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ABSTRACT 

Despite testing for statistical interactions is usually stated as the secondary study 
objectives, it is not uncommon that these results lead to changing of treatment pro-
tocols or even modify the public health policies. For this reason, statistical interac-
tions are studied frequently in clinical studies, but recent reviews have indicated 
that their proper assessment and reporting remains challenging for the clinical 
investigators. This article provides an overview of the challenges associated with 
the statistical interaction analysis to help the clinical investigators finding the best 
strategy to properly obtain and critically evaluate its presence in statistical models. 
Specifically, we discuss the importance of understanding the distinction between 
effect-measure modification and causal interaction, their qualitative and quanti-
tative forms, the importance of a measurement scale on which interactions are 
tested, additive and multiplicative interaction measures, the relevance of multiple 
testing, and distinction between prespecified versus post-hoc analyses. Finally, we 
provide the recommendations that, if adhered to, could increase the clarity and 
the completeness of future studies. The understanding of the elements underlying 
statistical interaction analysis followed by its proper assessment and reporting may 
help in making the results more reliable, but also in facilitating clinical studies to 
use this type of analysis even more in the future.
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INTRODUCTION

Many reasons motivate the study of statistical interaction of which the most funda-
mental are those to learn how to use an intervention most effectively, who would 
and who would not benefit (and who would benefit the most), or whether it would 
be harmful in specific subpopulations.1 Although these reasons are usually stated 
as the secondary study objectives, if incorrectly performed statistical interaction 
analysis may cause false conclusions leading to unnecessary withholding of treat-
ment, ineffective or even harmful treatment’s effect.2 

Despite the concept of statistical interaction is not new, it still poses a problem 
for the clinical investigators. In 2000, Assmann3 et al. reviewed 50 randomized clin-
ical trials (RCTs) in high-impact journals, and found that 70% of these trials per-
formed interaction analysis but only 43% reported the test and 37% only a p-value. 
In 2006, Hernandez4 et al. reported similar results after investigating published 
cardiovascular RCTs. In 2007, Wang1 et al. evaluated 97 RCTs of which 61% used 
interaction analysis. Of those, 68% were unclear whether analyses were prespeci-
fied or post-hoc and only 27% reported an interaction test. Besides in RCTs, Knol5 
et al. found that vast majority of cohort and case-control studies also performed 
inappropriate interaction analysis. Finally in 2017, Wallach6 et al. concluded that 
61% of the RCTs the claimed the subgroup heterogeneity already in their abstracts 
(assuming these are the most credible) were, in fact, not supported by their results. 
For these reasons, previous reports tried to address this important topic.1-3,7,8 These 
attempts, although informative, were directed for the most part to a narrow set of 
issues. For example, no discussion was performed for distinguishing different types 
of statistical interaction, or the importance of a measurement scale on which an 
interaction is tested. To date, a few reports9,10 provide recommendations on some of 
these issues, but are intended mainly for an epidemiological audience.

In this paper, we summarize the evidence from the literature and provide the 
recommendations to assist the clinical investigators in selecting the best strategy to 
appropriately use, but also to critically evaluate, statistical interaction analyses as 
they might affect their decisions in clinical practice. In the following sections, we 
start by distinguishing different types and forms of statistical interaction; we then 
discuss how to properly analyze statistical interactions by the stratification or by an 
interaction modeling (i.e., inclusion of a cross-product term) and eventually how 
to report obtained results. 
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Types of statistical interaction

Statistical interaction can be classified as being either effect-measure modification 
or causal interaction. Effect-measure modification is present when the effect of one 
factor, exposure or intervention, on an outcome varies across the levels of another 
factor when no bias is present (Box 1).11 Notably, the second factor does not need 
to affect the outcome for the effect-measure modification to be present, but only be 
related to another variable that does.12 Some authors refer to this phenomenon also 
as an “effect heterogeneity”.13,14 Hence, the clinical motivation behind the effect-
measure modification (or heterogeneity) analysis is to identify the subgroups of 
patients in whom a factor’s effect differs based on patients’ characteristics. If the 
effect of one factor is higher with higher levels of another factor an effect-measure 
modification is positive, whereas if this effect is lower an effect-measure modifica-
tion is negative. 

Causal interaction15 is present when the combined effect of two factors on an 
outcome differs from their separate effects when no bias is present. (Box 1).11 Un-
like for effect-measure modification, both factors have to be causally related to an 
outcome in order for causal interaction to be present.16 Despite it sounds theoreti-
cal, this distinction is important to be made especially if an intervention on the 
secondary factor is of interest.17 For example, if an investigator would like to test 
whether cholesterol-lowering drug reduces the risk of myocardial infarction, and 
a positive interaction between the cholesterol treatment and hypertension is ob-
served this would indicate that hypertension modifies the treatment’s effect. Thus, 
targeting the subgroup of patients with hypertension would maximized the treat-
ment’s effect. However, if an investigator would also be interested in testing wheth-
er introducing secondary intervention (i.e., antihypertensive treatment) would 
further reduce the risk of myocardial infarction he/she should make sure that the 
secondary factor (i.e., hypertension) not only modifies the effect of the cholesterol 
treatment but is causally related to myocardial infarction. If so, causal interaction 
is present and a factorial design can be applied to confirm the hypothesis. Finally, a 
positive causal interaction indicates that the effect of two factors together is larger 
than the two factors considered separately, whereas a negative causal interaction 
indicates that this joint effect is smaller than these effects considered separately.
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BOX 1 Types and forms of statistical interaction. In a concrete analysis, the term 
“effect-measure” should be replaced with the name of exact measure that is used to estimate 
the effects in the statistical model. For example, if one would use the logistic regression 
model, a statistical interaction should be reported as the odds-ratio modification (or 
heterogeneity). Similarly, if Cox regression model is applied then hazard-ratio modification 
(or heterogeneity) would be more appropriate terminology. In this way, ambiguity about 
which effect is tested would be resolved.  

