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Chapter 1

Introduction

Many questions in economics and finance cannot be answered without analyzing

time series variables. For example, time series analysis can be used to estimate the

relationship between variables over time, and use that information to predict future

values. Further, one needs to be careful that relationships might vary over time. It

provides invaluable input for decision making by policy makers and investors. This

thesis presents three essays in applied time series analysis, using a variety of methods

to address several important issues in economics and finance.

Even though the chapters are seemingly unrelated, they are linked in the sense

that they are examples of applications of time series analysis in finance and economics,

that display relevance in practice. Chapter 2 shows the relationship between losses on

bank loans and macroeconomic variables, which is of interest to banks and financial

regulators. Chapter 3 shows that long-term investors can incur large losses if they do

not take parameter instability in the relationship between stock returns and underlying

state variables into account. This is relevant to pension funds for example. Chapter 4

examines the usefulness of economic uncertainty in predicting economic activity. This

is important for policy makers who use forecasts on economic indicators as input for

policy decisions.

Further, in each chapter, the issue at hand is answered from an applied

econometrician’s point of view, where the model is specified to accommodate typical

features of the data. In chapter 2, we select a mixture model based on key

characteristics of the distribution of losses. Chapter 3 uses a flexible model to estimate
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the instability in the relationship between predictors and the stock returns, rather than

assuming the number of breaks in advance. Chapter 4 considers quantile prediction as

well as mean forecasting, because economic uncertainty is likely to affect the lower tail

of economic activity more heavily.

Though taking time to specify an appropriate econometric model may complicate

the estimation procedure, it may yield a new perspective and interesting insights.

These essays provide motivation that this is worth the effort in answering questions in

economics and finance, both to practitioners and academics.

Below is an outline of the individual chapters.

Cyclicality in losses on bank loans

Chapter 2 is on the relationship between losses on bank loans and economic output.

Banking regulations require banks that risk measures should “reflect economic

downturn conditions” (Basel Committee on Banking Supervision, 2005). This is based

on the assumption that losses on bank loans covary with the business cycle. However,

this assumption builds mostly on evidence from research on losses on bonds, as data

sets of bank loan losses are scarce and small. This raises the question whether this

assumption is valid, because bank loans and bonds differ in several important ways.

Bank loans are more senior and backed by collateral. Further, the bank is able to more

closely monitor losses, and influence the recovery process for example in the form of

an additional loan. Therefore, losses on bank loans are likely to be less cyclical.

Access to a unique data set from Global Credit Data, a consortium of banks that

pools their credit data, allows us to formally investigate the cyclicality of bank loan

losses in more detail. We combine the information from the default rate, the loss given

default – the fraction of the exposure at default that is lost – and macroeconomic

variables that represent the business cycle in a dynamic factor model that we estimate

using Bayesian methodology.

The distribution of the loss given default has several key features that should be

captured by an appropriate statistical model. First, it is bimodal with peaks near the

extreme cases of zero and one. Second, the relative height of the modes varies over

time – not their location. Third, while the loss given default for bonds are defined on

the [0, 1] interval, for a substantial portion of defaults – about 12 percent – the loss
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given default is outside this interval. This may be due to principal advances, which is

an extra amount lent to the borrower to increase the likelihood of recovery. Combining

these observations motivates us to propose a mixture of two normal distributions to

model the loss given default. The mixture components have an intuitive interpretation

of mild and severe losses. Further, the probability of a severe loss is allowed to vary

over time and depends on a latent factor.

We find that a model specification with two factors describes the data best.

One factor can be interpreted as a macro factor, and a second as a default-specific

factor which captures credit movements unrelated to the business cycle. The results

confirm that there is a negative relationship with the business cycle. That is, when

macroeconomic conditions are bad, not only the number of defaults, but also the

average loss increases. This leads to an increase in capital reserves required for loan

portfolios: simulations from a hypothetical loan portfolio show that economic capital –

the amount a bank needs to hold to remain solvent – increases by a factor two during

recessions.

Long-term investing under uncertain parameter instability

Chapter 3 looks into the effects of parameter instability in the context of stock return

predictability. Predicting the return on the stock market (in excess of a risk-free rate)

is an endeavor that is probably as old as the stock market itself. As summarized

by Rapach and Zhou (2013), a wealth of factors has been proposed that seem to

hold predictive power. However, Welch and Goyal (2008) show that the in-sample

predictability of a set of popular predictors does not translate to out-of-sample gains.

A possible explanation is that the relationship between the predictors and stock returns

is unstable, i.e. it is subject to structural breaks. There are a number of ways to model

this instability, from assuming few breaks (Pettenuzzo and Timmermann, 2011; Henkel

et al., 2011) to many breaks (Dangl and Halling, 2012; Johannes et al., 2014), but there

is no consensus on which is most appropriate.

Therefore, we suggest a mixture innovation model, where we can estimate the

instability, rather than assume it ex ante. Additionally, because we use Bayesian

estimation methods, it provides insight into the uncertainty regarding this instability.

The estimation results show that indeed there is substantial time-variation. It is more
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than suggested in the few breaks case, but also less than a break each time period. At

the same time, there is quite some uncertainty regarding the break probability.

In the spirit of how Barberis (2000) investigates the impact of parameter

uncertainty, we study the impact of (uncertainty regarding) parameter instability on

the allocation of a long-term investor. We compare the performance under varying

degrees of instability misspecification. The results show that while it is very costly

to incorrectly assume that there is no parameter instability if there is so in reality,

it does not seem to matter much what instability is assumed. Given the substantial

time-variation that we find, this highlights the importance for the long-term investor

to take parameter instability into account.

Does economic uncertainty help predict economic activity?

Chapter 4 examines the predictive power of economic uncertainty for real

macroeconomic variables such as output and employment. Real options theory

(Bernanke, 1983; Dixit and Pindyck, 1994) describes how economic uncertainty

induces business cycle behavior. When uncertainty rises, firms delay investments and

consumers postpone large investments, leading to lower economic activity. Bloom

(2009) sparked the interest in testing this effect empirically by proposing measures

of economic uncertainty. Since then, the literature has boomed and a large number

of alternative measures have been proposed. All proposed measures aim to capture

economic uncertainty, a latent – unobserved – entity that does not have an exact

definition.

We gather a set of 15 measures and specify five categories in which each of

them can be classified, based on how they estimate uncertainty. It can be based

on (i) volatility, (ii) cross-sectional dispersion, (iii) news, (iv) surveys, and/or (v)

forecast errors. Principal component analysis shows that the 15 measures have a fairly

strong facture structure, with two common components that explain about 60% of the

total variation in the uncertainty measures. The first is a general/average economic

uncertainty measure, that loads fairly equally on most measures, with a slight emphasis

on financial uncertainty. The second factor is a media/consumer confidence measure.

It remains elevated after recessions.
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Most of the empirical literature on economic uncertainty measures has focused on

in-sample results. A perhaps more relevant question to policy makers is whether they

can use these measures to obtain better forecasts, which may serve as input for policy

decisions. Therefore, we conduct a real-time out-of-sample analysis, where we only use

the data that was available to the forecaster at each point in time, taking into account

data revisions of macroeconomic variables. The aim is to forecast the mean and various

quantiles of four coincident variables: industrial production, employment, sales, and

personal income. The coincident variables are used by the NBER dating committee to

date peaks and troughs of the business cycle, thus linking our study to the real options

theory.

We find that the uncertainty measures hold limited forecasting power for the mean

compared to a benchmark model. The quantile forecasting results are somewhat better,

in particular for employment, and at lower quantiles. These findings suggest a nonlinear

relationship between economic uncertainty and economic activity.





Chapter 2

Cyclicality in losses on bank loans

Based on Keijsers, B., Diris, B., and Kole, E. (2018). Cyclicality in losses on bank

loans. Journal of Applied Econometrics, 33(4):533–552

2.1 Introduction

Recent advances in the risk management of bank loans, such as stress tests for the

banking sector, highlight the importance of investigating their risk in relation to

the macroeconomic environment. As stated in the Basel II Accord, risk measures

should “reflect economic downturn conditions where necessary to capture the relevant

risks” (BCBS, 2005). Though loan defaults occur more frequently during economic

downturns, it is neither clear whether the resulting losses also show cyclical behavior,

nor whether they are related to the business cycle.

In this paper, we analyze the cyclical variation in bank loan losses, their relation to

the business cycle and differences across loan categories, and show that this information

can improve the risk management of banks. We base our analysis on a large sample

of 22,080 defaults from Global Credit Data1, spanning the period 2003–2010. Their

databases contain loans and defaults, and information on the recovery, the seniority of

the loans, and the industry, country and size of the borrowers. To exploit this detailed

information, we build a model that can accommodate both time and cross-sectional

1In March 2015, the consortium changed its name to Global Credit Data from Pan European Credit
Data Consortium.
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variation in the default rate and the loss given default (LGD), and link them to

macroeconomic variables. We show how the model can be used for risk management.

Our research brings new insights for two reasons. First, the cyclicality of bank loan

losses might be different from the more commonly studied bond losses, whose LGD

and default rates are cyclical, related to the business cycle and positively correlated

with each other.2 Bank loans differ in several fundamental respects from bonds. Banks

monitor their loans more closely than bond owners. Their loans are often more senior

and backed by collateral. Further, they can postpone the sale of collateral until a

favorable economic state, hoping to receive a higher price.3 As a consequence, the

default rate and LGD for bank loans can be lower, less cyclical and less interrelated.

Besides, our research is based on the actual workout LGD, whereas research on bond

losses mostly uses the expected or market-implied LGD shortly after default.

Second, research on bank loans default is scarce because data are not easily available

and typically constitute samples that are either short or focus on a single country or

loan type, see, for example, Grunert and Weber (2009), Calabrese and Zenga (2010)

and Hartmann-Wendels et al. (2014). We instead study a unique and rich data set

that contains defaults for various countries and loan types over a period of eight years.

Our model can reveal the influence of characteristics on time variation, in the form of

different sensitivities to the same cycle or of adaption to different cycles, for example

based on industry (see Shleifer and Vishny, 1992).

An important empirical difference between loan and bond LGD is their domain.

Our data shows that bank loan LGD can exceed 100% or fall below 0%, whereas bond

LGD always lies within this interval. If the LGD exceeds 100%, the bank loses more

than the initial loan, for example because of principal advances (the bank lends an

additional amount to the borrower for recovery). If the LGD falls below 0%, the bank

recovers more than the initial loan, for example because of penalty fees, additional

interest and recovered principal advances. Moreover, the LGD distribution is bimodal,

with most loans being close to either a full recovery or a full loss. Schuermann (2004)

2See the surveys by Allen and Saunders (2003) and Schuermann (2004). Pesaran et al. (2006b),
Duffie et al. (2007) and Azizpour et al. (2015) model the relation between the default rate and macro
variables, whereas Frye (2000) and Creal et al. (2014) also include the LGD in their models.

3Acharya et al. (2007) shows the importance of the fire-sales effect for the LGD of bonds.
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shows this bimodality for bond LGD. Because of the differences in domain, we cannot

use existing models for bond LGD in our analysis.

Our model links macroeconomic variables, the default rate, and the LGD via latent

factors that follow autoregressive processes. While this set-up has been used before

(see e.g. Pesaran et al., 2006b; Koopman et al., 2012), the LGD component in our

model is new. We model the LGD as a mixture of two normal distributions that differ

in their means to capture the bimodality and LGD outside the [0, 1] interval. So, losses

can be mild or severe with a certain probability that depends on the factors.4 The

parameters that relate the LGD and the default rate to the latent factors can depend

on loan characteristics.

We estimate our hierarchical model using a Bayesian Gibbs sampler. The main

advantage of the Gibbs sampler is that it allows us to divide the complicated overall

estimation problem into smaller subproblems (the different Gibbs steps) which are

easier to deal with. The main complication in the estimation is that the probability

of default and of severe losses depend in a nonlinear way on parameters and factors.

We solve this issue using a new data augmentation technique proposed in Polson et al.

(2013) which leads to easier to analyze Gaussian likelihoods conditional on the new

Pólya-gamma latent variables.

Our results show the presence of a macro factor that captures the business cycle,

and a default-specific factor that captures variation in the credit cycle unrelated to

the business cycle.5 The LGD distribution varies over time via the probability of a

loss being severe or mild. We do not find evidence that the average LGD for either

severe or mild losses varies over time. In line with earlier research (see e.g., Frye,

2000; Schuermann, 2004), default rates and LGD of bank loans go up during economic

downturns. However, the default-specific factor has an opposite effect, indicating that

increases in the default rate unrelated to the business cycle are typically caused by

borrowers that miss a payment but catch up later, and hence the LGD is low or zero.

Loan and borrower characteristics influence the cyclical variation in the default rate

and LGD. The LGD of a collateralized loan is on average lower, but fluctuates more

strongly over the business cycle as in Bruche and González-Aguado (2010). Loans

4Knaup and Wagner (2012) also distinguish severe and mild losses to derive a bank’s credit risk
indicator.

5Koopman et al. (2012) refer to this default-specific factor as frailty factor.
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to small and medium enterprises exhibit stronger fluctuations in both their default

rates and LGDs compared to large corporates. While we find differences in the factor

sensitivities of default rates and LGDs for different industries, we do not find evidence

for industry-specific cycles.

We use our model to investigate the loss distribution of a fictional loan portfolio

as in Miu and Ozdemir (2006) in a point-in-time setting. We calculate the expected

loss and the economic capital (the difference the 99.9% quantile and the mean of the

loss distribution). Both statistics show considerable variation over the business cycle.

From peak to bottom of the cycle, the economic capital increases by a factor two. It is

quite sensitive to the cyclical variation in the LGD. 22% of its increase over the cycle

can be attributed to time-variation in the LGD. This result illustrates the importance

of accounting for time-variation in the LGD that is related to the business cycle in risk

management.

Our findings contribute to the literature on credit risk in two ways. First, we show

that just as for bonds, the LGD of bank loans varies over the business cycle. The LGD

for bank loans is generally much lower than for bonds, but can still double in times

of distress. Whereas the average bond LGD varies from 25% to 80% as reported by

Schuermann (2004), Altman et al. (2005), and Bruche and González-Aguado (2010),

we find that loan LGD varies from 14% to 29% over time, though the periods that they

study do not fully match with ours.6 We also show how the cyclical behavior of the

LGD is affected by characteristics. These results complements papers that only report

how industry characteristics influence the (average) LGD (Schuermann, 2004; Acharya

et al., 2007) or how the impact of seniority varies over the business cycle (Bruche and

González-Aguado, 2010).

Second, our model exploits the panel structure of the LGD observations in a novel

way. Though the time-varying mixture distribution for the LGD adds a layer of

complexity to our model, it shows in detail how the LGD distribution changes. These

insights would be lost if we would model the time-variation of the cross-sectionally

averaged LGD or analyse the LGD distribution at each point in time. Our methods

can be seen as an extension of Koopman and Lucas (2008), who only model the default

6Schuermann (2004) also reports variation in LGD between 20% and 55% for traded bank loans,
whereas our loans are not traded.
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rate, and Koopman et al. (2012), who add macro variables, by modeling the LGD as

well. We also extend Calabrese (2014a), who only models the LGD, by linking the LGD

to the default rate and macro variables. We deviate from Creal et al. (2014) and Bruche

and González-Aguado (2010), who use the Beta distribution for the LGD, because the

mixture of normals in our model can more easily accommodate observations outside

[0, 1]. The default-specific factor also extends single Markov-switching business cycle

of Bruche and González-Aguado (2010). Moreover, our model can flexibly include

covariates and can easily be adopted in analyses of the risk of loan portfolios.

2.2 Data

We combine observations of macroeconomic variables, defaults of bank loans and their

losses. Because we want to focus on the part for bank loans in our model, we make

standard choices for the variables that represent the business cycle. In particular, we

consider three macro variables that are also analyzed by Creal et al. (2014): the gross

domestic product (GDP), industrial production (IP) and the unemployment rate (UR).

The variables included are the growth rates with respect to the same quarter in the

previous year. To match the mostly European loan data sets, we use macro variables

of European countries. We provide an overview of the macro series in Appendix 2.A.

Besides the macroeconomic component, our model contains components for the

default rate and the LGD. We calculate the default rate as the number of defaulted

loans divided by the number of loans at the start of a year. The LGD is the amount lost

as a fraction of the exposure at default (EAD). We have observations of the workout

LGD (also known as economic LGD), which is based on the actual cash flows after

default. They are timed to coincide with the default date. By analyzing workout

LGD, we further complement studies of the LGD of bonds, which mostly use the

market prices of bonds soon after default (see e.g. Schuermann, 2004). Our sources for

default and LGD observations are unique databases from Global Credit Data, to which

we have access via NIBC, a Dutch bank. We first discuss the databases, and then turn

to the data sets that we analyze.
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2.2.1 Global Credit Data

Global Credit Data (GCD) is an international cooperation of banks to support

statistical research for the advanced internal ratings-based approach (IRB) under the

Basel accords.7 The members pool information on loans and defaults to create two

anonymous databases, the LGD database with information about the losses on resolved

defaults, and the loan database with information to analyze the default rate. GCD has

been founded in 2004 by 11 banks, and has grown to 53 members (April 2017). It

focused originally on LGD, but later expanded its focus to the default rate.

Data quality is a crucial issue for GCD. It sets specific and detailed rules with

regard to the default information that its members should submit. Default definitions

are based on the Basel accords, and GCD uses its own standards to characterize further

aspects, such as the size, industry and region of the borrower. Before default data is

included in the databases, GCD conducts regular audits to check whether the data that

a member submitted complies with its standards. A methodology committee regularly

reviews these rules. To stimulate participation, data is available to members on the

give-to-get principle. To obtain default data from a given year and loan category,

members have to submit their own default data for that given year and category.

The LGD database contains the cash flows of all defaulted loans of the member

banks. Because defaults are only included after the recovery process has ended, theses

cash flows are final and realized. It also contains the default and resolution dates,

the seniority of the loan, the presence of collateral, the size or type of the borrower

as well as the industry and country to which the borrower belongs. GCD aims at

a representative database with defaults dating from 1998, but some defaults go back

as far as 1983. Members are obliged to submit defaults dating from 2001 onwards.

Table 2.B.1 in Section 2.B shows that a stable number of 40–45 banks contribute to

the LGD database after 2001.

The loan database contains information about borrowers and defaults, in particular

their size or type, industry and country. Information about the seniority and the

presence of collateral is not available in this database, as these characteristics are not

seen as default drivers. GCD started with the construction of this database in 2009.

7See https://www.globalcreditdata.org/ for general information and https://www.

globalcreditdata.org/index.php?page=members for an up-to-date overview of the members.
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It aims at a representative database from 2000 onwards. Table 2.B.1 shows that the

number of banks contributing to this database is considerably less than to the LGD

database. Because the number of defaults per bank is generally small, the need for

pooling is larger for LGD than for loan data.

GCD provides a new version of the LGD database semi-annually, and of the loan

database annually. Via NIBC we have access to the June-2014 version of the LGD

database and the June-2013 version of the default database. While the parts of the

databases that are available to NIBC vary per characteristic, they represent a large

proportion of the total databases.

2.2.2 Sample selection

NIBC’s LGD data set contains 92,797 loans with 46,628 counterparties. We exclude

non-representative observations based on Höcht and Zagst (2007) and NIBC’s internal

policy (see Appendix 2.B.2 for details). Following NIBC’s practice, we discount all cash

flows by the two-year swap rate plus the spread from the loan. When the contractual

spread is unavailable, we use the average spread of all defaulted loans. We transform

the resulting workout LGD to a percentage of the EAD. We order the LGDs by quarter

in line with the frequency of the macro variables.

The loan data set consists of in total 2.80 million loans of which 37,385 go into

default, leading to an average default rate of 1.34%. The number of loans and defaults

is specified per year. Because the number of contributing banks to this database is

lower, the number of defaults is lower than in the LGD data set. Though we filter

outliers from the LGD data set based on the size of the loan (measured by EAD), we

cannot do so for the loan data set because the base value of the loan is not recorded.

Because the loan database starts in 2003, and the most recent LGD observations

may be biased, we restrict our analysis to the period 2003–2010. The LGD is positively

correlated with the workout period, i.e. the period needed to resolve the default. The

most recent observations are few, have a short workout period by construction, and

their LGDs are therefore typically small. After filtering the raw LGD data set, our

sample contains 22,080 LGD observations of mostly European defaults, one of the

most comprehensive datasets for bank loan LGD studied thus far. The largest data set
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that is reported by Grunert and Weber (2009) in their summary of empirical studies

on bank loan recovery rates contains 5,782 observations over the period 1992–1995.

More recently, Calabrese and Zenga (2010) and Calabrese (2014a,b) study a portfolio

of 149,378 Italian bank loan defaults resolved in 1999. Hartmann-Wendels et al. (2014)

consider 14,322 defaulted German lease contracts from 2001–2009. Though large, these

studies focus on defaults from a single country or a single loan type whereas our dataset

is more extensive.

2.2.3 Sample characteristics

The average LGD and the default rate both exhibit cyclical behavior (see Figure 2.B.1

in Section 2.B). Both increase during the financial crisis, though the peak of the LGD

(of 28.4%) falls in 2008, whereas the peak of the default rate (of 2.2%) falls in 2009.

By 2010, the average LGD is back at its pre-crisis level, but the default rate remains

higher.

For our LGD sample we also investigate the cross-sectional distribution. When we

pool all observations, the distribution shows bimodality, as is typical for LGD data

(see e.g. Schuermann, 2004). Figure 2.1a shows that the LGD is either close to zero,

or close to one when the complete value of the loan is lost. A substantial part (12.5%)

of the LGD observations falls outside the [0, 1] interval. These exceedances are related

to principal advances, legal costs or penalty fees. A principal advance is an additional

amount lent to aid the recovery of the defaulted borrower. If none of it is paid back,

the losses exceed the EAD and the LGD exceeds one. If on the other hand the full

debt is recovered, including penalty fees, legal costs and principal advances, the amount

received during recovery exceeds the EAD and the LGD is negative. In line with Höcht

and Zagst (2007) and Hartmann-Wendels et al. (2014), LGD observations below -0.5

or above 1.5 have been removed.

The bimodality in the distribution of the LGD is present in every quarter as shown

by Figure 2.1b. In 2008, the financial crisis leads to higher peaks at zero and at one,

indicating more defaults with either no loss or a full loss. In 2009, the peak around

one is still present, but the peak at zero is substantially lower. The large proportion
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Figure 2.1: Empirical distribution of LGD

(a) Histogram of pooled LGD observations
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(b) Distribution of LGD observations per quarter

Panel a shows the histogram of the pooled set of LGD observations. Panel b shows the empirical
distribution of the LGD observations per quarter. We use all LGD observations over the period
2003–2010 after applying the filters in Section 2.B.2.

of full losses explains the large average LGD in those years. Our modeling framework

exploits both the bimodality and the time variation of the LGD.

We report the effect of loan and borrower characteristics on the LGD statistics

in Table 2.1. The dip statistic of Hartigan and Hartigan (1985) indicates that all

large subsamples are bimodal. Because some subsamples contain a small number of

defaults, we limit our analysis to those subsets with at least 3,200 observations, which

corresponds with 100 observations per quarter.

Panel A shows that, as can be expected, loans of lower seniority have on average a

higher LGD, and a increased probability of an LGD above 0.5. Most loans in our sample

are senior, and 44% have some form of collateral. The non-parametric Kruskal-Wallis

(KW) test rejects the hypothesis that the distributions of the subsets have the same

location.

In Panel B we split the sample based on the size or type of the borrower. GCD

distinguishes SMEs, large corporates and some more specific types of financing, for

example for real estate, aircraft, or shipping. While these specific types are interesting,

the number of observations is too small, and we concentrate on loans to SMEs and

large corporates. The differences between those two loan categories are small, but the

KW-test still indicates that they are significant.

Panel C categorizes the loans according to the industry of the borrower as indicated

by GCD. A large part of the loans (67%) is concentrated in three industries, being
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Table 2.1: LGD statistics per loan and borrower characteristics

Characteristic Defaults Average Fraction HDS
LGD > 0.5 p-value

Total 22,080 0.204 0.170 0.000

Panel A: Seniority

Senior secured∗ 9,723 0.175 0.138 0.000
Senior unsecured∗ 12,011 0.222 0.191 0.000
Subordinated secured 110 0.289 0.255 0.002
Subordinated 236 0.427 0.419 0.000

Panel B: Borrower size or type

SME∗ 12,028 0.193 0.164 0.000
Large Corporate∗ 6,496 0.199 0.159 0.000
Real Estate Finance 2,068 0.326 0.284 0.000
Aircraft Finance 556 0.088 0.045 0.000
Shipping Finance 331 0.077 0.054 0.100
Project Finance 302 0.177 0.132 0.002
Banks 276 0.286 0.286 0.000
Public Services 23 0.246 0.174 0.234

Panel C: Industries

Industrials∗ 6,944 0.178 0.150 0.000
Financials∗ 4,629 0.217 0.178 0.000
Consumer Staples∗ 3,232 0.186 0.162 0.000
Unknown 2,817 0.309 0.279 0.000
Information Technology 1,384 0.188 0.155 0.000
Consumer Discretionary 1,089 0.196 0.128 0.034
Other 606 0.147 0.102 0.000
Telecommunication Services 410 0.203 0.183 0.304
Utilities 391 0.145 0.079 0.280
Health Care 366 0.123 0.082 0.086
Materials 212 0.147 0.127 0.534

This table presents the number of defaults, the average LGD, the fraction of defaults with an LGD
larger than 0.5 and the p-value of Hartigan and Hartigan’s (1985) dip statistic (HDS) using 500
bootstraps, to test the null hypothesis of a unimodal distribution versus the alternative of a multimodal
distribution, for different subsets of the LGD data set. Subsets with more than 3,200 observations
(indicated by a ∗) are selected for analysis with our model in Section 2.4.2.

industrials, financials or consumer staples. Industrials have the lowest average LGD

and proportion of defaults with LGDs below 0.5, followed by consumer staples, and

then financials. The KW-test indicates again significant differences in the locations of

the distributions.

In Section 2.B we compare our LGD data set to the LGD information of bonds

in Moody’s Ultimate Recovery Database (URD). The recovery of bank loans being

different from bonds is an important motivation for our paper. Loans are typically more

senior, more often have collateral, and lead to more closely monitoring (see Emery et al.,

2004; Schuermann, 2004). We find that the LGDs on loans and bonds are bimodal,
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though bonds encounter more large LGDs. Our analysis will shed more light on the

behavior of the LGD of bank loans, and the role that for example seniority plays.

2.3 Methods

2.3.1 Model specification

We propose a mixed measurement model in the style of Koopman et al. (2012) (whose

notation we follow) and Creal et al. (2014), where the observations can follow different

distributions and depend on latent factors. Our model contains a total of N variables

at each point in time, though not all variables are always observed. We separate them

in three sets being macro, loan and LGD variables, labeled m, l and d. We use ycit to

denote the time t observation of variable i in category c, c =m, l, d. We use N c to

denote the size of a category. We collect all variables in the vector y = (ym′,yl′,yd′)′.

The set of K latent factors ft form the central part of our model, through which

all observed processes are linked. We distinguish Km macro factors fm
t that capture

the business cycle, and affect all observed variables. Next to these macro factors, we

introduce K l loan factors f l
t that influence both the default and the LGD variables. The

Kd LGD factors fd
t influence only the LGD variables. The factors f l

t and fd
t capture

the dynamics of the credit cycle that are unrelated to the business cycle. Because of

this general setup, we can investigate whether the LGD variables are related to the

business cycle, the credit cycle, their own separate LGD cycle, or no cycle at all.

Following Koopman et al. (2012), we assume that ft follows a VAR(1) process,

ft+1 = Φft + ηt, ηt ∼ N(0,Ω), (2.1)

where the coefficient matrix Φ is a diagonal matrix. The innovations are serially

uncorrelated. These restrictions ensure that the loan and LGD factors are independent

of the macro factors, in line with the literature on credit risk (see e.g. Duffie et al.,

2009; Koopman et al., 2012). We impose that ft is stationary, so |φkk| < 1. The

initial state vector f1 follows the unconditional distribution of the latent process, that

is f1 ∼ N(0,Σf ) with Σf solving Σf = ΦΣfΦ
′ + Ω. For identification, we impose

that the unconditional variance equals the identity matrix Σf = I.
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The first variable set contains the Nm macro variables, which depend linearly on

the latent macro factors,

ym
t = αm +Bmfm

t + νt, νt ∼ N(0,Σm), (2.2)

where αm is a vector of size Nm containing the intercepts, andBm is a Nm×Km matrix

with coefficients. The innovations in the macro variables follow a normal distribution

with mean zero and variance matrix Σm and are independent of the latent process.

We standardize the macro variables to have zero mean and unit variance to ease the

comparison of their relation with the latent factor (cf. Stock and Watson, 2002b). For

identification, we impose that Bm is lower triangular with a sign restriction on the

diagonal elements, and Km < Nm.

The second variable set contains the status of the loans, ylit. Loan i at time t can

either be performing (ylit = 0) or in default (ylit = 1). Conditional on ft, y
l
it follows a

Bernoulli distribution with default probability plit,

ylit|ft ∼ Bernoulli(plit) (2.3)

plit = Λ(αl
i + βl′

i f
m
t + γ l′

i f
l
t), (2.4)

where, Λ(z) = 1/(1 + exp(−z)) is the logistic function. The coefficients αl
i, β

l
i and

γ l
i can depend on J l loan-specific characteristics. Collecting them together with an

intercept in the vector xl
i, we obtain αl

i = αl′xl
i, β

l
i = Bl′xl

i and γ l
i = Γ l′xl

i, where αl

is a vector and Bl and Γ l are matrices. For identification, we impose that Γ l is lower

triangular with sign-restricted diagonal elements. The number of loan factors should

not exceed the number of characteristics, K l ≤ J l.

