling problem

In Fig. 1, A and B represent two stations. Station A is the station where the crew depot is located. Vertices 𝑣0 and

𝑣9 represent the virtual source and sink corresponding to the same crew depot. There are six tasks modeled as task

arcs. For the departure/arrival of each task, there is a departure/arrival vertex in both types of networks. The difference

3

of two types of networks lies on the connection arcs and ground arcs. In Fig. 1(a), there is a connection arc for each

feasible connection. For example, there are three feasible connections from vertex 𝑣2 to 𝑣3, 𝑣11 and 𝑣7. Therefore,

it can easily grow to an unmanageable size due to the large number of possible connections. In Fig. 1(b), along the time

line of each station, there is a ground arc between every two nearby vertices, e.g. arc (𝑣1, 𝑣10). There is only an inbound

arc for each departure vertex and two outbound arcs for each arrival vertex. Therefore, there is a limited number of

vertices and arcs in the time-space network. Overall, the connection network is more powerful on managing the

“duration constraints”, but has as a disadvantage of a large number of arcs in the network. On the other hand, the time-

space network is more suitable to deal with “moment constraints”, except complex constraints in the model.

To combine the advantages of a connection network and a time-space network, this paper adopts the time-space-

state network (TSSN) of Mahmoudi and Zhou (2016), who proposed a TSSN based approach to solve a vehicle routing

problem with pickup and delivery time windows. TSSN is a three-dimensional network, which adds the dimension

“state” into a two-dimensional time-space network. Each state of a vertex in TSSN represents a feasible status from the

source vertex to the current vertex satisfying routing feasibility constraints. Thus, all constraints on routings, except

the flow balance constraints, are described as the feasible status of vertices in TSSN and in the optimization model.

There are only constraints on the coupling of routings and flow balance. The main idea of the model based on TSSN is

to move complex constraints on routings from the optimization model into the network construction so that the vehicle

routing problem can be solved by some classical optimization methods. In particular, the routing generation in TSSN

is transformed into the classical shortest path problem that can be solved in polynomial time. For CSP, we use a state

dimension to describe feasible states of each task vertex according to “mixed time constraints” (The details of

constructing the TSSN will be discussed later). This network is very suitable for a Lagrangian relaxation approach.

Therefore, we will develop a Lagrangian relaxation approach to solve the CSP.

The contribution of this paper is as follows. First, we apply TSSN to represent “mixed time constraints” of CSP. All

crew rules of the CSP are described in the TSSN, and the CSP can be modeled as a network flow problem. Secondly,

we present two strategies to break the symmetry and to strengthen the initial network flow model based on TSSN (these

two strategies can also be applied to solve similar problems). Thirdly, we develop a Lagrangian heuristic to solve the

improved model. Finally, we investigate the benefits of our approach by using real-world instances and discuss the

performance of our approach on different types of instances.

The remainder of this paper is organized as follows. In Section 2, we give an overview of related work. In Section

3, we describe the CSP. In Section 4, we introduce the definition of the "state" dimension of TSSN and the construction

method of the TSSN. In Section 5, we propose an initial network flow model based on TSSN and add five valid

inequalities to break the symmetry and to improve the strength of the initial model. In Sections 6, we introduce our

Lagrangian heuristic, and we apply this approach to real-world instances in Section 7. Finally, this paper gives

conclusions and practical recommendations in Section 8.

2 Literature Review

Much valuable research work on CSP has been done on airline (see the surveys of Barnhart et al. 2003; Ernst et al.

2004; Gopalakrishnan and Johnson 2005), railway (Caprara et al. 1997, 2007; Abbink et al. 2018) and urban mass

transit (see Desrochers et al. 1989; Lourenço et al. 2001; Tallys et al. 2005; Huisman et al. 2005; Chen Shijun et al.

2013). Many articles devoted to methodologies and applications in airline crew scheduling are earlier than to any other

application area. An earlier survey, in 1969, is given by Arabeyre et al. Kasirzadeh et al. (2017) reviewed existing

4

problem formulations and solution methodologies of the airline crew scheduling problem and concluded that the most

popular approach since the 1990s is the set covering problem with column generation embedded in a branch-and-bound

method.

Because of the much higher combinatorial explosion of the railway CSP than the airline CSP, the application of these

models in the railway industry is prohibitive until the late 1990s. The railway CSP is also usually modeled as a set

covering problem with additional constraints (Caprara et al. 1997, 1999; Freling et al. 2000; Abbink et al.2011; Nishi

et al. 2011; Wang et al. 2009) or a set partitioning problem (Kohl 2003) based on connection networks which are

flexible and powerful when generating feasible duties. Much effort is paid on developing efficient algorithms to solve

the large-scale set covering/partitioning models according to the particular features of the railway CSP. The three most

common solution methodologies are branch-and-price (Freling et al. 2000; Wang et al. 2009), Lagrangian relaxation

(Caprara et al. 1997, 2001) and a combination of column generation with a decomposition algorithm, heuristic

algorithm or relaxation algorithms (Kohl 2003; Abbink et al. 2011; Nishi et al. 2011; Huisman 2007; Jütte et al. 2015).

No matter which solution method is applied, research is mainly devoted to exploring more effective strategies to

improve the solution quality and efficiency, such as faster strategies to generate feasible duties, strategies to reduce the

network size, more effective branching/pruning strategies, duty selection strategies. Besides the set covering model,

Vaidyanathan et al. (2007) and Sahin et al. (2011) also formulated the CSP as a multi-commodity flow model and a

network flow model based on a space-time network, respectively. Both of the two network flow models are solved by

heuristics.

As summarized above, decomposition methods such as column generation are popular to solve the railway CSP

because of its inherent complex constraints. In order to describe the “mixed time constraints”, we utilize TSSN to

formulate the railway CSP. Based on TSSN, the “duty generation” can be transformed into a classic shortest path

problem. The TSSN provides a good general framework to embed different algorithms, such as Lagrangian Relaxation,

Column Generation and heuristic methods. Even though the search space created by TSSN has multiple dimensions

and is accordingly large in its size, the polynomial algorithm of the shortest path problem and a large amount of

computer memory and power in modern workstations can accommodate the multi-dimensional solution vectors. In this

paper, we use Lagrangian relaxation to solve the CSP.

3 Problem Description

3.1 Terminology

Depot: Each crew member belongs to one crew depot, where each of his/her duties starts and ends.

Task: Each train service has been split into a sequence of tasks, defined as segments of train journeys which must be

served by the same crew without rest. Each task is characterized by departure time, a departure station, an arrival

time, an arrival station, and possibly additional attributes.

Duty: Each duty represents a sequence of consecutive tasks to be carried out by a single crew member within a single

day. Within each duty, two consecutive tasks end and start at the same station. Specifically, the second task starts

later than completion of the first task. A duty is a single workday for one anonymous crew member that is

sandwiched between two overnight rest periods.

Pairing: Each pairing starts and ends at the same depot. Each pairing also represents a sequence of consecutive tasks

to be carried out by a single crew member within several days depending on the train timetable. In most situations,

a duty is also a pairing, given that the duty starts and ends at the same depot. However, for some night train

5

services, the period of a pairing could be two (or more) days. In this case, the pairing contains multiple duties.

Crew Schedule：A crew schedule is a set of anonymous pairings that covers all given tasks exactly once (sometimes

more than once depending on whether deadheading is allowed).

The railway CSP can be defined shortly as follows: Given a set of tasks, find a feasible crew schedule with minimal

costs such that all tasks are covered. In this context feasible means that all crew rules are satisfied.

Table 1 shows an example of crew schedule, according to the rolling stock circulation showed in Fig. 2. The crew

can transfer at stations B and C and have an overnight rest at station C. G1, G2, G3-1, ..., G6 are the tasks. G3-1and

G3-3 belong to the same train service G3 while G4-2 and G4-4 belong to the same train service G4. G3 and G4 are

operated by the same train units, while G1, G2, G5, and G6 are operated by other train units. In Table 1, pairings J1

and J3 are both single duties, while pairing J2 contains two duties.

