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ABSTRACT

In medicine, repeated measures are frequently available (glomerular filtration rate
or proteinuria) and linked to adverse outcomes. However, several features of these
longitudinal data should be considered before making such inferences. These con-
siderations are discussed and we describe how joint modeling of repeatedly mea-
sured and time-to-event data may help to assess disease dynamics and to derive
personalized prognosis. Joint modeling combines linear mixed-effects models and
Cox regression model to relate patient-specific trajectory to their prognosis. We
describe several aspects of the relationship between time-varying markers and the
endpoint of interest that are assessed with real examples to illustrate the aforemen-
tioned aspects of the longitudinal data provided. Thus, joint models are valuable
statistical tools for study purposes, but also may help healthcare providers in mak-
ing well-informed dynamic medical decisions.
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INTRODUCTION

Application of longitudinal study designs to assess dynamics of medical conditions
is currently gaining interest in general medical community and particularly in the
fields of cardiology and nephrology.* Such study designs entail repeated measure-
ments of biological markers (e.g., proteins in the blood or urine) over the time-
course of the disease to infer patient prognosis.

As an illustrative example we will consider a study by Brankovic et al. who in-
vestigated how longitudinal trajectories of several glomerular and tubular mark-
ers in patients with chronic heart failure (HF) relate to their prognosis.® Samples
were measured at fixed 3-month intervals during 2-year follow-up. Compared to
studies that measured these markers at baseline only and related them to patient
prognosis, the repeated-measures design utilized by Brankovic et al. carries several
advantages.” Most importantly, it reflects disease dynamics better than the single-
baseline assessment. However, when analyzing repeatedly measured biomarkers,
the question arises how to properly relate them to prognosis.” To do this, several
approaches can be utilized including time-dependent Cox model (TDCM).® Alter-
natively, joint models (JMs) of repeatedly measured and time-to-event data can be
performed.

Reasons for choosing JMs over TDCM for estimating prognosis using time-
varying markers are discussed below including data-collection, data-analysis, as
well as the methodological concept behind JMs.

Data-collection

First, if repeated measurements are not collected at equally spaced time-points
or not all patients have the same number of measurements, the longitudinal data
are unbalanced.’ This is often seen when treating physicians determine how often
study-visits should take place for data to be taken. For example, Breidthardt* et al.
studied whether worsening renal function (WRF) predicts mortality in patients
admitted for acute HE. They defined WREF as in-hospital increase in serum creati-
nine >0.3mg/dl, and treating physicians determined the timing of serum creatinine
sampling. Here, the sicker patients were likely to be monitored more closely (i.e.,
have more measurements taken) than the less sick patients. Consequently, the like-
lihood of finding WRF would increase in sicker patients. This unbalanced data-
collection would falsely strengthen the association between WRF and mortality if
this relation is modeled improperly.
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Second, even when patient-visits occur at fixed time-points by a pre-specified
study protocol, longitudinal data may become unbalanced. This occurs in three
situations: when patients’ measurements are not performed in the beginning but
start later during follow-up (“late entry”), when patients skip some of the sched-
uled visits (“intermittent missing”), or when patients withdraw before the study
ends (“early dropout”).” In all situations, the longitudinal data become unbalanced
because of missing values. Importantly, if the reason for the missing values is re-
lated to patients’ survival (e.g., patient misses visits because of deteriorating condi-
tion), TDCM becomes inadequate because it assumes that missing values are in-
dependent of survival.” For example, Li et al. studied longitudinal creatinine-based
glomerular filtration rate (GFR ) trajectory in the African American Study of Kid-
ney Disease in Hypertension (AASK) trial.’* Here, 23% of patients were excluded
because they withdrew before collecting a sufficient number of measurements. In
the majority, the reasons for withdrawal were related to their time-to-event as they
died or were started on renal replacement therapy (RRT) before obtaining suffi-
cient serum creatinine measurements.