We assume that conditional on ft, the default status of the loans are mutually

independent. When no loan-specific characteristics are used, the default rate at time t

is the same for all loans, plit = plt = Λ(αl + βl′fm
t + γlf l

t), and the number of defaulted

loans follows a binomial distribution. When the characteristics are categorical and

separate the loans into groups, for example based on industry, country or borrower

type, the number of defaulted loans within a particular group also follows a binomial

distribution.
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Whereas the structure of our model thus far is similar to Koopman et al. (2012), we

propose a novel part for the final set of variables, which are the LGDs of a defaulted

loan, ydit. Based on the empirical distribution in Figure 2.1, we distinguish defaulted

loans with a severe loss (close to a full loss) from those with a mild loss (close to a full

recovery). We model the default type by a latent binary variable sit that takes a value

zero (one) to indicate a mild (severe) loss.8 Conditional on ft, sit follows a Bernoulli

distribution with parameter pdit. Conditional on sit, y
d
it follows a normal distribution.

Mathematically, this part of the model can be written as

ydit ∼

N(µi0, σ
2
i ) if sit = 0

N(µi1, σ
2
i ) if sit = 1

(2.5)

sit|ft ∼Bernoulli(pdit) (2.6)

pdit = Λ(αd
i + βd′

i f
m
t + γd′

i f
l
t + δd′i f

d
t ). (2.7)

We assume that conditional on ft, the LGDs are independent.

Conditional on ft, y
d
it follows a mixture of two normal distributions9 that differ in

their means,

µis = µ′sx
d
i , s = 0, 1 (2.8)

with µs a vector of size Jd + 1. These means can again be a function of the Jd default

characteristics that we collect together with an intercept in the vector xd
i of size Jd+1.

To prevent label switching, we impose µi0 < µi1 over the support of xd
i . We also allow

the variance to be a function of the loan characteristics,

lnσ2
i = λ′xd

i , (2.9)

with λ a vector of size J + 1. We do not allow the variances to depend on the default

type sit. Because of this restriction and µi0 < µi1, the probability Pr[sit = 0|ydit,ft]

is a decreasing function of ydit. So, the probability of a default being labeled mild

decreases for increasing LGD. Without this restriction, losses that become more and

8This model component of latent default types is similar to the latent distinction between good
and bad loans or investment projects that is used to include asymmetric information in models of
capital structure, see e.g. Flannery (1986).

9In section 2.4.4, we consider a mixture of Student’s t distributions.
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more extreme would be inferred with an increasing probability to be of the type with

the largest variance.

The (conditional) probability of a severe loss, pdit depends via a logit transformation

on the latent factors (cf. Equation (2.4)). The coefficients can depend on the

default-specific characteristics, that is αd′
i = αdxd

i , β
d
i = Bd′xd

i , γ
d
i = Γ d′xd

i and

δdi = ∆d′xd
i , where αd is a vector and Bd, Γ d and ∆d are matrices. For identification,

we impose that ∆d is lower triangular with positive diagonal elements. The number

of default factors should not exceed the number of characteristics, Kd ≤ Jd.

The latent factors influence the LGD via the probability pdit with which the default

is severe. We do not include an effect of the factors on the average LGD for a given

type µis, because the location of the modes of the distributions in Figure 2.1b stay

approximately constant. The variation in the relative heights of the peaks is driven via

the mixture probability pdit.

2.3.2 Estimation

We use uninformative priors that are specified in Section 2.C. We impose the

identification restrictions explained in the previous section using the priors.

We use a Gibbs sampler to estimate the model in a Bayesian way. This means that

we simulate from the conditional posterior distributions for each parameter to obtain

draws from the full posterior distribution of all parameters. The main advantage of

the Gibbs sampler is that it allows us to divide our complicated estimation problem

into smaller subproblems (the different Gibbs steps), which makes the estimation

feasible. The following explains how we estimate the model without loan and

default characteristics. The estimation of the model with these characteristics is a

straightforward extension as explained in Section 2.C.

The main complication in the simulation is that the probabilities of default and of

a severe loss depend in a nonlinear way on the parameters and the latent factors via

the logistic function. We tackle this complication by using new results in Polson et al.

(2013) and Windle et al. (2013), who show that one can easily sample the parameters

and latent factors from their conditional posterior distributions once one adds auxiliary

latent variables - denoted ωl
t and ωd

t here - to the model. The main idea is that we
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obtain an easier to analyze linear Gaussian (state space) model conditional on the

auxiliary latent variables. This new result makes our analysis feasible.

For ease of notation, we define Am as the matrix that collects the intercepts

and slopes in Equation (2.2), αl as the vector which collects all parameters in

Equation (2.4), and αd as the vector which collects all parameters in Equation (2.7).

The Gibbs sampler consists of the following steps:

• Macro module

Sample Am from the matricvariate normal distribution (re-draw until Am
2,1 =

Bm
1,1 < 0 for identification of the first factor) and Σm from an inverse Wishart

distribution.

• Loan status module

Sample latent variable ωl
t from a Pólya-gamma distribution and αl from a

multivariate normal distribution (re-draw until αl
3 = γl > 0 for identification

of the second factor).

• Loss given default module

Sample latent variable ωd
t from a Pólya-gamma distribution for all t and αd from

a multivariate normal distribution (re-draw until αd
4 = δd > 0 for identification

of the third factor). Sample sit from a Bernoulli distribution for all i, t, µ0 and

µ1 from normal distributions (re-draw until µ0 < µ1) and σ2 from an inverse

gamma-2 distribution.

• Factor module

Simulate the latent factors using the simulation smoother of Durbin and

Koopman (2002b). Sample φjj for factors j = 1, .., K using a Metropolis-Hastings

step that imposes that |φjj| < 1.

We refer to Section 2.C for the exact distributions and derivations. We retain

100,000 draws after a burn-in of 50,000 draws to obtain results. Increasing the number

of simulations does not impact results.
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2.3.3 Motivation of modeling choices

Our model is designed to get a detailed view of the variation in LGDs and default

rates, both over time and in relation to loan characteristics, and also of the interplay

between these two sources of variation. Though simpler analyses are available, they

cannot satisfactorily answer our research questions, because they do not fully exploit

the richness of our data set. We first highlight the appealing properties of our model,

and then indicate how it deviates from the other advanced alternatives that have

recently been proposed.

Arguably, our model has two layers of complexity. The first is the latent factor

structure that drives the time-series dynamics and dependence of our variables.

Alternatively, the probability of default and of a severe loss can be linked directly

to the macro variables. An additional default-specific (frailty) factor would then be

difficult to include. The literature on credit and default risk shows that a latent factor

structure can accurately capture this issue.10 We do not use a Markov-switching process

as in Bruche and González-Aguado (2010) or Calabrese (2014a), because autoregressive

processes more naturally link to the gradual changes in macro variables. Our model

is more advanced than the models proposed by Frye (2000); Gordy (2003); Pykhtin

(2003) as we can include more factors and explicitly model their behavior and effect

on the probability of default and LGD.

The second layer stems from the panel structure of our LGD observations, which

we model by a mixture distribution with time-varying weights. Easier solutions could

consist of data reduction by modeling the time-variation of the cross-sectional average

of the LGD, or a separate or two-step analysis of the LGD distribution at each

point in time. Because we fully model the LGD distribution, we can incorporate the

determinants of both the cross-sectional variation and the time-variation. We think

that in particular the effect of the loan and default characteristics add interesting

insights to our analysis. Besides, we circumvent a generated regressor problem as in

Pagan (1984).

Our model component for the LGD differs from existing models. We do not

use a standard Beta distribution for the LGD as in Creal et al. (2014) and Bruche

10See among others Frye (2000); Gordy (2003); Pykhtin (2003); Pesaran et al. (2006b); Koopman
and Lucas (2008); Koopman et al. (2012); Creal et al. (2014); Azizpour et al. (2015).
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and González-Aguado (2010) or a mixture of point masses at 0 and 1 and a Beta

distribution as in Calabrese (2014b). These distributions only have support on the

unit interval. Because over 10% of the LGD observations are outside the [0, 1] interval

(see Figure 2.1a), using these distributions would require a transformation of the data.

The results for the discrete-continuous distribution are difficult to interpret, since the

LGDs drawn from the Beta component can be arbitrarily close to 0 and 1.

2.4 Results

2.4.1 Models without loan and default characteristics

We start our analysis by investigating the general relation between the macro variables,

the defaults and the LGDs. In the basic specification we investigate whether the

defaults and LGDs exhibit cyclical behavior, and how many factors are needed to

capture it. We do not include loan nor default characteristics in this analysis. Based

on the evidence in Duffie et al. (2007); Koopman et al. (2012); Azizpour et al. (2015)

that favor at least one macro and one default-specific factor, we take the two-factor

model with a macro and a loan factor as our starting point. The macro factor can

affect all processes, and the loan factor can only influence the probabilities of default

and of a severe LGD. We then investigate the added value of an additional default

factor. We present our estimation results in Table 2.2.

Our results for the two-factor specification show a persistent macro factor, and

a loan factor with much quicker mean reversion. The macro variables show clear

exposures to the macro factor. A high value signals a recessionary state of the world,

with low growth rates for GDP and industrial production, and a high unemployment

rate. Because the macro variables have been normalized with unconditional variances

equal to one, an increase of the factor by one leads to changes equal to one standard

deviation times their loadings, so decreases of GDP and IP by 0.969 · 2.57% = 2.49%

and 0.802 ·6.41% = 5.14%, and a increase of the unemployment rate by 0.879 ·0.90% =

0.79%. The factor has a slightly stronger effect on GDP growth and the unemployment

rate than on the growth of industrial production.
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Unsurprisingly, the business cycle factor positively affects the probability of default.

On average its marginal effect is 0.11%, which is economically large, compared to the

average default probability of 0.31% per quarter. The sensitivity to the loan factor

is smaller than to the macro factor, and consequently the average marginal effect is

smaller (0.080%) as well, though still sizable.

Our main interest is the component for the LGD. Here we also see a clear effect of

the business cycle. The posterior distribution of βd has a mean of 0.328, but the spread

is wide. So, during a recession when the latent factor is positive, the probability of

defaulted loans with a severe loss increases. A mild LGD has a mean of 7.2%, whereas

severe losses are on average much larger at 82.9%. The two loss types are clearly

different, as indicated by the standard deviation of 13.1%. On average, the probability

of a severe loss is 17.4%, and the average LGD equals 20.4%. The marginal effect of

the macro factor on the severe loss probability is on average 4.5%, which translates to

an increase of the average LGD by 3.4%. Though this effect is less strong than for the

default rate, it is still quite substantial. The loan factor has a negative effect on the

LGD, as indicated by the negative posterior mean and small standard deviation for γd.

A positive shock to this factor leads to more defaults, but decreases the probability of

a severe loss. These effects indicate that these defaults are related to firms that miss a

loan payment (interest or repayment), but catch up afterwards.

To get a better understanding of the factors, we plot their evolution in Figure 2.2a.

The macro factor starts negative, which indicates the benign economic environment of

the first part of our sample period. After 2008, it shows a sharp increase, corresponding

with the credit crisis. The loan factor shows more erratic behavior, and is less persistent

than the macro factor. It is high around 2006 and low around 2008. So, given the

sensitivities the factor has an upward effect on the default probabilities but downward

on the LGDs around 2006. Around 2008, the effects are reversed, indicating fewer

defaults related to temporary delays in payments.

The plot of the fit over time of the macro variables, the realized default rate, and

the average LGD in Figure 2.3 shows which part of their variation is captured by

the factors. The macro factor reasonably tracks the macro variables, in particular

during the great recession. The model-implied and realized default rate series almost

coincide. While the macro factor captures the long-term swings in the default rate,



Table 2.2: Parameter estimates, model without loan and default characteristics

Macro and loan Macro, loan and Macro and loan
factor default factor factor, constant LGD

Panel A: Factor

φ11 0.856 (0.078) 0.917 (0.050) 0.939 (0.045)
φ22 0.322 (0.207) 0.271 (0.220) 0.290 (0.215)
φ33 0.778 (0.130)

Panel B: Macro variables

αGDP −0.008 (0.317) −0.198 (0.391) 0.580 (0.668)
βGDP −0.969 (0.531) −0.904 (0.562) −1.102 (0.824)
αIP −0.007 (0.284) −0.156 (0.338) 0.475 (0.572)
βIP −0.802 (0.465) −0.725 (0.483) −0.889 (0.714)
αUR 0.008 (0.298) 0.253 (0.467) −0.707 (0.801)
βUR 0.879 (0.491) 1.125 (0.673) 1.376 (0.971)
WAIC2 110.3 −2.4 −9.3

Panel C: Loan status

αl −5.850 (0.097) −5.759 (0.122) −6.057 (0.197)
βl 0.371 (0.201) 0.318 (0.200) 0.360 (0.271)
γl 0.258 (0.058) 0.298 (0.065) 0.292 (0.070)
av. pl (×10−2) 0.309 (0.002) 0.310 (0.002) 0.310 (0.002)

m.e. of fm 0.114 (0.062) 0.098 (0.092) 0.111 (0.084)
m.e. of f l 0.080 (0.018) 0.062 (0.020) 0.090 (0.022)

WAIC2 323.2 319.8 320.5

Panel D: Loss given default

µ0 0.072 (0.001) 0.072 (0.001) 0.072 (0.001)
µ1 0.829 (0.002) 0.829 (0.002) 0.829 (0.003)
σ 0.131 (0.001) 0.131 (0.001) 0.131 (0.001)
αd −1.643 (0.159) −1.697 (0.302) −1.560 (0.018)
βd 0.328 (0.202) 0.031 (0.211)
γd −0.293 (0.075) −0.153 (0.072)
δd 0.512 (0.339)
av. pd 0.174 (0.003) 0.174 (0.003) 0.174 (0.003)

m.e. of fm 0.045 (0.028) 0.004 (0.029)
m.e. of f l −0.040 (0.010) −0.021 (0.010)
m.e. of fd 0.070 (0.046)

av. LGD 0.204 (0.002) 0.204 (0.002) 0.204 (0.002)
m.e. of fm 0.034 (0.021) 0.003 (0.022)
m.e. of f l −0.030 (0.008) −0.016 (0.007)
m.e. of fd 0.053 (0.035)

WAIC2 −25,978.3 −25,969.3 −25,958.4

This table presents the posterior mean and standard deviation (in parentheses) of the parameters of
the model in Section 2.3.1. We report results for specifications with a macro and a loan factor, an
additional default factor. and macro and loan factor that do not influence the LGD component. The
specifications do not include loan or default characteristics. Panel A presents the elements of Φ of the
factor component. Panel B presents the macroeconomic component with the intercepts α and factor
sensitivities β for the gross domestic product (GDP), industrial production (IP) and unemployment
rate (UR). Panel C presents the loan status component. The probability of default has fixed effect
αl and factor sensitivities βl for the macro factor, and γl for the loan factor. Panel D presents the
LGD component. The LGD type can be either mild or severe. Conditional on the type, the LGD
follows a normal distribution with mean µ0 or µ1, and volatility σ. The probability of severe loss has
fixed effect αd and factor sensitivities βd for the macro factor, γd for the loan factor, and δd for the
default factor. We also report time-series averages of the probability of default pl, the probability of a
severe loss pd and the average LGD, the marginal effects that the factors have on these variables, and
the Widely Applicable Information Criterion, version 2 (WAIC2) for each component. The number of
observations, N , given by the sum of the macroeconomic, default rate, LGD observations is 22,208.
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Figure 2.2: Latent factors

(a) Two factors
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(b) Three factors
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The figures show the smoothed latent factors for the model defined in Section 2.3.1. We report results
for specifications with a macro and a loan factor (a), and an additional default factor (b). The
specifications do not include loan or default characteristics.

the loan factor captures the more short-lived fluctuations. The deviations between the

average model-implied and realized LGD are also relatively small, though larger than

for the default rate. The combination of the factors captures the low average LGD in

2006-2007, and the subsequent pronounced upswing.

The addition of a third factor that can only influence the LGD decouples it from

the other variables. The default factor is persistent, and strongly affects the LGD.

The posterior mean of δd is 0.512, much larger than the mean of βd of 0.031, which

captures the effect of the macro factor. Compared to the two-factor specification, the

influence of the macro factor decreases by a factor 10, and the effect of the loan factor

is halved. Figure 2.2b shows that the default factor seems to lead the macro factor. A

longer sample period may shed more light on this issue. Both the plot and the Widely

Applicable Information Criterion, version 2 (WAIC2, Watanabe, 2010), which corrects

for the number of parameters, indicate that the fit of the three-factor model is better

for the macro variables, in particular for the unemployment rate. For the default rate

changes are negligible. Though the fit for the average LGD in Figure 2.3e looks slightly

better for the three-factor structure, the WAIC2 actually deteriorates.11 Because we

are mostly interested in capturing the LGD part in relation to the other variables, we

do not favor the three-factor specification.

11Because of differences in the scales of the variables, the sum of the WAIC2 values cannot be used
to evaluate the overall fit.
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Figure 2.3: Time series fit
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(d) Default rate
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(e) Loss given default

2003 2004 2005 2006 2007 2008 2009 2010 2011
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Lo
ss

 g
iv

en
 d

ef
au

lt

Realized
2 factors
3 factors

The panels show the time series fit of the model without cross-sectional differences for the growth rate
of GDP (a), the growth rate of industrial production (b), the year-on-year change in the unemployment
rate (c), the default rate (d) and the cross-sectional average of the LGD (e).

We investigate the importance of time-variation in the probability of a severe loss

by estimating a two-factor specification with the restriction βd = γd = 0. The WAIC2
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value for the unrestricted specification is lower, indicating that the improvement in the

fit outweighs the additional two parameters.

We conclude that the combination of a macro and a loan factor accurately captures

the dynamics in the macro variables, probability of default and LGD. The macro factor

captures the business cycle with relatively long swings, whereas the loan factor captures

more short-lived fluctuations. During recessions, both the probability of default and

the LGD increase, so the macro factor leads to positive dependence between default

rates and LGD. However, the loan factor negatively affects their dependence, because

it captures the defaults related to mere delays in loan payments.

2.4.2 The effects of loan and default characteristics

Loan and default characteristics affect the probability of default and the LGD of a loan.

Their influence can take the form of a fixed effect, may influence the sensitivity to the

latent factors, or give rise to a completely new latent factor. For example, Shleifer and

Vishny (1992) argue that credit cycles are industry specific.

We use the richness of our data set to investigate the effect of seniority, and the

size and industry of the borrower. Because this information in the GCD databases is

categorical, we include it in our model by dummy variables. We require a minimum of

3,200 observations (100 per quarter) for a group to include the corresponding dummy

variable.

For each characteristic we estimate a two-factor model and extensions with

additional loan and default factors. To save space we present the results for the

two-factor models here. We show the full results in Section 2.D.

Effects of seniority

In our analysis of seniority, we distinguish defaults of senior secured and senior

unsecured loans (see the number of observations in Table 2.1). Because seniority is

only available for the LGD observations, it only influences the LGD component of our

model.

The left panels of Table 2.3 show considerable differences between the LGD of senior

secured and senior unsecured loans. First, unsecured loans suffer on average a larger
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Figure 2.4: Time series fit, loan characteristics
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(b) Loss given default, seniority
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(c) Default rate, borrower size
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(d) Loss given default, borrower size
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(e) Default rate, industry
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(f) Loss given default, industry
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The panels show the time series fit of the two-factor model with different loan and default
characteristics for the default rate and the cross-sectional average of the LGD.

values for a mild LGD do not differ much. Together, these differences translate to an

average LGD of 22.2% for an unsecured loan and 17.5% for a secured loan.
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Second, secured loans are more sensitive to the business cycle. Its sensitivity is

about 2 times as large, and consequently the marginal effect on the average LGD is

7.2% (5.9%) for the secured (unsecured) loans. The LGD of secured loans does not

respond strongly to the loan factor. The posterior distribution of γd is wide and close

to zero. The corresponding sensitivity of unsecured defaults is much larger and clearly

negative. Apparently, delays in loan payments are concentrated in unsecured loans.

The behavior of the loan factor and the probability of default have also changed in

comparison with the results without characteristics. The loan factor has become more

persistent, and the default rate has lost is sensitivity to the macro factor. The posterior

mean of βl is negative, but its distribution is very wide. The plot in Figure 2.D.1a shows

that the loan factor resembles the macro factor much more than in Figure 2.2a, except

for the crisis period where it lags the macro factor, and looks again more like the loan

factor of the model without characteristics. Because we do not know the seniority of

each loan, we cannot further investigate this issue.

The fit over time of the default rate (Figure 2.4a) is similar to the model without

characteristics in Figure 2.3d. Figure 2.4a clearly shows the differences in the LGD

behavior. The average LGD is generally higher for unsecured loans than for secured

loans, except during the credit crisis. These results are in line with Bruche and

González-Aguado (2010) and extend Hamerle et al. (2011). The sensitivity to the

macro factor explains the pronounced increase around 2008 in the LGD of secured

loans. Its effect on the LGD of unsecured loans is partly offset by the loan factor.

During the credit crisis, the LGD of both loan types increases, but less for unsecured

loans. The dependence of the value of collateral on the business cycle may explain part

of this effect.

Our results for a three factor specification, which has an additional default factor

that only affects the LGD of unsecured loans do no support a different cycle for

unsecured loans. While the fit of the average unsecured LGD improves, the WAIC2

actually increases. We conclude that a two-factor structure, with a strong effect of the

macro factor on the secured LGD, and of the loan factor on the unsecured LGD is the

best model.
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Effects of borrower size

In our analysis of the effect of borrower size, we distinguish SMEs and large corporates,

both for the loans and the defaults in our sample. Comparing the middle panels of

Table 2.3 to the two-factor results in Table 2.2 shows that borrower size mostly affects

the probability of default. It is much larger when lending to SMEs (0.35%) than to

large corporates (0.14%). The sensitivities to both the macro and the loan factor are

also higher for SMEs. This result is in line with the higher riskiness, both systematic

and idiosyncratic that is documented for the equities of small firms. The distribution of

the LGD does not vary in relation to borrower type. The differences in the coefficients

and the implied statistics in the middle of panel D are small compared to their posterior

standard deviations.

The macro and loan factors in Figure 2.D.2a largely resemble those in Figure 2.2a.

The default rates implied by the two-factor structure track the realized rates closely for

SMEs and a bit less for large corporates (Figure 2.4c). However, in particular in the

first part of our sample period, there is room for improvement. Because of the large

number of loans to SMEs (12,000 vs. 6,500 large corporates), the loan factor reflects

the SME default rate more. The factors fit the dynamics of the average LGD for SME

also better than for large corporates (Figure 2.4d).

In Section 2.D, we report the three-factor specification that has an additional

SME loan factor. The comparison by WAIC2 values favors this specification, though

the improvement over the two-factor model is small. The sensitivities of the SME

probability of default and LGD to the general loan factor become less at the expense

of the sensitivities to the new SME loan factor. The additional factor has most influence

at the beginning and end of our sample period, but also points to different behavior

during the credit crisis. We interpret these results as some evidence for separate

default-specific factors that depend on size.

Effects of industry

The industry in which the borrower is active substantially influences the probability

of default and the LGD. Due to the number of observations, we can distinguish the

industries Consumer Staples (CS), Industrials (IND) and Financials (FIN). The results
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for this analysis in the right panels of Table 2.3 indicate that these differences pertain

to both the components for the default probabilities and for the LGD.

For the probability of default, both the average and the factor sensitivities vary

over the industries. Loans to borrowers in FIN (IND) have the lowest (highest) average

default probability of 0.16% (0.41%). Sensitivities to the business cycle is highest for

FIN, followed by IND. The average default probability for CS is in the middle (0.27%),

but least sensitive to the business cycle. The sensitivities to the loan factor are about

equal.

The LGDs differ mainly in their sensitivity to the business cycle. It is highest for

FIN, followed by CS and lowest for IND. The differences in marginal effects on the

average LGD, which equal 7.0%, 4.3% and 3.2%, are substantial. The differences in

the other parameters are less consequential, and the average LGD is about the same

for the different industries.

The factor estimates are again not much different than in our baseline specification.

The ability of the model to fit the default rates remains remarkably good, as deviations

of the model-implied series from the realisations are small (Figure 2.4e). For the LGD

series, the deviations are a bit larger.

Our analysis of a four-factor specification with two additional loan factors does not

provide evidence in favor of separate credit cycles for each industry, as proposed by

Shleifer and Vishny (1992). The three loan factors are difficult to distinguish from white

noise, and the factor loadings do not indicate that each industry has its own factor.

The four-factor specification improves the fit, though perhaps less than expected.

We conclude that industry characteristics have an important effect on default rates

and LGD. Loans to industrials are generally most risky, as their probability of default is

highest, but loans to financials vary most related to business cycle fluctuations. Loans

to CS firms are more in the middle.

2.4.3 Implications for risk management

We illustrate the implications of our model for risk management by the calculation

of the expected loss and the economic capital, which measures the risk of unexpected

losses on a loan portfolio. We calculate it as the difference between 99.9% quantile
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and the mean of the loss distribution. We show how they change during our sample

period for a portfolio that corresponds with our data set and based on the latent

factors we have inferred. Though other papers12 have already shown the importance

of the positive dependence between default rates and LGD for economic capital in an

unconditional setting, our analysis gives additional insights in the dynamics of the loss

distribution.

At each point in time we consider a portfolio of 2,000 loans, each with an exposure at

default of 1 euro, as in Miu and Ozdemir (2006). After every full iteration of the Gibbs

sampler, we simulate the loss on the portfolios, conditional on the values drawn for the

parameters and factors in that iteration. This yields the posterior loss distribution per

time period, from which we get the quarterly expected loss and economic capital.

Figure 2.5 shows the cyclical variation in the expected loss distribution and the

economic capital, both for our base two-factor model and the restricted version with

constant LGD as presented in of Section 2.4.1. We clearly see that both the expected

loss and the economic capital fluctuate stronger when the LGD is also time-varying.

When the LGD cannot vary over time, the expected loss varies from 0.61 (0.03%)

to 2.37 (0.12%), but when the LGD can vary, the maximum is at 2.98 (0.15%), a

substantial increase. In good times, time variation in the LGD leads to a slightly

lower expected loss, but in bad times to a pronounced increase. These effects carry

over to the economic capital, which is clearly lower from 2005 to 2006, and rapidly

increases during 2008. During 2008, economic capital based on time-varying LGD is

5.64 (0.28%) compared to 5.03 (0.25%) with constant LGD. While these number may

seem small, it means that 0.60 of the cyclical increase of 5.64 - 2.91 = 2.73 comes from

time-variation in the LGD, so 22%. The increase of 0.60 is similar to the results in

Bruche and González-Aguado (2010, Table 3).

These results illustrate how our model can be used in a risk management setting. By

using values for the latent factors at a specific point in time, or prespecified values, stress

tests can be conducted. Based on the point-in-time estimates of portfolio losses, or by

constructing an unconditional loss distribution, our model can be used to construct

through-the-cyle economic capital (see Miu and Ozdemir, 2006).

12See Frye (2000); Pykhtin (2003); Gordy (2003); Düllmann and Gehde-Trapp (2004); Miu and
Ozdemir (2006) among others.
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Figure 2.5: Portfolio simulation results
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The figure presents the portfolio loss (EL) and economic capital (EC) for a portfolio of loans, each
quarter consisting of 2,000 loans and each loan with an exposure of 1 euro. The EL and EC are based
on the two-factor model without cross-sectional variation, with a time-varying LGD (solid line) and
a constant LGD (dashed lines).

2.4.4 Alternative specifications

Figure 2.6 shows the fit of our model for the LGD distributions at two points in time,

Q4 of 2005 and Q2 of 2008. The probability of a severe loss is much higher in 2008Q2,

and accordingly, we see an increase in the right mode and a decrease in the left mode.

While this effect captures some of the changes in the empirical distributions, other more

flexible distributions may lead to a better fit. We therefore investigate a replacement

of the normal distribution in Equation (2.8) by the skewed Student’s t of Azzalini

and Capitanio (2003). We show the full results in Section 2.E and discuss the main

consequences here.

Figure 2.6: Mixture fit
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Panel a shows the cross-sectional fit on the LGDs of the mixture of normals and mixture of skew-t
for the fourth quarter of 2005, and panel b shows the fit for the second quarter of 2008. The fitted
distributions are based on the posterior means of the parameters of the two-factor model without
cross-sectional variation.
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The dotted lines in Figure 2.6 show an improvement in the fit. The low degrees

of freedom leads to more peakedness for the mild losses. Both distributions show

considerable skewness, which helps to fit the observations in the middle. Though

we observe an increase in the average probability of a severe loss, the overall factor

structure, and the factor sensitivities change only marginally (see Figure 2.E.1).

Though the mixture of skewed Student’s t distributions offers a better

cross-sectional fit, it has an important theoretical disadvantage. The mixture of normal

distributions with the same variance has the property that Pr[sit = 0|ydit,ft] is a

decreasing function of ydit. So, if the LGD grows larger, the probability with which

it is inferred as mild decreases. The (skewed) Student’s t distribution does not have

this property because of its fat tails, even when the degrees of freedom of the mixture

components are equal.13 For this reason, we do not replace the normal distributions

in our specifications. Because the consequences for the other model components are

small, we conclude that our results are robust to this choice.

Our specification does not allow for lead-lag relations between the macro variables

and the loan and default variables. While we leave a full investigation of models

with lead-lag effects, as well as richer VAR dynamics for future research, we briefly

investigate the potential of such extensions by simply leading and lagging the macro

series. We find that using past values of the macro variables does not lead to a better

fit of the default rates and LGD series. Using future values slightly increases the fit of

the LGD series but not of the default rate. This is likely related to the workout period.

Though interesting, a model that needs future information is of course less useful in

practice.

2.5 Conclusion

The loss given default and the default rate on bank loans are both cyclical. We

show that this variation stems from a macro factor capturing the business cycle and a

default-specific factor that captures variations in the credit cycle on top of the business

cycle. The time variation in the LGD is explained by changes in the probability of a

13We illustrate this effect in Figure 2.E.2.
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severe versus a mild loss. While different from bonds, bank loans are also sensitive to

the business cycle with higher default rates and LGD during downturns.

Our model describes the stylized facts of the LGD on bank loans well. It captures

the bimodal shape of the empirical distribution and provides an interpretation of the

components, by explicitly modeling the extremes of no and full loss. It is flexible

enough to include the differences across loan characteristics. Further, the model has

applications in risk management, such as the calculation of economic capital.
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2.A Macroeconomic variables

Table 2.A.1: Macroeconomic variables description

Abbreviation Subject Measure Country Transformation

GDP B1 GE: Gross
domestic product -
expenditure
approach

GYSA: Growth rate
compared to the same
quarter of previous
year, seasonally
adjusted

OECD -
Europe

-

IP Industrial
production, s.a.