A

B

C

Day1 Day2

Fig. 2 Example of rolling stock circulation

Table 1 Example of crew schedule with meal break and overnight rest

No. of crew pairing Contents of crew pairing

J1 G1→meal break→G2

J2 G5→ overnight rest →G6

J3 G3-1→G3-3→ meal break→G4-2→G4-4

3.2 Crew rules

We consider the following crew rules in our problem.

(1) Working time of a duty: the accumulated working hours (including driving, break, transfer) 𝑇𝑑 of a duty must

not be longer than the maximum working time of a duty 𝑇𝑑𝑚𝑎𝑥.

(2) Transfer time: when the crew consecutively carries out tasks operated by different train units, the time interval

𝑇𝑡 between the arrival time of the first task and the departure time of the following task must not be shorter than

the minimum transfer time 𝑇𝑡𝑚𝑖𝑛.

(3) Consecutive driving time: when the crew consecutively carries out tasks (including transfer time but not break

time), the consecutive driving time 𝑇𝑜 must be no longer than the maximum consecutive driving time 𝑇𝑜𝑚𝑎𝑥.

(4) Break time: After carrying out consecutive tasks, the crew must have a break time for a short rest (or meal). The

break time 𝑇𝑟 must be not shorter than the minimum break time 𝑇𝑟𝑚𝑖𝑛.

(5) Overnight rest time: when a crew member needs to have an overnight rest out of his/her depot, the rest time 𝑇𝑠

6

should be at least overnight rest time 𝑇𝑠𝑚𝑖𝑛.

(6) The period of a pairing: the crew must return to his/her depot within 𝐷𝑑 days which means that the time interval

between the beginning and end of a pairing 𝑇𝑝 must not be longer than 𝐷𝑑 days.

(7) Meal break time: the crew must have meals in the given time window 𝑇𝑊𝑀𝐵
𝑙 = [𝑀𝐿𝑚𝑖𝑛, 𝑀𝐿𝑚𝑎𝑥] and 𝑇𝑊𝑀𝐵

𝑠 =

[𝑀𝑆𝑚𝑖𝑛, 𝑀𝑆𝑚𝑎𝑥] for lunch and supper, respectively. The dining time 𝑇𝑒 must not be shorter than the minimum

meal time 𝑇𝑒𝑚𝑖𝑛. In addition, the meal break has to be 𝑇𝑒𝑏
𝑎 hours after the start of the duty and 𝑇𝑒𝑓

𝑏 hours

before the end of the duty.

In the above seven crew rules, the first six crew rules are all “relative time” – “duration” constraints, while the time

window of meals is “absolute time” – “moment” constraint. Therefore, from the perspective of the time dimension

attribute of the constraints, the CSP is a large-scale combinatorial optimization problem with "mixed time constraints".

3.3 Discussion of meal break constraints

As mentioned in Section 3.2, the crew must have their meals in a given time window. In this paper, if the start of a

duty is at least the minimum meal time after the start of a meal time window (e.g. lunch), we assume that each crew

has a meal (lunch) before the duty. For example, suppose that the minimum meal time is 30 minutes and the lunch time

window is [11:00, 13:00]. If a duty begins at 11:30 am, then we assume that each crew has had lunch before he/she

carries the duty and we do not consider the lunch break constraint for the rest of his/her duties. Similarly, if the end of

a duty is at least the minimum meal time before the end of a meal time window, we assume that each crew has a meal

(lunch) after the duty. Therefore, only when the duration of a duty covers most part of a meal time window and the

uncovered time is shorter than the minimum meal time, the given meal break constraints need to be considered in the

duty generation.

The meal break is usually arranged when each crew has a short rest. In this paper, when the break time window

overlaps with the meal time window and the overlap time is not shorter than the minimum meal time, we assume that

each crew has a meal during the break.

4. Construction of the time-space-state network

4.1 Definition of "state" dimension of TSSN

In the time-space network, each vertex (t, s) has two dimensions, time and space. Vertex (t, s) and vertex (t, s’) are

two different vertices in a time-space network with the same time dimensional value while with different space

dimensional values. In the TSSN, each vertex has three dimensions (, ,)t s  , in which ω represents the state

dimension.

We define the state of the vertex 𝑣𝑖 by means of five elements according to crew rules. The set of all states of vertex

𝑣𝑖 is defined as Ω𝑖 = {𝜔𝑖(1), 𝜔𝑖(2), … , 𝜔𝑖(𝑚)}. We also define a time-space-state vertex (𝑡𝑖 , 𝑠𝑖, 𝜔𝑖(𝑚)) as 𝑣𝑖(𝑚) .

Accordingly, the five attributes of state of 𝑣𝑖(𝑚) are defined as 𝜔𝑖(𝑚) = (𝑇𝑑𝑖(𝑚), 𝑇𝑜𝑖(𝑚), 𝑇𝑐𝑖(𝑚), 𝑇𝑝𝑖(𝑚), 𝑀𝑏𝑖(𝑚)).

The meaning and calculation of each element are explained as follows:

-𝑇𝑑𝑖(𝑚) represents the accumulated working time of vertex 𝑣𝑖(𝑚) in a duty. The value of 𝑇𝑑𝑖(𝑚) is calculated

according to its predecessor vertex. We assume that 𝑣𝑗(𝑛) is the predecessor vertex of 𝑣𝑖(𝑚), which means that there

is an arc from 𝑣𝑗(𝑛) to 𝑣𝑖(𝑚). We define the length of the arc (𝑣𝑗(𝑛), 𝑣𝑖(𝑚)) as 𝑡𝑡𝑗(𝑛),𝑖(𝑚) = 𝑡𝑖 − 𝑡𝑗. If 𝑣𝑗(𝑛) is the

depot, the value of 𝑇𝑑𝑖(𝑚) will be set to zero which means that a duty will start. If arc (𝑣𝑗(𝑛), 𝑣𝑖(𝑚)) is an overnight

arc, the value of 𝑇𝑑𝑖(𝑚) will also be set to zero which means that a duty is over and crew will have an overnight rest.

7

Otherwise, 𝑇𝑑𝑖(𝑚) = 𝑇𝑑𝑗(𝑛) + 𝑡𝑡𝑗(𝑛),𝑖(𝑚).

-𝑇𝑜𝑖(𝑚) represents the accumulated consecutive driving time of vertex 𝑣𝑖(𝑚) in a duty. The value of 𝑇𝑜𝑖(𝑚) is

calculated according to its predecessor vertex 𝑣𝑗(𝑛). Similarly to 𝑇𝑑𝑖(𝑚), if 𝑣𝑗(𝑛) is the depot or arc (𝑣𝑗(𝑛), 𝑣𝑖(𝑚)) is

an overnight arc, the value of 𝑇𝑜𝑖(𝑚) will be set to zero. Moreover, if there is a short rest or meal break on arc (𝑣𝑗(𝑛),

𝑣𝑖(𝑚)), the value of 𝑇𝑜𝑖(𝑚) should also be set to zero which means that consecutive driving is over. Otherwise,

𝑇𝑜𝑖(𝑚) = 𝑇𝑜𝑗(𝑛) + 𝑡𝑡𝑗(𝑛),𝑖(𝑚).

-𝑇𝑐𝑖(𝑚) represents the accumulated break/waiting time of vertex 𝑣𝑖(𝑚) in a duty. The value of 𝑇𝑐𝑖(𝑚) is calculated

according to its predecessor vertex 𝑣𝑗(𝑛). If arc (𝑣𝑗(𝑛), 𝑣𝑖(𝑚)) is a task arc, the value of 𝑇𝑐𝑖(𝑚) will be set to zero.

Otherwise, 𝑇𝑐𝑖(𝑚) = 𝑇𝑐𝑗(𝑛) + 𝑡𝑡𝑗(𝑛),𝑖(𝑚).