Forms of statistical interaction

Statistical interaction can take either quantitative or qualitative form. The quanti-
tative form (synonym18: “non-crossover”) is the most common and is present when 
an effect of one factor has a different magnitude, but in the same direction, across 
strata of another factor (Figure 1: 1-4, 7, and 8). 

The qualitative form (synonym18: “crossover”) is present (1) if one factor does not 
have an effect on the outcome in one stratum, but does have effect in other stratum, 
of the second factor (Figure 1: 5a and 6a) or (2) if one factor has opposite effects 
depending on the strata of the second factor (Figure 1: 5b and 6b). Of note is that 
detection of qualitative interactions also depends on a study’s selection criteria. For 
example, angiotensin-converting-enzyme inhibitors are beneficial in hypertensive 
patients, but are harmful in hypertensive patients due to reno-vascular disease.19 If 
the latter group is excluded from the study due to selection criteria, an important 
qualitative interaction will be missed. This may lead to serious consequences if the 
study concludes that both groups of patients should be treated identically. 
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FIGU R E 1 Potential scenarios that can be found when statistical interaction 
is detected by additive and multiplicative scales simultaneously. “a” denotes 
the effect in exposed (or treated) subgroup without modifier M; “b” denotes the effect in 
unexposed (or untreated) subgroup without modifier M; “c” denotes the effect in exposed (or 
treated) subgroup with modifier M; “d” the effect in unexposed (or untreated) subgroup with 
modifier M. RD1 can be calculated as a – b; RR1 can be calculated as a / b; RD2 can be calculated 
as c – d; RR2 can be calculated as c / d; numbers presented on Y-axes can be used to calculate 
RD1, RD2, RR1, and RR2. If there is departure on one of the two scales, eight possible scenarios 
can be observed: 1) no additive departure (RD1 = RD2), but negative multiplicative departure 
(RR1 > RR2); 2) no additive departure (RD1 = RD2), but positive multiplicative departure (RR1 < 
RR2); 3) no multiplicative departure (RR1 = RR2), but negative additive departure (RD1 > RD2); 
4) no multiplicative departure (RR1 = RR2),  but positive additive departure (RD1 < RD2); 5) 
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positive multiplicative and additive departures (RD1 < RD2 and RR1 < RR2) with two additional 
situations 5a) the effect is present only in one subgroup or 5b) the opposite effects are 
present in subgroups; 6) negative multiplicative and additive departures (RD1 > RD2 and RR1 
> RR2) with two additional situations 6a) the effect is present only in one subgroup or 6b) 
the opposite effects are present in subgroups; 7) negative additive (RD1 > RD2) and positive 
multiplicative departures RR1 < RR2); 8) positive additive (RD1 < RD2) and negative RR1 > RR2) 
multiplicative departures. 

ASSESSMENT OF STATISTICAL INTERACTION

As noted above, there are two ways to assess statistical interactions: (1) stratifica-
tion (i.e., stratified or subgroup analysis) in which the effect of one factor is as-
sessed within strata of another factor separately, (2) interaction modeling in which 
both factors are included into a statistical model together with their cross-product 
term (F1+F2+F1*F2). 

Before introducing their technical descriptions it is important to note that a statis-
tical interaction is observed only if there is a departure from an underlying measure-
ment scale on which a statistical model estimates effects. This means that a statistical 
interaction is scale-dependent. However, different statistical models estimate effects 
on different measurement scales. For example, standard linear regression coefficients 
estimate the sum of effects on an additive scale, whereas standard logistic regression 
and Cox regression exponentiated coefficients estimate the product of effects on a 
multiplicative scale such as risk ratio (RR), odds ratio (OR), or hazard ratio (HR) 
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scale. Importantly, additive and multiplicative scales do not always provide us with 
the same conclusion whether a statistical interaction is present or in which direction 
it operates. For this reason, both additive and multiplicative interaction measures are 
discussed below.  

Additive interaction measures 

A departure on an additive scale would mean that the combined effect of two fac-
tors is larger (in case of positive interaction) or smaller (in case of negative interac-
tion) than the sum of their individual effects.20 

For a binary outcome, e.g., death (“yes”, “no”), and two binary factors, e.g., dis-
ease A and disease B (“yes”, “no”), an additive interaction can be assessed using 
stratification and expressed as the absolute excess risk due to interaction (AERI) 
(Table 1: equation-1). For example, Weiner et al. studied the effects of chronic 
kidney disease (CKD) and cardiovascular disease (CVD) on the 10-year risk of 
the composite endpoint including cardiovascular and all-cause death.21 Authors 
reported the absolute cumulative risk of 66% in individuals with both CKD and 
CVD, 34% in those with CKD but without CVD, 38% in those without CKD but 
with CVD, and 15% in those without CKD or CVD. The AERI is calculated as 66 
+ 15 – 34 – 38 = 9% which indicates a super-additive (i.e., positive) interaction be-
cause AERI >0 (detailed calculations are described in the supplemental text). This 
also indicates an absolute excess risk of 9% due to the interaction itself. 