Growth on the same
period of the previous
year

OECD -
Europe

-

UR Harmonised
unemployment rate
(monthly), Total,
All persons

Level, rate or
quantity series, s.a.

European
Union (28
countries)

Difference with
same quarter of
previous year

The table presents the macroeconomic variables as defined in the OECD database (see http://stats.
oecd.org/) and possible transformations.

Table 2.A.2: Macroeconomic variables statistics

GDP IP UR

Mean 1.575 0.968 0.070
Median 2.621 2.806 0.017
Maximum 3.940 8.715 2.167
Minimum -5.617 -16.945 -1.100
Standard deviation 2.567 6.412 0.903
Skewness -1.755 -1.692 0.877
Kurtosis 4.981 5.086 3.084
AR(1) 0.894 0.861 0.938
AR(2) 0.646 0.535 0.786
AR(3) 0.343 0.135 0.581
AR(4) 0.070 -0.212 0.354

The table presents descriptive statistics for the macroeconomic variables gross domestic product,
industrial production, and unemployment rate, in differences with the same quarter of the previous
year, as defined in Table 2.A.1. AR(x) is the x-th order autocorrelation.
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Figure 2.A.1: Macroeconomic variables time series

(a) GDP

2003 2004 2005 2006 2007 2008 2009 2010 2011
-6

-5

-4

-3

-2

-1

0

1

2

3

4

(b) IP

2003 2004 2005 2006 2007 2008 2009 2010 2011
-20

-15

-10

-5

0

5

10

(c) UR

2003 2004 2005 2006 2007 2008 2009 2010 2011
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

The figures present the time series of the macroeconomic variables gross domestic product (a),
industrial production (b) and unemployment rate (c), in differences with the same quarter of the
previous year, as defined in Table 2.A.1.

2.B Loan and default data

2.B.1 GCD databases

2.B.2 Data Filter

Following Höcht and Zagst (2007), who also use data from the Global Credit Data

Consortium, and NIBC’s internal policy, we apply the following filters to the LGD

database.

• EAD ≥ e100,000. The paper focuses on loans where there has been an actual

(possible) loss, so EAD should be at least larger than 0. Furthermore, there are

some extreme LGD values in the database for small EAD. To account for this

noise, loans with EAD smaller than e 100,000 are excluded.
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Table 2.B.1: Number of banks contributing to the databases

Year LGD Loan

2000 33 NA
2001 38 NA
2002 41 NA
2003 43 7
2004 39 9
2005 41 10
2006 45 10
2007 47 11
2008 46 14
2009 46 16
2010 43 17
2011 40 17
2012 42 16
2013 39 NA
2014 37 NA

This table shows how many banks contribute loans and defaults to the LGD and the loan databases
for a given year. The versions of the databases correspond with June 2014 (LGD) and June 2013
(Loan).

Figure 2.B.1: Evolution of LGD and default rate observations
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Panel a presents the average LGD and the number of observations per year for the period 1983–2011
from the Global Credit Data default database. Panel b presents the number of loans and the observed
default rate per year for the period 2003–2012 from the Global Credit Data loan database.

• −10% <
(
(CF+CO)−(EAD−EAR)

)
/(EAD+PA) < 10%, where CF cash flows,

CO charge-offs and PA principal advances. The cash flows that make up the LGD

should be plausible, because they are the major building blocks of the LGD.

A way of checking this is by looking at under-/overpayments. The difference

between the EAD and the exposure at resolution (EAR), where resolution is the

moment where the default is resolved, should be close to the sum of the cash flows

and charge-offs. The cash flow is the money coming in and the charge-off is the

acknowledgement of a loss in the balance sheet, because the exposure is expected
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not to be repaid. Both reduce the exposure and should explain the difference

between EAD and EAR. There might be an under- or overpayment, resulting in

a difference. To exclude implausible cash flows, these loans are excluded when

they are more than or equal to 10% of the EAD and principal advances (PA).

The 10% is a choice of the Global Credit Data Consortium.

• −0.5 ≤ LGD ≤ 1.5. Although theoretically, LGD is expected between 0 and 1, it

is possible to have an LGD outside this range, e.g. due to principal advances or

a profit on the sale of assets. Abnormally high or low values are excluded. They

are implausible and influence LGD statistics too much.

• No government guarantees. The database contains loans with special guarantees

from the government. Most of the loans are subordinated, but due to the

guarantee, the average of the subordinated LGD is lower than expected. Because

the loans are very different from others with the same seniority and to prevent

underestimation of the subordinated LGD, these loans are excluded from the

dataset.

Some consortium members also filter for high principle advances ratios, which is

the sum of the principal advances divided by the EAD. Even though high ratios are

plausible, they are considered to influence the data too much and therefore exclude

loans with ratios larger than 100%. NIBC does include these loans, because they are

supposed to contain valuable information and the influence of outliers is mitigated

because they cap their LGD to 1.5. The data shows that the principal advances ratio

does not exceed 100%, so applying the filter does not affect the data and is therefore

not considered.

2.B.3 Comparison with Moody’s Ultimate Resolved Database

Because we do not have direct access to Moody’s URD, we use its discussion in Altman

and Kalotay (2014) and Bastos (2014) to construct a comparison. Moody’s URD

contains information about some 5,200 resolved defaults of bonds (around 60%) and

bank loans (around 40%), and about 1,000 borrowers. Figure 2.B.2a shows that the

LGD distribution of bonds is still bimodal, but has more probability mass at large
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losses. The LGD distributions of bank loans of both data sets are quite similar, even

though URD focuses on “US non-financial corporations holding over $50 million in

debt at the time of default” (Bastos, 2014). Consequently, the average LGD of bonds

is much higher (55.1%) than of loans (19.5% based on URD and 20.1% in our data

set). Figure 2.B.2b shows that the average LGD of bonds exceeds that of loans. The

behavior of both series is similar before the credit crisis, but differs after it. It also

shows that our LGD data set is much larger than the URD. These results confirm that

the LGD of bank loans differ substantially from bonds.

Figure 2.B.2: Comparison of LGD in our data set with Moody’s URD
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(b) Number of defaults and average LGD per year
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Panel a shows the pooled distribution of the LGD, and panel b shows the number of defaults and the
average LGD per year, both for our GCD data set and Moody’s Ultimate Recovery Database. We
use all LGD observations in the GCD data set over the period 2003–2010 after applying the filters in
Section 2.B.2. The URD distributions in panel a are based on Altman and Kalotay (2014), and the
evolution in panel b on Bastos (2014).

2.C Bayesian estimation procedure

This section provides a description of the Bayesian estimation of the model in

Section 2.3. The likelihood, priors and posteriors are derived for the model without

loan and default characteristics. We explain in Section 2.C.4 how to extend this to

include loan and default characteristics, and how to replace the LGD component by a

mixture of skew-t distributions.
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2.C.1 Likelihood and latent variables

The likelihood consists of a macro, loan status and LGD component. First, we consider

the macro component of the likelihood. Define Y m as the T × Nm matrix with

observations on ym
t and define Xm as the T × (Km + 1) matrix with a constant and

observations on the macro factors fm
t . We can write the likelihood as

p(Y m|Am,Σm,ft) ∝ |Σm|−T/2 exp

(
−1

2
tr((Σm)−1(Y m −XmAm)′(Y m −XmAm)

)
.

Second, we derive the loan status component of the likelihood. Define yl as the

vector with all loan indicators ylit, the vector ψl with elements ψl
t = αl + βl′fm

t + γl′f l
t ,

Dt as the number of defaulted loans in period t and Lt as the number of total loans in

period t. We can write the likelihood as

p(yl|ψl) =

N,T∏
i,t

(plt)
ylit(1− plt)1−y

l
it

=
T∏
t

Λ(ψl
t)
Dt(1− Λ(ψl

t)
)Lt−Dt

=
T∏
t

exp(ψl
t)
Dt(

1 + exp(ψl
t)
)Lt .

Third, we analyze the LGD component given the severe loss indicator sit. Define

yd as the vector with all realized LGDs and define s as the vector which contains all

sit for all i, t. We can write the likelihood as

p(yd|s, µ0, µ1, σ
2) ∝

N,T∏
i,t

σ−1 exp

(
− 1

2σ2
(ydit − µ0(1− sit)− µ1sit)

2

)
.

We use three types of latent variables in our model next to the factors. First,

we use the severe loss indicators sit for all i, t. Define the vector ψd with elements

ψd
t = αd +βd′fm

t +γd′f l
t + δd′fd

t , Tt as the total number of LGD observations in period
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t and Nt as the total number of severe losses in period t.

p(s|ψd) =
NT∏
it

(pdt )
sit(1− pdt )(1−sit)

=
T∏
t

Λ(ψd
t )Nt

(
1− Λ(ψd

t )
)(Tt−Nt)

=
T∏
t

exp(ψd
t )Nt(

1 + exp(ψd
t )
)Tt .

Second, we follow Polson et al. (2013) and use the auxiliary latent variables ωl
t and

ωd
t to make the sampling of respectively the loan status and LGD components easier

p(ωl
t|Lt, ψl

t) = PG(Lt, ψ
l
t),

p(ωd
t |Tt, ψd

t ) = PG(Tt, ψ
d
t ),

where the definition of the Pólya-gamma distribution is given in equation (1) of Polson

et al. (2013).

Finally, we derive some useful results that help us with deriving the posterior

distribution. Windle et al. (2013) show that the Pólya-gamma distribution has the

special form

p(ωl
t|Lt, ψl

t) = coshLt(ψl
t/2) exp(−ωl

t(ψ
l
t)

2/2)p(ωt),

and that the following holds

coshLt(ψl
t/2)/

(
1 + exp(ψl

t)
)Lt ∝ exp(−ψl

tLt/2).
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This implies the following result that we use in the next sections

p(yl|ψl)
T∏
t

p(ωl
t|Lt, ψl

t) =
T∏
t

exp(ψl
t)
Dt(

1 + exp(ψl
t)
)Lt coshLt(ψl

t/2) exp(−ωl
t(ψ

l
t)

2/2)p(ωl
t)

∝
T∏
t

exp
(
Dtψ

l
t − ψl

tLt/2− ωl
t(ψ

l
t)

2/2
)
p(ωl

t)

∝
T∏
t

exp
(
κltψ

l
t − ωl

t(ψ
l
t)

2/2
)
p(ωl

t)

∝
T∏
t

exp

(
−ω

l
t

2

(
κlt
ωl
t

− ψlt
)2
)

exp

(
ωl
t

2

(
κlt
ωl
t

)2
)
p(ωl

t),

where κlt = Dt − Lt/2.

Similarly, the following holds

p(yd|ψd)
T∏
t

p(ωd
t |Tt, ψd

t ) ∝
T∏
t

exp

(
−ω

d
t

2

(
κdt
ωd
t

− ψdt
)2
)

exp

(
ωd
t

2

(
κdt
ωd
t

)2
)
p(ωd

t ),

where κdt = Nt − Tt/2.

Refer to page 8-9 of Windle et al. (2013) for more details.

2.C.2 Prior

First, we consider the macro parameters

p(Am,Σm) ∝ iW(0.01INm , Nm)I(Am),

where INm is an identity matrix of dimension Nm. Second, we consider the loadings

on the factors for the loan status and LGD components

p(αl,αd) ∝ I(αl,αd).

Third, we impose priors for the parameters of the LGD component

p(µ0, µ1, σ
2) ∝ iG2(0.01, 0.01)I(µ0, µ1).
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Finally, we use a prior for the persistence of the factor

p(φjj) ∝ I(φjj) for all j.

The indicator functions I(·) impose the identification restrictions mentioned in the

main text. To be precise, they impose that the first macro variable loads negatively on

the macro factor, that the probability of default loads positively on the second default

factor and that the probability of a severe loss loads positively on the third loan factor.

The functions also impose that µ0 < µ1 and −1 < φjj < 1 for all j.

2.C.3 Posterior

Macro component

We collect the terms involving Σm and Am from the likelihood and prior and get

p(Am,Σm| . . .) ∝ |Σm|−(T+Nm+Nm+1)/2

× exp

(
−1

2
tr
(
(Σm)−1 [0.01INm + (Y m −XmAm)′(Y m −XmAm)]

))
I(Am)

Using standard results for multivariate regression models we see that Am can be drawn

from a matricvariate normal distribution and Σm from an inverse Wishart distribution

p(Am| . . .) = MN
(
(Xm′Xm)−1(Xm′Y m),Σm ⊗ (Xm′Xm)−1

)
,

p(Σm| . . .) = iW (0.01INm + (Y m −XmAm)′(Y m −XmAm), T +Nm) ,

where we redraw until Am satisfies the identification restrictions.

Loan status component

Since ωl
t only occurs in its own distribution (and not in the priors or likelihoods), we

sample ωl
t from its Pólya-gamma distribution

p(ωl
t| . . .) = PG(Lt, ψ

l
t).
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We collect the terms involving αl from the likelihood, prior and latent variable

distributions

p(αl| . . .) ∝
T∏
t

exp

(
−ω

l
t

2

(
κlt
ωl
t

− ψlt
)2
)

exp

(
ωl
t

2

(
κlt
ωl
t

)2
)
p(ωl

t)I(αl),

where ψl
t is a function of αl.

We see that we can interpret the single term in the product as the likelihood of

a pseudo data point
κlt
ωl
t

drawn from a normal distribution with mean ψl
t and variance

1/ωl
t as in Windle et al. (2013). Following Polson et al. (2013) and using the standard

results for a linear regression with heteroscedasticity, we simulate αl from a normal

distribution

αl ∼ N(ml,V l),

where

V l = (X l′ΩlX l)−1,

ml = (X l′ΩlX l)−1(X l′κl),

where X l is a matrix that contains the constant and the relevant factors, where κl is

a vector that collects the elements κlt and where Ωl is a diagonal matrix with ωl
t as

diagonal elements. We redraw αl until it fulfills the identification restrictions.

LGD component

Using a similar reasoning as above, we sample ωd
t from the Pólya-gamma distribution

p(ωd
t | . . .) = PG(Tt, ψ

d
t )

and sample αd from a normal distribution

αd ∼ N(md,V d),
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where

V d = (Xd′ΩdXd)−1,

md = (Xd′ΩdXd)−1(Xd′κd),

where Xd is a matrix that contains the constant and the relevant factors, where κd is

a vector that collects the elements κdt for all t and where Ωd is a diagonal matrix with

ωd
t as diagonal elements. We redraw αd until it fulfills the identification restrictions.

We collect the terms involving sit in the prior and likelihood and obtain

p(sit| . . .) ∝ (pdt )
sit(1− pdt )(1−sit) exp

(
− 1

2σ2
(ydit − µ0(1− sit)− µ1sit)

2

)
.

Hence we can sample sit from the following Bernoulli distribution

p(sit = 1| . . .) =
pdtN(µ1, σ

2)

(1− pdt )N(µ0, σ2) + pdtN(µ1, σ2)
.

We collect the terms involving µ1 from the posterior and get

p(µ1| . . .) ∝
N,T∏
i,t

σ−1 exp

(
− 1

2σ2
(ydit − µ1sit)

2

)
.

Hence, we can sample µ1 (and µ0 as well) from normal distributions

p(µ1| . . .) = N

(
ȳ1,

σ2

N1

)
,

p(µ0| . . .) = N

(
ȳ0,

σ2

N0

)
,

where ȳ1 is the sample mean for the N1 observations with a latent indicator of 1 and

where ȳ0 is the sample mean for the N0 observations with a latent indicator of 0. We

redraw µ0 and µ1 from their posterior distributions until they fulfill the identification

restrictions.

We collect the terms involving σ2 from the prior and likelihood and get

p(σ2| . . .) ∝ σ−
NT+0.01+2

2 exp

(
− 1

2σ2

(
0.01 +

NT∑
it

(ydit − µ0(1− sit)− µ1sit)
2

))
,
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which means that we can sample σ2 from an inverse gamma-2 distribution

p(σ2| . . .) = iG2

(
0.01 +

NT∑
it

(ydit − µ0(1− sit)− µ1sit)
2, 0.01 +NT

)
.

Factor component

If we collect the terms involving the factors from the prior, likelihood and latent variable

distributions, we see that we have a linear Gaussian state space model as in Windle

et al. (2013).

Our model has the following transition equation

ft+1 = Φft + ηt, ηt ∼ N(0,Ω),

where Ω = I −ΦΦ′ because of the restriction on the unconditional covariance matrix.

We obtain the following observation equations

ym
t = αm +Bmfm

t + εt, εt ∼ N(0,Σm),

κlt
ωl
t

= αl
i + βl′

i f
m
t + γ l′

i f
l
t + ζ lt, ζ lt ∼ N(0, 1/ωl

t),

κdt
ωd
t

= αd
i + βd′

i f
m
t + γd′

i f
l
t + δd′i f

d
t + ζdt , ζdt ∼ N(0, 1/ωd

t ),

where the second and third observations are pseudo data points as explained in the

derivations of αl and αd. We sample the latent factor ft using the simulation smoother

of Durbin and Koopman (2002b).

We collect the terms involving φjj from the equation for the latent factor and obtain

p(φjj| . . .) ∝ (1− φ2
jj)
−1/2 exp

(
− 1

2(1− φ2
jj)

(fj,t+1 − φjjfjt)2
)
, for all j.

Since φjj occurs in both the mean and variance, we cannot derive the posterior

analytically. We use a Metropolis-Hastings step instead where we use a normal

distribution as proposal density and where we calculate the acceptance probability

in the usual way for the independence Metropolis-Hastings sampler. To calculate the

mean and variance of the proposal density we maximize the log PDF of the above

expression and use the mode as mean and the inverse of the negative Hessian as the
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covariance matrix. We redraw from the proposal density until the proposed draw

satisfies the identification restriction.

2.C.4 Extensions

We consider a couple of alternative models in the main paper and appendix.

First, we consider models with loan and default characteristics that affect the

probability of default and the LGD of a loan. It is straightforward to extend our method

to allow for these differences. The only difference is that we need to draw all parameters

and latent variables except for ft, φjj, A
m and Σm per group of characteristics.

Second, we consider a model with a mixture of two skewed Student’s t distributions

instead of a mixture of normals. The only difference is that we draw the

parameters in the LGD component (except for ωd
t and αd) based on the derivations

in Frühwirth-Schnatter and Pyne (2010). Please refer to the online appendix of

Frühwirth-Schnatter and Pyne (2010) for more details on the conditional posterior

distributions.

2.D Results for models with loan and default

characteristics

Figure 2.D.1: Latent factors, seniority

(a) Two factors
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(b) Three factors
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The figures show the smoothed latent factors for the model defined in Section 2.3.1. We report
results for specifications with a macro and a loan factor (a), and an additional loan factor (b). We
distinguish defaults of senior secured and senior unsecured loans. The characteristics are included as
dummy variables.
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Figure 2.D.2: Latent factors, borrower size

(a) Two factors
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(b) Three factors
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The figures show the smoothed latent factors for the model defined in Section 2.3.1. We report results
for specifications with a macro and a loan factor (a), and an additional loan factor (b). We distinguish
loans and defaults of large corporates and SMEs. The characteristics are included as dummy variables.

Figure 2.D.3: Latent factors, industry

(a) Two factors
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(b) Four factors
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The figures show the smoothed latent factors for the model defined in Section 2.3.1. We report
results for specifications with a macro and a loan factor (a), and an additional two loan factors (b).
We distinguish loans and defaults of borrowers in the sectors Consumer Staples, Industrials, and
Financials. The characteristics are included as dummy variables.



Table 2.D.1: Parameter estimates, model with seniority

Macro and loan factor Macro and two loan factors

Panel A: Factor

φ11 0.813 (0.120) 0.803 (0.115)
φ22 0.775 (0.138) 0.720 (0.231)
φ33 0.477 (0.309)

Panel B: Macro variables

αGDP 0.241 (0.631) -0.035 (0.418)
βGDP -0.935 (0.694) -0.843 (0.487)
αIP 0.187 (0.518) -0.027 (0.346)
βIP -0.725 (0.583) -0.633 (0.411)
αUR -0.207 (0.556) 0.031 (0.388)
βUR 0.792 (0.612) 0.756 (0.456)
WAIC2 129.4 123.3

Panel C: Loan status

αl -5.665 (0.233) -5.780 (0.175)
βl -0.179 (0.199) -0.174 (0.320)
γl1 0.628 (0.354) 0.574 (0.292)
av. pl (×0.01) 0.309 (0.002) 0.309 (0.002)

m.e. of fm -0.055 (0.061) -0.054 (0.099)
m.e. of f l1 0.193 (0.109) 0.177 (0.090)

WAIC2 321.3 320.0

Panel D: Loss given default

Sen. secured Sen. unsecured Sen. secured Sen. unsecured

µ0 0.070 (0.002) 0.072 (0.001) 0.070 (0.002) 0.072 (0.001)
µ1 0.766 (0.004) 0.858 (0.003) 0.766 (0.004) 0.858 (0.003)
σ 0.129 (0.001) 0.130 (0.001) 0.129 (0.001) 0.130 (0.001)
αd −2.174 (0.580) −1.665 (0.250) −1.930 (0.393) −1.542 (0.315)
βd 0.900 (0.619) 0.500 (0.320) 0.849 (0.450) 0.385 (0.247)
γd1 0.041 (0.055) −0.216 (0.133) −0.037 (0.050) 0.146 (0.126)
γd2 −0.257 (0.240)
av. pd 0.151 (0.004) 0.191 (0.004) 0.151 (0.004) 0.191 (0.004)

m.e. of fm 0.103 (0.070) 0.075 (0.048) 0.097 (0.051) 0.058 (0.037)
m.e. of f l1 0.005 (0.006) −0.033 (0.020) −0.004 (0.006) 0.022 (0.019)
m.e. of f l2 −0.039 (0.036)

av. LGD 0.175 (0.003) 0.222 (0.003) 0.175 (0.003) 0.222 (0.003)
m.e. of fm 0.072 (0.049) 0.059 (0.038) 0.067 (0.036) 0.046 (0.029)
m.e. of f l1 0.003 (0.004) −0.026 (0.016) −0.003 (0.004) 0.017 (0.015)
m.e. of f l2 −0.030 (0.028)

WAIC2 −11,645.0 −14,438.7 −11,648.0 −14,434.2

This table presents the posterior mean and standard deviation (in parentheses) of the parameters
of the model in Section 2.3.1 for different loan and default characteristics. We report results for
specifications with a macro and a loan factor, and an additional loan factors. The horizontal panels
correspond with the panels in Table 2.2. We distinguish defaults of senior secured and senior unsecured
loans. The characteristics are included as dummy variables.



Table 2.D.2: Parameter estimates, model with borrower size

Macro and loan factor Macro and two loan factors

Panel A: Factor

φ11 0.845 (0.098) 0.861 (0.090)
φ22 0.510 (0.217) 0.245 (0.262)
φ33 0.618 (0.190)

Panel B: Macro variables

αGDP -0.433 (0.628) -0.627 (0.492)
βGDP -1.225 (0.885) -1.265 (0.886)
αIP -0.362 (0.543) -0.535 (0.440)
βIP -1.025 (0.756) -1.083 (0.790)
αUR 0.385 (0.572) 0.568 (0.455)
βUR 1.087 (0.814) 1.149 (0.782)
WAIC2 114.9 109.7

Panel C: Loan status

Large corp. SME Large corp. SME

αl −6.441 (0.174) −5.533 (0.237) −6.394 (0.127) −5.474 (0.132)
βl 0.404 (0.273) 0.559 (0.383) 0.335 (0.256) 0.426 (0.323)
γd1 0.231 (0.101) 0.366 (0.143) 0.303 (0.088) 0.168 (0.080)
γd2 0.392 (0.160)
av. pl (×0.01) 0.143 (0.003) 0.347 (0.002) 0.147 (0.004) 0.346 (0.002)

m.e. of fm 0.058 (0.039) 0.193 (0.132) 0.049 (0.038) 0.147 (0.111)
m.e. of f l1 0.033 (0.014) 0.126 (0.049) 0.045 (0.013) 0.058 (0.028)
m.e. of f l2 0.135 (0.055)

WAIC2 349.9 333.4 252.1 319.2

Panel D: Loss given default

Large corp. SME Large corp. SME

µ0 0.075 (0.002) 0.062 (0.001) 0.075 (0.002) 0.062 (0.001)
µ1 0.848 (0.005) 0.849 (0.003) 0.849 (0.005) 0.849 (0.003)
σ 0.126 (0.001) 0.124 (0.001) 0.126 (0.001) 0.124 (0.001)
αd −1.707 (0.291) −1.564 (0.269) −1.630 (0.268) −1.517 (0.270)
βd 0.293 (0.302) 0.243 (0.272) 0.333 (0.389) 0.348 (0.295)
γd1 −0.404 (0.173) −0.406 (0.167) −0.490 (0.143) −0.186 (0.110)
γd2 −0.370 (0.159)
av. pd 0.160 (0.005) 0.166 (0.003) 0.160 (0.005) 0.166 (0.003)

m.e. of fm 0.036 (0.037) 0.033 (0.037) 0.042 (0.049) 0.048 (0.041)
m.e. of f l1 −0.050 (0.022) −0.056 (0.023) −0.062 (0.018) −0.026 (0.015)
m.e. of f l2 −0.051 (0.022)

av. LGD 0.199 (0.004) 0.193 (0.003) 0.199 (0.004) 0.193 (0.003)
m.e. of fm 0.028 (0.029) 0.026 (0.030) 0.033 (0.038) 0.038 (0.032)
m.e. of f l1 −0.039 (0.017) −0.044 (0.018) −0.048 (0.014) −0.020 (0.012)
m.e. of f l2 −0.040 (0.017)

WAIC2 −8,207.3 −15,655.8 −8,194.0 −15,661.0

This table presents the posterior mean and standard deviation (in parentheses) of the parameters
of the model in Section 2.3.1 for different loan and default characteristics. We report results for
specifications with a macro and a loan factor, and an additional loan factors. The horizontal panels
correspond with the panels in Table 2.2. We distinguish loans and defaults of large corporates and
SMEs. The characteristics are included as dummy variables.
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2.E Results for model with mixture of skew-t

In Section 2.4.4, we discuss replacing the LGD component’s mixture of normals with

a mixture of skewed Student’s t, or skew-t, distributions.

Following Azzalini and Capitanio (2003), if a random variable X is skew-t

distributed, X ∼ St(ξ, ω, α, ν), then

f(x; ξ, ω, α, ν) =
2

ω
tν(qx)Tν+1

(
αqx

√
ν + 1

q2x + ν

)
, (2.E.1)

with location parameter ξ, scale parameter ω, shape parameter α, and degrees of

freedom ν, where qx = (x − ξ)/ω, and tν and Tν the PDF and CDF of a standard

Student’s t distribution with ν degrees of freedom.

The expected value of X is not ξ, but is shifted to the left or right, depending on

the skewness. It is given by

E[X] = ξ + ωδ

√
ν

π

Γ((ν − 1)/2)

Γ(ν/2)
, (2.E.2)

where δ = α/
√

1 + α2. The normal distribution is nested, by setting α = 0 and ν →∞.

For the Bayesian estimation procedure, we follow the reparametrization by

Frühwirth-Schnatter and Pyne (2010), g(x;θ) = f(x; ξ, ω, α, ν), with parameter vector

θ = (ξ, σ, ψ, ν), where σ2 = ω2(1 − δ2) and ψ = ωδ. The estimates for the model

with the mixture of skew-t distributions are presented in Table 2.E.1. Plugging in the

posterior mean of θ, we find that the mean of the mild (severe) loss is 0.090 (0.605).

The PDF of a mixture is given by the sum of the PDFs of the mixture components,

weighted by the mixture probability, or mathematically, h(x; pdt ,θ0,θ1) = (1 −

pdt )g(x;θ0)+pdt g(x;θ1). From this, we can calculate the posterior mixture probabilities.

The likelihood that, conditional on the latent factors ft, observation ydit is a severe loss

is

Pr[sit = 1|ydit,ft] =
pdt g(x;θ1)

(1− pdt )g(x;θ0) + pdt g(x;θ1)
, (2.E.3)
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and Pr[sit = 0|ydit,ft] = 1 − Pr[sit = 1|ydit,ft]. The mixture fit in Figure 2.6 and the

posterior mixture probabilities in Figure 2.E.2 are based on the posterior means of θ

and of the implied probability of a severe loss pdt .

Table 2.E.1: Parameter estimates, mixture of skew-t

Mixture of normals Mixture of skew-t

Panel A: Factor

φ11 0.856 (0.078) 0.878 (0.075)
φ22 0.322 (0.207) 0.230 (0.235)

Panel B: Macro variables

αGDP −0.008 (0.317) −0.342 (0.355)
βGDP −0.969 (0.531) −1.033 (0.611)
αIP −0.007 (0.284) −0.273 (0.313)
βIP −0.802 (0.465) −0.824 (0.517)
αUR 0.008 (0.298) 0.341 (0.355)
βUR 0.879 (0.491) 1.032 (0.617)

Panel C: Loan status

αl −5.850 (0.097) −5.700 (0.118)
βl 0.371 (0.201) 0.428 (0.260)
γl 0.258 (0.058) 0.254 (0.059)
av. pl (×10−2) 0.309 (0.002) 0.310 (0.002)

m.e. of fm 0.114 (0.062) 0.132 (0.080)
m.e. of f l 0.080 (0.018) 0.078 (0.018)

Panel D: Loss given default

ξ0 0.072 (0.001) −0.024 (0.001)
ξ1 0.829 (0.002) 1.041 (0.002)
σ 0.131 (0.001) 0.017 (0.001)
ψ0 0.119 (0.003)
ψ1 −0.399 (0.008)
ν0 4.891 (0.172)
ν1 3.065 (0.143)
αd −1.643 (0.159) −1.242 (0.187)
βd 0.328 (0.202) 0.399 (0.264)
γd −0.293 (0.075) −0.308 (0.104)
av. pd 0.174 (0.003) 0.220 (0.004)

m.e. of fm 0.045 (0.028) 0.064 (0.043)
m.e. of f l −0.040 (0.010) −0.050 (0.017)

av. LGD 0.204 (0.002)
m.e. of fm 0.034 (0.021)
m.e. of f l −0.030 (0.008)

This table presents the posterior mean and standard deviation (in parentheses) of the parameters of the
model in Section 2.3.1 with different distributions for the LGD component. All model specifications
have a macro and a loan factor. The specifications do not include loan or default characteristics. The
horizontal panels correspond with the panels in Table 2.2. The LGD type can be either mild or severe.
In the left column, conditional on the type, the LGD follows a normal distribution with mean ξ0 or
ξ1 (corresponding to µ0 and µ1 in Table 2.2), and volatility σ. In the right column, conditional on
the type, the LGD follows a skew-t distribution with location parameter ξ0 or ξ1, scale parameter σ,
shape parameter ψ0 or ψ1 and degrees of freedom ν0 or ν1.