Data-analysis

Covariates measured (or collected) on patients are internal (i.e., endogenous) predictors.
This is important to note because for any internal predictor (i.e., biomarker) future mea-
surements potentially depend on the patient’s survival which should be considered when
analyzing such covariates.''? This is due to two reasons: patients have to be alive and
present at study-visits for markers to be measured, and markers’ values might be affected
by his/her condition up to that visit.” Additionally, internal predictors are biologically
subjected to variability and can be measured with error.” Examples of such predictors
are serum creatinine, body mass index, echocardiography measurements, or proteinuria.

TDCM cannot properly handle internal predictors'? since it assumes that their
future values are independent of patient’s survival and measured without error.”
Importantly, it also assumes that the predictor has the same constant value between
study-visits, until it suddenly changes when the next measurement is obtained (Fig-
ure 1A)."2 This assumption is unrealistic as we expect that biomarkers continuously
change, and not only when measured. Consequently, TDCM would produce biased
estimates of biomarkers’ effect masking their true predictive ability. For example,
Asar et al. studied whether repeatedly measured GFR  predict initiation of RRT in
1611 patients from Chronic Renal Insufficiency Standards Implementation Study
(CRISIS). They showed that the hazard ratios (HRs) for RRT were considerably
underestimated by TDCM as compared to JMs (HRs per log-unit GFR  decrease:
12.3 versus 38.7).° This advantage of JMs over TDCM has been demonstrated by
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theoretical work and other simulation studies.”!!"13

Methodological concept

The JMs combine two models: linear mixed-effects (LME) models and basic Cox
model.” The LME models estimate a marker’s trajectory using repeated measure-
ments; Cox model estimates patients’ time-to-event.

The LME models use the 2-component equation. The first “fixed-effect”
component estimates a marker’s average trajectory over all patients. The second
“random-effect” component estimates by how much an individual patient devi-
ates from this average trajectory (Figure 1B). By using these two components of
information the patient-specific trajectory is constructed. Through the “random-
effects” component they allow repeated measurements taken on the same patient
to be correlated, and work well with unbalanced data."” Notably, the functional
form of time is an important aspect of LME models. That is, in case the patient-
specific trajectories are nonlinear, care should be given in the specification of the
fixed- and random-effects components; polynomials or splines could be used to
model such nonlinear profiles. Altogether, this allows a longitudinal trajectory
estimated by LME models to correspond more naturally to the marker’s biologi-
cal evolution than the “jerkily” trajectory assumed by TDCM (Figure 1A).

Subsequently, JMs combine LME and Cox models to relate patient-specific tra-
jectory to his/her prognosis (Figure S1). By doing this, JMs handles marker’s miss-
ing data and measurement error that can occur during follow-up.'* JMs are also
advantageous when extreme values are observed because they postulate that the
underlying rather than the observed value of the longitudinal biomarker is associ-
ated with the risk of an adverse endpoint (Figure 1A).