For a continuous outcome (e.g., blood pressure), and two categorical or con-
tinuous factors or their combination, an additive interaction can be assessed by in-
cluding both factors together with their cross-product term into a linear regression 
model (Table 1: equation-2). In this case, β coefficient for the cross-product term 
would quantify the interaction on an additive scale. 

When using continuous factors, a magnitude of statistical interaction will differ 
based on its unit-scale.20 For example, if an investigator assesses whether a patient’s 
age modifies the treatment’s effect, the magnitude of the interaction between age 
and treatment will differ if age is expressed per 1-year, 5-year interval, or in some 
other units. Finally, a nice feature of regression models is that controlling for other 
covariates can easily be performed by including them into the model.
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Multiplicative interaction measures

A departure on a multiplicative scale would mean that the combined effect of two 
factors is larger (in case of positive interaction) or smaller (in case of negative 
interaction) than the product of their individual effects.20 Thus, the multiplicative 
scale corresponds to the ratios of effects rather than their difference as the additive 
scale does.

For a binary outcome and two binary factors, a multiplicative interaction can be 
assessed using stratification and expressed as the ratio of RRs (Table 2: equation-11). 
In the example above21, the RRs of composite endpoint were 4.4 in individuals with 
both CKD and CVD, 2.3 in those with CKD but without CVD, 2.5 in those with-
out CKD but with CVD as compared to those with neither, and 1.0 in those without 
CKD or CVD (supplemental text). Here, a multiplicative interaction is calculated as 
4.4 / (2.5 * 2.3) = 0.8 which indicates a sub-multiplicative (i.e., negative) interaction 
between CKD and CVD because the ratio of RRs <1. This also indicates relative risk 
ratio due to interaction of -20%. However, the AERI indicated their super-additive in-
teraction with absolute excess risk of 9%. Therefore, this example illustrates an afore-
mentioned point that a measurement scale influences the presents and the direction 
of a statistical interaction. 

For a binary outcome and two categorical or continuous factors or their com-
bination, a multiplicative interaction can be assessed by including both factors 
together with their cross-product term into the logistic or Cox regression model 
(Table 2: equation-12 and equation-13). In the example above21, OR or HR for the 
cross-product term would correspond to 0.8 indicating a sub-multiplicative inter-
action. 

Additive versus Multiplicative scale

Figure 1 illustrates eight potential scenarios that can be found when statistical in-
teraction is detected by additive and multiplicative scales simultaneously. In six of 
eight scenarios (Figure 1: 1-4, 7, and 8) these scales carry different information 
regarding statistical interaction. Therefore, it is not only possible, but even common 
to come to the different conclusions depending on the scale on which a statistical 
interaction is tested.

From the public health perspective, several authors have argued that under as-
sumption that benefits, or costs, of certain factors are measured by excess, or reduc-
tion, in incident numbers (i.e., case-load per unit population), additive measures 
are more reliable than multiplicative measures to increase a net benefit by targeting 
the proper subpopulation.13,22 The main reasoning behind was that if an excess effect 
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produced by each factor is nonadditive, a public health impact can only be predicted 
if the levels of all factor are known.23,24 

Another important point is that both interaction measures can be considerably af-
fected by falsely negative results, i.e., a type 2 error. This is because studies are usually 
only powered to show the significant differences in the total cohort and not in the sub-
groups.3 In this context, obtaining significant p-values may be even more difficult when 
testing departure from additivity than from multiplicity of effects. 

Taken together with previous reports,9,16 we strongly advise the clinical inves-
tigators to report both additive and multiplicative interaction measures with cor-
responding 95% confidence interval (CI). 

Additive interaction measures derived from multiplicative 
statistical models

Although statistical models such as logistic regression and Cox regression models op-
erate on a multiplicative scale, additive interaction measures can still be calculated (Box 
2). The following formulae apply for all ratio-measures (RR, OR, HR) equally.16,25,26

Relative Excess Risk due to Interaction (RERI)

The RERI (synonym: interaction contrast ratio [ICR]) is the difference between joint 
relative effect of two factors and their relative effects considered separately (Table 
1: equations-3 and equations-4).13 Although RERI is an additive interaction mea-
sure, it differs from the AERI because it operates with ratios instead of absolute risks. 
However, when only ratio-measures are given, the RERI can be used to determine 
additive interaction effect. For example, Jorgensen et al. reported that the 30-day risk 
of major adverse cardiovascular events (MACE) was associated with long-term use 
of β-blockers in patients with uncomplicated hypertension undergoing non-cardiac 
surgery.27 They also found a super-multiplicative interaction between β-blocker use 
and diabetes. To quantify this interaction on an additive scale, we calculate the RERI 
using equation-3 as 2.20 –1.47 – 0.94 + 1.00 = 0.79 (supplemental text). The RERI 
indicated a super-additive interaction between β-blocker and diabetes (RERI >0). 
The 95%CI for RERI can be calculated using the delta method28 or using the first per-
centile Bootstrap method which covers 95%CI better than the delta method29 and is 
more suitable for continuous factors.20 An interpretation of RERI may be sometimes 
less straightforward if additional covariates are included in the model because it var-
ies across the levels defined by additional covariates.30 The codes for calculating RERI 
with 95%CI are available in SAS12,25,31, STATA12, R32,33, or using excel sheets.9,20  
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BOX 2 Additive interaction measures derived from the multiplicative (log-linear, 
logistic, Cox regression) models. RR, risk ratio; OR, odds ratio;  HR, hazard ratio. 
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Attributable proportion due to interaction (AP)