Figure 2.E.1: Latent factors, skew-t
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The figure shows the latent factors of the two-factor model without cross-sectional variation, with the
LGD distributed as a mixture of normals or mixture of skew-t.

Figure 2.E.2: Smoothed posterior state probabilities

(a) Normal

−0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

LGD

 

 

Pr[s
it
 = 0|yd

it
,f

t
] Pr[s

it
 = 1|yd

it
,f

t
]

(b) Skew-t
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The figures present the smoothed state probabilities Pr[sit = 0|ydit,ft] (blue line) and Pr[sit = 1|ydit,ft]
(orange line) for the two-factor model , with a mixture of normals (a) and with a mixture of skew-t
distributions (b) for the LGD. The mixture probabilities are for the first quarter of 2003 and based
on the posterior mean estimates of the parameters of the two-factor model without cross-sectional
variation.



Chapter 3

Long-term investing under

uncertain parameter instability

3.1 Introduction

One of the challenges in economic research is that relationships change over time.

These changes could be due to policy changes, macroeconomic shocks, or learning by

economic agents, among others. Instabilities are widely recognized to be present in

both macroeconomic (Stock and Watson, 1996, 2003) and financial time series (Ang

and Timmermann, 2012). If instabilities are ignored, inference can be distorted and

predictive performance negatively impacted (Rossi, 2013). It is important to recognize

time-variation in modeling economic time series, as these models are input for decisions

by, for example, central bankers and investors.

We consider the consequences of time-varying relationships for a long-term investor,

such as a pension fund. Specifically, we compare different types of time-variation and

assess the risk involved in misspecifying the dynamic process. The asset allocation of

long-term investors crucially depends on the model for asset returns. In case of return

predictability, returns are mean reverting, and stocks safer in the long run. The optimal

portfolio composition for the long-term investor then differs from that of a myopic, i.e.

short-term, investor due to a hedge term that protects against negative changes in

future investment opportunities (Campbell and Viceira, 2002; Brandt, 2010).
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Following the famous work by Welch and Goyal (2008), there has been an increased

interest into time-varying parameters in the return predictability literature. They show

that for a large set of popular predictor variables, the out-of-sample predictive ability is

poor and unstable. Predictive models often do not outperform the historical average.

One of the explanations for the poor performance is that the relationship between

predictors and the equity premium varies over time. Timmermann (2008) argues that

predictive content does exist occasionally. But when it appears, it is quickly exploited

by market participants, thus creating short-lived “pockets of predictability.”1

Evidence of instability in return predictability is not limited to Welch and Goyal

(2008). In a recursive estimation, Pesaran and Timmermann (1995) find that the

fit of their predictive model with the dividend yield varies, and improvements are

associated with relatively volatile periods. The earliest known formal test of structural

breaks in the relationship between the dividend yield and stock returns is Viceira

(1997). Interestingly, he does not find significant evidence for a structural break.

Subsequent papers do report substantial evidence of structural instabilities using

standard structural break tests. Rapach and Wohar (2006) find medium to strong

evidence of structural breaks for many predictors, and Paye and Timmermann (2006)

show that instabilities are present across international equity markets. Lettau and

Van Nieuwerburgh (2008) detect one or two breaks in the dividend yield using yearly

data, and show that correcting for these increases the predictive ability. Ang and

Bekaert (2007) also find that the predictive power of the dividend yield is unstable.

The predictive value covaries positively with interest rates and deteriorates in the 1990s.

Rapach and Zhou (2013) argue that there are four ways to improve on out-of-sample

performance, despite the instability. Three options (constraints, forecast combinations,

and diffusion indices) rely on shrinkage, the fourth is to explicitly model the parameter

instability. We focus on the last option. Several studies have suggested methods that

allow for time-varying parameters, such as change point models, assuming few breaks

(Henkel et al., 2011; Pettenuzzo and Timmermann, 2011), or time-varying parameter

models, assuming breaks each period (Dangl and Halling, 2012; Johannes et al., 2014).

1Farmer et al. (2018) look into this phenomenon further, reconciling it with investors’ incomplete
learning about a persistent growth component in the cash flows that is subject to regime switches.
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However, there is no consensus on what type of time-variation should be used to best

capture these dynamics.

Given the lack of consensus, our first goal is to find out what the type of

time-variation supported by the data is, similar to how Dangl and Halling (2012)

aim to capture the “degree of time-variation.” Instead of assuming the number of

breaks, or type of instability, ex ante, we estimate it using a mixture innovation model

(McCulloch and Tsay, 1993; Giordani and Kohn, 2008). It is a flexible and general type

of state space model, where each time-varying parameter is modeled as a mixture of

innovations. The type of time-variation depends explicitly on a break probability and

size. Parameters can change or remain constant each period, subject to a stochastic

break process.

The mixture innovation model provides an ideal framework to answer the questions

at hand, because (i) the time-variation is governed by the break probability, a

natural and intuitive measure for the type of instability, (ii) it nests multiple types

of time-variation and allows for periods without breaks, (iii) we do not have to set the

number of breaks, but can infer an estimate and uncertainty of the break probability

from the data, (iv) it is easy to define independent break processes for parameter

subsets, such that we can apply stochastic volatility without imposing any break process

on the mean, and (v) it is computationally efficient, with O(T2K) operations, with T

the number of observations, and K the number of break processes, whereas for example

the change point model requires O(T 2) operations (Koop and Potter, 2007).

Based on US data from 1946 to 2015, and using Bayesian methodology, we show

that there is substantial time-variation in the relationship between the dividend price

ratio and stock returns. However, it is hard to clearly identify large breaks, and we find

quite some uncertainty regarding the break probability due to the low signal-to-noise

ratio. The results are robust to changes in the break probability prior.

Our second goal is to investigate the economic consequences of misspecifying the

nature of instability of the relationship between the dividend price ratio and excess

returns. This is achieved by interpreting the prior on the break probability as the

investor’s views regarding the instability. We economically evaluate the different views

for a long horizon investor with power utility preferences by calculating the loss in

certainty equivalent return from assuming an incorrect type of time-variation. This is
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motivated by the work of Barberis (2000) and other research on long-term investing,

see e.g. Campbell and Viceira (2002) and Brandt (2010).

We find substantial differences regarding the risk on stock returns depending on

the type of time-variation, i.e. few large or many small breaks. We show that it can be

extremely costly to assume a stable relationship between the dividend price ratio and

excess stock returns. When the allocation is optimized under the assumption of a static

model, and the data generating process does contain instabilities, the potential loss at

the long horizon is very large, up to a difference of 17% in certainty equivalent return.

The downside risk of assuming constant parameters is large, even if the per period break

probability is small. This is because at the long horizon, the probability of encountering

a break is still large. Furthermore, we find that when taking uncertainty regarding the

break probability into account, the predictive density widens. Ignoring that the break

probability is unknown can lead to about a 1% loss in certainty equivalent return.

Seemingly in contrast to Johannes et al. (2014), we find that it is more important to

take instability in the intercepts and loadings into account, rather than in the variances.

This difference can be explained the fact that I focus on the long horizon.

Given the substantial time-variation in the relationship between the dividend price

ratio and the excess returns, and the potentially large downside risk we find of wrongly

assuming a stable relationship, we recommend that investors take this instability into

account when optimizing their long-term portfolio. An investor with min-max utility

(Hansen and Sargent, 2001) selects a model with many breaks. We show that an

allocation based on this type of instability is most robust to instability misspecification

in terms of certainty equivalent return.

Our main contribution is that we estimate the break probability, instead of assuming

ex ante that the relationship between the dividend price ratio and excess returns is

subject to few or many breaks. There is much interest in how to model the instability

between return and predictor variables, but it is not obvious which of the methods

works best, as the type of time-variation is unknown. On the one hand, it has been

suggested to characterize the instability through a small number of breaks of relatively

large magnitude, for example due to exogenous shocks such as policy changes or

conditional on the state of the economy. This type of time-variation can be captured by

a Markov switching model (Hamilton, 1989) or a change point model (Chib, 1998). The
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parameters then change when the economy is in a new, possibly recurring, regime. The

regime may depend on a latent or observed variable. Following this strategy, Ang and

Bekaert (2002), Guidolin and Timmermann (2007) and Henkel et al. (2011) estimate

a Markov switching model with two to four regimes. Their findings suggest that the

predictive power is countercyclical, it is stronger during recessions. In line with this

evidence, Gonzalo and Pitarakis (2012) find that predictability depends on industrial

production in a regime switching model. Guidolin and Timmermann (2007) show

that the allocation to stocks is larger in bull markets. The costs of regime switches are

about 1.3% annualized return at the long horizon. Pettenuzzo and Timmermann (2011)

consider a change point model, such that it is not possible to return to a past regime.

They find about eight breaks between the dividend yield and the equity premium in

the 1926 to 2005 period. As the investment horizon increases, the costs from ignoring

the breaks grow up to 7.8% annualized return at the 120 month horizon. This is

because the probability of a break occurring increases with the horizon. Even with a

small break probability, the probability of a break over the 10 year investment period

is substantial.

On the other hand, it has been suggested that parameters change continuously, such

that they vary smoothly over time, for example due to learning or a relationship with

business cycle fluctuations. Modeling these dynamics can be achieved by assuming

that there is a (small) break each period, using time-varying parameter models.

Dangl and Halling (2012), Johannes et al. (2014) and Diris (2014) implement such

models. Dangl and Halling (2012) exclude time-varying volatility, but do allow

for time-varying loadings. As with the regime switching models, they also find

a countercyclical relationship. Johannes et al. (2014) allow investors to learn the

predictability coefficient, and find utility gains of about 2% annualized returns at the

2 year horizon. They stress that a combination of model components needs to be

included to achieve out-of-sample performance, including parameter uncertainty and

instability, stochastic volatility and predictable returns.

Our research adds to the long-term investment literature (Campbell and Viceira,

2002; Brandt, 2010), in particular the effects of modeling choices and associated

uncertainties. The consequences of parameter uncertainty (Kandel and Stambaugh,

1996; Barberis, 2000) and model uncertainty (Avramov, 2002; Cremers, 2002) have



64 Long-term investing under uncertain parameter instability

been studied. Pettenuzzo and Timmermann (2011), Johannes et al. (2014) and others

show the impact of parameter instability, but ignore the impact of uncertain parameter

instability, where the type of time-variation is uncertain.

Furthermore, we add to the literature applying mixture innovation models. They

have been applied mostly to macroeconomic time series, among others by Giordani

et al. (2007), Giordani and Kohn (2008), Koop et al. (2009), Groen et al. (2013).

Our methodology is most closely related to Koop et al. (2009), who, in a monetary

policy application, estimate a mixture innovation model with a similar break process

specification, but they ignore persistence. They share our motivation of trying to let the

data speak on the parameter instability. We contribute to this literature by applying

this model on data with a low signal-to-noise ratio. To our knowledge, the only other

application of the mixture innovation model to financial data is by Ravazzolo et al.

(2008). They use it to characterize both parameter and model uncertainty regarding

stock return predictability in a univariate setting predicting one period ahead, whereas

we have a multivariate setting and focus on longer horizons. Moreover, they ignore

time-varying volatility, whereas we explicitly take this into account and allow for

different break processes for the mean and variance.

Finally, our research is related to work comparing different types of time-varying

models instead of just comparing to a static model. Despite that Elliott and Müller

(2006) show that it is difficult to distinguish between different models such as a regime

switching or time-varying parameter model from a testing perspective, there have

been some recent attempts.2 Clark and Ravazzolo (2015), Bauwens et al. (2015)

and Pettenuzzo and Timmermann (2017) statistically compare (mostly univariate)

models on macroeconomic time series. Our approach differs from these studies, because

we economically evaluate the performance for different types of time-variation in a

multivariate model for financial time series, with a lower signal-to-noise ratio. One

example that compare types of time-variation in financial time series is Pesaran and

Timmermann (2002). They use a time-varying parameter model and methods based

on recursive testing procedures, such as Bai and Perron’s (1998) break test, to predict

the sign of the equity premium. Instead, we focus on the long-term investor and

2I specifically consider the many versus few breaks cases here. In particular in the financial volatility
literature, comparing GARCH and stochastic volatility with specific components is more common, see
e.g. Hansen and Lunde (2005) or Nakajima (2012). But this excludes a model with few breaks.
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the predictive density, rather than short horizon market timing. Second, we use a

mixture innovation model which incorporates the few breaks case, explicitly specifying

a dynamic process for the parameters.

The paper is structured as follows. Section 3.2 defines the mixture innovation

model, and details the priors and estimation procedure. Section 3.3 describes the data.

Section 3.4 presents the estimation results, followed by the economic evaluation in

Section 3.5. Section 3.6 contains a sensitivity analysis to the break probability prior,

and Section 3.7 concludes.

3.2 Methodology

We follow the return predictability and portfolio choice literature (Brandt, 2010;

Rapach and Zhou, 2013) and use a restricted vector autoregressive (VAR) model for

the excess log return rt,

rt = β1t + β2tzt−1 + ε1t, (3.1)

zt = β3t + β4tzt−1 + ε2t, (3.2)

for t = 1, . . . , T , with T the sample size, where εt = (ε1t, ε2t)
′ ∼ N(0,Ωt), and

zt the predictor at time t. The intercepts and loadings βt = (β1t, . . . , β4t)
′ and

variance-covariance matrix Ωt are potentially time-varying.

We follow the time-varying parameter VAR (TVP-VAR) literature (Primiceri, 2005)

and decompose the variance-covariance matrix Ωt as follows,

AtΩtA
′
t = ΣtΣ

′
t, (3.3)

where At is a lower triangular matrix

At =

 1 0

αt 1

 , (3.4)

with covariance term αt andΣt = diag(σ1t, σ2t), a diagonal matrix with the (structural)

volatilities σ1t and σ2t on the diagonal. This decomposition simplifies inference, because
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αt is not restricted between zero and one,3 and it allows us to rewrite (parts of) the

model in (conditionally) Gaussian state space form to easily draw the variance and

covariance terms.

3.2.1 Modeling parameter instability

The formulation in Equations (3.1)–(3.4) is general in the sense that it does not specify

the parameters’ dynamics. We employ a mixture innovation (MI) model, introduced by

McCulloch and Tsay (1993), to describe the time-variation. It is a flexible and general

(conditionally Gaussian) state space model, where each time-varying parameter θt is

modeled as,

θt = θt−1 + κtηt, (3.5)

where ηt ∼ N(0, ση), such that the break size depends on the break process κt, and we

ignore a persistence parameter for illustrative purposes. We focus on a binary break

process, κt ∈ {0, 1}, which is i.i.d. with break probability Pr[κt = 1] = π.

To see how the process in Equation (3.5) works, consider what happens for different

values of the break process κt. If κt = 0, then θt = θt−1, so there is no break and the

parameter stays in the current regime. If κt = 1, then θt = θt−1 + ηt, there is a break

and we are in a new regime. This break process provides flexibility and differentiates

it from alternative models. The break probability π and break size ση define the

type of instability. The name mixture of innovations becomes clear when rewriting

Equation (3.5) as θt = θ0 +
∑t

s=1 κtηt, where the number of mixture components is

equal to the number of values κt can take.

Roughly, there are two other ways to model the parameter instability. One option

is to use a change point (CP) model (Chib, 1998; Pesaran et al., 2006a; Koop and

Potter, 2007) or regime switching model to allow for a limited number of regimes,

where transitions to a new regime follow a Markov process. The second option is to

use a time-varying parameter (TVP) model (Cogley and Sargent, 2001, 2005; Primiceri,

3Note that αt is not the covariance or correlation, but a transformation thereof, because
corr(ε1t, ε2t) = −αtσ1t/σ2t.
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2005), where the parameters are modeled as a random walk or autoregressive process

and change each period.

We use an MI model for our analysis because of its attractive properties.4 First,

the break probability π is intuitive to interpret, which facilitates prior elicitation and

provides a measure for the risk of breaks or parameter instability. Second, the MI

model nests many types of time-variation, such as few (large) breaks or many (small)

breaks and as extreme cases the constant parameter case, if π = 0, and the continuously

time-varying case, if π = 1. The prevailing methods to model time-variation are nested

in this framework. The TVP model is the extreme case of an MI model with π = 1.

The CP model is approximately captured by a small value for π. It is not exactly the

classic CP model (Chib, 1998), because we cannot fix the number of breaks. Rather,

we approximate the CP model with an unknown number of breaks (Koop and Potter,

2007). Hence, we can study multiple time-variation settings in one model framework,

which allows for easy comparison.5 Third, there is no need to select the type of

time-variation, or the number of breaks, ex ante. Estimating the break probability, we

infer the type of instability supported by the data and the posterior variance provides

the uncertainty regarding this instability. Fourth, we can easily specify independent

break processes for different parameters, which allows us to specify different dynamics

for the mean and variance, for example. Fifth, inference is computationally efficient due

to the algorithm of Gerlach et al. (2000),6 applicable to any conditionally Gaussian state

space model. In state space terminology, Equations (3.1) and (3.2) are the observation

or measurement equations (Durbin and Koopman, 2012). The efficiency of Gerlach

et al.’s (2000) algorithm comes from drawing κt without conditioning on the states θt.

Drawing the break process κt is linear in the number of values the break process can

take. It requires O(T2K) operations, with T the sample size and K the number of

binary break processes (Giordani and Kohn, 2008).

4See Giordani and Kohn (2008) for a general argument in favor of the mixture innovation model.
5To illustrate the flexibility, the MI model can for example be combined with a CP model (Giordani

et al., 2007), or written as a regime switching model (Giordani and Kohn, 2008).
6The algorithm can be improved in specific cases. Giordani and Kohn (2008) propose an adaptive

Metropolis Hastings step to more efficiently draw for periods where the break process takes the same
value (almost) every draw. Further, Fiorentini et al. (2014) suggest block-sampling the break process,
which is more efficient if the number of possible states is more than two.
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A TVP model does not provide us with the desired answers for a number of reasons.

First, it does not provide a measure for the type of instability as the number of breaks

is fixed. Second, a TVP model cannot capture large shifts, because stable periods

skew the break size estimate downwards. Third, TVP models can be interpreted as

assuming T − 1 breaks, an extreme estimate of the instability. This increases the risk

of fitting noise rather than signal.

Change point models also suffer from some drawbacks that make it less suitable

for our analysis. First, it is difficult to allow for independent break processes, because

the number of regimes grows exponentially with the number of independent break

processes, as each combination of realizations is defined as a separate regime.7 Second,

the number of breaks is assumed to be known in Chib’s (1998) CP model. Koop

and Potter (2009) show that fixing the number of breaks implies a very restrictive

prior and creates the problem of break probability piling up at the end of the sample.

This happens because an exact number of break locations needs to be drawn. If

not all breaks have been drawn before the final periods, the remaining breaks are

forced to occur at the end of the sample. Pesaran et al. (2006a) propose Bayesian

model averaging in a hierarchical CP model to avoid choosing the number of breaks.8

However, this does not solve the backpiling problem (Koop and Potter, 2007), and

requires a maximum number of breaks. Furthermore, the model has to be estimated

for each number of breaks under consideration, increasing computation time. Koop

and Potter (2007) suggest a CP model with an unknown number of breaks, but it is

computationally demanding. Chib’s (1998) CP model requires O(T 2) operations, and

with Poisson distributed durations requires an additional O(T ) evaluations (Koop and

Potter, 2007).9

A semi-parametric alternative to the MI model is the infinite hidden

Markov-switching (IHMS) model. It assumes that parameter instability is governed by

an underlying hierarchical Dirichlet process (Teh et al., 2006). Fox et al. (2011) extends

7An example that does allow for different break processes is Maheu and Song (2014).
8Similarly, Maheu and Gordon (2008) use Bayesian model averaging over a set of submodels, where

each submodel is based on a different sample size.
9The regime duration in a MI model is geometrically distributed (Giordani and Kohn, 2008), which

implies a monotonically decreasing distribution. Koop and Potter (2007) suggest Poisson distributed
durations as they offer more flexibility in the distributional shape. Giordani and Kohn (2008) show
that it is also possible to incorporate this into the MI model, but we do not pursue this.
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this principle to a ‘sticky’ version to allow for path dependence. The IHMS model shares

some of the advantages of the MI model, such as an infinite number of possible breaks,

and Bauwens et al. (2017) show how to define different break processes for different

parameters. Crucial for our application however, the MI model is intuitive to interpret

and the break probability π provides a measure for easy comparison between different

types of parameter instability.

3.2.2 Mixture innovation model

The time-varying parameters can naturally be divided into three groups, that may be

subject to different types of time-variation: (i) intercepts and loadings, (ii) residual

variances, and (iii) residual covariance. To capture the grouping, we implement a MI

model with three independent binary break processes, one for each parameter type.

Koop et al. (2009) apply a similar specification to macroeconomic data.

The intercepts and loadings βt follow a mixture innovation process that share one

break process. To model persistence of βt, the state equation slightly deviates from

the specification in Equation (3.5). The state equation for the intercepts and loadings

βt is

βt = µ1 + f(κ1t,Φ1)(βt−1 − µ1) + κ1tηt, (3.6)

for t = 2, . . . , T , where ηt = (η1t, . . . , η4t)
′ ∼ N(0,Q1) with break size matrix Q1, κ1t

is a binary break process which is one if there is a break at time t and zero otherwise

that is i.i.d. with break probability Pr[κ1t = 1] = π1, µ1 = (µ1,1, . . . , µ1,4)
′ is a vector

of long run means, and f(κ1t,Φ1) is an autoregressive (AR) function,

f(κ1t,Φ1) =

Ink if κ1t = 0

Φ1 if κ1t = 1,

(3.7)

where Ink is the nk×nk identity matrix, with nk = 4 the parameter vector length, and

Φ1 = diag(φ1,1, . . . , φ1,4) a diagonal matrix with autoregressive parameters. We refrain

from estimating the off-diagonal elements, to limit the number of parameters.
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The outcome of the function in Equation (3.7) is either the identity matrix if there

is no break, or a diagonal matrix with autoregressive parameters if there is a break at

time t. Hence, if there is no break we have the same value as in the previous period, but

if there is a break, we have an autoregressive process. The autoregressive MI (ARMI)

process in Equation (3.6) nests the simple AR process as a special case, if π1 = 1, and

the MI process in Equation (3.5) if Φ1 = Ink .
10

The autoregressive function is used to model the parameters’ persistence. Many

applications of the MI model (or TVP model) assume a random walk by setting

f(κ1t,Φ1) = I, to reduce the number of parameters, see e.g. Primiceri (2005), Koop

et al. (2009) or Groen et al. (2013). The parameters then follow a non-stationary

process, and the variance in the limit is unbounded. Primiceri (2005) argues that

this assumption is “undesirable,” but “innocuous” when thinking of the time period as

finite. However, non-stationary parameters imply that the predictive density’s variance

grows linearly with the forecast horizon and is unbounded in the limit. It complicates

our economic evaluation, as this requires draws from the predictive density up to 240

months into the future, as we will explain in Section 3.5. Although 240 periods is not

infinity, the predictive density at this horizon is very wide and can lead to numerically

infeasible draws. Therefore, we choose to model the persistence, and exclude the

random walk case using our prior (see Section 3.2.3). Note that even though many

ignore the persistence, it is included in the mixture innovation framework considered

by Gerlach et al. (2000). Further, the distinguishing property of the mixture innovation

process in Equation (3.5) that the parameters are unchanged if κ1t = 0 and do change

if κ1t = 1 is preserved in Equation (3.6).

10The ARMI process in Equation (3.6) is stationary if |φi| < 1, for all i. The unconditional
distribution under stationarity is equal to that of an AR process with the same mean, variance and
autoregressive parameter, as long as π > 0. In other words, the unconditional distribution of the
process does not depend on the break probability π as long as it is larger than zero. The intuition is
that if we ignore the breaks, an ARMI process has the same long run distribution as an AR process.
The no break draws, if κt = 0, are (in the long run) equally distributed over the break draws, and
hence do not influence the shape of the long run distribution. The difference is that convergence to
the long run distribution will be slower if π < 1. See Appendix 3.A.2 for a proof.
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The state equations for the variances σ2
t = (σ2

1t, σ
2
2t)
′ and the covariance term αt

are

logσ2
t = µ2 + f(κ2t,Φ2)(logσ2

t−1 − µ2) + κ2tζt, (3.8)

αt = µ3 + f(κ3t, φ3)(αt−1 − µ3) + κ3tξt, (3.9)

for t = 2, . . . , T , where ζt = (ζ1t, ζ2t)
′ ∼ N(0,Q2) and ξt ∼ N(0, q23) independent from

εt, ηt and each other, κ2t and κ3t are (variance and covariance specific) binary break

processes that are i.i.d. with break probabilities Pr[κ2t = 1] = π2 and Pr[κ3t = 1] = π3,

µ2 = (µ2,1, µ2,2)
′ and µ3 are the long run means, and f(·, ·) the autoregressive function

as defined in Equation (3.7), with Φ2 = diag(φ2,1, φ2,2) and φ3 the autoregressive

parameters. We model the log of the variance terms to ensure positivity, following the

stochastic volatility literature (Kim et al., 1998).

The break processes κ1t, κ2t and κ3t are independent and allowed to, but not

restricted to, break at different points in time. It can be extended to allow

for dependence between the breaks, or to allow each parameter to have its own

break process. We refrain from this (i) due to the computational costs associated

with including an extra break process, and (ii) because we are most interested in

differentiating between breaks in the first and second moment, which is captured by

the current setup.

3.2.3 Priors

We employ Bayesian methodology to estimate the MI model in Equations (3.1)–(3.4)

and ??–?? This is a natural way to include parameter uncertainty, a relevant risk for

the long-term investor (Barberis, 2000). Moreover, it allows us to assess the degree

of uncertainty on the break probability. Given the Bayesian methodology, we need

to specify prior distributions for the static parameters and initial conditions for the

state equations. The priors are mostly standard conjugate empirically Bayesian priors,

based on Primiceri (2005), Koop et al. (2009) and Diris (2014). The location and

scaling are based on ordinary least squares (OLS) estimates of the restricted VAR in

Equations (3.1)–(3.2) using the first ten years of data. This period is excluded from
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the estimation sample. We use fairly informative priors regarding the initial values of

the state variables, but less so for the long run mean and break probability.

As prior for the long run means µ, we take a normal distribution,

µ1 ∼ N(β̂, 106 var(β̂)), (3.10)

µ2 ∼ N(l̂ogσ2, 106 var(l̂ogσ2)), (3.11)

µ3 ∼ N(α̂, 106 var(α̂)), (3.12)

where β̂ is the OLS estimator on the first ten years of data and var(β̂) its variance

covariance matrix. To ensure that the prior is uninformative, the variance is multiplied

by a large number, 106. We do not have OLS estimates for the structural log variances

logσ2 and covariance term α and their variances, so we follow Koop et al. (2009) and

Diris (2014) and draw a 1,000 times from an inverse Wishart distribution,

Ω∗ ∼ IW(Ω̂τ, τ), (3.13)

with Ω̂ the OLS estimate of the residual covariance matrix and degrees of freedom

τ = 120 set to the number of time periods used to calibrate the prior. Note that the

degrees of freedom in an inverse Wishart distribution can indeed be interpreted as the

number of observations to calibrate the location. For each draw of Ω∗, we use the

decomposition in Equation (3.3) to obtain a draw of the structural log variances logσ2

and covariance term α. The sample mean and variance of the draws are the estimates

l̂ogσ2 and α̂ and their variances var(l̂ogσ2) and var(α̂).

Following Diris (2014), the off-diagonal elements of Φk are set to zero and we take a

truncated normal distribution as prior for the diagonal of the autoregressive parameter

matrix Φk,

diag(Φk) ∼ N(mk,V k)I(|φki| < 1,∀i = 1, . . . , nk), (3.14)

for k = 1, 2, 3, where I(A) is one if condition A holds and zero otherwise, with mki = 0.9

and V k(i,i) = 0.22 and V k(i,j) = 0 for i, j = 1, . . . , nk, i 6= j and k = 1, 2, 3. The prior is

truncated to ensure stationary parameters, as discussed in 3.2.2. We use the notation
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of adding an underscore bar to prior hyperparameters. The mean and variance reflect

our belief in a persistent process for the parameters.

As prior for the break probability πk, we take a beta distribution,

πk ∼ Beta(ak, bk), (3.15)

for k = 1, 2, 3. The hyperparameters ak and bk reflect the investor’s views on the

presence of breaks (or lack thereof).

For the intercepts and loadings, we set the hyperparameters ak and bk such that

the prior’s expectation is between a few breaks (about one break every ten years) and

many breaks (about one break per year) case. In particular, we set a1 = 1 and b1 = 59,

which implies an average duration of 60 months, or five years, between breaks, and

relatively small prior strength, in line with the prior strength used by Ravazzolo et al.

(2008) and Groen et al. (2013). The hyperparameters in the beta prior can be thought

of as adding a+ b observations: a ones and b zeros, or a breaks. If we define the prior

strength as (a + b)/T , with T the sample size, we have a prior strength of 7.1%.11 In

Section 3.4.1, we assume that the break probability is known, and restrict π1 to a single

value. In Section 3.5, we investigate the influence of the prior’s expected value on the

results.

For the variances and covariance’s break processes, we take a2 = b2 = a3 = b3 = 1.

It is uninformative in π, but puts most probability mass at the many breaks case (π >

1/12) to favor stochastic volatility. Ignoring the stylized fact of volatility clustering

might bias the amount of time-variation in the loadings upwards.12

As prior for the break size matrix Qk we have an inverse Wishart distribution,

Qk ∼ IW(W kνk, νk), (3.16)

11Ravazzolo et al. (2008) and Groen et al. (2013) employ priors with prior strengths of 7.4% and
5.2%.