-𝑇𝑝𝑖(𝑚) represents the accumulated working time of vertex 𝑣𝑖(𝑚) in a pairing. The calculation of 𝑇𝑝𝑖(𝑚) is the

same as 𝑇𝑑𝑖(𝑚) except that when arc (𝑣𝑗(𝑛), 𝑣𝑖(𝑚)) is an overnight arc, the value of 𝑇𝑝𝑖(𝑚) should not be set to zero,

but it can still be calculated as 𝑇𝑝𝑖(𝑚) = 𝑇𝑝𝑗(𝑛) + 𝑡𝑡𝑗(𝑛),𝑖(𝑚).

-𝑀𝑏𝑖(𝑚) represents the dining status for lunch and supper. This value is used to determine whether each crew has

lunch or supper in the given time windows. If the accumulated consecutive driving time is no less than the minimum

working hours before a meal break, the accumulated break/waiting time is no less than the minimum meal time, and

the current time of task is larger than the start of lunch (or supper) time window at least the minimum meal time, that

is 𝑇𝑜𝑖(𝑚) ≥ 𝑇𝑒𝑏
𝑎, 𝑇𝑐𝑖(𝑚) ≥ 𝑇𝑒𝑚𝑖𝑛 and 𝑡𝑖 − 𝑀𝐿𝑚𝑖𝑛 ≥ 𝑇𝑒𝑚𝑖𝑛 (or 𝑡𝑖 − 𝑀𝑆𝑚𝑖𝑛 ≥ 𝑇𝑒𝑚𝑖𝑛), there is a meal break for

lunch (or supper). We here define three values of dinning status to indicate before lunch, after lunch but before supper,

after supper.

We provide an example of calculating these five elements in Section 4.2.2.

4.2 Construction of TSSN

4.2.1 Constructing basic time-space network (BTSN)

Given the set of tasks, we construct the basic time-space network 𝐺𝑡𝑠 = (𝑉𝑡𝑠, 𝐴𝑡𝑠). 𝑉𝑡𝑠 represents the set of all

vertices in the network 𝐺𝑡𝑠, while 𝐴𝑡𝑠 represents the set of all arcs. We define 𝑉𝑡𝑠
𝑜 , 𝑉𝑡𝑠

𝑙 and 𝑉𝑡𝑠
𝑑 as the set of virtual

source vertices, the set of tasks’ arrival and departure vertices and the set of virtual sink vertices, respectively. Then,

there is 𝑉𝑡𝑠 = 𝑉𝑡𝑠
𝑜 ∪ 𝑉𝑡𝑠

𝑙 ∪ 𝑉𝑡𝑠
𝑑. Similarly, we define 𝐴𝑡𝑠

𝑜 , 𝐴𝑡𝑠
𝑙 , 𝐴𝑡𝑠

𝑔
, 𝐴𝑡𝑠

𝑜𝑛 and, 𝐴𝑡𝑠
𝑑 as the set of on-duty arcs, the set

of task arcs, the set of ground arcs, the set of overnight arcs and the set of off-duty arcs, respectively. In addition, we

add a virtual arc between each pair of source and sink vertices related to the same depot, in order to represent the crew

staying at this depot without carrying out tasks. The set of virtual arcs is defined as 𝐴𝑡𝑠
𝑜𝑑. We can easily show that 𝐴𝑡𝑠

𝑜𝑑 ∈

𝐴𝑡𝑠
𝑜 , 𝐴𝑡𝑠

𝑜𝑑 ∈ 𝐴𝑡𝑠
𝑑 and 𝐴𝑡𝑠 = 𝐴𝑡𝑠

𝑜 ∪ 𝐴𝑡𝑠
𝑙 ∪ 𝐴𝑡𝑠

𝑔
∪ 𝐴𝑡𝑠

𝑜𝑛 ∪ 𝐴𝑡𝑠
𝑑 . Each virtual arc is a pairing covering no tasks. We call this

kind of pairing as staying pairing which means that the crew stay at a depot and do not carry out tasks.

Vertex 𝑣𝑖 has four attributes (𝑡𝑖 , 𝑠𝑖, 𝜑𝑖 , 𝜃𝑖) representing the arrival/departure time of the task 𝜑𝑖 , the

arrival/departure station of task 𝜑𝑖, the index of a corresponding task and the index of train units routing covering task

𝜑𝑖, respectively. For all 𝑜 ∈ 𝑉𝑡𝑠
𝑜 and 𝑑 ∈ 𝑉𝑡𝑠

𝑑, vertex o and vertex d have attributes 𝑠𝑜 and 𝑠𝑑 representing the index

of a station, which is also a crew depot. For all (𝑖, 𝑗) ∈ 𝐴𝑡𝑠, arc (𝑖, 𝑗) has two attributes (𝑡𝑡𝑖𝑗, 𝜃𝑖𝑗) representing the

length and the type of this arc (such as on-duty arc, task arc, ground arc, etc.). For all (𝑖, 𝑗) ∈ 𝐴𝑡𝑠
𝑜 ∪ 𝐴𝑡𝑠

𝑑 \𝐴𝑡𝑠
𝑜𝑑, 𝑡𝑡𝑖𝑗 = 0;

for all (𝑖, 𝑗) ∈ 𝐴𝑡𝑠
𝑙 ∪ 𝐴𝑡𝑠

𝑔
, 𝑡𝑡𝑖𝑗 = 𝑡𝑗 − 𝑡𝑖 ; for all (𝑖, 𝑗) ∈ 𝐴𝑡𝑠

𝑜𝑛, 𝑡𝑡𝑖𝑗 = 𝑡𝑗 − 𝑡𝑖+1440; for all (𝑖, 𝑗) ∈ 𝐴𝑡𝑠
𝑜𝑑 , 𝑡𝑡𝑖𝑗 = 𝑡𝑡𝑜𝑑 .

8

The value of 𝑡𝑡𝑜𝑑 is defined as an integer number larger than 0 and much less than 𝑇𝑑𝑚𝑎𝑥.

4.2.2 Generation of state dimension

The state dimension of BTSN is generated by using a breadth-first search algorithm that is shown in Appendix B.

The new generated network is a TSSN represented by 𝐺𝑡𝑠𝑠 = (𝑉𝑡𝑠𝑠, 𝐴𝑡𝑠𝑠). We also define 𝑉𝑡𝑠
𝑜 , 𝑉𝑡𝑠𝑠

𝑙 , 𝑉𝑡𝑠𝑠
𝑑 , 𝐴𝑡𝑠𝑠

𝑜 , 𝐴𝑡𝑠𝑠
𝑙 ,

𝐴𝑡𝑠𝑠
𝑔

, 𝐴𝑡𝑠𝑠
𝑜𝑛 , 𝐴𝑡𝑠𝑠

𝑑 and 𝐴𝑡𝑠𝑠
𝑜𝑑 with the same meaning as in BTSN.

Based on the construction of TSSN, this network has two main characteristics.

- The TSSN is a topologically ordered directed graph. Since the TSSN is generated based on the train schedule, all

arcs in the TSSN are in the same direction as the time line and the start time is smaller than the end time of the arc.

- The TSSN is a sparse graph. For each vertex, except the virtual source and sink, there are at most two inbound arcs,

a task arc and a(n) ground/overnight arc, and at most two outbound arcs, a task arc and a(n) ground/overnight arc.

Therefore, for each vertex, except the virtual source and sink, there is one inbound arc and at most two outbound arcs.

During the construction of TSSN, only when the newly generated state dimensional value 𝜔𝑖(𝑚) of a vertex 𝑣𝑖 is the

same as its existing state dimensional value (supposed to be 𝜔𝑖(𝑚−1)), a new arc will be connected to an existing vertex

𝑣𝑖(𝑚−1), and thus the vertex 𝑣𝑖(𝑚−1) would have more than one inbound arcs.

Fig. 3 shows an example of constructing TSSN from BTSN.