The attributable proportion for the outcome, denoted here by AP, indicates the 
proportion of the outcome in double exposed group that is due to the interaction 
itself.34 It is derived from RERI (Table 1: equation-5 and equation-6). Following 
the above example by Jorgensen27, we calculate AP using equation-5 as 0.79 / 2.2 = 
0.36 indicating that 36% of MACE in patients with diabetes and on β-blockers is 
due to the interaction itself. Similar to RERI, AP varies if additional covariates are 
included into the model. The codes for calculating AP with 95%CI are available in 
SAS12,25,31, R32, or using excel sheets.9,20

Alternatively, the attributable proportion for the effects, denote here by AP*, 
can be calculated which represents the proportion of the joint effect of both expo-
sures that is due to the interaction itself (Table 1: equations-7 and equations-8).34 
In the same example27, AP* can be calculated using equation-7 as 0.79 / (2.2 – 1) = 
0.66 which indicates that 66% of joint effect of diabetes and β-blockers use is due to 
the interaction itself. Notably, AP* is independent of covariates adjustment.34 The 
codes for calculating AP* with 95%CI are available in SAS35, STATA35, and R.32,33

TAB LE 1 Additive measures of statistical interaction.

A. From additive statistical models: Eq. n.

Absolute excess risk due to interaction (AERI) (using stratification)

Formula:                                     
AERI = RE+,M+ + RE–,M– – RE+, M– – RE–,M+ (1)

Description: 
E, the exposure (i.e., primary factor); M, a modifier (i.e., secondary factor); 
RE+,M+, the risk in the patients who are exposed to both factors; 
RE–,M–, the risk in the patients in whom both factors are absent; 
RE+, M–, the risk in the patients who are exposed only to the primary factor; 
RE–,M+, the risk in the patients who are exposed only to the secondary factor.

Linear regression model (using a cross-product term)

Formula:                             
Y (continuos) = β0 + β1(E) + β2(M) + β3(ExM) (2)

Description: 
β0, average Y in patients in whom both factors are absent (E–, M–);
β1, average difference in Y between the patients who are exposed only to the primary factor 
(E+, M–) and those in whom both factors are absent (E–, M–);
β2, average difference in Y between the patients who are exposed only to the secondary 
factor (E–, M+) and those in whom both factors are absent (E–, M–);
β1+β2+β3, average difference in Y between the patients in whom both factors are present 
(E+, M+) and those in whom both factors are absent (E–, M–);
β3, a coefficient for the cross-product term that represents an additive interaction measure.



Statistical interaction analysis Chapter 3

43

B. From multiplicative statistical models: Eq. n.

Relative excess risk due to interaction (RERI) 

Formulae (can be used for RR, OR, HR equally): 
RERIRR = RRE+,M+ – RRE+, M– – RRE–,M+ + 1 (using stratification)
RERIOR = ORE x ORM x ORExM – ORE – ORM + 1 (using a cross-product term)

(3)
(4)

Description: 
ORE x ORM x ORExM equals to ORE+,M+. Note: ORE+,M+ is not provided in the output of the regres-
sion models using a cross-product term. The RERI is the difference between joint relative 
effect of two factors and their effects considered separately.

Attributable proportion due to interaction (AP)

Formulae (can be used for RR, OR, HR equally):  
AP = RERIRR / RRE+,M+ (using stratification)
AP = RERIOR / (ORE x ORM x ORExM) (using a cross-product term)

(5)
(6)

Description: 
The AP is the proportion of the outcome in double exposed group that is due to the interac-
tion itself. 

Modified attributable proportion due to interaction (AP*)

Formulae (can be used for RR, OR, HR equally):  
AP* = RERIRR / (RRE+,M+ –1) (using stratification)
AP* = RERIOR / (ORE x ORM x ORExM –1) (using a cross-product term)

(7)
(8)

Description:
The AP* represents the proportion of the effect of both exposures due to the interaction 
itself.

Synergy (S)-index

Formulae (can be used for RR, OR, HR equally):  
S = (RRE+,M+ –1) / [(RRE+,M– – 1) + (RRE–,M+ –1)] (using stratification)
S = (ORE x ORM x ORExM –1) / [(ORE –1) + (ORM –1)] (using a cross-product 
term)

(9)
(10)

Description:
The S-index is the extent to which joint relative effect of two factors together exceed 1, and 
whether this exceeding is greater than the sum of relative effects of two factors separately 
exceed 1.

Eg. n., equation number. 