12We have also experimented with setting the hyperparameters to an intermediate break process
for all break processes, i.e. ai = 1 and bi = 59, for i = 1, 2, 3. This would be in line with for
example Pettenuzzo and Timmermann (2011), who estimate a change point model with simultaneous
breaks in the mean and the variance. The posterior estimates are implausible as they imply a (nearly)
constant variance, but volatile loadings. It seems that this is due to an identification issue, where the
time-variation is explained by the volatility and/or the mean. Time-variation is then mostly explained
by the mean, because this has the largest impact on the fit.
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for k = 1, 2, 3, with νk degrees of freedom and

W 1 =
c1

E[π1]
var(β̂), (3.17)

W 2 =
c2

E[π2]
var(l̂ogσ2), (3.18)

w3 =
c3

E[π3]
var(α̂), (3.19)

where ck is a scaling factor, E[πk] is the expected prior break probability, and var(β̂),

var(l̂ogσ2), and var(α̂) are the variance covariance matrices of the OLS estimators of

β, logσ2, and α on the first ten years of data as in Equations (3.10)–(3.12).

The model is known to be sensitive to the choice of ck, see e.g. Primiceri (2005)

for a discussion. We set ck = 0.001 for k = 1, 2, 3, but setting ck = 0.01 or ck = 0.0001

does not affect the results qualitatively.

The presence of E[πk] in Equations (3.17)–(3.19) reflects the assumption that the

time-variation can be characterized either as a small number of large breaks or a

large number of small breaks. Following Koop et al. (2009), if the prior for the break

probability changes, the prior for the break size should change accordingly.

We should be careful when choosing the degrees of freedom νk. To see why, consider

the case where π1 is close to 0. The full conditional posterior for the break size Q1 is

an inverse Wishart distribution,

Q1| . . . ∼ IW

(
W 1ν1 +

T∑
t=2

κ1tηtη
′
t, ν1 +

T∑
t=2

κ1t

)
, (3.20)

with κ1t the break process and ηt the residuals from Equation (3.6) of the current

draw, and we use the notation “| . . .” to denote conditioning on the data and all other

parameters. Because π1 is close to zero, it is likely that the number of breaks in

the current draw is small or even zero. Therefore,
∑T

t=2 κ1t ≈ 0 and the break size

posterior is (approximately) equal to the prior. This has two consequences. First, the

prior degrees of freedom needs to be sufficiently large to ensure that the (finite) break

size variance exists, i.e. νk > nk + 3, with nk the matrix diagonal’s size. Actually, we

need more degrees of freedom, because even if the variance exists, for small degrees of

freedom, the posterior break size variance still explodes if the break probability is small
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and inference is complicated due to unrealistic draws. Second, if the break probability

πk is small, the break size prior is very informative, even if the prior degrees of freedom

νk is small. This is because if π1 is small, the sum
∑T

t=2 κ1tηtη
′
t will be close to zero,

and the mean of Q1 is (almost) fully determined by the prior’s location W 1ν1. Hence,

one should be careful when interpreting the break size results in that case. In a TVP

model, the degrees of freedom is often set equal to the minimum for the (finite) prior

break size variance to exist. Instead of one, we add ten degrees of freedom, such that

νk = nk + 3 + 10, to limit the prior’s informativeness, while ensuring that the break

size variance does not explode if the break probability is small.

As priors for the initial conditions of the state equations we take a normal

distribution,

β1 ∼ N(0, ν1 var(β̂)), (3.21)

logσ2
1 ∼ N(0, ν2 var(l̂ogσ2)), (3.22)

α1 ∼ N(0, ν3 var(α̂)), (3.23)

where var(β̂), var(l̂ogσ2), and var(α̂) are the variance covariance matrices of

the OLS estimators of β, logσ2, and α on the first ten years of data as in

Equations (3.10)–(3.12), and ν1, ν2, and ν3 equal to the degrees of freedom in the prior

of the break size in Equations (3.17)–(3.19). This is quite informative, and consistent

with the initial value probably being approximately equal to the OLS estimate of the

ten preceding years.

3.2.4 Inference

The MI model is estimated using a Gibbs sampler that mostly follows the algorithm

of Koop et al. (2009), which is based on Primiceri (2005) with the addition of drawing

the break processes κt and probabilities π. We add a step to draw the autoregressive

parameters Φ1, Φ2 and φ3. This sections provides a brief outline of the algorithm. A

detailed description is in Appendix 3.B.

For each of the state variables, we rewrite the VAR such that we can apply methods

for (conditionally) linear Gaussian state space models. Then, we first draw the break
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process using the algorithm by Gerlach et al. (2000). Second, we draw the latent

variable using the simulation smoother of Durbin and Koopman (2002a). After drawing

the time-varying parameters, we draw the static parameters from their full conditional

posterior distributions. We iterate until we have 10,000 retained draws, after removing

a burn-in sample of 2,000 draws. Increasing the number of draws does not affect results.

Appendix 3.C provides a convergence analysis.

3.3 Data

We use the monthly S&P 500 index return and the one-month T-bill rate as risk-free

rate to construct the excess log return. Our sample consists of 960 monthly observations

from January 1936 to December 2015, of which the first ten years, January 1936 to

December 1945, are used for prior calibration, see Section 3.2.3. As predictor, we take

the (log) dividend price ratio, defined as the ratio of the sum of the dividends over the

last 12 months to the current stock price. It is one of the most popular predictors in

the literature and shown to hold predictive power (Campbell and Shiller, 1988), and

has been used in most studies focusing on parameter instability. Data is from the

extended Welch and Goyal (2008) data set.13 Table 3.1 presents summary statistics of

both variables, and Figure 3.1 plots the time series.

To motivate modeling the possibility of unstable parameters, we highlight two

properties of the data that can be captured by the mixture innovation model. First,

a stylized fact of stock returns is volatility clustering. The null hypothesis of

homoskedasticity is strongly rejected by Engle’s (1982) ARCH test for our sample, see

the last row of Table 3.1. The possibility of time-varying volatility in Equation (3.8)

captures this heteroskedasticity. Second, Lettau and Van Nieuwerburgh (2008)

document the presence of one break (in 1991) or two breaks (in 1954 and 1994) in

the dividend price ratio, using yearly data from 1927 to 2004. Consistent with their

finding, an inspection of the dividend price ratio in Figure 3.1b suggests a level shift

in the 1990s. This break in the data could disrupt the predictive relationship with

the equity premium, which the MI model captures by allowing for instability in the

intercepts and loadings in Equations (3.1)–(3.2).

13Available on Amit Goyal’s website: http://www.hec.unil.ch/agoyal/.
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Table 3.1: Summary statistics

Excess returns Dividend price ratio

Mean 0.0052 −3.4719
Median 0.0087 −3.4476
Standard deviation 0.0420 0.4342
Skewness −0.6460 −0.2592
Kurtosis 5.2180 2.4071
Minimum −0.2482 −4.5240
Maximum 0.1492 −2.5979
AR(1) 0.0516 0.9952
AR(2) −0.0234 0.9897
AR(3) 0.0370 0.9844
AR(12) 0.0503 0.9289
ARCH test (p-value) 0.0000 0.0000

The table presents summary statistics of the excess log return and log dividend price ratio for the
period January 1946 – December 2015. AR(x) is the x-th order autocorrelation. Engle’s (1982) ARCH
test is based on residuals from a static VAR(1) model, estimated using maximum likelihood.

Figure 3.1: Time series of data

(a) Excess returns (b) Dividend price ratio

The figures present the monthly time series of the excess log returns (a) and the log dividend price ratio
(b) for the period January 1936 – December 2015, where the shaded area (January 1936 – December
1945) is used for prior calibration.

3.4 Estimation results

This section presents the estimation results. We start with models where the break

probability is known, after which we assume the break probability is unknown and

estimate it.

3.4.1 Few versus many breaks

First, we estimate the mixture innovation model under a known break probability. We

assume various values for the break probability π, from no to few to many breaks. In

particular, we consider π1 ∈ {0, 1/600, 1/120, 1/60, 1}. This includes the extreme cases
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of a static, i.e. no breaks (π = 0), and a TVP-VAR (π = ı) model. The few breaks

cases are motivated by previous studies in this context. Specifically, π1 = 1/120 (one

break expected every 10 years) matches the 8 to 10 breaks reported by Pettenuzzo and

Timmermann (2011), and π1 = 1/600 (one break expected every 50 years) is in line

with the one to two breaks found by Lettau and Van Nieuwerburgh (2008).14 Fixing the

break probability at π1 = 1/60 (one break expected every 5 years) is an intermediate

case to explore what happens if we move from the few breaks case to the many breaks

case. The break probability for the variances and covariance term is set at π2 = π3 = 1,

i.e. it is modeled as stochastic volatility, to capture the volatility clustering. We do

this for all values of π1, except for π1 = 0. For π1 = 0, we consider a fully static model,

ignoring parameter instability, so πi = 0, for i = 1, 2, 3.

The posterior estimates of the time-varying parameters in Figures 3.1 and 3.2 are

in line with previous research. First, Figure 3.1b confirms that the weak but positive

predictive power of the dividend price ratio has decreased from the 1970s, and in

particular small in the 1990s (see e.g. Ang and Bekaert, 2007). Second, the static

model estimates the predictability coefficient in Figure 3.1b to be smaller compared to

models that do allow for time-varying parameters. The conditional level of predictive

power is probably underestimated by the static model, as it is a smoothed estimate over

a sample with periods where predictive power fluctuates. Including the periods without

predictive power shrink the estimate downwards. Third, the estimates illustrate why

the dividend price ratio is often used in long-term investing literature. The high

persistence (see Figure 3.1d), combined with a positive predictability coefficient in

Figure 3.1b and strong negative residual correlation in Figure 3.2c implies strong mean

reversion, making stocks safer in the long run and ensuring a sizable hedge term.

Fourth, Figure 3.2a shows that volatility clustering is captured by all models, other

than the static model. We recognize periods of high volatility, such as the Oil Crisis

in the 70s, Black Monday on October 1987 and the recent financial crisis in 2008. We

shall discuss the fit in terms of an information criterion in Section 3.4.2.

Comparing across the break probabilities, we notice that the results in Figure 3.1

are in line with the interpretation of π1. As we increase the break probability, the

14This is an approximation of a change point model with an unknown number of breaks, but with
a prior on the number of breaks, as we do not fix the number of breaks, but the break probability.
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posterior estimate displays more instability. The TVP-VAR’s estimate is much more

volatile than for any of the other break probabilities, and suggests fitting noise rather

than signal. The estimates for the other types of time-variation are largely similar

to each other. If we expect one or two breaks, the intercepts and loadings are quite

stable. Interestingly, Figures 3.1c and 3.1d provide some evidence of a break in the

dividend price ratio at the end of the 1990s or start of 2000s, conform Lettau and

Van Nieuwerburgh’s (2008) finding. There is smooth time-variation when π = 1/120

and π = 1/60, indicating uncertainty regarding the location of additional breaks.

Figure 3.1: Posterior mean of intercepts and loadings under known π
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(c) Intercept on dpt
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(d) Coefficient of dpt−1 on dpt
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The figures present the posterior mean of the time-varying intercepts and loadings from the
mixture innovation (MI) model in Equations (3.1)–(3.4) with the time-varying parameters described
by Equations (3.6)–(3.9), with break probability for intercepts and loadings fixed at π1 ∈
{0, 1/600, 1/120, 1/60, 1}. The break probability for the variances and the covariance term is fixed at
π2 = π3 = 1 for all models, except for the static case (π1 = 0), where π2 = π3 = 0. TVP-VAR is the
model with π1 = π2 = π3 = 1. See Section 3.2.3 for the prior specifications.
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Figure 3.2: Posterior mean of residual variance and correlation under known π

(a) Standard deviation of rt residuals
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(b) Standard deviation of dpt residuals
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The figures present the posterior mean of the residual variance and correlation from the mixture
innovation (MI) model in Equations (3.1)–(3.4) with the time-varying parameters described
by Equations (3.6)–(3.9), with break probability for intercepts and loadings fixed at π1 ∈
{0, 1/600, 1/120, 1/60, 1}. The break probability for the variances and the covariance term is fixed at
π2 = π3 = 1 for all models, except for the static case (π1 = 0), where π2 = π3 = 0. TVP-VAR is the
model with π1 = π2 = π3 = 1. See Section 3.2.3 for the prior specifications.

To illustrate further that the different break probabilities imply different statistical

properties, Figure 3.3 shows individual draws for the MI model when π = 1/120 and the

TVP-VAR model. Draws from the TVP-VAR model are very noisy, with a break each

period. In contrast, the draws under a small break probability exhibit large periods of

no change, and relatively large breaks. Some draws display noisy periods near the end

of the 1990s, perhaps because of uncertainty regarding a break around that time. These

draws are representative of the individual draws that feed directly into the predictive

density. Their large differences motivate us to assess the consequences for the asset

allocation in Section 3.5.
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Figure 3.3: Three posterior draws of predictability coefficient
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The figures present three random posterior draws of β2t, the coefficient of dpt−1 on rt, for the mixture
innovation model, with break probability fixed at π1 = 1/120 (a), and the TVP-VAR model (b).

3.4.2 Estimating the parameter instability

In reality, the break probability is unknown, emphasized by the lack of consensus in

the literature. Therefore, we specify the prior for π as in Section 3.2.3, and let the

data speak on the type of instability, and the uncertainty of it.

Figure 3.4 presents the posterior break probability. Most probability mass is near

π1 = 0, and the mode is smaller than 0.05. The posterior mean of the break probability

of the coefficients’ break process is 0.206, such that the expected duration between

breaks is about 5 months. This is much larger than the expected prior value of 0.017,

and implies that the data suggests a substantial number of breaks. At the same time,

the density is quite wide, with a standard deviation of 0.211. It is substantially larger

than the prior standard deviation of 0.016. This indicates quite some uncertainty

regarding the break probability, likely due to the data’s low signal-to-noise ratio.

One important note is that the break probability might be skewed upward due to

the parameterization of the mixture innovation model. Because we model the break

probability, relatively much of the support of π is associated with a large number of

breaks, and even extreme priors put some weight on this part. For example, our prior

with hyperparameters a1 = 0.1 and b1 = 59.9 implies an expected break probability of

only 1/600. Still, there is a non-negligible 2.4% probability that π1 is larger than 1/60,

equivalent to one break every five years on average. Furthermore, this is the break

probability, not the number of breaks. It is not possible to set the prior to exactly one
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or two breaks. This might be less so if we estimate a change point model, where we

would estimate the number of breaks, and it is easier to allocate zero probability mass

to the many breaks cases. However, this would not provide us with the direct measure

for instability, and an idea of the uncertainty regarding the instability.15

Figure 3.4: Posterior of break probability
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The figure presents the posterior densities of the break probabilities from the mixture innovation model
in Equations (3.1)–(3.4) with the time-varying parameters described by Equations (3.6)–(3.9), where
the break probability is assumed to be unknown. The hyperparameters for the break probability of
intercepts and loadings set at a1 = 1 and b1 = 59, and for the break probability of the variances and
the covariance term set at a2 = b2 = a3 = b3 = 1. See Section 3.2.3 for the other prior specifications.

The posterior mean of the time-varying parameters is presented in Figures 3.5

and 3.6. There is substantial time-variation in the intercepts and loadings according to

the MI model, more than implied by the few breaks case, i.e. π1 = 1/120 or π1 = 1/600,

see Figure 3.1. It is more stable than suggested by the TVP-VAR model. Although the

posterior mean seems like a smoother version of the TVP-VAR model’s, the individual

draws in Figure 3.7 highlight the difference between the models. Some draws resemble

those of the TVP-VAR model, whereas other draws display periods of stability, in line

15An alternative to reduce the upward skew is to use a threshold mixture innovation model, proposed
by Huber et al. (2017). The model combines the MI model with the threshold model (Nakajima and
West, 2013). A threshold needs to be exceeded for a break to occur, shrinking small breaks to zero.
Applying the MI model without a threshold is more natural in our application, because we are also
interested in the many (small) breaks case.
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with draws from a model with a small break probability. The variety between the

draws is a reflection of the wide posterior break probability distribution in Figure 3.4.

The combination of only few large breaks and a wide posterior distribution for the

break probability suggests that it is hard to identify the break probability with high

certainty, probably due to the low signal-to-noise ratio. This highlights the difficulty

in predicting stock returns.

The variance for the MI model with unknown break probability in Figure 3.6 is

practically the same as for the TVP-VAR model and for the MI model with fixed

break probability. The MI model confirms the presence of heteroskedasticity, as the

posterior of the break probability in Figure 3.4 strongly suggests stochastic volatility

rather than a few regime switches. Johannes et al. (2014) also find that including

stochastic volatility is important. To investigate this, we include a model, labeled

MI-b, with the intercepts and loadings restricted to be constant.

We compare the fit of the models using the Watanabe Information Criterion

(WAIC, Watanabe, 2010), a Bayesian measure for the fit that penalizes the number

of parameters. A smaller WAIC value indicates a better model fit. The estimated

effective number of parameters varies depending on the time-variation in the model.

It is calculated as the variance of the observation level loglikelihood over the posterior

draws, summed over all observations. This is known as WAIC type 2, which is quite

stable and has the attractive property of being related to leave-one-out cross-validation

(Gelman et al., 2014).

Table 3.1 shows the following results. First, allowing for time-varying volatility

indeed improves the model fit, because the WAIC is lower for MI-b than the static

model. Second, the model with unknown break probability provides a slightly better

fit over the models with fixed small break probability. Given the improved fit if the

break probability increases, it suggests that, according to the WAIC, the few breaks

case underestimates the break probability. Third, the TVP-VAR model provides the

best fit. It is somewhat surprising that the estimated number of parameters is larger

for the MI model than for the TVP-VAR model, even though the parameters in the

TVP-VAR model are more volatile. This might be due to uncertainty of the break

locations in the MI model. Therefore, we interpret this result with some caution.
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Figure 3.5: Posterior mean of intercepts and loadings under unknown π
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(c) Intercept on dpt
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The figures present the posterior mean of the time-varying intercepts and loadings from the mixture
innovation (MI) model in Equations (3.1)–(3.4) with the time-varying parameters described by
Equations (3.6)–(3.9). If π1 is assumed unknown, the hyperparameters for the break probability
of intercepts and loadings set at a1 = 1 and b1 = 59, and for the break probability of the variances
and the covariance term set at a2 = b2 = a3 = b3 = 1. If the break probability is assumed known,
it is fixed at the prior mean, such that π1 = 1/60 and π2 = π3 = 1. TVP-VAR is the model with
π1 = π2 = π3 = 1, and static is the model where π1 = π2 = π3 = 0. See Section 3.2.3 for the other
prior specifications.

3.5 Economic evaluation

In the spirit of Barberis (2000) we analyze the influence of the break probability on

the portfolio allocation of a long-term investor. This provides insight into whether

the statistical differences in the previous sections translate to economic differences in

terms of portfolio risk and returns. Instability in the relationship between predictors

and the excess returns is arguably more important to the long-term investor than for

the short-term investor. Even if the break probability is small, the probability of a

break occurring in the period of holding the portfolio can still be high. For example,
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Figure 3.6: Posterior mean of residual variance and correlation under unknown
π
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(b) Standard deviation of dpt residuals
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(c) Residual correlation
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The figures present the posterior mean of the residual variance and correlation from the
mixture innovation model in Equations (3.1)–(3.4) with the time-varying parameters described by
Equations (3.6)–(3.9). If π1 is assumed unknown, the hyperparameters for the break probability of
intercepts and loadings set at a1 = 1 and b1 = 59, and for the break probability of the variances
and the covariance term set at a2 = b2 = a3 = b3 = 1. If the break probability is assumed known,
it is fixed at the prior mean, such that π1 = 1/60 and π2 = π3 = 1. TVP-VAR is the model with
π1 = π2 = π3 = 1, and static is the model where π1 = π2 = π3 = 0. See Section 3.2.3 for the other
prior specifications.

if the break probability is 0.05, the break risk for the one period investor is reasonably

small. For an investor holding a portfolio for 120 periods, i.e. ten years, the expected

number of breaks in this period is 5 and this risk can affect the allocation to stocks.

First, we introduce the asset allocation problem. Second, we discuss the term

structure of risk, which is the annualized per period standard deviation of the predictive

density, and third, we evaluate the economic performance of the models.
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Figure 3.7: Three posterior draws of predictability coefficient under unknown π
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The figure presents three random posterior draws of β2t, the coefficient of dp on r, from the
mixture innovation model in Equations (3.1)–(3.4) with the time-varying parameters described by
Equations (3.6)–(3.9), where the break probability is assumed to be unknown. The hyperparameters
for the break probability of intercepts and loadings set at a1 = 1 and b1 = 59, and for the break
probability of the variances and the covariance term set at a2 = b2 = a3 = b3 = 1. See Section 3.2.3
for the other prior specifications..

Table 3.1: In-sample fit

Model Loglikelihood (mean) k̂ WAIC

MI (π unknown) 4,376.8 64.6 −8,682.4
TVP-VAR 4,393.1 48.5 −8,731.9
MI (π1 = 1/60) 4,351.7 61.7 −8,635.4
MI (π1 = 1/120) 4,341.6 61.9 −8,615.2
MI (π1 = 1/600) 4,322.5 58.5 −8,580.2
MI-b (π1 = 0) 4,315.6 50.0 −8,575.3
Static 4,288.6 5.4 −8,571.7

The table presents the loglikelihood mean over the posterior draws, the effective number of parameters
k̂, and the Watanabe-Akaike Information Criterion (WAIC) for the MI model presented in Section 3.2
with different prior break probabilities. MI is the mixture innovation model, TVP-VAR is the
time-varying parameter VAR model, static is no time-variation and the addition of -b means that
the intercepts and loadings are restricted to be constant. The number of observations is 1,680.

3.5.1 Asset allocation problem

We consider a power utility (constant relative risk aversion) maximizing buy-and-hold

investor with an investment horizon h up to 240 months, i.e. 20 years. The investor

allocates his wealth now, and receives the return at the end of the investment period,



3.5 Economic evaluation 87

without rebalancing in between. (S)he faces the following problem,

max
w

U(WT+h) = max
w

W 1−γ
T+h − 1

1− γ
, (3.1)

with risk aversion γ > 0 and wealth at time T + h is defined as

WT+h = WT

(
w exp

( T+h∑
t=T+1

(rt + rf )

)
+ (1− w) exp

( T+h∑
t=T+1

rf

))
(3.2)

= WT

(
w exp

(
hrf +

T+h∑
t=T+1

rt

)
+ (1− w) exp(hrf )

)
, (3.3)

where w is the fraction of wealth allocated to stocks and rf is the log risk-free rate,

which we set to the historical average of the one-month T-bill rate. Wealth at time T

is normalized to one. The investor optimizes the utility by changing the allocation to

stocks w, with short selling constraints, such that 0 ≤ w ≤ 0.99.16

To solve the optimization problem in Equation (3.1), the investor needs to specify

the distribution of excess stock returns h periods ahead. We use draws from the

posterior to sample from the predictive density of stock returns. Hence, the predictive

density incorporates estimation uncertainty, parameter instability, and uncertainty

regarding the risk of breaks. Excess returns are simulated up to the investment horizon

h, conditional on the model, a time period, and the posterior draws from the m-th

MCMC iteration. This is repeated ten times per posterior draw, to increase precision

on the moments of the predictive density. Using these draws, we compute the expected

utility for a given weight w. The optimal weight is then found by a one dimensional

adaptive grid search over w, where we decrease the step size to a minimum of 10−5.

The maximum horizon h is 240 months, so we want to make sure that the predictive

density is stationary. Otherwise, the mean and the variance will be inflated, due to a

few extreme draws, and vary from one simulation to the other. It would be better to

impose this in the estimation procedure, but this would make the estimation procedure

substantially more difficult, as we need to impose this every period. Then, we cannot

easily rewrite the model to the Gaussian state space model and the state space methods

we employ are no longer valid. An alternative is to perform a Metropolis-Hastings step,

16If w = 1, the utility is unbounded, see e.g. Barberis (2000).
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introducing more autocorrelation to the MCMC chain, reducing the sampler’s efficiency.

Instead, we opt to impose stationarity by discarding the non-stationary draws, when

drawing from the predictive density. This implies imposing that β4t < 0.999 and

applying the same restriction to the autoregressive parameters on the diagonal of Φ.17

The portfolio is evaluated using the certainty equivalent return (CER). It is the

return that makes the investor indifferent between holding a riskless asset with that

return and investing in the (risky) portfolio. In other words, CER is the return the

investor is willing to pay to hold the specific portfolio instead of being fully invested in

the risk free asset. It is the rate that yields the same utility as the portfolio of model i,

calculated as CERih = (1/h)
(
(Uih(1− γ) + 1)

1
1−γ − 1

)
, with utility Uih and investment

horizon h.

We do not evaluate the portfolios out-of-sample for two reasons.18 First, evaluating

long-term portfolios out-of-sample is difficult because the sample consists of few

non-overlapping periods. Second, an out-of-sample analysis is time-consuming. It

requires re-estimating the model each period, because we use smoothed estimates. For

example Johannes et al. (2014) use a filter, which alleviates this issue.

Instead, we opt for a different approach. We are interested in the performance

of each model, under various types of parameter stability. We assume one model to

be the data generating process (DGP) and use that as the predictive density. We

take the weights from each of the models, and calculate the CER under the assumed

DGP. This is similar to the analysis of Ang and Bekaert (2002) and Pettenuzzo and

Timmermann (2011), among others. The model that we assumed to be the DGP will

always have the highest CER, because we optimized the weights over it for those draws.

Therefore, we repeat the exercise, assuming each of the models as DGP. Finally, we can

evaluate the loss compared to the optimal CER (for correctly specified time-variation)

as ∆CERijh = CERjjh−CERijh, the loss for model i at horizon h with model j as the

true model. This provides insight into the costs of misspecifying the break process.

17We impose β4t < 0.999 instead of β4t < 1 to avoid numerical non-stationarity.
18See Diris et al. (2014) for an example on how to do this.
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3.5.2 Term structure of risk

Figure 3.1 shows the term structure of risk for the MI (with unknown break probability

and fixed probability at the expected value of the prior), TVP-VAR, a static VAR

model, and MI-b, the MI model where the intercepts and loadings are restricted to be

constant. The term structure of risk is the annualized per period standard deviation,

such that we can compare results across investment horizons. We conditioned on

1987M11, one month after Black Monday, a period with relatively high conditional

variance.19 This explains the relatively high short-run variance for the MI and

TVP-VAR models. In the medium run, the per period standard deviation decreases

due to predictability and mean reversion. This is strongest for MI-b and the constant

VAR due to stable intercepts and loadings. This also indicates that even though the

MI-b includes time-varying volatility, the effect at the long horizons is mostly driven

by the (in)stability of the mean.

In the long run, the MI model displays the largest risk. We have three possible

explanations for this. First, there is added uncertainty regarding the break probability.

The MI model with unknown break probability has a larger variance than the MI model

with known break probability. This also translates to wider posterior distributions for

the AR parameters and long run mean. This alone does not explain the difference,

as the MI model with known break probability also has higher variance than the

TVP-VAR.

Second, there might be stronger mean-reversion in the time-varying parameters for

the TVP-VAR model than the MI model. As shown in Figure 3.7, there are some

posterior draws where the intercepts and loadings are constant for longer periods. If

the parameters are in an extreme regime, it does not revert back to its mean, which

can inflate the long run variance.

Third, there is a difference in the effect of predictability of the dividend price ratio.

Figure 3.2 shows the effect of imposing stationarity. The parameters in the multivariate

normal distribution are truncated. The high correlation between the coefficients implies

that by truncating the AR coefficient for the dividend price ratio, we ‘softly truncate’

19The long-run results are similar for different conditioning periods. For brevity, we only present the
results of 1987M11 here, where we select this period to highlight possible differences from time-varying
volatility.
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the coefficient of the dividend price ratio on the excess returns, hence increasing the

average predictability coefficient. If the break probability is high, the dip in the variance

is larger, because each period with a break nudges the predictability upwards. This is

in favor of the TVP-VAR model and partly explains the smaller per period annualized

standard deviation for the TVP-VAR model compared to the MI model.

Figure 3.1: Term structure of risk
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The figure presents the annualized per period standard deviation of the predictive density of stock
returns, for an investment horizon up to h = 240 months. Results are conditional on time period
1987M11.

3.5.3 Weights and certainty equivalent return

Figure 3.3 presents the fraction of wealth allocated to stocks from optimizing the asset

allocation problem in Equation (3.1) with risk aversion of γ = 5.20 The allocation can

be extreme, with the allocations based on the static VAR and MI-b hitting boundary

solutions. This is because of the relatively low standard deviation at the long horizons.

When using the static VAR model to optimize the allocation problem, the allocation

is at least 70% and quickly rises to 100% for longer horizons. This is a result of the

relatively small estimated risk of the returns for those models. When comparing the

MI and TVP-VAR, we see that at the longer horizon, MI has a smaller allocation than

20Results are qualitatively similar for a risk aversion of 2 and 8.
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Figure 3.2: Effect of imposing stationarity
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The figures present a 1,000 draws from the predictive density for the intercepts and loadings. The
blue circles are from the multivariate normal distribution given by the posterior mean and variance
for µ1 (from the static model) and Q1 (from the TVP-VAR model). The orange crosses are in the
subset where |β4,T+1| < 1. The dashed blue line is at the height of the sample mean of β2,T+1 for
the full sample, and the orange solid line is at the height of the sample mean of β2,T+1 for the subset
where |β4,T+1| < 1.

TVP-VAR. This is due to the large risk at the longer horizon according to the MI

model.

The weights show that when allowing for unstable parameters, stocks are less

interesting for the (long-term) investor than when using a static VAR. However, it

does not tell how much we would lose if we were to assume an incorrect instability of

the relationship between the dividend price ratio and excess stock returns. Therefore,

we consider the difference in CERs, presented in Table 3.1, constructed as explained

before. The CERs are annualized and therefore comparable across horizons. The exact

values should be taken with a grain of salt, as they are based on assuming one of the

models as a DGP. However, the DGPs are based on actual data, and the values indicate

where and when it pays to assume instabilities.