The basic assumptions behind LME and Cox models are the same as when they
are separately analyzed. For continuous longitudinal data, we assume normally
distributed error terms. The LME models also assume that discontinuation of
the data-collection process for reasons other than the occurrence of the adverse
endpoint are missing at random, i.e., these reasons can depend on covariates and
past observed longitudinal values. For the endpoint a relative risk model is used
with the proportional hazards assumption. Further reading on methodology?,
sample size and power determination' is provided elsewhere. Finally, JMs have
been successfully applied for several medical conditions including HF, aortic an-
eurisms, aortic stenosis, heart, lung and kidney transplantation.®!¢%°
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FIGURE 1 Graphical depiction of the difference between the marker’s
trajectory estimated by the time-dependent Cox model and the joint models
and of the different aspects of time-varying markers. The X-axis displays follow-
up time, the left Y-axis displays the value of a (bio)marker, and the right Y-axis displays a
patient’s risk prognosis. Panel A illustrates the marker’s trajectories estimated by the time-
dependent Cox model (green dashed line) and by the joint models (smooth red solid line)
in the same patient. The panel shows that in the JMs the underlying profile represented
by the red solid line is include in the relative risk model, and not the directly observed
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value represented by the red circles which is what the Cox model does. In this way, JMs
are advantageous because they account for the biological variation that the biomarker
exhibits, but also in the settings when extreme values are observed but are not particularly
helpful clinically (e.g., extremely low blood pressure). Interpretation of HRs from the JMs
is the same as from the Cox model. Panel B illustrates how the patient-specific marker
trajectory is constructed using linear mixed-effects models. The solid green line depicts the
marker’s value averaged over all patients at each of the study visits during follow-up (fixed-
effect part), and the black arrows depict the deviation of the patient-specific values from
the average values at the same study visits. Patient-specific trajectories are depicted for a
patient who experienced the event (solid red line) and the one who did not (solid blue line).
Panel Cillustrates different aspects of time-varying markers that can be assessed by joint
models: 1) marker’s level, 2) slope of the marker’s trajectory (rate of change), 3) area under
the marker’s trajectory (the cumulative effect of the marker’s values). The time-dependent
slope mathematically corresponds to the first derivative of the trajectory and the cumulative
effect to the integral of the trajectory.

Components of time-varying markers

JMs tailor a patient’s prognosis based on his/her own marker’s values (Figure 1C).
However, other components of the longitudinal marker can also be investigated.”
For example, the rate at which a marker changes can be determined by estimating
the instantaneous slope of its trajectory. The slope indicates by how much marker’s
values have been increasing or decreasing at the certain timepoint.” Consequently,
disease’s progression can be adequately quantified and related to prognosis. JMs can
also assess entire history of marker values by estimating the area under its trajectory.
The area indicates the cumulative effect of all values that the marker has taken up to
the certain timepoint.'? Altogether, JMs analyse comprehensively disease’s dynamics
to accurately profile patient’s prognosis, wherein the application of TDCM is limited.

Personalized dynamic risk assessment

Patients are often seen in different disease’s stages, react differently to treatment,
or have other characteristics relevant for their phenotype. Thus, it is clear that a
disease can differ both between patients and within the same patient over time.
Consequently, a true marker’s potential in ascertaining disease’s severity in an indi-
vidual, and its accurate relation to prognosis can only be revealed if individual (i.e.,
patient-specific) values are considered. For physicians, it is also medically relevant
to utilize all available information (baseline and follow-up) to accurately detect
disease’s progression and profile better individual prognosis. JMs can easily update
the patient’s prognosis whenever additional information is collected, thereby as-
sessing the risk in real-time."
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CONCLUSION

Although attention should be taken when analyzing repeatedly measured data,

repeated-measures designs are valuable when assessing the dynamics of medical

conditions. The use of JMs may improve patients monitoring by providing person-

alized dynamic risk predictions.
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SUPPLEMETARY INFORMATION

R code to fit joint model

Joint model will be fit using primary biliary cirrhosis (PBC) data collected at the
Mayo Clinic from 1974 to 1984" available with the package J]MBayes.? For the anal-
ysis we will consider 312 patients who have been randomized to D-penicillamine
treatment and 154 patient randomized to placebo. During follow-up, serum biliru-
bin was collected on average 6 times per patient with a total of 1945 measurements.
To assess how longitudinal trajectory of serum bilirubin relates to a patient-specific
prognosis we have to use two datasets.

The first dataset is denoted by “pbc2” and contains repeatedly measured data
organized in the long format (i.e., contains several rows per each patient; number of
rows depends on how many samples the patient had provided). This dataset will be
used to estimate longitudinal trajectory of serum bilirubin using linear mixed-effects
(LME) models.

The second dataset is denoted by “pbc2.id” and contains patients’ survival
times organized in the wide format (i.e., contains a single row per patient). This
dataset will be used to fit basic Cox model.