Synergy index

The S-index reflects the extent to which the joint relative effect of two factors toge-
ther exceed 1, and whether this exceeding is greater than the sum of relative effects 
of two factors separately exceed 1 (Table 1: equation-9 and equation-10). For ex-
ample, Andrews et al. studied the effect of an early resuscitation protocol on the 
in-hospital mortality in septic patients with hypotension.36 They found that the use 

continued
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of early resuscitation protocol increased the in-hospital mortality which was more 
pronounced in patients with Glasgov coma scale score (GCS) 13-15 than in those 
with score 3-12. The S-index can be calculated using equaiton-9 as (3.55 – 1) / (3.09 
– 1 + 1.91 – 1) = 0.85 indicating a sub-additive interaction between the treatment 
protocol and worse GSC score because S-index <1 (supplemental text). Notably, the 
S-index is in independent of covariates adjustment.30 However, the interpretation 
may be difficult if one of the factors are preventive rather than causative, i.e., when 
denominator of S-index is negative.37 The codes for calculating S-index with 95%CI 
are available in SAS12,25,31, R33, or using excel sheets.9,20

TAB LE 2 Multiplicative measures of statistical interaction.

Relative risk ratio due to interaction (using stratification) Eq. n.

Formulae (can be used for RR, OR, HR equally):
RRE+,M+ / (RRE+, M–  x RRE–,M+) (11)

Description: 
RRE+,M+ / (RRE+, M–  x RRE–,M+) equals to the relative risk of a product term in a regression model

Logistic regression model (using a cross-product term)

Formula: 
Ln[PrY=1 /(1 – PrY=1)] = β0 + β1(E) + β2(M) + β3(ExM)
(exponentiation of both sides of equation to eliminate logarithm)
PrY=1 / (1 – PrY=1) = eβ0 x e β1(E) x eβ2(M) x eβ3(ExM)

(this can also be rewritten as)
Odds = O0 x ORE x ORM x ORExM

(12)

Description:
O0, odds of Y=1 (e.g., a patient dies) in patients in whom both factors are absent (E–, M–) i.e., 
this is a background risk because odds of outcome are determined by factors other than E 
and M;
ORE,

 odds ratio between the patients who are exposed only to the primary factor (E+, M–) 
and those in whom both factors are absent (E–, M–);
ORM, odds ratio between the patients who are exposed only to the secondary factor (E–, M+) 
and those in whom both factors are absent (E–, M–);
ORE x ORM x ORExM, odds ratio between the patients who are exposed to both factors together 
(E+, M+) and those in whom both factors are absent (E–, M–);
ORExM, OR for the cross-product term, that represents a multiplicative interaction measure.

Cox regression model (using a cross-product term)

Formula:
Ln[H(t)] = β0 + β1(E) + β2(M) + β3(ExM)
H(t) = eβ0 x e β1(E) x eβ2(M) x eβ3(ExM)

(this can also be rewritten as)
H(t) = H0(t) x HRE x HRM x HRExM

(13)

Description:
The same description as for logistic model, but hazard ratio are used instead of odds ratio.
HRE+xM+ , HR for the product term that represents a multiplicative interaction measure.

Eg. n., equation number. 
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Multiple testing

Multiple testing is common problem when testing statistical interactions because 
different data, hypotheses, and analyses are assessed simultaneously. Figure 2 out-
lines four steps that should be considered to reduce the probability of the false 
positive results, i.e., type 1 error. In hypothesis-generating studies, some authors 
suggest that no adjustments of the p-value are required.38 In hypothesis-confirma-
tory studies, an adjustment for multiple testing should be done as these studies 
often lead to policy-making. To date, several methods exist to address multiple 
testing and are described elsewhere.38 Finally, a multiple testing represents another 
reason why forming conclusions solely based on the p-value of an interaction test 
is unjustified. 

FI G U R E 2 Four steps to be considered to reduce probability of having a 
significant interaction only as a result of chance findings.

Sample size calculation

Sample size calculation should be considered if an investigator is planning to analyze 
statistical interaction, and especially if an important subgroup analysis is expected 
to be performed. This helps defining the rule for stopping a trial in order for an ad-
equate number of patients is recruited for each subgroup. For this purpose, a number 
of software programs39 and excel sheets are available both for additive40 and multipli-
cative41 interaction measures and various study designs.42
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REPORTING OF STATISTICAL INTERACTION

To make the results of an interaction analysis more reliable, an investigator should 
report all relevant information regarding the analysis which are discussed below.

The goal of statistical interaction analysis and set of 
confounders based on that goal (methods) 

An important question that should be answered firstly is why statistical interaction is 
tested. For example, is the aim to find the subgroup of patients based on their base-
line characteristics where the treatment has the greatest effect, or is intervening on 
those characteristics also considered? This is important to state because different set 
of confounders should be then chosen to control for the bias. 

If effect-measure modification is investigated, only confounding of the primary 
factor on an outcome should be controlled for. In RCTs, this confounding of the 
treatment’s effect is already addressed by randomization. Yet, one may still want to 
control for confounding in order to eliminate the possible imbalances between the 
subgroups that may occur despite the randomization.17 However, if causal interac-
tion is investigated, then confounding for the effects of both factors on an outcome 
must be controlled for.17 

The origin of statistical interaction analysis (methods)

Based on the origin, statistical interaction can be classified as being either prespec-
ified or post-hoc. The prespecified analysis6 (synonyms: “a priory”, “preplanned”, 
“planned”, “previously suggested”) is considered if the analysis is specified before 
data are obtained. This specification includes: 1) factors that are considered for 
analysis, 2) outcomes that are considered for analysis, and 3) set of confounders. 
An investigator may also consider an attempt of corroboration, i.e., a subsequent 
study with the same analysis as reported previously (for the same strata, interven-
tions, outcomes, and study population) as the prespecified analysis.6 