The CERs provide some interesting results. First, assuming constant intercepts

and loadings can be costly, especially at the longer horizons. At the short horizon,

the losses are limited, but increase as the horizon becomes 5 year or more, up to 17%

in CER at the 20 year horizon, see panel D in Table 3.1. Second, vice versa, the MI
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Figure 3.3: Allocation to stocks (conditioning period is 1987M11)
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The figure presents the fraction of wealth allocated to stocks for a buy-and-hold investor with power
utility with risk aversion parameter γ is 5. Results are conditional on time period 1987M11.

models and TVP-VAR show a large loss in CER when the DGP has a constant mean.

This is because the per period standard deviation is relatively small in the DGP in

that case and the investor misses these extra profits. However, it is not that bad for

the investor because the absolute CER is still positive. Third, it is important to take

parameter stability into account, but the difference between the MI model and the

TVP-VAR is limited (0.2%). Fourth, the influence of time-varying volatility is clear at

the short horizon. The difference in CER in panel A in Table 3.1 for the static model

is much larger than for any other model, even the MI-b. At the long horizon though,

instability in the mean seems to dominate, as the allocation and hence CERs for the

MI-b and static model are equivalent. Fifth, from assuming a DGP with instability

uncertainty and considering the mixture ∆CER for the mixture innovation models

without instability uncertainty, we find that the utility costs of instability uncertainty

is about 0.7% in annualized returns, which may be small but non-negligible.

Finally, from the bottom row in Table 3.1, we can identify the model choice that is

most robust to the time-variation misspecification, consistent with a min-max utility

investor (Hansen and Sargent, 2001). It is the model that maximizes the minimum CER

over the various model DGPs, where the consideration set is defined by the mixture
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innovation model we specified, with the break probability prior as choice set.21 We

find that assuming a TVP-VAR is most beneficial in the long run for the long-term

investor, although a reasonable alternative would be to allow for any type of instability,

with a preference for a high break probability.22 This might be because even though

the TVP-VAR might adjust more quickly to breaks, and providing a suitable estimate

for the size of the instability. In the long run, this is perhaps more important than the

type of instability.

3.6 Prior sensitivity analysis

This section discusses the sensitivity of estimates to the break probability prior. The

hyperparameters for the different priors are chosen such that we have the same level

of informativeness as the baseline prior (a1 = 1 and b1 = 59), but match the mean

to each of the considered break probabilities in Section 3.4.1. For example, to get an

expected value of 1/120, we take a1 = 0.5 and b1 = 59.5.

Figure 3.1a shows the differences in the prior distribution, and how more probability

mass is pushed towards zero as a gets smaller compared to b, and implies more stable

parameters. When we consider the posterior break probability for the intercepts and

loadings in Figure 3.1b, we notice some differences. First, the modes of the models are

ordered as we would expect from with the smallest value for very few and the highest

for the many breaks prior. Because the duration of a regime is inversely related to the

break probability, especially differences in break probability close to zero can translate

to large differences in regime durations. Second, the many breaks case (E[π] = 1/12)

has fewer probability mass in the 0.2 to 0.5 interval than the other models and very

little near zero. The posterior for the other models is slightly wider, including both

very stable draws, and more volatile draws. The posterior densities are all quite wide,

and reflect the uncertainty regarding the break probability. Figure 3.2 shows that

the general pattern of the possibly time-varying parameters is quite robust to the

21Alternatively, we could minimize over the maximum ∆CER, but then investor would only be
interested in the utility relative to the maximum, even though this could imply negative CERs.

22The minimum CER is the same as π1 = 1/60 in Table 3.1. When considering the next digit,
TVP-VAR’s minimum CER is slightly higher: 0.759 versus 0.755.
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Table 3.1: Difference in certainty equivalent return

∆CER

MI TVP-VAR MI MI MI MI Static
DGP CERDGP π1 unknown π1 = 1/60 π1 = 1/120 π1 = 1/600 -b (π1 = 0)

Panel A: h = 1

MI (π1 unknown) 0.062 0.004 0.000 0.000 0.000 0.001 0.018
TVP-VAR 0.048 0.004 0.005 0.007 0.007 0.009 0.040
MI (π1 = 1/60) 0.064 0.000 0.005 0.000 0.000 0.000 0.016
MI (π1 = 1/120) 0.067 0.000 0.007 0.000 0.000 0.000 0.014
MI (π1 = 1/600) 0.068 0.000 0.007 0.000 0.000 0.000 0.013
MI-b (π1 = 0) 0.070 0.001 0.008 0.000 0.000 0.000 0.011
Static 0.074 0.008 0.017 0.007 0.006 0.006 0.005

Panel B: h = 12

MI (π1 unknown) 0.067 0.001 0.000 0.000 0.000 0.001 0.012
TVP-VAR 0.057 0.001 0.002 0.002 0.003 0.003 0.019
MI (π1 = 1/60) 0.069 0.000 0.002 0.000 0.000 0.000 0.009
MI (π1 = 1/120) 0.070 0.000 0.002 0.000 0.000 0.000 0.009
MI (π1 = 1/600) 0.073 0.000 0.003 0.000 0.000 0.000 0.008
MI-b (π1 = 0) 0.076 0.001 0.003 0.000 0.000 0.000 0.007
Static 0.078 0.006 0.010 0.005 0.005 0.004 0.003

Panel C: h = 60

MI (π1 unknown) 0.078 0.003 0.008 0.007 0.009 0.011 0.150
TVP-VAR 0.073 0.001 0.000 0.000 0.000 0.001 0.007
MI (π1 = 1/60) 0.086 0.003 0.000 0.000 0.000 0.000 0.005
MI (π1 = 1/120) 0.088 0.003 0.000 0.000 0.000 0.000 0.008
MI (π1 = 1/600) 0.095 0.005 0.001 0.000 0.000 0.000 0.008
MI-b (π1 = 0) 0.101 0.006 0.001 0.000 0.000 0.000 0.006
Static 0.099 0.012 0.006 0.004 0.004 0.003 0.003

Panel D: h = 240

MI (π1 unknown) 0.093 0.002 0.007 0.009 0.016 0.136 0.138
TVP-VAR 0.076 0.001 0.000 0.001 0.002 0.075 0.080
MI (π1 = 1/60) 0.104 0.005 0.001 0.000 0.001 0.135 0.141
MI (π1 = 1/120) 0.106 0.006 0.001 0.000 0.001 0.139 0.143
MI (π1 = 1/600) 0.128 0.017 0.007 0.002 0.001 0.162 0.167
MI-b (π1 = 0) 0.233 0.103 0.083 0.070 0.066 0.054 0.000
Static 0.251 0.128 0.109 0.096 0.092 0.080 0.001

min(CER) 0.075 0.076 0.076 0.075 0.074 −0.043 −0.045

The table presents the difference in annualized certainty equivalent return (∆CER, in fractions)
between the between assuming a model to choose portfolio weights (columns) and the DGP (rows),
and the CER for the DGP, for investment horizon h ∈ {1, 12, 60, 240} in months. Panel D also presents
the minimum CER at the 20 year horizon over the DGPs for each of the models. All CERs are for
a buy-and-hold investor with power utility and risk aversion of γ = 5. The conditioning period is
1987M11. Results are based on 100,000 draws.

prior values, and the variance in Figure 3.2b is basically the same for all models, and

time-variation in the intercepts and loadings is of a similar magnitude.
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Figure 3.1: Distribution of π1
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(b) Posterior
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The figures present the prior and posterior density for the break probability of the intercepts and
loadings for mixture innovation models with prior expected values for the break probability equal to
E[π1] ∈ {1/600, 1/120, 1/60, 1/12}, with hyperparameters a1 + b1 = 60. The hyperparameters for the
break probability of the variances and the covariance term are set at a2 = b2 = a3 = b3 = 1.

Figure 3.2: Posterior mean of time-varying parameters – prior sensitivity
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(b) Standard deviation of rt residuals
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The figures present the posterior mean the predictability coefficient and the residual standard deviation
of r from the mixture innovation model in Equations (3.1)–(3.4) with the time-varying parameters
described by Equations (3.6)–(3.9). If π1 is assumed unknown, the priors are set such that the
expected value equal is to E[π1] ∈ {1/600, 1/120, 1/60, 1/12}, with hyperparameters a1 + b1 = 60.
The hyperparameters for the break probability of the variances and the covariance term set at a2 =
b2 = a3 = b3 = 1. If the break probability is assumed known, it is fixed at the prior mean, such that
π1 ∈ {1/600, 1/120, 1/60, 1/12} and π2 = π3 = 1. See Section 3.2.3 for the other prior specifications.

The priors can alternatively be interpreted as the investor’s views on the stability

of the relationship between the dividend price ratio and stock returns. Here, we

analyze the consequences of possibly incorrect views regarding the instability. The

term structure of risk and the allocation in Figure 3.3 show that the per period

standard deviation varies depending on the break probability. It seems a non-linear

relationship. The variance at h = 240 is small for no breaks, then quickly increases
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for very few breaks. Then, for some value of E[π1], the standard deviation decreases.

to the TVP-VAR, still higher than the no breaks case. The break size is very similar,

so this is not the reason for the difference. There are probably multiple effects driving

this. First, a higher break probability implies a higher risk of breaks and a higher

per period standard deviation. Second, mean-reversion of the time-varying parameters

limits the effects of breaks, if they are stationary. Although the ARMI process has the

same long run variance as the AR model, this is not true in finite samples. For the

few breaks cases, there are periods where there is no break and can stay in an extreme

regime. The process can mean-revert more quickly for the TVP-VAR or many breaks

case as there are multiple breaks.

The effect of instability uncertainty is consistent across different priors. The extra

layer of uncertainty widens the predictive density in Figure 3.3a, and Figure 3.3b

shows that this extra risk induces a lower allocation to stocks. The uncertainty

accumulates over the horizon, as the differences in Figure 3.3 are larger as the horizon

increases. Utility costs of ignoring break probability uncertainty for an investor with

a 20 year horizon vary from 0.1% for a prior at many breaks, to 1.2% for lower break

probabilities, see the final column in Table 3.1. If the investor does take into account

break probability uncertainty, the utility costs of misspecifying the prior are limited.

The difference in CER in Table 3.1 is usually around 0.0% to 0.1%, and at most 0.8%.

Figure 3.3: Asset allocation – prior sensitivity

(a) Term structure of risk
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(b) Portfolio weights
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The figures present the annualized per period standard deviation of the predictive density of stock
returns (a), and the allocation to stocks for a buy-and-hold investor with power utility with risk
aversion parameter γ is 5 (b), for an investment horizon up to h = 240 months. Results are conditional
on time period 1987M11.
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Table 3.1: Difference in certainty equivalent return – prior sensitivity

∆CER

E[π1] = 1/600 E[π1] = 1/120 E[π1] = 1/60 E[π1] = 1/12 π1 = E[π1]

E[π1] = 1/600 0.001 0.001 0.005 0.012
E[π1] = 1/120 0.001 0.000 0.008 0.009
E[π1] = 1/60 0.001 0.000 0.008 0.007
E[π1] = 1/12 0.003 0.006 0.006 0.001

The table presents the difference in annualized certainty equivalent return (∆CER, in fractions)
between assuming a mixture innovation model to choose portfolio weights (columns) and the DGP
(rows), for an investment horizon of h = 240 months. The final column presents the difference in CER
from assuming a mixture innovation model with known break probability equal to the expected value
of the DGP. All CERs are for a buy-and-hold investor with power utility and risk aversion of γ = 5.
The conditioning period is 1987M11.

3.7 Conclusion

We assess the economic costs of misspecifying the type of instability, few (large) or

many (small) breaks, in the predictive relationship between the dividend price ratio

and stock returns for a long-term investor. We use a mixture innovation model with

Bayesian estimation methodology to quantify the effect of uncertainty regarding the

break probability.

We find the following results, which are robust to prior specification. First, from

estimating the break probability, the instability seems to be subject to many breaks

rather than few breaks. At the same time, there is substantial uncertainty on this,

probably due to the low signal-to-noise ratio, which shows the challenge in modeling

stock returns. The uncertainty adds to the volatility in the predictive density. Second,

we show the substantial differences between the different types of instability. These

differences affect the predictive density and lead to different asset allocations. Third,

from a long-term investor’s perspective, the costs of ignoring parameter instability are

costly, even if the true process is subject to a limited number of breaks. The costs can

run up to about 17% in terms of annualized certainty equivalent return. Conditional

on assuming instabilities, the costs of misspecifying the instability are limited. Fourth,

the costs of ignoring break probability uncertainty are more modest, but can still be

up to 1.2% in certainty equivalent return. These costs are higher if a small break

probability is assumed.

Based on the results, we recommend long-term investors to be careful when

constructing their view on possible parameter instability, or at least allow for the
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possibility of it. In fact, a max-min investor would prefer a specification with a

relatively high break probability.

Straightforward extensions would be to consider other predictors to see if the

results generalize, expand the number of assets, or combine with model uncertainty for

example. More interesting would be to let the break probability depend on observable

factors such as industrial production or a financial stress indicator. This would make

the break probability time-varying and in line with the evidence of countercyclical

predictability.

3.A ARMI process properties

Define the autoregressive mixture innovation (ARMI) process Xt as

Xt = µ+ f(κt, φ)(Xt−1 − µ) + κtηt

= µ+
(
φκt + (1− κt)

)
(Xt−1 − µ) + κtηt,

with ηt ∼ N(0, σ2) and Pr[κt = 1] = π.

3.A.1 Stationarity conditions

First, we show that the process Xt is stationary if |φ| < 1. Without loss of generality,

we take µ = 0 for notational convenience. We rewrite Xt as a sum of the initial

condition and its innovations,

Xt = X0

t∏
s=1

(φκs + (1− κs)) +
t∑

s=1

[
t∏

j=s+1

(φκj + (1− κj))]κsηs

= X0

t∏
s=1

f(κs, φ) +
t∑

s=1

[
t∏

j=s+1

f(κj, φ)]κsηs.

This sum is non-explosive if |f(κt, φ)| < 1 and |[
∏t

j=s+1 f(κj, φ)]κs| < 1. This

depends on the break process κ. If we assume, without loss of generality, that a

fraction π∗ periods for which κs = 1 for 1 ≤ s ≤ t and a fraction π̃ periods for which
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κj = 1 for s+ 1 ≤ j ≤ t, then

t∏
s=1

f(κs, φ) =
t∏

s=1

(φκs + (1− κs))

= (
∏

1≤s≤t|κs=1

(φκs + (1− κs)))(
∏

1≤s≤t|κs=0

(φκs + (1− κs)))

= (
∏

1≤s≤t|κs=1

φ)(
∏

1≤s≤t|κs=0

1)

= φπ
∗t,

and

[
t∏

j=s+1

f(κj, φ)]κs = [
t∏

j=s+1

(φκj + (1− κj))]κs

= φπ̃(t−s)κs.

Since 0 ≤ π∗ ≤ 1, it follows that |φπ∗t| < 1 and |φπ̃(t−s)κs| ≤ 1 if |φ| < 1. Strict

inequality holds for both, unless π̃ = 0. Then the first part becomes one and we are

left with κs, which is either zero or one. However, κsηs is not explosive if κs = 1, as

it is only a single normally distributed random variable, not a sum. Moreover, the

realization of ηs will then be discounted for future values Xj where j > s if |φ| < 1.

This shows that the ARMI process Xt is stationary if |φ| < 1.

3.A.2 Unconditional distribution

We show that the unconditional distribution of the ARMI process given by

Equation (3.6), under stationarity, i.e. |φ| < 1, and Pr[κt = 1] = π > 0,23 is the

same as for a stationary autoregressive process, i.e. if π = 1. This is equivalent to

proving that the unconditional distribution does not depend on the break probability

π.

We assume |φ| < 1, π > 0 and independence between Xt−1 and κt.

23If π = 0, then Xt = X0.
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The unconditional mean of Xt is

E[Xt] = E
[
µ+ κtφ(Xt−1 − µ) + (1− κt)(Xt−1 − µ) + κtηt

]
= µ+ E

[
κtφ(Xt−1 − µ)

]
+ E

[
(1− κt)(Xt−1 − µ)

]
E[Xt − µ] = E[κt]φE[Xt−1 − µ] + E[1− κt] E[Xt−1 − µ]

= πφE[Xt − µ] + (1− π) E[Xt − µ](
1− πφ− (1− π)

)
E[Xt − µ] = 0

E[Xt − µ] = 0

E[Xt] = µ.

The unconditional variance of Xt is

var(Xt − µ) = var
(
µ+ κtφ(Xt−1 − µ) + (1− κt)(Xt−1 − µ) + κtηt

)
= φ2 var

(
κt(Xt−1 − µ)

)
+ var

(
(1− κt)(Xt−1 − µ)

)
+ var(κtηt)

= φ2 E[κt] var(Xt−1 − µ) + E[1− κt] var(Xt−1 − µ)

+ E[κt] var(ηt)

= φ2π var(Xt − µ) + (1− π) var(Xt − µ) + πσ2(
1− φ2π − (1− π)

)
var(Xt − µ) = πσ2

(π − φ2π) var(Xt − µ) = πσ2

var(Xt − µ) =
πσ2

π − φ2π
=

σ2

1− φ2
.

Hence, the unconditional distribution of Xt is N
(
µ, σ2/(1−φ2)

)
and does not depend

on the break probability π.

3.B Gibbs sampler

The Gibbs sampler is closely related to the one used by Koop et al. (2009). The

difference is the addition of autoregressive parameters and long run means. The sampler

is based on the algorithm for time-varying parameter VAR (TVP-VAR) models, see
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Primiceri (2005), with the difference that we additionally need to draw the break

processes κt = (κ1t, κ2t, κ3t)
′ and the break probabilities π = (π1, π2, π3)

′. The step of

drawing the break process is also explained by Groen et al.’s (2013) online appendix

for a univariate model. We explain it here for the multivariate model.

We can split the Gibbs sampler into four steps, which we iterate over until we have

a sufficient number of posterior draws,

1. Draw the coefficients B = {βt}Tt=1 and their break process κ1 = (κ1,1, . . . , κ1,T ).

2. Draw the volatilities S = {logσ2
t }Tt=1 and their break process κ2 =

(κ2,1, . . . , κ2,T ).

3. Draw the covariance terms α = (α1, . . . , αT ) and its break process κ3 =

(κ3,1, . . . , κ3,T ).

4. Draw the parameters in the state equations θ = (Φ,Q,π).

Each of the first three steps consists of writing (parts of) the VAR model into state

space form such that we can draw the state variables in two steps,

a. Draw the break process κk from the full conditional posterior, with the state

variables integrated out, using the algorithm of Gerlach et al. (2000).

b. Draw the state variables, i.e. the long-run mean and the time-varying part, using

the simulation smoother of Durbin and Koopman (2002a).

3.B.1 Step 1: Drawing the coefficients

Define yt = (rt, zt)
′ and xt = (1, zt−1)

′, the left hand side and right hand side variables,

and β̃t = βt − µ1, the coefficients’ deviation from the mean at time t. Then, we can

write the state space model,

yt = (In ⊗ xt)(µ1 + β̃t) + εt, (3.B.1)

β̃t = f(κ1t,Φ1)β̃t−1 + κ1tηt, (3.B.2)

µ1 = µ1, (3.B.3)
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where εt ∼ N(0,Ωt) and ηt ∼ N(0,Q1) are independent, ⊗ is the Kronecker product

and In the n× n identity matrix, with n = 2 the number of left hand side variables.

Now, we can first apply the algorithm of Gerlach et al. (2000) to efficiently draw

the break process κ1 from the full conditional posterior where the state variables have

been integrated out. Then, conditional on the break process κ1, we use the simulation

smoother of Durbin and Koopman (2002a) to draw the state variables β̃t and µ1.

3.B.2 Step 2: Drawing the volatilities

Define

ε∗t = Atε̂t = At

(
yt − (In ⊗ xt)βt

)
=

 1 0

αt 1

ε̂1t
ε̂2t

 =

 ε̂1t

αtε̂1t + ε̂2t

 . (3.B.4)

Next, transform ε∗t into ε∗∗t = log
(
(ε∗t )

2 + c̄
)
, with c̄ = 0.0001 the off-set constant to

avoid numerical issues.

Further, define l̃ogσ2
t = logσ2

t − µ2, the volatilities’ deviation from the mean at

time t.

Then, we can write the state space model,

ε∗∗t = µ2 + l̃ogσ2
t + et, (3.B.5)

l̃ogσ2
t = f(κ2t,Φ2) ˜logσ2

t−1 + κ2tζt, (3.B.6)

µ2 = µ2, (3.B.7)

where ζt ∼ N(0,Q2) independent from et.

The state space model is non-Gaussian, because the disturbances et follow a χ2

distribution with one degree of freedom. Carter and Kohn (1997) and Kim et al.

(1998) show that we can accurately approximate this using a mixture of normals. We

use the mixture of seven normals used by Kim et al. (1998), and can then consecutively

draw the break process κ2, and the time-varying part of l̃ogσ2 and the long-run mean

µ2.

Stroud et al. (2011) suggest a Metropolis-Hastings step to correct for the

approximation error of using a mixture of normals. Kim et al. (1998) show that the
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approximation error is negligible, though, and Del Negro and Primiceri (2015) confirm

this with a TVP-VAR model. Therefore, we skip the Metropolis-Hastings step.

3.B.3 Step 3: Drawing the covariance term

Define ε̂t = yt − (In ⊗ xt)βt, and Atε̂t = ut, with ut ∼ N(0,ΣtΣ
′
t), then we can use

the lower triangular structure of At to rewrite ε̂t as

ε̂t = Ctαt + ut =

 0

−ε̂1t

αt + ut. (3.B.8)

Further, define α̃t = αt − µ3 the covariance term’s deviation from the long run

mean.

Then, we can write the state space model,

ε̂2t = −ε̂1t(µ3 + α̃t) + u2t, (3.B.9)

α̃t = f(κ3t, φ3)α̃t−1 + κ3tξt, (3.B.10)

µ3 = µ3, (3.B.11)

where u2t ∼ N(0, σ2
2t) and ξt ∼ N(0, q23) are independent.

We again apply steps a and b to draw the break process κ3, and then the

time-varying part of the covariance term α̃ = (α̃1, . . . , α̃T ) and the long-run mean

µ3.

3.B.4 Step 4: Drawing the state equation parameters

The full conditional posterior distribution for the diagonal elements of the

autoregressive parameter Φk is a truncated normal distribution,

diag(Φk)| . . . ∼ N(mk,V k)I(|φki| < 1,∀i = 1, . . . , nk), (3.B.12)
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where I(A) is one if A holds and zero otherwise, nk the number of diagonal elements

in Φk, with variance

V 1 =

(
V −11 +

T∑
t=2

κ1t(β̃
′
t−1Q

−1
1 β̃t−1)

)−1
, (3.B.13)

V 2 =

(
V −12 +

T∑
t=2

κ2t
(
( ˜logσ2

t−1)
′Q−12

˜logσ2
t−1
))−1

, (3.B.14)

v23 =

(
v−23 + q−23

T∑
t=2

κ3tα̃
2
t−1

)−1
, (3.B.15)

and mean

m1 = V 1

(
V −11 m1 +

T∑
t=2

κ1t(β̃
′
t−1Q

−1
1 β̃t)

)
, (3.B.16)

m2 = V 2

(
V −12 m2 +

T∑
t=2

κ2t
(
( ˜logσ2

t−1)
′Q−12 l̃ogσ2

t

))
, (3.B.17)

m3 = v23

(
v−23 m3 + q−23

T∑
t=2

κ3t(α̃t−1α̃t)

)
, (3.B.18)

and the off-diagonal elements of Φk are zero.

We draw from the truncated normal distribution using an accept-reject algorithm

with a normal distribution with the same mean and variance to reduce computational

costs. If after a 1,000 tries no draw has been accepted, we draw directly from the

truncated normal distribution.

The full conditional posterior distribution for the break probability πk is a beta

distribution,

πk| . . . ∼ Beta(ak, bk), (3.B.19)

where

ak = ak +
T∑
t=2

κkt, (3.B.20)

bk = bk +
T∑
t=2

(1− κkt), (3.B.21)
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for k = 1, 2, 3.

The full conditional posterior distribution of the break sizeQk is an inverse Wishart

distribution,

Qk| . . . ∼ IW
(
W k, νk

)
, (3.B.22)

with location parameter

W 1 = W 1ν1 +
T∑
t=2

κ1t
(
β̃t − f(κ1t,Φ1)β̃t−1

)(
β̃t − f(κ1t,Φ1)β̃t−1

)′
, (3.B.23)

W 2 = W 2ν2 +
T∑
t=2

κ2t

(
l̃ogσ2

t − f(κ2t,Φ2) ˜logσ2
t−1

)(
l̃ogσ2

t − f(κ2t,Φ2) ˜logσ2
t−1

)′
,

(3.B.24)

w3 = w3ν3 +
T∑
t=2

κ3t
(
α̃t − f(κ3t, φ3)α̃t−1

)2
, (3.B.25)

and degrees of freedom

νk = νk +
T∑
t=2

κkt, (3.B.26)

for k = 1, 2, 3.

3.C MCMC convergence analysis

We follow the convergence analysis by Groen et al. (2013) in their appendix. That is,

we compute inefficiency factors and analyze the convergence of the MCMC chain using

the Geweke (1992) test, for our baseline model.

The inefficiency factors in table Table 3.C.1 are calculated as IF = 1 + 2
∑∞

i=1 ρi,

with ρi the i-th order autocorrelation of the posterior draws of a parameter. The

autocorrelation is computed using the Newey and West (1987) estimator with a Bartlett

kernel and 4% bandwidth. A guideline is that you need approximately 100 times the

inefficiency factor such that at most 1% of the variation is due to the data, see Kim

et al. (1998) and Groen et al. (2013) (appendix). Most parameters are reasonably
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converged for 10,000 draws, the number of retained draws we use. The results do

suggest that we require extra draws to get a more accurate estimate of the parameter

in the covariance term’s state equation. The inefficiency factor for the long run mean

is small, so it only concerns the parameters describing the dynamics of αt.

Table 3.C.1: Inefficiency factors

Parameter Number Median Mean Min Max 5% quantile 95% quantile

Panel A: Intercepts and loadings

β̃ 3,360 15.44 16.92 2.60 49.39 5.06 37.62
µ1 4 52.25 52.78 48.18 58.46
κ1 840 19.00 20.72 8.01 65.09 16.05 30.33
π1 1 64.06 64.06 64.06 64.06
Φ1 4 95.07 101.69 51.97 164.66
Q1 16 53.85 53.63 51.22 55.46

Panel B: Variances

l̃ogσ2 1,680 5.23 9.89 1.61 83.15 2.69 27.90
µ2 2 16.06 16.06 6.66 25.46
κ2 840 1.23 1.17 0.52 5.24 0.75 1.84
π2 1 20.49 20.49 20.49 20.49
Φ2 2 96.47 96.47 28.74 164.19
Q2 4 61.21 62.62 42.29 85.77

Panel C: Covariance term

α 840 1.35 1.44 0.72 6.04 0.92 2.24
µ3 1 6.12 6.12 6.12 6.12
κ3 840 81.85 81.85 74.23 88.31 77.79 85.93
π3 1 289.44 289.44 289.44 289.44
φ3 1 95.08 95.08 95.08 95.08
q3 1 203.38 203.38 203.38 203.38
log p(Y |κ1) 1 4.40 4.40 4.40 4.40

This table presents a summary of the inefficiency factors for the parameters of the mixture innovation
model, where the break probability is unknown, and the hyperparameters are set as a1 = 1,b1 = 59,
and a2 = b2 = a3 = b3 = 1. The inefficiency factors are estimated using Newey and West (1987)
estimator.

The Geweke (1992) tests whether the first 20% and the last 40% of the draws have

an equal mean. The rejection rates in table Table 3.C.2 show that in general the MCMC

chain is converged. However, the null hypothesis is strongly rejected for the parameters

governing the covariance’s break process. We experimented with the burn-in, and test

results are mostly due to sample selection rather than a lack of convergence. Due to

the high autocorrelation, it depends on the selected subsamples whether the null of

equal means is rejected.

Combining the inefficiency factors and Geweke (1992) test results, only the

parameters in the covariance term’s state equation are not well identified. It is not
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Table 3.C.2: Geweke test results

Parameter Number 10% rejection rate 5% rejection rate 1% rejection rate

Panel A: Intercept and loadings

β̃ 3,360 0.001 0.000 0.000
µ1 4 0.000 0.000 0.000
κ1 840 0.004 0.000 0.000
π1 1 0.000 0.000 0.000
Φ1 4 0.000 0.000 0.000
Q1 16 0.000 0.000 0.000

Panel B: Variances

l̃ogσ2 1,680 0.080 0.039 0.007
µ2 2 0.000 0.000 0.000
κ2 840 0.092 0.061 0.010
π2 1 0.000 0.000 0.000
Φ2 2 0.000 0.000 0.000
Q2 4 0.000 0.000 0.000

Panel C: Covariance term

α 840 0.096 0.056 0.018
µ3 1 0.000 0.000 0.000
κ3 840 1.000 1.000 1.000
π3 1 1.000 1.000 1.000
φ3 1 1.000 1.000 1.000
q3 1 1.000 1.000 1.000
log p(Y |κ1) 1 0.000 0.000 0.000

This table presents the rejection rates of the Geweke (1992) test, testing whether the first 20% and
the last 40% of the draws have an equal mean, for the parameters of the mixture innovation model,
where the break probability is unknown, and the hyperparameters are set as a1 = 1,b1 = 59, and
a2 = b2 = a3 = b3 = 1.

surprising, because there is little instability found in this the covariance term. We are

not too concerned about the effect on the overall convergence, given that the test results

for the other parameters are fine. Concluding, we find that the overall convergence of

the sampler for the current number of draws and burn-in is satisfactory.





Chapter 4

Uncertainty and the

macroeconomy: A real-time

out-of-sample evaluation

Joint work with Dick van Dijk

4.1 Introduction

Understanding the fundamental causes of business cycles has intrigued

macroeconomists for decades, if not centuries. According to real option theory

(Bernanke, 1983; Dixit and Pindyck, 1994), uncertainty is one of the key drivers of

such cyclical fluctuations: as uncertainty increases, businesses hold off on investment

and consumers hold off large purchases, thus reducing economic activity, such as

output and employment. Bloom (2009) sparked a new line of research, on empirically

measuring economic uncertainty and assessing its relationship with real macroeconomic

variables.1 This is not a straightforward exercise, because uncertainty is a latent

concept and its exact definition can be debated. Not surprisingly then, a multitude of

measures of economic uncertainty has been proposed over the last decade. Examples

include financial volatility (Bloom, 2009), news based indices (Baker et al., 2016),

1See Bloom (2014) for a recent overview.
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dispersion in micro data (Bloom, 2009), and disagreement or errors of professional

forecasters (Rossi et al., 2016).