A

B

t

s

C
109 11 12 13 14

V1

V2 V3

V4 V5

V6 V7

V8

V9V0

V10

V11

Virtual arc

On/Off-duty arc

Task arc

Ground arc

Virtual source/sink

Task s arrival/departure

vertex

(a) Basic time-space network

A

B

t

s

C

ω

109 11 12 13 14

V0 V9

V1 V10

V11(1)

V6(1)

V7(1)

V8(1)

V2 V3

V4

V11(2)
V6(2)

V7(2)

V8(2)

V5

V6(3) V7(3)

V8(3)

9

(b) Time-space-state network

Fig. 3 Comparison between the time-space network and time-space-state network

Fig. 3(a) is an example of the basic time-space network of the railway CSP similar to Fig. 1(b). For clarity reasons,

we omit overnight connection arcs in Fig. 3(a). Fig. 3(b) is the constructed time-space-state network of Fig. 3(a). For

simplicity reasons, we set both of the minimal short break time and meal break time to 45 minutes. The time window

for lunch and supper are [11:00, 13:00] and [17:00, 19:00], respectively. Then the three-dimensional values of the node

𝑣𝑖(𝑚) are given in Table 2.

Table 2 Three-dimensional value of the node 𝑣𝑖(𝑚) in Fig. 3(b)

𝑣𝑖(𝑚) 𝑡𝑖(𝑚) 𝑠𝑖(𝑚)
()i m

𝑇𝑑𝑖(𝑚) 𝑇𝑜𝑖(𝑚) 𝑇𝑐𝑖(𝑚) 𝑇𝑝𝑖(𝑚) 𝑀𝑏𝑖(𝑚)

𝑣1 10:00 A 0 0 0 0 0

𝑣2 10:30 B 30 30 0 30 0

𝑣3 10:45 B 45 45 15 45 0

𝑣4 11:15 C 75 75 0 75 0

𝑣5 12:00 C 120 0 45 120 1

𝑣6(1) 12:30 B 90 0 60 90 1

𝑣6(2) 12:30 B 150 0 105 150 1

𝑣6(3) 12:30 B 150 30 0 150 1

𝑣7(1) 13:00 B 120 0 90 120 1

𝑣7(2) 13:00 B 180 0 135 180 1

𝑣7(3) 13:00 B 180 60 30 180 1

𝑣8(1) 13:30 A 150 30 0 150 1

𝑣8(2) 13:30 A 210 30 0 210 1

𝑣8(3) 13:30 A 210 90 0 210 1

𝑣10 11:00 A 0 0 0 0 0

𝑣11(1) 11:30 B 30 30 0 30 0

𝑣11(2) 11:30 B 90 0 45 90 0

In Table 2, 𝑡𝑖(𝑚) represents the departure/arrival time of vertex 𝑣𝑖(𝑚), while 𝑠𝑖(𝑚) represents the departure/arrival

station of vertex 𝑣𝑖(𝑚). Taking path (𝑣0-𝑣10-𝑣11(1)-𝑣6(1)-𝑣7(1)-𝑣8(1)-𝑣9) in Fig. 3(b) as an example, we explain the

calculation of 𝜔𝑖(𝑚). Regarding vertex 𝑣10, its predecessor is vertex 𝑣0 which is a virtual source. The value of 𝑇𝑑10,

𝑇𝑜10, 𝑇𝑐10 and 𝑇𝑝10 are all zero. For 𝑡10 equal to 11:00, which is just the same as the start of the time window for

lunch, the value of 𝑀𝑏10 is zero. Regarding vertex 𝑣11(1), its predecessor is vertex 𝑣10 and the length of the arc (𝑣10,

10

𝑣11) is 30 minutes. The values of 𝑇𝑑11(1), 𝑇𝑜11(1) and 𝑇𝑝11(1) are 30 minutes. If (𝑣10, 𝑣11) is a task arc, the values

of 𝑇𝑐11(1) and 𝑀𝑏11(1) are both zero. Regarding vertex 𝑣6(1), its predecessor is vertex 𝑣11(1) and the length of arc

(𝑣11, 𝑣6) is 60 minutes, which is a ground arc. The values of 𝑇𝑑6(1) and 𝑇𝑝6(1) are both 90 minutes, the value of

𝑇𝑜6(1) is zero and the value of 𝑇𝑐6(1) is 60 minutes. Arc (𝑣11, 𝑣6) is a ground arc and its length is larger than the

short break time and the meal break time. The value of 𝑀𝑏6(1) is 1, which means each crew member has lunch during

the short break. For vertex 𝑣7(1), its predecessor is vertex 𝑣6(1) and the length of arc (𝑣6, 𝑣7) is 30 minutes, which

is a ground arc. The value of 𝑇𝑑7(1) and 𝑇𝑝7(1) are both 120 minutes, the value of 𝑇𝑜7(1) equals to the value of

𝑇𝑜6(1), the value of 𝑇𝑐7(1) is 90 minutes and the value of 𝑀𝑏7(1) equals to the value of 𝑀𝑏6(1). For vertex 𝑣8(1),

its predecessor is vertex 𝑣7(1) and the length of arc (𝑣7, 𝑣8) is 30 minutes, which is a task arc. The value of 𝑇𝑑8(1)

and 𝑇𝑝8(1) are both 150 minutes. The value of 𝑇𝑜8(1) is 30 minutes, the value of 𝑇𝑐8(1) is zero and the value of

𝑀𝑏8(1) equals to the value of 𝑀𝑏7(1).

5 Optimization model for the crew scheduling problem

5.1 Initial model

In the railway CSP, each duty is carried out by a driver or a conductor team on a single day. The number of crew

duties implies the number of crew members needed, which should be as few as possible. Moreover, crew members

prefer to go on duty early/late and go off duty early/late for the same driving duration, so that they could have more

rest time at home rather than at station. Therefore, we minimize the sum of the working time of each crew member.

The TSSN-based optimization model (M1) of the railway CSP is formulated as follows.

M1:
(,)

min
tss

p
ij ij

p P i j A

Z tt x
 

  
 （1）

(,) ,

1
l
tss i j

p

ij

p P i j A l

x l L
    

    （2）

(,) (,)

,
tss tss

p p l

ij ji tss

i j A j i A

x x i V p P
 

     （3）

(,)

1
o
tss

p

ij

i j A

x p P


   （4）

 0,1 (,) ,
p

ij tss
x i j A p P    （5）

In M1, L is the set of tasks and P is the set of available crew members. The binary variable
p

ijx indicates whether

the arc (𝑖, 𝑗) is covered by crew member p. The objective function (1) minimizes the total working time (including

staying time of virtual arcs). Constraint (2) ensures that each task must be covered by at least one crew member.

Constraint (3) is the flow balance constraint. Constraint (4) ensures that each crew member either carries out a pairing

or covers a virtual arc, which means staying at a depot and not covering any tasks. Because each task must be carried

out by at least one crew member. The more crew members that cover virtual arcs, the less crew members are needed to

carry out the pairings. As the length of virtual arcs is much less than 𝑇𝑑𝑚𝑎𝑥, the objective function can ensure the

minimization of the number of crew members needed and the crew preference for tight duties. Note that the size of set

P should be set properly. If this value is too big, the problem size will be very large. Otherwise, no feasible solution is

available.

11

5.2 Valid inequalities of "Breaking the symmetry" and "Strengthening the formulation"

5.2.1 Valid inequality of partly breaking the symmetry

In our model, the same pairing carried by different crew members is considered as different decision variables.

However, the pairings are anonymous in the railway CSP, so it makes no sense that a pairing is carried out by different

crew members. Therefore, symmetry should be avoided when solving the model. Because of the existence of symmetry,

computation time is often wasted in finding new solutions, which are symmetric with respect to the already visited

solutions. Hoffmann and Buscher (2018) avoided symmetry in their arc flow model by demanding that conductors

were employed as the sequence of duties sorted in decreasing order according to their duty times. They added two

inequalities, with the same meanings as the Constraints (6) and (7), into their model.

1

(,) (,)

{1,2, , 1}
o o
tss tss

p p
ij ij

i j A i j A

p Px x 

 

    (6)

1

(,) (,)

{1,2, , 1}
tss tss

p p
ij ij ij ij

i j A i j A

p Ptt x tt x 

 

     (7)

These two inequality constraints indeed strengthen the formulation. However, the total working time of two crew

members can be the same in Constraint (7), the symmetry of the model is not completely broken. Therefore, we propose

various inequalities to completely break the symmetry of M1. Firstly, we add the following constraint to partly break

symmetry.