The post-hoc analysis6 (synonyms: “non-prespecified”, “secondary”, “explana-
tory”, “preliminary”) is considered in all other situations. Of note is that post-hoc 
analyses are usually data-driven and may be motivated with overall null findings.43 
In this case, one could aim to systematically assess all possible statistical interac-
tions in order to reduce a chance of spurious results.44 Nonetheless, the post-hoc 
analyses should be considered solely for exploratory purposes. 
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The results of statistical interaction analysis (results)

For effect-measure modification between two categorical factors, the results should 
include 1) effects per each stratum of both factors using a single reference category 
that should be a subgroup with the lowest risk, 2) effects of the primary factor in 
strata of the secondary factor, 3) effect per each multivariable adjusted models; 4) 
additive and multiplicative interaction measures with 95%CI; 5) the set of con-
founders for the primary factor–outcome relationship (template table 2). For causal 
interaction, the results should also include 6) effects of the secondary factor in 
strata of the primary factor; 7) the set of confounders for the secondary factor–out-
come relationship (template table 2). 

If one of the factors is continuous, a 2 x 2 table cannot be constructed and the 
results should be reported as in the template table 3. For easier interpretation, it 
is advisable to present the results using figures, which may also be helpful if more 
than two factors are tested. How these figures can be made in R is described else-
where.45 Alternatively, a continuous variable can be dichotomized and reported as 
in the template tables 1 and 2. 

CONCLUSION

This article outlines the challenges associated with assessment and reporting of 
statistical interactions in clinical studies, as well as the recommendations that, if 
adhered to, could increase the clarity and the completeness of future studies. In 
the present article, we have discussed the importance of the distinction between 
effect-measure modification and causal interaction, their qualitative and quanti-
tative forms, the importance of a measurement scale on which interactions are 
tested, additive and multiplicative interaction measures, the relevance of multiple 
testing as well as the origin of interaction analysis (i.e., whether is prespecified or 
post-hoc). In addition, we have summarized the information on publicly available 
SAS, STATA, and R codes, as well as the excel sheets, which can freely be used to 
calculate different interaction measures. Likewise, we have provided the templates 
to report obtained results. Altogether, we believe that this article will help in mak-
ing the results of statistical interaction more reliable, and facilitate clinical studies 
to use this type of analysis even more in the future.
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SUPPLEMENTARY INFORMATION

Example 1: Calculation of the absolute excess risk due to interaction (AERI) in 
the section entitled Additive interaction measures.

Weiner et al. studied the effects of chronic kidney disease (CKD) and cardiovas-
cular disease (CVD) on the 10-year risk of the composite endpoint including car-
diovascular and all-cause death.21 Using numbers provided in the Tables 1 and 2 of 
their article, we can calculate absolute cumulative 10-year risk per each subgroup 
as shown in the table below:

Absolute risks Cardiovascular disease (CVD)*

No Yes

Chronic kidney disease (CKD)*
No 15% (3053/20970) 38% (1344/3519)

Yes 34% (565/1664) 66% (501/759)

*In parenthesis is shown the number of patients with event divided by the total number of 
patients in the corresponding subgroup. 

To calculate AERI we will use an equation-1: AERI = RCVD+,CKD+ + RCVD–,CKD– – 
RCVD+, CKD– – RCVD–,CKD+ and calculate as 66% +15% - 38% - 34% = 9%. The AERI 
indicates a super-additive interaction between CKD and CVD because AERI > 0, 
but also shows an absolute excess risk of 9% due to the interaction itself.

Calculation of the ratio of RRs in the section entitled Multiplicative interaction 
measures.

In the same study by Weiner et al.21 we can further calculate relative risk ratio due to 
interaction as shown in the table below. In the following table, relative risks are calcu-
lated by dividing the absolute risks per each subgroup with the risk in the subgroup 
of patients without CVD or CKD, i.e, subgroup with the lowest absolute risk.  

Relative risks Cardiovascular disease (CVD)*

No Yes

Chronic kidney disease (CKD)*
No 1.0 (15%/15%) 2.5 (38%/15%)

Yes 2.3 (34%/15%) 4.4 (66%/15%)

*In parenthesis is shown relative risk which is calculated by dividing the absolute risk in the 
subgroup with the risk in the subgroup of patients without CVD or CKD, i.e, subgroup with 
the lowest absolute risk.  

To calculate ratio of risk ratios we will use equation-11: RRCVD+,CKD+ / (RRCVD+, 

CKD–  x RRCVD–,CKD+) and calculate as 4.4 / (2.5 x 2.3) = 0.8. This indicates a sub-
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multiplicative interaction between CKD and CVD because the ratio of RRs < 1, but 
also shows relative risk ratio due to interaction of -20%.

Example 2. Calculation of the relative excess risk due to interaction (RERI) in 
the section entitled Relative Excess Risk due to Interaction (RERI).
Jorgensen et al. studied the effect of the long-term β-blockers use on the the 30-day 
risk of major adverse cardiovascular events (MACE) in patients with uncomplicated 
hypertension undergoing non-cardiac surgery.27 Authors found a multiplicative in-
teraction between the long-term use of β-blockers and diabetes on the 30-day risk 
of MACE. Using numbers provided in Figure 3 of their article, we can calculate both 
AERI and RERI of the aforementioned interaction as shown in the table below:

Absolute risks Diabetes (DM)*

No Yes

β-blockers use*
No 0.85% (294/34691) 0.80% (48/5985)

Yes 1.25% (164/13096) 1.87% (29/1548)

*In parenthesis is shown the number of patients with event divided by the total number of 
patients in the corresponding subgroup. 