On the introduction of a new measure of economic uncertainty, it is usually added

to a vector autoregressive model to assess the impact on macroeconomic variables.

The comparison to other measures is usually limited to simple correlation, a visual

comparison of extremes, and of impulse response functions. All uncertainty measures

are proxies of a latent entity, which makes it difficult to assess their validity. This

partly explains why a thorough (statistical) comparison of the proposed measures is

lacking. Furthermore, inference thus far is based on in-sample analysis only, while it

seems important for the validity to test whether the relationship holds out-of-sample.

In this paper we address both open issues identified above. First, we collect a

comprehensive set of different uncertainty measures and conduct a factor analysis.

This allows us to examine the similarities and differences between the various

measures. Furthermore, the resulting factors, essentially combining the information

in the different measures, might provide more comprehensive and accurate proxies of

(different aspects of) the underlying notion of ‘uncertainty.’ Second, we conduct a

real-time out-of-sample forecasting analysis to assess whether a forecaster is able to

take advantage of the implied relationship between uncertainty and economic activity.

This is important to gain insight into the practical usefulness of the various uncertainty

measures. Though in-sample tests have more power (Inoue and Kilian, 2005), a

forecasting analysis is relevant for policy makers. They might be able to use this

extra source of information to improve decision making.

For the first part of our analysis, we identify 15 monthly uncertainty measures, that

comply with a number of restrictions such as being freely and directly available for a

substantial time period. An important additional restriction is that the data should be

available ex ante, such that we can exploit it in our forecasting exercise. We show that

the various measures can be categorized into five categories, based on their source: (i)

volatility, (ii) cross-sectional dispersion, (iii) news, (iv) surveys, and (v) forecast errors.

The collected measures are spread quite evenly across these categories.

Our factor analysis shows that there is indeed a relatively strong common

component. The first principal component explains about 40% of total variation. It

can be interpreted as general economic uncertainty, because it loads positively on all
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measures, though it loads slightly more on financial information. Interestingly, the

importance of the factor increases during the financial crisis. Additionally, we identify

a second factor, which can be interpreted as media/consumer uncertainty. It loads

most heavily on news based and consumer survey based uncertainty measures. This

factor remains elevated after recessions, reflecting that the media and consumers need

more time to become confident about the recovery than reflected by the fundamentals.

For the second part of our analysis, we set up an extensive real-time out-of-sample

analysis to forecast industrial production, employment, manufacturing and trade sales,

and personal income excluding transfer payments. These variables are taken into

account by the NBER business cycle dating committee2 and are the constituents of

the Conference Board’s US Coincident Economic Index.3 In contrast with pseudo

out-of-sample analyses, we use different vintages to take into account that publications

of macroeconomic variables are revised multiple times after the first release. Using

the vintages, allows us to assess whether a forecaster is able to gain from using the

values that are available at that point in time. We are not only interested in mean

forecasts, but also in other parts of the predictive density. For the latter purpose, we

perform a quantile forecasting analysis. This provides insight into possible asymmetries

in the relationship between uncertainty and macroeconomic variables. Forecasts are

produced for the period 1999 to 2016, based on an expanding window starting in 1986.

We consider multiple forecasting horizons, from one month up to 24 months ahead.

We find that there is limited predictive ability in the uncertainty measures for

the mean of the various macroeconomic variables. At the lower quantiles however, the

uncertainty measures do have forecasting power for all but personal income. The results

are especially strong for employment.4 From the individual uncertainty measures, the

Jurado et al. (2015) measures, financial volatility, and business forecast dispersion

(Bachmann et al., 2013) perform best and most consistent. The results are consistent

when we consider a one or two factor model rather than the individual measures. The

second factor helps with forecasting at longer horizons, even though the performance

of individual media and news based measures is disappointing. Results are robust to

2The dates of peaks and troughs can be found at http://www.nber.org/cycles/recessions.

html.
3See https://www.conference-board.org/data/bcicountry.cfm?cid=1.
4Interestingly, Bloom (2009) considers the effect of uncertainty on the labor market.
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using a smaller panel of uncertainty measures over a longer time period and expanding

the set of measures by allowing for an unbalanced panel, as well as using a rolling

instead of an expanding estimation window.

Our results indicate that the relationship between economic uncertainty and activity

is nonlinear. This is in line with the regime-switching model by Jones and Enders

(2016). Further, it corresponds with the finding by Bloom et al. (2018) that a

combination of negative shocks to the mean and positive shocks to the variance are

required to induce recessions.

Our paper provides three main contributions. First, we contribute to the empirical

uncertainty literature by showing how the different uncertainty measures are related

and that they can be summarized by two common factors. Second, we add to the

literature by conducting a real-time forecasting exercise.5 This is relevant for example

to policy makers, as they have to make decisions in real-time. Third, the extension

to quantile forecasts provides insight into possible nonlinearities in the relationship

between economic uncertainty and economic output.

Multiple papers are interested in forecasting economic output using financial

volatility or conditions. For example, Chauvet et al. (2015) performs a

real-time forecasting exercise linking multiple financial volatility measures in a

Markov-switching dynamic factor model and find evidence for nonlinearity in the form

of Markov-switching regimes. Further, Adrian et al. (2018) consider the impact of

financial conditions on the density of economic output. They allow for asymmetry

across the density based on quantile forecasts and find that especially the left tail is

affected by financial conditions. Most closely related to this paper in spirit is the work

by Giglio et al. (2016), who do a similar analysis for systemic risk measures. They

gather multiple systemic risk measures and conduct a quantile forecasting exercise.

They find that a single common factor improves their forecast accuracy, and that

predictive power for the mean is limited. In that light, our results are comparable too.

The main difference is – other than using uncertainty measures instead of systemic risk

measures – that we conduct a real-time rather than a pseudo out-of-sample forecasting

exercise, taking into account revisions. Systemic risk and financial conditions are close

in concept to economic uncertainty. Hence, the findings by Giglio et al. (2016) and

5Other work that performs quantile forecasts using real-time data includes Korobilis (2017).
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Adrian et al. (2018) are consistent with our finding that economic uncertainty is useful

mostly in forecasting the lower quantiles of economic output rather than the mean.

The paper is structured as follows. Section 4.2 describes the uncertainty measures,

the selection criteria and the different categories, followed by the factor analysis in

Section 4.3. Section 4.4 provides the methodology and implementation details of the

real-time forecasting analysis. The forecasting results for the mean are discussed in

Section 4.5, and those for the quantiles in Section 4.6. Section 4.7 presents robustness

checks and Section 4.8 concludes.

4.2 Uncertainty measures

Our selection of uncertainty measures is based on a number of criteria. First, we restrict

to US data such that all measures aim to capture the same entity. By far the largest

number of measures is available for the US and it makes the results better comparable

to the existing literature. Second, to match the frequency of the output variables used

in the second part of our analysis we focus on monthly data. Measures available at a

higher frequency are transformed to monthly frequency appropriately, by using either

the average or the end of month value. Measures reported at a lower frequency are

excluded. They can be included using mixed frequency methods, see e.g. Carriero et al.

(2017), but we choose to focus the analysis for now. Third, the data should be available

to the forecaster in real-time, because we are interested in whether she had been able

to take advantage of the extra information. This excludes measures that are estimated

using ex-post data, such as forecast error distributions and many other decompositions.

This does not exclude filtered time series though. Fourth, we require a sufficient time

series length such that we have reasonable power for the forecast evaluation. Fifth, on

a more practical note, the data should be relatively easy to collect or compute.

Table 4.A.1 lists the selected uncertainty measures, including a brief description,

the source and sample size.6 It is a reasonably sized set of 15 measures, that includes

most of the popular ones that have been proposed thus far.

6To increase the sample period, the uncertainty measures VXO and OVX are merged with realized
volatility measures, TYVIX is merged with the implied volatility measure of Choi et al. (2017), and
EPU is merged with the historical EPU measure that is only based on six to ten large newspapers.
The backfilled data is normalized using the overlapping period. Correlations between the merged
series in the overlapping periods range from 0.87 to 0.99.
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Notable exclusions are cross-sectional dispersion of firm level profit growth (Bloom,

2009), total factor productivity growth (Bloom, 2009; Kehrig, 2015), Livingstone survey

GDP forecasts (Bloom, 2009), price changes (Vavra, 2013), and employment growth

(Bachmann and Bayer, 2014). Conditional volatility from decomposing financial

volatility into risk aversion and uncertainty (Bekaert et al., 2013), shocks from

political turmoil, natural disasters or terrorist attacks (Baker and Bloom, 2013),

Fama-French factor residual variance (Gilchrist et al., 2014), and fiscal volatility shocks

(Fernández-Villaverde et al., 2015) are excluded as well, either because they need

to be computed ex post, or because they are only available at a lower frequency.

Furthermore, we ignore measures based solely on the Survey of Professional Forecasters

(SPF) because these are of quarterly frequency (Lahiri and Sheng, 2010; Rossi et al.,

2016).

In Section 4.7.2 we do add Scotti’s (2016) US uncertainty index and a Google trends

news uncertainty index (Castelnuovo and Tran, 2017), which are available starting in

2003 and 2004. Adding them does not impact the results.

The descriptions in Table 4.A.1 show that economic uncertainty can be proxied

in a variety of ways and from multiple sources. We identify five categories related

to how economic uncertainty is measured. The uncertainty measure can be based

on (A) volatility, (B) cross-sectional dispersion, (C) news, (D) surveys, and/or (E)

forecast errors. Combinations are possible, but most measures fit into one of these

categories. Table 4.1 shows our data set is well balanced as none of the categories

is overrepresented. The following subsections discuss each type and the associated

uncertainty measures.

Table 4.1: Uncertainty categories

Code Type Count

A Conditional volatility 4
B Cross-sectional dispersion 3
C News 3
D Surveys 4
E Forecast errors 4

The table presents the different types of uncertainty measures and the number of associated
uncertainty measures.
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4.2.1 Conditional volatility

The first type of uncertainty measure is a volatility estimate of some underlying,

typically a financial asset. Times of high conditional volatility are assumed to be

related to times of high uncertainty. Probably the best known uncertainty measure is

the VXO index (VXO), proposed by Bloom (2009). VXO is the implied volatility on

the S&P100 index, which is an estimate of conditional volatility using option prices

traded on the Chicago Board Options Exchange (CBOE).

Implied volatilities can be similarly computed for other assets, such as 10 year bonds

(TYVIX) and the WTI oil price (OVX). These are also obtained from the CBOE. We

include TYVIX to diversify the underlying assets and OVX because of the importance

of the oil price for the economy, see e.g. Hamilton (1983). The negative impact of oil

price volatility or uncertainty on economic activity has been shown empirically by for

example Ferderer (1996), Jo (2014) and Kellogg (2014). Kellogg (2014) uses implied

volatility – similar to OVX – and finds that this provides a better fit than GARCH or

historical volatility.7

The conditional volatility of financial assets is a combination of uncertainty and

risk aversion (Bekaert et al., 2013). To obtain a purer estimate of uncertainty, Chuliá

et al. (2017) suggest to remove the time-varying predictable component of the VIX

(CGU).8 The predictable component is estimated using a filter and hence available to

the forecaster at the time of prediction.

4.2.2 Cross-sectional dispersion

The second type of uncertainty measure utilizes micro data by estimating

cross-sectional dispersion in each time period for a set of individuals, forecasters or

firms. More dispersed outcomes suggest higher economic uncertainty.

Bloom (2009) proposes the cross-sectional standard deviation of stock returns

(CSDR) and, to adjust for industry effects, a version that is the mean over industry

7The measures are backfilled to increase the sample size. For the TYVIX, we use the implied
volatility estimate of (Choi et al., 2017), available on the websites of Philippe Mueller (https://
sites.google.com/site/philippebmueller/) and Andrea Vedolin (https://sites.google.com/
site/andreavedolin/). For the VXO and OVX, we use the underlying’s realized volatility calculated
using daily data from CRSP for the S&P500 stock returns and from St. Louis Fed’s FRED for WTI
oil returns, in line with Bloom (2009).

8Available at http://www.ub.edu/rfa/uncertainty-index/.
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specific cross-sectional standard deviations using SIC3 (CSDRsic). These measures are

computed with data from CRSP, for firms with at least 500+ monthly observations.

Bachmann et al. (2013) use forecast disagreement (FDISP) between respondents of

the Philadelphia Fed’s Manufacturing Business Outlook Survey (MBOS). The MBOS is

a monthly survey among large manufacturing companies in the Third Federal Reserve

District (Delaware, Pennsylvania and New Jersey) that dates back to May 1968.

Though the survey is regional, the results have been found to be relevant for predicting

national activity (Trebing, 1998; Schiller and Trebing, 2003). An advantage is that the

questions and composition of respondents is stable over time (Bachmann et al., 2013).

The measure is computed using responses to the question regarding the expectations of

general business conditions six months from now (the time of the survey). Respondents

can reply that they expect an “increase”, “no change” or “decrease.” Now define Frac+

and Frac− as the fractions of respondents that expect an increase (+) or decrease (-).

Then FDISP is computed as

FDISP =
√

Frac+ − Frac− − (Frac+ − Frac−)2. (4.1)

Missing responses are treated the same as a “no change” reply, in line with how the

Philadelphia Fed computes their diffusion index: Frac+ − Frac−.

The MBOS survey responses are subject to an annual revision to adjust for

seasonality. Bachmann et al. (2013) propose to use the seasonally adjusted (sa)

responses. Instead, we use the non-seasonally adjusted (nsa) responses to compute

FDISP, which ensures that it is available to the forecaster in real-time and not subject

to revisions. The nsa FDISP version is very similar to the sa version, with a correlation

of 0.88. Moreover, the R2 from regressing the nsa FDISP on monthly dummies is only

0.043 and none of the dummies are significant at a 5% level, suggesting that seasonal

patterns are only of minor importance.

4.2.3 News

The third type of uncertainty measure is based on news, such as newspaper articles or

Bloomberg announcements. In uncertain times, newspapers will publish (more) articles
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to report on the uncertainty and Bloomberg announcements of data will deviate more

from expectations.

Counting news articles as a way to measure uncertainty goes back to Alexopoulos

and Cohen (2009).9 They count New York Times articles that contain words related to

uncertainty and economic activity. The uncertainty measure of Baker et al. (2016) also

uses text based analysis and spans multiple newspapers. They perform a thorough and

labor intensive validity check of the methodology. This has become one of the most

popular uncertainty measures, partly because it is freely available and continuously

updated on a companion website.10

We include three versions of Baker et al.’s (2016) newspaper-based uncertainty

measure. First, the original newspaper-based economic policy uncertainty (EPU)

index, which is based only on the normalized number of articles in ten large

newspapers11 that contain a set of words related to economy, policy and uncertainty.

Second, the main version presented on the economic policy uncertainty website

(EPU+), which is a combination of the newspaper-based EPU index, tax code

provisions and forecaster disagreement in the SPF. Third, we include the monetary

policy uncertainty (MPU) index, a sub-index of EPU. The MPU index only counts the

articles that include additional terms related to monetary policy.12

The news based measures of Baker et al. (2016) are subject to light revisions because

there is a delay in posting all the articles online for some newspapers. The revisions

do not seem to be severe,13 and given that it is such a popular uncertainty measure,

we include it in our selection. The measures are included with a one month lag, which

should further alleviate this.

9Alexopoulos and Cohen (2015) is an updated version.
10Economic Policy Uncertainty website: http://policyuncertainty.com/index.html.
11USA Today, the Miami Herald, the Chicago Tribune, the Washington Post, the Los Angeles Times,

the Boston Globe, the San Francisco Chronicle, the Dallas Morning News, the New York Times, and
the Wall Street Journal.

12The additional terms are: federal reserve, the fed, money supply, open market operations,
quantitative easing, monetary policy, fed funds rate, overnight lending rate, Bernanke, Volcker,
Greenspan, central bank, interest rates, fed chairman, fed chair, lender of last resort, discount
window, European Central Bank, ECB, Bank of England, Bank of Japan, BOJ, Bank of China,
Bundesbank, Bank of France, Bank of Italy. See Baker et al.’s (2016) online appendix or http:

//policyuncertainty.com/categorical_terms.html.
13This is suggested by the wording used on the companion website: “With each monthly update,

data from the preceding two months may be revised slightly, as well. This is driven by the fact that
some online newspapers do not immediately update their online archives with all articles, leading to
slightly changing totals for the previous 1-2 months.”
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Newspapers article counts have the advantage of going back far in time. However,

subscriptions to newspapers have dropped recently and more information is consumed

on alternative (online) platforms. This makes the Google trends version (GTU)14

of Castelnuovo and Tran (2017) relevant. The monthly average of Scotti’s (2016)

uncertainty index (Scotti)15 is the final news type measure. It is a weighted average

of surprises from Bloomberg announcements that is computed in real-time. We use

the monthly average of daily observations. Unfortunately, GTU and Scotti are only

available from 2004M1 and 2003M5 onwards. Our main analysis employs a balanced

panel, but we experiment with including GTU and Scotti after five or ten years of data

is observed in Section 4.7.2. It does not impact our results or factor analysis.

4.2.4 Surveys

The fourth type of uncertainty measure is based on survey data. These are outcomes of

polls or surveys taken among consumers, professional forecasters or firms to gauge their

expectations for the coming period. It is a direct way of measuring the uncertainty

perceived by economic agents. FDISP and EPU+ fall into this category. FDISP is a

measure that depends on a survey among firms, and EPU+ partly depends on a survey

among professional forecasters.

Further, two of the selected measures use data from the Reuters/University of

Michigan Survey of Consumers. One of the questions asks consumers whether they

are planning to buy a vehicle in the next 12 months, and a follow-up question asks for

their motivation. Leduc and Liu (2016) propose to use the number of respondents that

replied “uncertain times” as reason for not buying a vehicle as measure of uncertainty

(LLv). Fajgelbaum et al. (2017) similarly define a measure that uses the question on

buying large household goods (LLh).

14Available at Efrem Castelnuevo’s website: https://sites.google.com/site/

efremcastelnuovo/home/publications
15Available at Chiara Scotti’s website: https://sites.google.com/site/chiarascottifrb/

data-and-other-materials.
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4.2.5 Forecast errors

The fifth type of uncertainty measure is based on the idea that uncertainty can

be inferred from the part of the data that is not forecastable ex ante. This is to

distinguish the uncertainty measure from ‘forecastable’ time-varying volatility. CGU

can be interpreted as this type of uncertainty measure. Chuliá et al. (2017) remove the

forecastable part from the VIX, thus cleaning it from the risk aversion and leaving the

uncertainty.

Jurado et al. (2015) construct some of the most well known uncertainty measures,

by removing the forecastable part of the data. They extract factors from a large panel

of macroeconomic and financial time series. For multiple horizons, they estimate a

forecasting model with the factors and their squares included as predictors, and a

stochastic volatility component. The uncertainty measure JLNm is then the common

variance of the errors across the panel of macroeconomic time series for a particular

forecasting horizon. Ludvigson et al. (2015) extend this to measures based on the

forecast error variance for the financial time series (JLNf), and a selection of real

activity variables (JLNr).16 We select the 12 month forecasting horizon version, which

is slightly smoother than the other horizons. This is also the version used by for

example Rossi et al. (2016).

Though the JLN measures are conditional on the information set at time t, Jurado

et al. (2015) do not use real-time data in their forecasting exercise to construct the

measures. It is therefore not, strictly speaking, available to the forecaster in real-time.

Jurado et al. (2015) argue that using real-time data is not possible, because they need

a large panel of time series and this would be limited in real-time. Further, they argue

that the revisions are updates on past events rather than news, and that the financial

time series in the panel (which are not subject to revision) capture timely events

sufficiently well. Also, the measures are aggregates over many variables. Therefore,

the effect of revisions should be small. Due to these arguments and because of the

unique category and popularity, we include the JLN measures.

16The JLN uncertainty measures are available from Sydney Ludvigson’s website: https://www.

sydneyludvigson.com/.
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4.3 Factor analysis

The comparison of uncertainty measures is thus far limited to comparing the pattern of

the different time series or computing correlations. Furthermore, it is usually limited

to a set of about four uncertainty measures. We analyze the commonalities for our

more extensive set of measures, and assess the underlying factor structure.

Figure 4.A.1 presents the time series of all 15 selected uncertainty measures.

They are largely similar in that all uncertainty measures peak around the time of

recessions. The correlation matrix in Figure 4.A.2 indicates multiple blocks of quite

strongly correlated measures. The survey based measures (excluding FDISP) are highly

correlated, as well as measures based on stock market data, such as the VXO, CGU

and JLNf. The correlations for FDISP and CSDRsic are small in general. They are

actually (weakly) negatively correlated with the consumer survey based measures. The

average correlation level seems quite modest and might be less than expected given

that they all aim to measure US economic uncertainty. A possible explanation for

the moderate correlations is that the different measures capture different aspects of

economic uncertainty.

To determine the commonality between the uncertainty measures more formally,

we extract a number of factors using principal components analysis. Table 4.1 presents

the factor loadings, and explained fraction of total variance for the first five principal

components. The first factor represents the average (economic) uncertainty, with a

slight emphasis on financial uncertainty. The loadings are all positive, and it explains

about 40% of the total variance, see Table 4.1. The factor level spikes during recessions

and periods of financial turmoil, such as Black Monday in October 1987, the Russian

financial crisis in 1998, and the Greek government debt crisis in 2012, see Figure 4.1.

Figure 4.2 shows the explanatory power for the first three recursively estimated factors.

It is interesting to observe that the explanatory power of the first factor increases during

recessions. Most measures increase during recessions, which is captured by the first

factor.

The second factor loads most heavily and positively on the consumer confidence

measures LLv and LLh and news based uncertainty measures EPU and EPU+, see

Table 4.1. This factor can be interpreted as a consumer/media uncertainty factor.
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Consumers rely on media outlets for economic news, which explains why they are

linked. It is interesting to see in Figure 4.1 that its value remains relatively high after

the recession has ended. Apparently, while fundamentals are recovering, the public is

still uncertain. This can be because the recovery still has to feed back to consumers,

e.g. in the form of new jobs – the unemployment rate typically lags other output

variables. Further, consumer spending probably lags as well, as their savings might

be depleted or at least diminished so they might want to save before spending again.

Alternatively, consumers and the media are simply not confident whether the recovery

has fully started or if it is simply just a coincidental good output number. This is

plausible, given that even the NBER’s Business Cycle Dating Committee has a delay

of several months in ‘officially’ calling the end of recessions.

The other factors lack a clear interpretation or explain only a single measure, see

Table 4.1. The third factor explains quite some variance of MPU and JLNr, but the

loadings are in opposite directions. The fourth factor explains most of FDISP, and the

fifth loads heavily on TYVIX and OVX.

There is a clear commonality between the measures. FDISP is somewhat different

from most measures though. This is clear from Table 4.1. The loading is small for

the first factor compared to the others, and less than 20% of FDISP’s variance is

explained by the first three common factors. The time series in Figure 4.A.1g confirms

its idiosyncratic behavior. FDISP displays less of a jigsaw pattern compared to the

others. The level does not suddenly increase before recessions, and it drops quickly

after recessions. It is hard to pinpoint the reason for FDISP’s difference, but it could

either be due its regional focus, because business surveys capture a unique part of

uncertainty, or – more mechanically – because it is restricted between zero and one,

which makes it harder to get the jigsaw pattern.

The principal component analysis results suggest the presence of two common

factors. Together, they explain almost 60% of the total variance and both have a

clear interpretation. We refrain from estimating the number of common factors k

using the large panel methods such as Bai and Ng (2002), Onatski (2010) and Ahn

and Horenstein (2013). The results are sensitive to the choice of kmax, the maximum

number of factors considered. The number of selected factors k also fluctuates heavily

depending on whether or not all measures were included. This is likely because our
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Table 4.1: Factor loadings and eigenvalues

k 1 2 3 4 5

VXO 0.340−0.084 0.081−0.052 0.211
TYVIX 0.232−0.065 0.129 0.249 0.691
OVX 0.233−0.074−0.064 0.266−0.612
CGU 0.305−0.192−0.075−0.330−0.029
CSDR 0.307−0.207 0.099−0.350−0.188
CSDRsic 0.201−0.301 0.346−0.196−0.115
FDISP 0.094−0.207 0.128 0.658−0.086
LLv 0.166 0.464−0.194−0.080−0.029
LLh 0.199 0.423−0.269−0.117 0.022
EPU+ 0.237 0.403 0.158 0.113 0.000
EPU 0.246 0.372 0.270 0.039−0.110
MPU 0.231 0.158 0.511 0.123−0.081
JLNm 0.321−0.114−0.381 0.178 0.061
JLNf 0.343−0.147−0.047−0.185 0.141
JLNr 0.286−0.123−0.453 0.214−0.048

R2 0.404 0.190 0.089 0.077 0.052

The table presents the loadings and the marginal R2, the fraction of total variance explained by the
x-th principal component, for the first five principal components on the sample 1986M4–2016M12.
See Table 4.A.1 for an explanation of the abbreviations.

Figure 4.1: Uncertainty factors
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The figure presents the time series of the first (solid blue line) and second factor (dashed orange line)
from the full sample principal components analysis. The gray bars are recessions as determined by
NBER’s Business Cycle Dating Committee.
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Figure 4.2: Explanatory power over time
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The figure presents the marginal explanatory power of the first (solid blue line), second (dashed
orange line) and third principal component (dash-dotted green line) of the uncertainty factor model,
estimated recursively.

cross-section is modest compared to the large N and T asymptotics underlying these

methods. Indeed, Bai and Ng (2002) find that their information criterion does not

work well in the case of min(N, T ) = 10, close to our setting. Additionally, the rules

of thumb for selecting kmax suggested by Bai and Ng (2002) and Ahn and Horenstein

(2013) result in kmax of zero to two, suggesting that the methods are not suitable for

our data set. Alternatively, testing the rank of a covariance matrix using rank tests

such as Cragg and Donald (1997) or Kleibergen and Paap (2006) relies on large N

or T asymptotics. But these rank tests are not suitable for covariance matrices, see

Donald et al. (2007) for more details. Instead, we select the number of factors ex ante

in our forecasting exercise. An advantage from an interpretation perspective is that

by keeping k fixed over time, we test against the same model – or number of factors –

across the sample.

4.4 Methodology

This section describes the target variables, the real-time forecasting setup, and explains

the quantile regression as well as the forecast evaluation.
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4.4.1 Coincident variables

Theory suggests a link of economic uncertainty with business cycle variables (Bernanke,

1983). Therefore, we are interested in forecasting output variables that are considered

by the NBER’s Business Cycle Dating Committee for dating peaks and troughs. The

four monthly coincident variables linked to the business cycle are industrial production

(IP), nonfarm payroll employment (EMP), manufacturing and trade industries sales

(MTS), and personal income excluding current transfer receipts (PIX).

In order to asses whether a forecaster is able to improve the accuracy of her

predictions, real-time data should be used. That is, the vintages with values that were

available to the forecaster at that time period. It is relevant, because macroeconomic

variables are reported with a lag and are subject to revisions. Relying on final vintage

data would misrepresent the forecaster’s information set, see e.g. Croushore (2006)

for more information on the importance of real-time data forecasting. Real-time

data for the four coincident variables is obtained from the data set of Chauvet and

Piger (2008).17 The data set is updated using the Philadelphia Fed’s Real-Time Data

Set for Macroeconomists (Croushore and Stark, 2001) for industrial production and

employment. The most recent vintages for sales and personal income are from St.

Louis Fed’s ALFRED.18

The target variables are defined as follows. Industrial production, employment,

sales, and personal income are all modeled as I(1) and we transform them into

17To be exact, it is an updated version of the Giusto and Piger (2017) data set, which updates the
Chauvet and Piger (2008) data set to 2013. Thanks to Jeremy Piger for uploading the raw data set
on his website: https://pages.uoregon.edu/jpiger/research/published-papers/.

18In particular, we use CMRMTSPL for manufacturing and trade industries sales. Three vintages
of MTS are missing (2013M10, 2014M01, and 2015M09), and we use vintages from the Conference
Board to fill post-1996 observations. For PIX, we follow Giusto and Piger (2017) by computing
the real personal income excluding transfer receipts as the difference between personal income (PI)
and personal current transfer receipts (PCTR), and dividing by the ratio of nominal (DSPI) to real
disposable income (DSPIC96). Three vintages are missing of PIX due to a large (NIPA) revision at
the end of 1995. Imputing the values as Chauvet and Piger (2008) is not possible because it requires
observations before and after the missing sample, from the same vintage. In fact, Chauvet and Piger
(2008) and Giusto and Piger (2017) skip the 1995M11–1996M1 vintages. Similarly, we delete the rows
corresponding to the missing values before estimation. Since it involves only three vintages, it costs
at most six observations. Additionally, there are five (additive) outliers in the level of PIX (1992M12,
1993M12, 2004M12, 2005M08, and 2012M12). For now, we simply ignore this and include them in the
estimation sample – it is probably difficult for the forecaster to identify outliers in real-time. However,
due to the AR model, the outliers also affect other forecasts. As an alternative, we impute the outliers
by the final vintage’s unconditional median growth rate. In both cases, the periods at which the
outliers are observed are excluded in the evaluation.
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annualized growth rates:

yh,t+h+1
t+h = (1200/h) log(Yt+h+1

t+h /Yt+h+1
t ), (4.1)

where Yv
t is the original variable at time t from vintage v. If h = 1, we drop the h

notation, so y1,vt = yvt .

4.4.2 FRED-MD

As benchmark, we include factors from a large set of macroeconomic variables to

capture what is already in the forecaster’s information set. In particular, we consider

the FRED-MD data set (McCracken and Ng, 2016).19 The FRED-MD covers a large

number of macroeconomic variables that closely resembles the so-called Stock-Watson

data set, which is typically used to represent a big data setting in macro forecasting.