 1 1 1 1

(,) (,)(,) (,)

\ 1+ +
o ood od
tss tsstss tss

p p p p p p p p
o ij ij o ij ijod od

i j A i j Ai j A i j A

p PC x C x C x C x   

  

    
 (8)

𝐶𝑜
𝑝

 is defined as an “on-duty cost” and 𝐶𝑜𝑑
𝑝

 is defined as a “staying cost” for crew member 𝑝. We set 𝐶𝑜
𝑝

> 𝐶𝑜
𝑝−1

and min 𝐶𝑜
𝑝

> max 𝐶𝑜𝑑
𝑝

. The constraint (8) ensures that the crew member carry out pairings as the sequence 1, 2, 3, …,

|P|. If there are p crew members needed in a solution, then the first p crew members carry out pairings, while the crew

members p+1 to |P| cover only virtual arcs, i.e. they stay at the depot. This constraint avoids wasting computation time

on searching solution symmetry: the same number of virtual arcs are covered by random crew rather than the last |P| -

p crew members. The model with constraint (8) can be formulated as M2.

M2:
(,)

min
tss

p
ij ij

p P i j A

Z tt x
 

  

St. Constraints (2) - (5), (8)

5.2.2 Valid inequalities of further breaking the symmetry and strengthening the formulation

In M1, only covering constraint (2) constrains the coupling of pairings. Constraint (3) and (4) both constrain the

feasibility of a single pairing. Due to the special structure of M1, it is a good choice to use the Lagrangian relaxation

to relax the coupling constraint (2) as a penalty in the objective function. Then, the problem is decomposed into |P|

independent shortest paths in TSSN during each iteration. However, because of symmetry, this will cause that the

pairing with shortest working time is carried out by every crew member when using Lagrangian relaxation to get a

lower bound solution. To strengthen the formulation, we further add the following additional constraints to M2. This

addition would increase the coupling of pairings carried out by two different crew members.

   
(,) (,)

() 1 \ 1 , \ ,
l od
tss tss

pq p q

ij ij ij

i j A i j A

e x x p P q P P p q
 

       
(9)

12

   (,) \ 1 , \ ,2 2 () ,l

tss

pq p q

ij ij ij i j A p P q P P p qe x x        (10)

   , \ 1 , \ ,2 () (,) l

tss

pq p q

ij ij ij A p P q P P p qe x x i j        (11)

     , \ 1 , \ ,0,1 (,) l

tss

pq

ij A p P q P Pe i j p q     (12)

The newly added auxiliary decision variable 𝑒𝑖𝑗
𝑝𝑞

 represents whether crew pairing 𝑝 and 𝑞 cover task arc (𝑖, 𝑗)

at the same time. If crew pairing 𝑝 and 𝑞 do not cover task arc (𝑖, 𝑗) at the same time, the value of 𝑒𝑖𝑗
𝑝𝑞

 is 1;

Otherwise, 𝑒𝑖𝑗
𝑝𝑞

= 0. This is ensured by Constraints (10) to (12). Constraint (9) ensures that the pairing carried out by

the latter crew member cannot be completely the same with the pairing carried out by the former crew member. Thus,

the symmetry of the M2 can be totally broken by the added inequalities and formulation can also be strengthened. The

final improved model can be formulated as M3.

M3:
(,)

min
tss

p
ij ij

p P i j A

Z tt x
 

  

St. Constraints (2) - (5), (8)-(12)

6 Lagrangian heuristic

6.1 Lagrangian dual model

In M3, the strong coupling constraint (2) is relaxed into the objective function (13) by using Lagrangian multipliers

as penalties. The Lagrangian dual model is shown as M4.

M4:
0

max ()LD L





 （13）

(,) (,) ,

() min ()(1)
tss l L l

tss i j

p
ij ij

p P i j A

p
ij

p P i j A l

L ltt x x
 

 
     

     
（14）

St. Constraints (3) - (5), (8) - (12)

In Constraint (14), ()l represents the Lagrange multiplier of the task l , indicating the penalty value when the

solution obtained does not satisfy the constraint (2).

We propose a Lagrangian relaxation-based heuristic to solve the improved model (M3). An overview of the

Lagrangian heuristic is outlined in Fig. 4.

13

Heuristic

information

Initialization

Solve Lagrangian dual model to get a

lower bound solution

Whether the lower bound

solution is feasible?

Whether given time limit is exceed?

Compute an upper bound by

heuristic algorithm

END

k=k+1

Y

N

Y

N

Lagrange multiplier

updated by sub-

gradient method
Update lower

bound

Update upper

bound

Fig. 4 Flow chart of Lagrangian heuristic

6.2 Solving the Lagrangian dual model

Since the TSSN is a topologically ordered sparse graph, we use the Forward Dynamic Programming (FDP) algorithm

to solve the shortest path problem. The algorithm to solve M4 consists of the following three steps.

Step1: Initialize the crew member set P and the pairing set D, and set p = 1. For l L  , ∀(𝑖, 𝑗) ∈ 𝐴𝑡𝑠𝑠
𝑙 and 𝜑𝑖 =

𝜑𝑗 = 𝑙, set 𝑡𝑡𝑖𝑗=𝑡𝑡𝑖𝑗 − 𝜌𝑘 (𝑙).

Step2: Use FDP algorithm to find the shortest path 𝑑𝑝 , which is a pairing carried out by crew member p . For

∀(𝑖, 𝑗) ∈ 𝐴𝑡𝑠𝑠
𝑑 and 𝑥𝑖𝑗

𝑝
= 1, set 𝑡𝑡𝑖𝑗 = 𝑀 (M is a large positive number), and add 𝑑𝑝 into D.

Step3: If p = |P|, the algorithm ends. Otherwise, set p = p + 1, then go to step 2.

In Step2, we realize Constraints (6) to (9) by setting the arc lengths, which have been covered by newly generated

pairings, to avoid that these are covered in the next iteration.

6.3 Updating the Lagrange multiplier

The objective value of M4 changes with Lagrange multiplier  . Therefore, in the iterative process, the value of

 needs to be constantly updated by using the subgradient method shown as formula (17).

14

1

(,) ,

() max 0, () (1)
l
tss i j

k k k p

ij

p P i j A l

l l x
 

  

   

  
   

  
  （17）

k indicates the iteration step length in the thk iteration. This is defined as necessary, but this needs to meet the

following rules.

1

k

k






  , and , 0
k

k   

6.4 Obtaining an upper bound

We design the following algorithm to get an upper bound for the improved model.

Step1: Initialize the crew member set P and the pairing set D, and set p = 1. Define the number of times that task l

is covered in the lower bound solution as 𝑛𝐿𝐵𝑙. For l L  , set 𝑛𝐿𝐵𝑙 = 0. Similarly, define the number of times

that task l is covered in the upper bound solution as 𝑛𝑈𝐵𝑙. For l L  , set 𝑛𝑈𝐵𝑙 = 0. Define M as a large positive

number.

Step2: For l L  , calculate 𝑛𝐿𝐵𝑙 according to the lower bound solution obtained in this iteration. For ∀(𝑖, 𝑗) ∈

𝐴𝑡𝑠𝑠
𝑙 and 𝜑𝑖 = 𝜑𝑗 = 𝑙, set 𝑡𝑡𝑖𝑗 = 𝑡𝑡𝑖𝑗 − 𝜌𝑘 (𝑙).

Step3: Use the FDP algorithm to find the shortest path 𝑑𝑝 .

Step4: If 𝑑𝑝 only covers the virtual arc between the depots and the length of the virtual arc 𝑡𝑡𝑜𝑑 is less than M,

go to Step 5. Otherwise, add 𝑑𝑝 into D , and for ∀(𝑖, 𝑗) ∈ 𝐴𝑡𝑠𝑠
𝑙 and (𝑖, 𝑗) covered by path 𝑑𝑝 , set 𝑡𝑡𝑖𝑗 = 𝑀, and

go to Step 6.