Full description of R codes provided below is discussed in the paper under ref-
erence 2.

# R code:

# first load package “JMbayes” and define the indicator “status2” as the
# composite event

# of transplantation or death

library (“JMbayes”)

pbc2$status?2 <- as.numeric (pbc2S$status != “alive”)
pbc2.id$status2 <- as.numeric (pbc2.id$status != “alive”)

# now fit the LME model

# variable “log(serBilir)” denotes logarithmically transformed marker: serum bilirubin
# variable “year” denotes the time from baseline when the marker was collected
#in this example, we used natural splines with two knots to better estimate marker’s
# trajectory

lmeFit <- 1lme(log(serBilir) ~ ns(year, 2), data = pbc2,
random = ~ ns(year, 2) | id)
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# now fit basic Cox model
# variable “years” denotes the time to event or censoring (note: this is different than variable
#“years” used for LME model)

# variable “status2”is event indicator
# variable “drug” denotes if a patient was randomized to D-penicillamine or placebo
# variable “age” denotes a patient’s age at baseline

coxFit <- coxph(Surv(years, status?2) ~ drug + age, data
pbc2.id, x = TRUE)

# now fit joint model for the marker’s value
jointFit.value <- jointModelBayes (lmeFit, coxFit, timeVar =

“year”, n.iter = 30000)
summary (jointFit.value)

# calculate hazard ratio with corresponding 95% confidence interval
exp (confint (jointFit.value, parm = “Event”))

# in the output “Assoct” denotes HR for the value of log(serBilir)
# now fit joint model for marker’s value and slope

dForm <- 1list (fixed = ~ 0 + dns(year, 2), random = ~ 0 +
dns (year, 2), indFixed = 2:3, indRandom = 2:3)
jointFit.value.slope <- update (jointFit.value, param = “td-
both”, extraForm = dForm)

summary (jointFit.value.slope)

# calculate hazard ratio with corresponding 95% confidence interval
exp (confint (jointFit.value.slope, parm = “Event”))

# in the output “Assoct” denotes HR for the value of log(serBilir)

# in the output “AssoctE” denotes HR for the slope i.e., delta-log(serBilir)/year)

# the time-dependent slope mathematically corresponds to the first derivative of the
# trajectory

# now fit joint model for marker’s cumulative effect

iForm <- list (fixed = ~ 0 + year + ins(year, 2), random = ~
0 + year + ins(year, 2), indFixed = 1:3, indRandom = 1:3)
jointFit.area <- update(jointFit.value, param = “td-extra”,
extraForm = iForm)

summary (jointFit.area)

# calculate hazard ratio with corresponding 95% confidence interval
exp (confint (jointFit.area, parm = “Event”))

# in the output “AssoctE” denotes HR for the area under log(serBilir) trajectory
# the area mathematically corresponds to the integral of the trajectory

# Plotting marker’s trajectory with corresponding survival probability in an
# individual patient

# in the following example we plotted serum bilirubin for patient number 4 from

# PBC data with survival
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# probability for serum bilirubin value
ND <- pbc2[pbc2$id == 4, ]

Chapter 2

sfit <- survfitdJM(jointFit.value, newdata = ND)
plot (sfit, estimator = “mean”, include.y = TRUE,conf.int =

TRUE, fill.area = TRUE, col.area = “lightgrey”)
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FIGURE S1 Personalized dynamic risk assessment using patient-specific
trajectory of serum bilirubin. Serum bilirubin levels (on a log scale) are displayed on
the primary (left) Y-axis and survival probability on the secondary (right) Y-axis. Follow-up
time (years) is displayed on the X-axis. Patient-specific marker’s trajectory (solid red line)
with scatter points (asterisks) is displayed left of the vertical dotted black line. To the right of
this line, the corresponding conditional survival probability curve (solid red line) is displayed

with 95% confidence intervals (grey area).
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