To calculate AERI we will use an equation-1: AERI = Rβ-blockers+,DM+ + Rβ-blockers–,DM– 

– Rβ-blockers+, DM– – Rβ-blockers–,DM+ and calculate as 1.87% + 0.85% - 1.25% - 0.80% = 
0.67%. The AERI indicates a super-additive interaction between the long-term use 
of β-blockers and diabetes with an absolute excess risk of 0.67% due to the interac-
tion itself.

To calculate RERI we will use an equation-3: RERIRR = RRβ-blockers+,DM+ – RRβ-

blockers+, DM– – RRβ-blockers–,DM+ + 1. Furthermore, to obtain the relative risks we will di-
vide the absolute risks per each subgroup by 0.85% which is the risk in patients 
who did not take β-blockers and did not have diabetes. Thus, the calculation is as 
follows RERIRR = 1.87% / 0.85% - 1.25% / 0.85% - 0.80% / 0.85% +1 = 0.79 indicat-
ing a super-additive interaction because RERIRR > 0. Note that, although both AERI 
and RERI shows additivity of interaction, they are not the same (0.67≠0.79). This is 
because AERI operates with on a risk-difference scale and relative risk-difference 
scale. 

Calculation of Attributable proportion due to interaction (AP) and modified 
AP* in the section entitled Attributable proportion due to interaction (AP).
In the same study by Jorgensen et al.27 we can extend our investigation by calculat-
ing the attributable proportions of the outcome and of the joint effect that are due 
to the interaction itself. For former calculation, we will use an equation-5: AP = 
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RERIRR / RRβ-blockers+,DM+ and calculate as 0.79 / (1.87% / 0.85%) = 0.36 indicating that 
36% of the 30-day risk of MACE is due to the interaction itself. For latter calcula-
tion, we will use an equation-7: AP* = RERIRR / (RRβ-blockers+,DM+ - 1) and calculate as 
0.79 / (1.87% / 0.85% -1) = 0.66 indicating that 66% of the joint effect of β-blockers 
and diabetes is due to interaction itself. 

Example 3. Calculation synergy index (S-index) in the section entitled Synergy 
index.
Andrews et al. studied the effect of an early resuscitation protocol on the in-hos-
pital mortality in septic patients with hypotension.36 Authors found a multiplica-
tive interaction between the intervention and patients baseline Glasgov coma scale 
score (GCS). In their article, GSC score was tested as ordinal variable with three 
categories ≥13, 12-9, and 8-3. Considering that effect in the latter two categories 
were similar we dichotomized GSC score into ≥13 and 12-3. Using numbers pro-
vided in Figure 3 of their article, we can calculate S-index as shown in the table 
below:

Absolute risks GSC score*

≥ 13 3-12

Treatment*
usual care 22% (17 / 78) 68% (15 / 22)a

early resuscitation protocol 42% (36 / 86) 78% (14 / 18)b

*In parenthesis is shown the number of patients who died divided by the total number of 
patients in the corresponding subgroup. 
a These numbers are obtained after combining categories GSC score 3-8 and 12-9 into one 
category, GSC score 3-12. Thus, the number of patients treated with usual care who died is 
10 + 5 = 15, and the total number of patients treated with usual care is 17 + 5 = 22. 
b These numbers are obtained after combining categories GSC score 3-8 and 12-9 into one 
category, GSC score 3-12. Thus, the number of patients treated with the early resuscitation 
protocol who died is 4 + 10 = 14, and the total number of patients treated with the early 
resuscitation protocol is 7 + 11 = 18. 

To calculate S-index we will use an equation-9: S = (RRprotocol, GSC 3-12 –1) / [(RRpro-

tocol, GSC ≥13 – 1) + (RRusual care, GSC 3-12 –1)]. Furthermore, to obtain the relative risks we 
will divide the absolute risks per each subgroup by 22% which is the risk in patients 
who received usual care and had GSC score ≥13. Thus, the calculation is as follows 
S = (78% / 22%) / (42%/22% – 1 + 68% / 22% – 1) = 0.85 indicating a sub-additive 
interaction because S-index < 1. 
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TE M PL ATE TAB LE 1 Reporting the effect-measure modification analysis from 
multiplicative (logistic, Cox regression) models for two categorical factors.

1st  factor = 0 1st  factor = 1

2nd  factor = 0 2nd  factor = 1 2nd  factor = 0 2nd  factor = 1

Models  
adjustment no. / npts. no. / npts. no. / npts. no. / npts.