 Step5: For l L  , calculate 𝑛𝑈𝐵𝑙. If 𝑛𝑈𝐵𝑙 = 0 , set the length of the virtual arc 𝑡𝑡𝑜𝑑 = (𝑛′ + 1) ∗ 𝑀, where

'n is the maximum number of tasks in a feasible duty. Then use the FDP algorithm to find the shortest path 𝑑𝑝 , set

𝑡𝑡𝑜𝑑 = −𝑀, and go to Step 4; otherwise, go to Step 6.

Step6: If p = |P|, the algorithm ends. Otherwise, set p = p + 1, and go to Step 3.

7 Computational results

We apply the proposed approach to solve the railway CSP for managing an intercity high-speed rail line and a

regional high-speed rail network. We use two strategies to decrease the size of TSSN when solving these cases.

- Concrete consecutive tasks, which are operated by the same train units when the dwell time between

consecutive tasks is too short to allow a shift, into one task.

- Set limits on minimum working time 𝑇𝑑𝑚𝑖𝑛, the maximum transfer time 𝑇𝑡𝑚𝑎𝑥, the minimum consecutive

driving time 𝑇𝑜𝑚𝑖𝑛, the maximum break time 𝑇𝑟𝑚𝑎𝑥 and the maximum overnight rest time 𝑇𝑠𝑚𝑎𝑥, according

to practical experience.

We terminate the Lagrangian heuristic when the iteration times exceed 100 units. The approach is coded in C#. The

computation is performed on an Intel(R) Core(TM) i7-7500U 2.70GHz, 8.00GB RAM personal computer.

7.1 Case 1: An intercity high-speed rail line

We first test our approach on the railway CSP of an intercity high-speed rail line, BJ-TJ intercity high-speed Rail

Line (cited as JJRL in this paper). In this case, 158 trains run between the origin station and the destination station of

JJRL. The average running time of a train is 30 minutes. Because the running time of a train is short and nearly 75%

of the trains do not stop at any intermediate station, we directly use a train as a task in this case. There are two depots,

15

BJN and TJ, located at the origin station and the destination station of JJRL, respectively. The values of the parameters

are reported in Table 3.

Table 3 Values of the parameters in Case 1

Parameters Value

Number of tasks (trains) 158

Number of stations 2

Number of crew members in each Depot 30

Total number of crew members 60

Iteration step =40 / (1)k k 

7.1.1 Effect of inequality constraints on strengthening the formulation

 Firstly, we construct the TSSN for Case 1. Since the number of the decision variables is up to 393,600, it is difficult

to directly solve M1 by using CPLEX, because of the limited PC memory. We compare the difference in solving M2

and M3 to test the effects of strengthening the formulation. We set the lunch time window to [11:00,13:00] and the

supper time window to [17:00,19:00]. The computational results and the convergence curves are shown in Table 4 and

Fig. 5, respectively.

Table 4 Computation results of solving M2 and M3 in Case 1

Indicators
Value

M2 M3

Construction time of TSSN 0.70s

Number of decision variables 393600

Upper bound solution 19477.55 18986.01

Lower bound solution 17096.84 17667.00

Optimality Gap 12.22% 6.95%

Solution time 723.36s 816.91s

Iteration in which the optimal solution first appears 28 56

Number of crew members needed in the BJN depot 25 24

Number of crew members needed in the TJ depot 25 23

Number of times of crew having lunch 0 3

Number of times of crew having supper 1 2

 a. Convergence curves of solving M2 b. Convergence curves of solving M3

Fig. 5 Convergence curves of solving M2 and M3 in Case 1.

From the above results, we can find that the gap between the lower bound (LB) and upper bound (UB) of solving

M2 is larger than that when solving M3. The solution obtained from solving M3 is also better than the solution obtained

from solving M2. However, solving M3 may take a little more time than solving M2. We will next discuss the

0

5000

10000

15000

20000

25000

1 21 41 61 81 101

CurLB CurUB

0

5000

10000

15000

20000

25000

1 21 41 61 81 101

CurLB CurUB

16

performance of strengthening the formulation of CSP with different network structures (in Section 7.2.1).

7.1.2 Sensitivity analysis of the length of meal time window

We analyze the effect of different lengths of meal time windows for four cases. We set 1 hour, 2 hours, 3 hours and

4 hours as the lengths of meal time windows in Case1-1, Case 1-2, Case 1-3 and Case 1-4. There is no feasible solution

to Case 1-1. The computational results of the other three cases are shown in Table 5.

Table 5 Computation results with different lengths of meal time windows in Case 1

Indicators
Value

Case 1-2 Case 1-3 Case 1-4

Length of meal time window 2h 3h 4h

Lunch time window [11:00,13:00] [10:30,13:30] [10:00,14:00]

Supper time window [17:00,19:00] [16:30,19:30] [16:00,20:00]

Construction time of TSSN 0.70s 0.77s 0.84s

Number of decision variables 393600 501300 559200

Upper bound solution 18986.01 19028.02 18988.01

Lower bound solution 17667.00 17555.67 17495.54

Optimality Gap 6.95% 7.74% 7.86%

Solution time 816.91s 926.88s 1123.11s

Number of crew members needed in the BJN depot 24 23 24

Number of crew members needed in the TJ depot 23 24 23

Total number of crew members needed 47 47 47

Number of times of crew having lunch 3 2 1

Number of times of crew having supper 3 2 0

We can draw the following conclusions:

- As the length of meal time window increases, the size of TSSN, the number of decision variables and the

solution time increase. Although the construction of TSSN in these four cases are very fast (less than one

second), the number of decision variables is very large (up to 559200).

- When the length of the meal time window is too small, there may be no feasible solution, i.e. in Case 1-1.

- The length of the meal time window does not affect the total number of crew members needed, which are the

same in Case 1-2, Case 1-3 and Case 1-4.

- The length of the meal time window may affect the times that the crew members have the meal during the

duty. For longer meal time windows, the start of the meal time window is earlier, then there may be more duty

starting with meal status of after lunch/supper.

7.2 Case 2: a regional high-speed rail network

We now test our approach on the railway CSP of a regional high-speed rail network. The structure of this rail network

is illustrated in Fig. 6. There are four depots: NJ, SH, HZ, and HF. The values of the parameters are mentioned in Table

6.

17

Fig. 6 Regional high-speed rail network structure

Table 6 Values of the parameters in Case 2

Parameters Value

Number of tasks 2107

Number of trains 345

Number of crew members in the NJ depot 80

Number of crew members in the SH depot 80

Number of crew members in the HZ depot 40

Number of crew members in the HF depot 40

Total number of crew members 240

Iteration step =400 / (1)k k 

7.2.1 Effect of inequality constraints on strengthening the formulation

We set the lunch time window to [11:00,13:00] and the supper time window to [17:00,19:00] to compare the

performance of strengthening the formulation in Case 2. The computational results and the convergence curves are

shown in Table 7 and Fig. 7, respectively.

Table 7 Computation results of solving M2 and M3 in Case 2

Indicators
Value

M2 M3

Construction time of TSSN 1.51s

Number of decision variables 2568480

Upper bound solution 99791.82 99814.82

Lower bound solution 88250.20 89319.58

Optimality Gap 11.57% 10.51%

Solution time 8921.46s 8863.68s

Iteration when the optimal solution first appears 44 11

Number of crew members needed in the NJ depot 55 57

18

Number of crew members needed in the SH depot 58 58

Number of crew members needed in the HZ depot 18 15

Number of crew members needed in the HF depot 23 23

Total number of crews needed 154 153

Number of times of crew having lunch 1 2

Number of times of crew having supper 4 4

 a. Convergence curves of solving M2 b. Convergence curves of solving M3

Fig. 7 Convergence curves of solving M2 and M3 in Case 2.

In Case2, the solution obtained from solving M3 is also better than the solution obtained from solving M2.

However, comparing the results of Fig. 7 with the ones of Fig. 5, the difference between the convergence

curve related to M2 and M3 is not as obvious as in Case 1. The different performance of strengthening the

formulation is mainly caused by the difference in the train schedule structure. In Case 1, most of the trains

have the same running time. Thus, most of the duties covering different trains, but with the same running

time may have the same working time. In this situation, many equivalent duties will lead to slow convergence.

By limiting duties with the same content, the gap between LB and UB decreases quicker. In Case 2, a higher

diversity of trains increases the diversity of duties but decreases the equivalency of duties. Thus, the

difference of convergence curves of solving M2 and M3 maybe not as obvious as that in Case 1.

7.2.2 Sensitivity analysis of the length of meal time windows

In Case 2, we also set 1 hour, 2 hours, 3 hours and 4 hours as the lengths of meal time windows in Case2-

1, Case 2-2, Case 2-3 and Case 2-4. There is still no feasible solution in Case 2-1. The computational results

of the other three cases are shown in Table 8.

Table 8 Computation results with different lengths of meal time windows in Case 2

Indicators
Value

Case 2-2 Case 2-3 Case 2-4

Length of meal time window 2h 3h 4h

Lunch time window [11:00,13:00] [10:30,13:30] [10:00,14:00]

Supper time window [17:00,19:00] [16:30,19:30] [16:00,20:00]

Construction time of TSSN 1.51s 1.94s 2.39s

Number of decision variables 2568480 3182400 3443280

0

20000

40000

60000

80000

100000

120000

1 21 41 61 81 101
CurLB CurUB

0

20000

40000

60000

80000

100000

120000

1 21 41 61 81 101
CurBestLB CurBestUB

19

Upper bound solution 99814.82 99891.78 99284.15

Lower bound solution 89319.58 89101.63 88992.65

Optimality Gap 10.51% 10.80% 10.37%

Solution time 8863.68s 10899.26s 13110.31s

Number of crew members needed in the NJ depot 57 55 50

Number of crew members needed in the SH depot 58 53 52

Number of crew members needed in the HZ depot 15 19 20

Number of crew members needed in the HF depot 23 23 24

Total number of crews needed 153 150 146

Number of times of crew having lunch 2 3 2

Number of times of crew having supper 4 5 3

The computation results in Case 2-1 to Case 2-4 reflect similar phenomenon with that in Case 1-1 to Case 1-4.

However, as the length of meal time window increases, the total number of needed crew decreases.

In Case 1, the frequency of trains is high and all trains have the same origin and destination. Therefore, this is

probably due to a more convenient arrangement of the meal break in the short time window, without the need of

increasing the number of needed crew members. In Case 2, the frequency of trains at different stations changes a lot.

For example, 248 trains originate from one of the four depots, while 97 trains originate from one of the other 23 stations.

Therefore, for a station with the low frequency of trains, when the length of meal time window is short, the crew usually

have more break time to have lunch/supper, because of less feasible connection tasks. Thus, more crew members would

be needed in order to create a better crew plan.

8 Conclusions

This paper proposed a time-space-state network to describe the ‘mixed time constraints’ of the railway CSP. Based

on the TSSN, the “feasible duty generation” could be transformed into a classic shortest path problem. Therefore, we

constructed an initial network flow model based on the TSSN. To break the symmetry of the initial model and to

strengthen the formulation, we added five sets of inequalities into the initial model and generated an improved model.

The improved model was then solved by a Lagrangian heuristic. Finally, we evaluated the approach on real-world

instances under two typical rail network structures and got the following conclusions:

- By solving the improved model, we could get better solutions than when solving the initial model. And the

efficiency of solving the improved model was also better than that of solving the initial model.

- Different train schedule structure caused different performance of inequality constraints to strengthen the

formulation on the railway CSP.

- As the length of the meal time window increased, the TSSN size, the number of decision variables and the

solution time also increased.

- The length of the meal time window affected the number of crew members needed and the number of times

that the crew members had meals during the duty. For longer meal time windows, the fewer crew members

were needed.

To further improve the proposed solution method, it would be interesting to embed a column generation method into

20

the developed Lagrangian framework.

Acknowledgments

This work was supported by National Key Research & Development Plan of China (Grant No. 2018YFB1201403).

References

Abbink, E. (2014). Crew management in passenger rail transport. Ph.D thesis, Erasmus University Rotterdam,

Rotterdam.

Abbink, E., Albino L, Dollevoet T, Huisman, D., Roussado, J., & Saldanha, R.L. (2011). Solving Large Scale Crew

Scheduling Problems in Practice. Public Transport, 3(2),149-164.

Abbink, E., Huisman, D., & Kroon, L. (2018). Railway Crew Management. Handbook of Optimization in the Railway

Industry, Springer International Publishing, 243-264.

Arabeyre, J., Fearnley, J., Steiger, F., & Teather, W. (1969). The airline crew scheduling problem: A survey.

Transportation Science, 3, 140–163.

Barnhart, C., Belobaba, P., & Odoni, A.R.(2003). Applications of operations research in the air transport industry.

Transportation Science, 37(4), 368-391.

Caprara, A., Fischetti, M., Guida, P. L., Toth, P., & Vigo, D. (1999). Solution of large-scale railway crew planning

problems: the Italian experience. Computer-Aided Transit Scheduling, 471, 1-18.

Caprara, A., Fischetti, M., Toth, P., Vigo, D., & Guida, P. L. (1997). Algorithms for Railway Crew Management.

Mathematical Programming, 79 (1-3), 125-141.

Caprara, A., Kroon, L., Monaci, M., Peeters, M., & Toth, P. (2007). Passenger railway optimization. Handbooks in

operations research and management science, transportation, Elsevier B.V., Amsterdam, 129–187.

Chen, S., Shen, Y., Su, X., & Chen, H. (2013). A Crew Scheduling with Chinese Meal Break Rules. Journal of

Transportation Systems Engineering and Information Technology, 13(2), 90-95.

Desrochers, M., & Soumis, F. (1989). A Column Generation Approach to the Urban Transit Scheduling Problem.

Transportation Science, 23(1), 1-14.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: a review of applications,

methods and models. European Journal of Operational Research, 153(1), 3-27.

Freling, R., Lentink, R.M., & Odijk, M.A. (2000). Scheduling Train Crews: A Case Study for the Dutch Railways.

Econometric Institute Report, 505, 153-166.

Gopalakrishnan, B., & Johnson, E.L. (2005). Airline Crew Scheduling: State-of-the-Art. Annals of Operations

Research, 140(1), 305-337.

Hoffmann, K., & Buscher, U. (2018). Valid inequalities for the arc flow formulation of the railway crew scheduling

problem with attendance rates. Computers & Industrial Engineering. Available online.

Huisman, D. (2007). A column generation approach for the rail crew rescheduling problem. European Journal of

Operational Research, 180(1)：163-173.

Huisman, D., Freling, R., & Wagelmans, A. P. M. (2005). Multiple-Depot Integrated Vehicle and Crew Scheduling.

21

Transportation Science, 39(4), 491-502.

Jütte, S., & Thonemann, U.W. (2015). A Graph Partitioning Strategy for Solving Large-scale Crew Scheduling

Problems. OR Spectrum, 37(1), 137-170.

Kasirzadeh, A., Saddoune, M., & Soumis, F. (2017). Airline crew scheduling: models, algorithms, and data sets. Euro

Journal on Transportation & Logistics, 6(2), 111-137.

Kohl, N. (2003). Solving the world’s largest crew scheduling problem. ORt 8–12.

Lourenço, H.R., Paixão, J., & Portugal, R. (2001). Multi-objective Metaheuristics for the Bus Driver Scheduling

Problem. Transportation Science, 35(3), 331-343.

Mahmoudi, M., & Zhou, X. (2016). Finding optimal solutions for vehicle routing problem with pickup and delivery

services with time windows: A dynamic programming approach based on state–space–time network

representations. Transportation Research Part B: Methodological, 89, 19-42.

Nishi, T., Muroi, Y., & Inuiguchi, M. (2011). Column Generation with Dual Inequalities for Railway Crew Scheduling

Problems. Public Transportation, 3(1), 25-42.

Sahin, G., & Yüceoğlu, B. (2011). Tactical Crew Planning in Railways. Transportation Research Part E: Logistics and

Transportation Review, 47(6), 1221-1243.