Model 1 1 (reference) RR(95%CI) p-value RR(95%CI) p-value RR(95%CI) p-value

Model 2 1 (reference) RR(95%CI) p-value RR(95%CI) p-value RR(95%CI) p-value

Model 3 1 (reference) RR(95%CI) p-value RR(95%CI) p-value RR(95%CI) p-value

1st  factor = 1

2nd  factor = 0 2nd  factor = 1

Models  
adjustment no. / npts no. / npts

Model 1 RR(95%CI) p-value RR(95%CI) p-value 

Model 2 RR(95%CI) p-value RR(95%CI) p-value 

Model 3 RR(95%CI) p-value RR(95%CI) p-value 

Effect modification: 1st factor x 2nd factor

Models  
adjustment Additive measures Multiplicative measures 

Model 1 RERI (95%CI) p-value RR1,1 / (RR1,0  x RR0,1) (95%CI) p-value

Model 2 RERI (95%CI) p-value RR1,1 / (RR1,0  x RR0,1) (95%CI) p-value

Model 3 RERI (95%CI) p-value RR1,1 / (RR1,0  x RR0,1) (95%CI) p-value

RR, risk ratio; 1st  factor, the primary factor (i.e., exposure or intervention); 2nd factor, the 
secondary factor  (i.e., exposure or intervention); RERI, relative excess risk due to interaction; 
95%CI, 95% confidence interval; no. / npts., number of outcomes / number of patients.
List of confounders for model 1, 2, and 3 should be noted in the footnote of the table. The RR 
can be replaced with odds ratio (OR) (logistic regression) or hazard ratio (HR) (Cox regression) 
depending on the model applied. Instead of RERI, other measures of additive effect modification 
can be used, such as attributable proportion  (AP or modified AP*), Synergy (S)-index, or their 
combination. The template provides example for three multivariable adjusted models, but if 
there are more than three models, additional rows can be added. The template provides example 
for 2x2 factors; if a factor has more than two subgroups additional columns can be added.
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TEMPL ATE TABLE 2 Reporting the causal interaction analysis from 
multiplicative (logistic, Cox regression) models for two categorical factors. 

1st factor = 0 1st  factor = 1

2nd  factor = 0 2nd factor = 1 2nd  factor = 0 2nd  factor = 1
Models  
adjustment no. / npts. no. / npts. no. / npts. no. / npts.

Model 1 1 (reference) RR(95%CI) p-value RR(95%CI) p-value RR(95%CI) p-value

Model 2 1 (reference) RR(95%CI) p-value RR(95%CI) p-value RR(95%CI) p-value

Model 3 1 (reference) RR(95%CI) p-value RR(95%CI) p-value RR(95%CI) p-value

1st  factor = 1

2nd  factor = 0 2nd  factor = 1

Models 
adjustment no. / npts. no. / npts.

Model 1 RR(95%CI) p-value RR(95%CI) p-value 

Model 2 RR(95%CI) p-value RR(95%CI) p-value 

Model 3 RR(95%CI) p-value RR(95%CI) p-value 

2nd  factor = 1

1st  factor = 0 1st  factor = 1
Models  
adjustment no. / npts. no. / npts.

Model 1 RR(95%CI) p-value RR(95%CI) p-value 

Model 2 RR(95%CI) p-value RR(95%CI) p-value 

Model 3 RR(95%CI) p-value RR(95%CI) p-value 

Interaction: 1st factor x 2nd factor

Models  
adjustment Additive measures Multiplicative measures 

Model 1 RERI (95%CI) p-value RR1,1 / (RR1,0  x RR0,1) (95%CI) p-value

Model 2 RERI (95%CI) p-value RR1,1 / (RR1,0  x RR0,1) (95%CI) p-value

Model 2 RERI (95%CI) p-value RR1,1 / (RR1,0  x RR0,1) (95%CI) p-value

RR, risk ratio; 1st  factor, the primary factor (i.e., exposure or intervention); 2nd factor, the 
secondary factor (i.e., exposure or intervention); RERI, relative excess risk due to interaction; 
95%CI, 95% confidence interval; no. / npts., number of outcomes / number of patients.
List of confounders for model 1, 2, and 3 should be noted in the footnote of the table. The RR 
can be replaced with odds ratio (OR) (logistic regression) or hazard ratio (HR) (Cox regression) 
depending on the model applied. Instead of RERI, other measures of additive effect modification 
can be used, such as attributable proportion  (AP or modified AP*), Synergy (S)-index, or their 
combination. The template provides example for three multivariable adjusted models, but if 
there are more than three models, additional rows can be added. The template provides example 
for 2x2 factors; if a factor has more than two subgroups additional columns can be added.
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TEMPLATE TABLE 3 Reporting the statistical interaction analysis from 
multiplicative (logistic, Cox regression) models if one or both factors are continuous.

Models 
adjustment 1st factor 2nd factor 1st factor x 2nd factor

Model 1 OR(95%CI) p-value OR(95%CI) p-value OR(95%CI) p-value

Model 2 OR(95%CI) p-value OR(95%CI) p-value OR(95%CI) p-value

Model 3 OR(95%CI) p-value OR(95%CI) p-value OR(95%CI) p-value

Models 
adjustment Statistical interaction: 1st factor x 2nd factor

Model 1 RERI (95%CI) p-value

Model 2 RERI (95%CI) p-value

Model 3 RERI (95%CI) p-value

OR, odds ratio; 1st factor, the primary factor (i.e., exposure or intervention); 2nd  factor, the 
secondary factor (i.e., exposure or intervention); RERI, relative excess risk due to interaction; 
95%CI, 95% confidence interval; no. / npts., number of outcomes / number of patients.
List of confounders for model 1, 2, and 3 should be noted in the footnote of the table. The OR can 
be replaced with hazard ratio (HR) (Cox regression) depending on the model applied. Instead of 
RERI, other measures of additive effect modification can be used, such as attributable proportion  
(AP or modified AP*), Synergy (S)-index, or their combination. The template provides example for 
three multivariable adjusted models, but if there are more than three models, additional rows 
can be added. 
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