Sherali, H. D., Bish, E. K., & Zhu, X. (2006). Airline fleet assignment concepts, models, and algorithms. European

Journal of Operational Research, 172(1), 1-30.

Tallys, H. Y., Arnaldo, V. M., & Cid, C. S. (2005). Hybrid column generation approaches for urban transit crew

management problems. Transportation Science, 39(2), 273-288.

Vaidyanathan, B., Jha, K.C., & Ahuja, R.K. (2007). Multi-commodity Network Flow Approach to The Railroad Crew-

scheduling Problem. IBM Journal of Research and Development, 51(3.4), 325-344.

Wang, Y., Liu, J., Miao, J. (2009). Modeling and Solving the Crew Scheduling Problem of Passenger Dedicated Line.

Journal of The China Railway Society(in Chinese), 31(1),15-19.

Appendix

Appendix A: Notations

Sets:

𝐺𝑡𝑠 Basic time-space network

𝑉𝑡𝑠 Set of all vertices in the network 𝐺𝑡𝑠

𝐴𝑡𝑠 Set of all arcs in network 𝐺𝑡𝑠.

𝑉𝑡𝑠
𝑜 Set of virtual source vertices

𝑉𝑡𝑠
𝑙 Set of tasks’ arrival vertices and departure vertices

𝑉𝑡𝑠
𝑑 Set of virtual sink vertices

𝐴𝑡𝑠
𝑜 Set of on-duty arcs

𝐴𝑡𝑠
𝑙 Set of task arcs

22

𝐴𝑡𝑠
𝑔

 Set of ground arcs

𝐴𝑡𝑠
𝑜𝑛 Set of overnight arcs

𝐴𝑡𝑠
𝑑 Set of off-duty arcs

𝐴𝑡𝑠
𝑜𝑑 Set of virtual arcs

𝐺𝑡𝑠𝑠 time-space-state network

𝑉𝑡𝑠𝑠 Set of all vertices in the network 𝐺𝑡𝑠𝑠

𝐴𝑡𝑠𝑠 Set of all arcs in the network 𝐺𝑡𝑠𝑠

L Set of tasks

P Set of available crew members

D Set of pairings

Ω𝑖 set of all states of vertex 𝑣𝑖

𝜔𝑖(𝑚) set of attributes of the state of 𝑣𝑖(𝑚)

Decision variables:
p

ijx If arc (,)i j covered by crew member p,
p

ijx =1; otherwise,
p

ijx =0

pq

ije
If the crew pairing p and q do not cover task arc (,)i j at the same time,

pq

ije = 1;

otherwise,
pq

ije = 0

Parameters:

Td Working time of a duty

maxTd Maximum working time of a duty

Tt Transfer time

minTt Minimum transfer time

To Consecutive driving time of a duty

maxTo Maximum consecutive driving time of a duty

Tr Break time

minTr Minimum break time

Ts Overnight rest time

minTs Minimum overnight rest time

Tp Period of a pairing

Dd The maximum period of a pairing

𝑇𝑊𝑀𝐵
𝑙 Break time for lunch

𝑇𝑊𝑀𝐵
𝑠 Break time for supper

𝑀𝐿𝑚𝑖𝑛 Lower bound of lunch time window

𝑀𝐿𝑚𝑎𝑥 Upper bound of lunch time window

𝑀𝑆𝑚𝑖𝑛 Lower bound of supper time window

𝑀𝑆𝑚𝑎𝑥 Upper bound of supper time window

Te Dining time

minTe Minimum meal time

23

𝑇𝑒𝑏
𝑎 The time that meal break begins after the start of the duty

𝑇𝑒𝑓
𝑏 The time that meal break finishes before the end of the duty

𝑣𝑖(𝑚) The time-space-state vertex

𝑇𝑑𝑖(𝑚) Accumulated working time of vertex 𝑣𝑖(𝑚) in a duty

𝑡𝑡𝑗(𝑛),𝑖(𝑚) The length of the arc (𝑣𝑗(𝑛), 𝑣𝑖(𝑚))

𝑇𝑜𝑖(𝑚) Accumulated consecutive driving time of vertex 𝑣𝑖(𝑚) in a duty

𝑇𝑐𝑖(𝑚) Accumulated break/waiting time of vertex 𝑣𝑖(𝑚) in a duty

𝑇𝑝𝑖(𝑚) Accumulated working time of vertex 𝑣𝑖(𝑚) in a pairing

𝑀𝑏𝑖(𝑚) Dining status for lunch and supper

𝜑𝑖 index of task

𝑡𝑖 arrival/departure time of the task 𝜑𝑖

𝑠𝑖 arrival/departure station of task 𝜑𝑖

𝜃𝑖 index of train units routing covering task 𝜑𝑖

𝑡𝑖(𝑚) departure/arrival time of vertex 𝑣𝑖(𝑚)

𝑠𝑖(𝑚) departure/arrival station of vertex 𝑣𝑖(𝑚)

()l Lagrange multiplier of task l

M A large positive integer

Appendix B: Algorithm generating TSSN

// Algorithm GenerateTSSN()

Begin

 𝑉𝑡𝑠𝑠 = 𝑉𝑡𝑠;

 𝑉𝑐 = ∅;

 for each depot vertex 𝑜 ∈ 𝑉𝑡𝑠
𝑜 do

 𝑉𝑐 = 𝑉𝑐 ∪ {𝑜};

 𝜔𝑜 = {0,0,0,0,0};

 while 𝑉𝑐 ≠ ∅ do

 for each 𝑖 ∈ 𝑉𝑐 do

 𝑉𝑐 = 𝑉𝑐 − {𝑖};

 for each 𝑗 ∈ 𝑉𝑡𝑠 and ∃(𝑖, 𝑗) ∈ 𝐴𝑡𝑠 do

 𝑉𝑐 = 𝑉𝑐 ∪ {𝑗};

 for each 𝜔𝑖(𝑚) ∈ Ω𝑖 do

 n = |Ω𝑗 |;

CaculateState(𝜔𝑗(𝑛+1), 𝜔𝑖(𝑚));

 if FeasibleState(𝜔𝑗(𝑛+1)) returns TRUE

 if CheckSameState(𝜔𝑗(𝑛+1)) returns NULL

 Create new vertex 𝑗(𝑛 + 1) with attribute(𝑡𝑗 , 𝑠𝑗 , 𝜑𝑗 , 𝜃𝑗 , 𝜔𝑗(𝑛+1));

 𝑉𝑡𝑠𝑠 = 𝑉𝑡𝑠𝑠 ∪ {𝑗(𝑛 + 1)};

 Create new arc(𝑖(𝑚), 𝑗(𝑛 + 1)) with attribute(𝑡𝑡𝑖𝑗 , 𝜃𝑖𝑗);

 𝐴𝑡𝑠𝑠 = 𝐴𝑡𝑠𝑠 ∪ {(𝑖(𝑚), 𝑗(𝑛 + 1))};

 else returns 𝜔𝑗(𝑘)

 Create new arc(𝑖(𝑚), 𝑗(𝑘)) with attribute(𝑡𝑡𝑖𝑗 , 𝜃𝑖𝑗);

24

 𝐴𝑡𝑠𝑠 = 𝐴𝑡𝑠𝑠 ∪ {(𝑖(𝑚), 𝑗(𝑘))};

 end;

 end;

 end;

 end;

 end;

 end;

 end;

In the algorithm, the function of CaculateState(𝜔𝑗(𝑛+1), 𝜔𝑖(𝑚)) is calculating state 𝜔𝑗(𝑛+1)of vertex 𝑣𝑗

according the state 𝜔𝑖(𝑚) of vertex 𝑣𝑖 using the method introduced in Section4.1 The function of

FeasibleState(𝜔𝑗(𝑛+1)) is to verify whether the state 𝜔𝑗(𝑛+1) is feasible according to the crew rules

introduced in Section3.2. The function of CheckSameState (𝜔𝑗(𝑛+1)) is to check whether there is the

same state of vertex 𝑣𝑗 as 𝜔𝑗(𝑛+1). If there is no the same state, return NULL; Otherwise, return the

state node represented by 𝜔𝑗(𝑘).