Further, the factors from the set have been shown to hold predictive power for the

output variables, see e.g. Stock and Watson (2002a).

An advantage of the FRED-MD data set is that it is freely available, regularly

updated, and maintained by the St. Louis Fed, whereas the Stock-Watson data set

contains proprietary data. A downside is that the data vintages are available only from

1999M08, leaving us with a limited sample. Instead, we use the latest vintage at the

time of accessing the data set.20 The results can loosely be thought of as providing an

upper bound on using real-time FRED-MD data.

4.4.3 Real-time forecasting design

The aim is to forecast output in real-time, emulating reality as close as possible.

Therefore, we use the ‘real-time vintage’ approach (Koenig et al., 2003; Clements and

Galvão, 2013), instead of using end of sample data. That is, we use the first release

for estimation, matching the release maturity of the leading observations on the left-

19Available at Michael McCracken’s website: https://research.stlouisfed.org/econ/

mccracken/fred-databases/.
20The 2017M09 vintage.
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and right hand side,

yh,t+h+1
t+h = βh0 +

p∑
j=1

βhj y
t+1
t−j+1 +

m∑
j=1

γhj ft−j+1 + εh,t+h+1
t+h , (4.2)

for t = 1, . . . , T − h, where yh,vt is the horizon h observation of the target variable at

time t from vintage v, and ft is the vector of k factors at time t. The lags on the right

hand side are from the same vintage as the first lag, and can be lightly revised. For

example, the second lag will be the second release of that observation. The factors

are not revised, and therefore denoted without a vintage superscript. Financial data

is available instantly, but this is not the case for the survey data or the forecast error

based measures. To be consistent and to ensure that the information is available, we

use lagged values for all uncertainty measures.21

4.4.4 Models

We consider the following forecasting models. First, as benchmark, we consider an

autoregressive (AR) model,

yh,t+h+1
t+h = βh0 +

p∑
j=1

βhj y
t+1
t−j+1 + εh,t+h+1

t+h , (4.4)

with 0 ≤ p ≤ 6 lags. The number of lags p is selected recursively using BIC. This

model was usually better than if p is fixed, but results are similar if the lag length is

set at three or four for horizons shorther than a year, and zero to one lag for horizons

longer than or equal to a year.

Second, the predictive ability of each uncertainty measure is considered individually

yh,t+h+1
t+h = βh0 +

p∑
j=1

βhj y
t+1
t−j+1 +

m∑
j=1

δhi,jzi,t−j+1 + εh,t+h+1
t+h , (4.5)

21Equation (4.2) is slightly different for MTS, because there is a two month rather than a one month
reporting lag. The equation for MTS becomes

yh,t+h+2
t+h = βh

0 +

p∑
j=1

βh
j y

t+2
t−j+1 +

m∑
j=1

γh
j ft−j+1 + εh,t+h+1

t+h , (4.3)

where we keep the same timing for the factors as in (4.2).
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where zi,t is the i-th uncertainty measure at time t, and 0 ≤ p ≤ 6, and m = 1. The

maximum number of lags m is in line with literature on diffusion forecasting, see e.g.

Stock and Watson (2002a) or McCracken and Ng (2016). The number of lags p is

selected recursively using BIC.

Third, we consider the factor model

yh,t+h+1
t+h = βh0 +

p∑
j=1

βhj y
t+1
t−j+1 +

m∑
j=1

γhj ft−j+1 +
m∑
j=1

φhjgt−j+1 + εh,t+h+1
t+h , (4.6)

where ft is the vector of k uncertainty factors at time t, and gt is the vector of r

FRED-MD factors at time t, m = 1, and 0 ≤ p ≤ 6, again selected using BIC.

The number of FRED-MD factors r is estimated using the Bai and Ng (2002) type 2

information criterion. We consider varieties where either k and/or r are non-zero. This

allows us to evaluate the forecasting power of uncertainty factors in isolation, as well as

additional to factors from a large set of macroeconomic variables that is known to have

been successful in predicting output, see e.g. Stock and Watson (2002a). Following

the results in Section 4.3, we consider factor models with a fixed number of one up

to three factors. This allows us to assess the relevance of an additional factor. The

forecast results presented in the following sections are based on m = 1 lag. Results

are very similar when the lag of factors/measures 1 ≤ m ≤ 3 is selected recursively (in

combination with p) using BIC.

Sample

Forecasts are constructed by recursively estimating the models. That is, at each time

period t, we first estimate the factors and models – and apply model selection – using

data from 1986M04 to time t− h. Earlier (initial) observations are included if the lag

order is larger than one. We start in 1986M04 because that is the first period where

at least three months of data is available for all variables. Recursive estimation is

in line with other diffusion forecasting literature, see e.g. Stock and Watson (2002a)

and McCracken and Ng (2016). Using all available information improves convergence

of the factor estimates. Moreover, results using a rolling window do not indicate the

presence of a structural break, while the forecasting results deteriorate in some cases,

see Section 4.7.4.
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Second, the parameter estimates and time t observations are used to construct the

forecast for the t+ h value yh,t+h+1
t+h . We imagine a forecaster, who starts forecasting in

January 1991. The first forecast is made for period 1998M12 + h, and the final one for

2016M12, for the horizons of 1 (nowcast), 3, 6, 12, and 24 months. To clarify, the first

forecast is constructed using data up to and including 1998M12, so using the vintages

available in 1999M01 (1999M02 for sales), to predict the period 1998M12 + h. This

yields a sample of 152 initial in-sample and 217−h out-of-sample observations.

4.4.5 Quantile forecast

Economic uncertainty is expected to mainly affect the left tail of the distribution of

the coincident variables. Additional to forecasting the mean, we therefore also forecast

quantiles, with a focus on the lower tail quantiles. Following Giglio et al. (2016), we are

interested in the quantiles on the shocks rather than the growth rates. The shocks are

computed based on the AR(p) model (see Equation (4.4)), using real-time vintage data

as in Equation (4.2). Then we define the first release residuals ûh,t+h+1
t+h as the shocks,

which are used in estimation of the quantile forecasting models. When FRED-MD

factors are included as predictors, the results change quantitatively, but there is little

difference qualitatively.

To evaluate the quantile forecast we use the prebenchmark residuals as actuals,

which we define as

ûh,PBMt+h = yh,PBMt+h − (β̂h0 +

p∑
j=1

β̂hj y
t+1
t−j+1), (4.7)

with p the same value as in Equation (4.4) and β̂hj estimated from the model in

Equation (4.4). This is consistent with how we define the actuals for the point forecasts

in Section 4.4.3. Because the estimated (mean) model using first vintage data is an

efficient estimate of the actual mean (Koenig et al., 2003), we can use it do ‘demean’

the actuals too to get the actual shocks. So the mean is consistent across estimation

and evaluation.

Quantile regression is a semiparametric method that dates back to the seminal

work by Koenker and Bassett (1978). The estimate of α-quantile q for data set y is
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the solution to the optimization

Qα(y) = arg inf
q

E[ρα(y − q)], (4.8)

where ρα(x) =
(
α − 1(x ≤ 0)

)
x the tick loss function, and q can be a linear function

of (exogenous) regressors.

We consider the α-quantile forecast

Qα(ûh,t+h+1
t+h |Ωt) = ψhα,0 +

m∑
j=1

ψh
α,jwt−j+1, (4.9)

with Ωt the information set at time t, and wt the regressors at time t with 1 ≤ m ≤

3. As regressors, we consider the uncertainty measures individually, the uncertainty

factors, and FRED-MD factors, equivalent to regressors in the models for the mean

(Section 4.4.4). The historical quantile estimate q̂α,t, using data up to and including

time t, is the benchmark. For values of α, we focus on 0.2, but we also check results

for 0.1, 0.5 – the median – and 0.8. The in-sample analysis does cover the full range of

quantiles, from 0.05 up to 0.95. The parameters ψh
α,j are estimated using the interior

point algorithm. For a review on quantile forecasting, see Komunjer (2013).

Adrian et al. (2018) present an easy and intuitive way to move from quantile

forecasts to a density forecast, by matching the quantiles with those of a skewed

Student’s t, or skew-t, density at each time period. It is a natural way to allow for

nonlinearity and asymmetry. We are looking into extending our analysis to include

this.

4.4.6 Evaluation

A question with real-time data is which values to use as ‘actuals’ to evaluate the

forecasts. Preferably, these are the true values that are no longer revised. This is

impossible however, because of benchmark revisions. For example, due to a change

of the index year, annual updating following the consensus numbers, and redefinitions

or measurement changes. Broadly, there are three alternatives. One option is to use

the x-th release observations yh,t+h+xt+h for some x ≥ 1. Many empirical studies use

x-th release data to evaluate their forecasts, see e.g. Romer and Romer (2000), Groen
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et al. (2013) and D’Agostino et al. (2013). Selecting x requires some knowledge on

the revision process. For quarterly data the second revision (third release) is often

used because this is usually the ‘final’ revision from the statistical agency. A second

option is to use the final vintage observations yh,T+1
t+h . The final vintage is the most

recent publication of the numbers. For example Koenig et al. (2003) and Clements

and Galvão (2013) use the vintage published about a year and a half after the end

of their sample. An advantage is that it incorporates the latest available information

and are currently closest to the true values as a single time series. The third option

is to use the prebenchmark observations yh,PBM
t+h as actuals. Prebenchmark values are

the final observation before the first benchmark after a first value for a given date

has been reported. Some prebenchmark observations are subject to regular revisions,

while x-th release and final vintage observations are subject to benchmark revisions. In

contrast to regular non-benchmark revisions, benchmark revisions can and should not

be predictable to the forecaster (Croushore, 2006). The actuals should represent the

forecasters’ target, rather than be closest to the current truth. Since the prebenchmark

values are most consistent with what the forecaster aims to predict, we opt to use those

as actuals.22

We select the following measures to evaluate the performance. The relative forecast

accuracy of the mean forecasts is evaluated using the mean squared prediction error

(MSPE). Similarly, the quantile forecasts are evaluated using the mean tick loss (MTL).

Statistical significance is tested using one-sided Diebold and Mariano (1995) tests,

where we test the null of equal predictive accuracy, versus the alternative of smaller

loss compared to the benchmark model. Since the Diebold-Mariano test is defined for

a general loss function, it can be used to test the significance for both the mean and

quantile forecasts, with quadratic loss for the mean and tick loss for the quantiles.

22Benchmark revision dates are from the documentation of Philadelphia Fed’s Real-Time Data
Set for Macroeconomists (Croushore and Stark, 2001), from the Federal Reserve Board of Governors
(https://www.federalreserve.gov/releases/g17/), from the Bureau of Labor Statistics (https:
//www.bls.gov/web/empsit/cestn.htm#section7), and from the Bureau of Economic Analysis
(Page 1-10, note 22, of the November 2017 edition of the NIPA handbook, https://www.bea.gov/
resources/methodologies/nipa-handbook). Further, we check for revisions in the data by looking
at non-zero revisions of the sixth up to the twelfth release per vintage to identify remaining revisions.
Though the reporting of revisions is quite accurate, we do identify some additional ones, mostly in
the in-sample period.
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Quite some econometric difficulties arise because of our setup of comparing nested

models, estimated using an expanding window with real-time data, see Clark and

McCracken (2013) for an overview. Clark and McCracken (2009) derive the limiting

distribution of tests of equal predictive accuracy when data is subject to revisions.

Their setting ignores benchmark revisions, which is in line with our data as we

use pre-benchmark observations as evaluation values. However, their test is for

comparing predictive accuracy in population, while we are interested in the finite

sample performance. We follow the arguments by Faust and Wright (2013), as do

Groen et al. (2013), by relying on the Monte Carlo evidence presented by Clark

and McCracken (2013). Their simulation study shows that the Diebold-Mariano test

statistic with standard normal critical values and the corrections by Harvey et al. (1997)

yields satisfactory size, even for nested models.23 Clark and McCracken’s (2013) DGP

ignores revisions, so we should still be careful with making strong statements.

For the quantile forecasts, we are also interested in testing absolute performance:

whether the coverage is close what is expected from the quantile level. The most

popular tests of absolute accuracy of quantiles are the Christoffersen (1998) tests.

They test the unconditional coverage, dependence and the conditional coverage of the

quantile forecasts by computing the first order Markov probabilities of a violation.

Additionally, we consider Engle and Manganelli’s (2004) dynamic quantile (DQ)

test. It tests the coverage conditional on Ωt−1, the information set at time t−1. Define

et = 1(yt ≤ qt)− α the ‘demeaned’ hits, and the vector of k instruments xt, which are

in the information set at time t − 1. It may contain qt or its lags and lags of et for

example. The null hypothesis is E[utxt] = 0. The out-of-sample DQ test statistic is

given by

DQOOS =
[
(
∑
t

etx
′
t)(
∑
t

xtx
′
t)
−1(
∑
t

etxt)
]
/[α(1− α)], (4.10)

23Harvey et al. (1997) propose two corrections to the Diebold-Mariano test statistic. First, they use
the knowledge that the forecast errors from h period ahead forecasts follow an MA(h) structure, to
argue the use of a rectangular window in calculating the long-run variance of the loss difference. This
has the downside that the resulting variance estimate is not guaranteed to be positive semi-definite.
In those few cases that it occurs, we use the Newey-West variance estimator with a window of 1.5
times the forecast horizon. Second, to correct the size at longer horizons, the test statistic is tHLN =(
1+T−1

p (h−1)+T−2
p h(h−1)

)1/2
tDM, where Tp is the number of out-of-sample observations and tDM

the Diebold-Mariano test statistic.
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with α the quantile level. DQOOS follows a χ2 distribution, with k degrees of freedom.24

We use xt = (1, qt). This is equivalent to a Wald test on a quantile version of the

Mincer-Zarnowitz regression.

4.5 Mean forecasting results

This section presents the mean forecasting results. The MSPEs relative to the

benchmark AR(p) model (RMSPE) are presented for various horizons in Figure 4.1 and

for subsamples of the three month forecasting horizon in Figure 4.2.25 Filled symbols

indicate significant predictive power according to a one-sided Diebold-Mariano test

against the AR(p) benchmark at the 5% level.

First, consider the performance of the individual uncertainty measures – the

gray circles. The uncertainty measures do not hold consistent significant predictive

power for the coincident variables across the horizons. There is some promise in

forecasting employment at the short horizon, with significant gains from 6% (FDISP,

h = 1) to 28% (JLNm, h = 3) compared to the benchmark, and modestly so

for sales at the short horizon, with gains up to a 5% significance level. Also, the

majority beats the benchmark at the medium range for personal income, though not

significantly so at the 5% level. Industrial production is hardest to predict using the

uncertainty measures. Going into more detail, Table 4.B.1 shows that including JLN

measures yields significant gains at shorter horizons for all variables but industrial

production. The financial measures VXO, and OVX and CGU perform reasonably well

for employment and personal income forecasting up to a year ahead. Other measures

with some modest success are FDISP for sales and employment, and the measures based

on the University of Michigan Survey on Consumers in forecasting personal income at

the medium range.

Including uncertainty factors rather than uncertainty measures helps in the sense

that the RMSPEs are smaller compared to most models with a single uncertainty

24The equation for DQOOS in Engle and Manganelli (2004) contains a small typo. The right hand
side is incorrectly divided by the forecasting sample size. Manganelli’s code implements the correct
version, available at http://www.simonemanganelli.org/Simone/Research.html. Oddly, it seems
like it has not been noticed, because Komunjer (2013) copies the mistake.

25To preserve space, we plot the RMSPEs rather than include tables. The tables can be found in
Section 4.B.
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measure across the forecasting horizons, but it does not yield significant gains. The

RMSPEs are close to those measures that it loads most heavily on: the JLN measures

and the financial measures. Adding a second uncertainty factor decreases performance

at the short horizon, increasing the RMSPE by about 3 percentage points on average,

but increases the performance at the longer horizons reducing the RMSPE by 5 to 10

percentage points in many cases. It yields modest significance gains (at the 10% level)

in forecasting employment and personal income at multiple horizons. Interestingly, the

coefficient of the second factor is not as expected. It is not significantly different from

zero at the shorter horizons, and significantly positive at longer horizons. This implies

that if the consumer/media uncertainty increases, economic output is projected to

increase. It does seem to help mainly at the longer horizons, suggesting a reversal effect.

Alternatively, because the factor remains elevated after recessions (see Figure 4.1), it

might be used statistically to capture the recovery period after the trough, the turning

point at the end of a recession. An additional third factor leads to bad performance at

longer horizons and no significant gains at the shorter horizon. Including at most two

factors is consistent with results in the Section 4.3.

Turning to the FRED-MD factor model, Figure 4.1 shows that it is a tough

benchmark to beat. The RMSPEs are lower than most or all models with uncertainty

measures, with values ranging from 0.52 (for PIX at h = 12) to 1.074 (for EMP

at h = 24). The FRED-MD factors hold predictive power over the sample period,

mostly for industrial production at the shorter horizon, see Figure 4.1a. There is also

significance at the 10% level for a three month forecasting horizon. For other variables

and horizons, the gains are mostly at the medium term horizon. The uncertainty factor

models do outperform the FRED-MD factor models for employment, especially at the

one month and longer horizons. The FRED-MD models cannot beat the benchmark

here, with RMPSEs of 1.022 (h = 1) and 1.074 (h = 24). Combining the FRED-MD

factors and the first two uncertainty factors does not seem to lead to superior forecasts

over the other factor models, but is close to the best model. Sometimes it is much

worse, such as at the 24 month horizon, see Figure 4.1.

For all considered models, gains in RMSPE come largely from beating the

benchmark model during recessions, see Figure 4.2. The MSPE in those periods is

in many cases less than 40% to 50% of the benchmark’s loss. This is in line with
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previous literature using FRED-MD factors, see e.g. McCracken and Ng (2016). It is

also visible from inspecting forecasts during recession periods in Figure 4.B.1. Models

with FRED-MD and uncertainty factors are able to match the depth of the recession.

This translates to large gains during these periods compared to the other models, in

particular for the FRED-MD factor models, see the cumulative sum of squared errors

differential in Figure 4.B.2.

Overall, the results show that the forecasting power of uncertainty measures for the

mean of the coincident variables is limited – though there is some promise in forecasting

employment, and perhaps personal income.

Figure 4.1: RMSPE by forecast horizon
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(b) Employment
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(c) Sales
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(d) Personal income
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The figures present the relative mean squared prediction error (RMSPE), with the AR(p) model
as benchmark, for multiple forecast horizons (in months). Gray circles are models with a single
uncertainty measure, blue down-pointing triangles are models with two uncertainty factors, orange
up-pointing triangles are models with FRED-MD factors, and green squares are models with both two
uncertainty factors and FRED-MD factors. Filled symbols indicate significance of the one-sided DM
test against the AR(p) model at the 5% significance level.
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Figure 4.2: RMSPE by evaluation period, h = 3
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(c) Sales
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(d) Personal income
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The figures present the relative mean squared prediction error (RMSPE), with the AR(p) model
as benchmark, for multiple evaluation periods. The forecast horizon is three months. Gray circles
are models with a single uncertainty measure, blue down-pointing triangles are models with two
uncertainty factors, orange up-pointing triangles are models with FRED-MD factors, and green
squares are models with both two uncertainty factors and FRED-MD factors. Filled symbols indicate
significance of the one-sided DM test against the AR(p) model at the 5% significance level.

4.6 Quantile forecasting results

The previous section shows that the out-of-sample forecasting power is limited when we

consider a linear relationship for the mean. Most studies consider a linear relationship

between economic uncertainty and output using a simple VAR, though some look at

a nonlinear relationship. For example, a smooth transition model where the state

depends on uncertainty (Jones and Enders, 2016), or only extreme values of the
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uncertainty index (Bloom, 2009).26 Still, these studies focus on an impact on the

mean rather than other parts of the density of output, such as particular quantiles.

Our in-sample quantile estimates show that there is substantial evidence that

a linear relationship does not describe the relationship well, see Figure 4.1.27 In

particular, the impact of the first uncertainty factor is stronger at the lower quantiles

and is close to zero at higher quantiles. It holds for all coincident variables, except

personal income. The nonlinear effect is smaller at the one month horizon, but

clear at the twelve month horizon. This is in line with how systemic risk affects

quantiles of output shocks (Giglio et al., 2016). Therefore, we investigate the

real-time out-of-sample predictive power of uncertainty measures for various quantiles

of industrial production and employment shocks, with a focus on the lower quantiles.

The predictive performance is measured in relative MTL (RMTL), where values

smaller than one indicate a smaller loss than the benchmark historical quantile. The

results are presented for multiple horizons in Figure 4.2, for the three month horizon

across subsamples in Figure 4.4, both for the quantile α = 0.2. Figure 4.3 further

presents full sample results for the three month horizon across different quantile levels.28

All individual uncertainty measures reduce the mean tick loss for employment. In

particular the JLN measures, the financial measures, FDISP and MPU yield strongly

significant gains – the same measures that provided gains in mean forecasting in the

previous section. The gains are mostly in the range of 1% to 9% reduction in mean

tick loss compared to the historical quantile. The improvements are mostly for the

short horizon, though it is difficult to discern a clear consistent pattern across forecast

horizons. FDISP and the JLN measures consistently improve significantly upon the

benchmark, with gains from 7% at the shorter horizon up to 35% at h = 12 for JLN

in predicting employment, but it is somewhat mixed for other measures.

Neither the consumer confidence measures LLv and LLh, nor the newspaper based

EPU(+) measure seem to provide much useful information in forecasting quantiles of

26Bloom (2009) defines uncertainty shocks as observations that are more than four standard
deviations larger than the mean.

27Full sample estimates, for the period 1986M04–2016M12. Following Adrian et al. (2018), the
confidence intervals are based on bootstraps under the null hypothesis of a linear model, using 1000
bootstrap samples.

28As with the mean forecasting results, we plot the RMTL to preserve space. The tables can be
found in Appendix 4.C.
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Figure 4.1: In-sample quantile estimates for first factor
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The figure presents the in-sample quantile estimates for the full sample of the first uncertainty factor
on industrial production, employment, sales, and personal income, at the three month forecasting
horizon. The shaded areas are bootstrapped confidence bounds at the 90% and 95% level for a linear
model based on 1000 bootstrap samples.

output shocks, see Table 4.C.1. RMTLs range from 0.835 to 1.085 and fail to beat the

benchmark 41 out of a 100 times. Still, adding the second consumer/media confidence

factor provides significant gains at the longer horizons for employment, and sizable

gains of about 5% (h = 12) to 10% (h = 24) for other variables.

The results in forecasting sales are disappointing at the α = 0.2 quantile level,

except for JLNm and JLNf. If we move further in the left tail, the results significantly

improve for forecasting sales, see Figure 4.3c. All but one beat the benchmark, many by

more than 10%. There are some gains in personal income but it is hard to distinguish a

pattern across the horizons. TYVIX, OVX and CSDRsic yield strong significant gains

when forecasting personal income, but only at the one month horizon.
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The uncertainty factor models perform quite well, in line with the uncertainty

measures. They outperform the historical quantile consistently, except at the long

horizon for sales and personal income, see Table 4.C.1. The two factor model yields

strongly significant gains for employment across the horizons, with gains up to 21%.

For other variables the RMTL are smallest in magnitude at the three to twelve month

horizon. Most of the gains are from the recession periods, which are not captured by

the historical quantile, see Figure 4.4, Figure 4.C.1 and Figure 4.C.2. Furthermore, the

forecasting power of the uncertainty factor models is better than most of the individual

uncertainty measures. Only the JLN measures match or outperform the factor models’

performance. The one factor model significantly reduces the mean tick loss for shorter

horizons up to a 12 month horizon. Adding a second factor further increases the

performance. Separate DM tests comparing the quantile forecasts of the uncertainty

factor model with two factors versus one factor show that there are significant gains in

tick loss of adding the second factor. The gains are mostly at the longer horizons of

12 and 24 months. There are also significant gains for employment at the one month

horizon.

Comparing across quantile levels, we observe in Figure 4.3 that adding uncertainty

measures or factors yields smaller average tick losses relative to the benchmark as you

move further into the left tail. Even quantile forecasts of industrial production improve

when α = 0.1. The RMTLs for α = 0.1 are 0.84 (IP), 0.75 (EMP), 0.84 (MTS) and

0.94 (PIX). These reductions in tick loss are significant for all but personal income,

and strongly significant for employment. Vice versa, forecasting the upper quantile

using uncertainty factors is not recommended, with the uncertainty factor models and

most uncertainty measures resulting in RMTLs larger than one. The results for PIX

are mixed, which is not surprising given that we did not find evidence of non-linearity

in our forecasting results. Some measures yield sizable tick loss gains at the lower

quantiles. It is a bit puzzling that more measures yield significant gains at the upper

quantile (α = 0.8) though. Also, the relatively high RMTL in Figure 4.4 indicate a

lack of predictive power of economic uncertainty for downward movements of personal

income.

The results provide substantial evidence that the uncertainty factors contain

information that is not in the FRED-MD factors that is useful for predicting quantiles
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of output. In particular gains for employment are large and strongly significant. This is

in line with the in-sample estimate of a more negative coefficient of the first factor at the

lower quantiles in Figure 4.1. Changing the perspective, adding FRED-MD factors to

uncertainty factors deteriorates the forecasting performance at most horizons, perhaps

due to extra parameter uncertainty. This suggests that the FRED-MD factors capture

level movements – mostly at the shorter horizon, while uncertainty factors are related

to downside risk.

Figure 4.2: RMTL by forecasting horizon, α = 0.2
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(b) Employment
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(c) Sales
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(d) Personal income
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The figures present the relative mean tick loss (RMTL), with the historical quantile as benchmark,
for multiple forecast horizons. The quantile level is α = 0.2. Gray circles are models with a single
uncertainty measure, blue down-pointing triangles are models with two uncertainty factors, orange
up-pointing triangles are models with FRED-MD factors, and green squares are models with both two
uncertainty factors and FRED-MD factors. Filled symbols indicate significance of the one-sided DM
test against the historical quantile at the 5% significance level.

Although our main goal is to improve upon the benchmark, the quantile forecasts

ought to have coverage close to the expected value. The (unconditional) coverage is
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Figure 4.3: RMTL by quantile level, h = 3
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The figures present the relative mean tick loss (RMTL), with the historical quantile as benchmark, for
multiple quantile levels α. The forecast horizon is three months. Gray circles are models with a single
uncertainty measure, blue down-pointing triangles are models with two uncertainty factors, orange
up-pointing triangles are models with FRED-MD factors, and green squares are models with both two
uncertainty factors and FRED-MD factors. Filled symbols indicate significance of the one-sided DM
test against the historical quantile at the 5% significance level.

good at shorter horizons, but deteriorates at longer horizons, see Table 4.1. The null

of correct coverage is more frequently rejected – at the 5% level – at longer horizons

as indicated by the markers in the table. This is consistent across target variables and

quantile levels, see Table 4.C.4.

For forecasting horizons shorter than a year, the unconditional coverage is good,

and so is the efficiency of the forecasts, as given by the DQ test results in Table 4.1.

We would expect dependency in the violations for the historical quantile, but the

FRED-MD factors and uncertainty measures or factors do not provide much better

results. The null of correct conditional coverage is rejected at the 5% level at a one
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Figure 4.4: RMTL by evaluation period, h = 3 and α = 0.2
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The figures present the relative mean tick loss (RMTL), with the historical quantile as benchmark, for
multiple evaluation periods. The forecast horizon is three months and the quantile level is α = 0.2.
Gray circles are models with a single uncertainty measure, blue down-pointing triangles are models
with two uncertainty factors, orange up-pointing triangles are models with FRED-MD factors, and
green squares are models with both two uncertainty factors and FRED-MD factors. Filled symbols
indicate significance of the one-sided DM test against the historical quantile at the 5% significance
level.

year horizon for all models, due to dependence in the quantile violations. They are

clustered around recessions, with hit rates up to 0.7 and 0.8 during those periods.

Figure 4.C.1 shows that the quantile forecasts are late for the recessions, but also miss

the (size of the) recovery period at the 12 month horizons. This recovery peak is much

smaller for the three month horizon, see Figure 4.C.1.

Not even the historical quantile is able to capture the unconditional coverage well

at longer horizons, with hit rates often higher than 30%. This is partly due to that

the data is not described well by the AR(p) model to get the shocks at the longer
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horizons. The smoothness at these longer horizons (due to the overlapping periods

in the growth) is hard to capture with higher frequency variables and a limited lag

structure. A possible solution might be to allow for more lags. Additionally, the

in-sample period contains only one recession, while the out-of-sample period contains

two recession periods, including the financial crisis which is more severe compared

to the previous ones. This makes it very challenging for quantile forecasting models

to perform well. Though expanding the information set with economic uncertainty

measures reduces the tick loss, the results show that it is difficult to accurately forecast

quantiles.

4.7 Robustness checks

To confirm the robustness of our results, we repeat the factor analysis and real-time

forecasting exercise using (i) a longer sample but smaller set of uncertainty measures,

(ii) an unbalanced panel to include Scotti and GTU, (iii) a sample excluding the JLN

and EPU measures such that only variables strictly available in real-time are included,

and (iv) using a rolling rather than an expanding window. Detailed results are not

reported, but are available upon request.

4.7.1 Longer sample

The current sample is relatively modest with the first forecast made in 1999M01. This

choice is a trade-off between number of measures, and sample length. If we favor

the sample length, we can start the in-sample period in 1976M11, adding almost 10

years of data. It is possible to go back even further in time for industrial production

and employment – starting in 1964M11. The first forecast is made in 1988M01 for

sales and personal income. For industrial production and employment, we start in

1977M01. The longer sample does reduce the available number of measures to nine: the

volatility measures VXO and CGU, the cross-sectional measures CSRD and CSDRsic,

the business forecast dispersion FDISP, the news paper based EPU, and the three

JLN measures. Starting in 1964M11 excludes FDISP from this list. There is still a

reasonable balance across the measure types.
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The principal component analysis yields one common factor, which explains 51.5%

of the total variation. It can be interpreted as average economic uncertainty and the

dynamics are similar to the one from the shorter panel. The explanatory power is

stable over time, but slightly increases during the financial crisis. The second factor

of media/consumer uncertainty is not found in this data set. This is not surprising,

because EPU is the only media or consumer uncertainty measure in the long panel.

The forecasting results for the mean are worse than for the short panel. We find

some gains at the one month horizon, but the RMSPEs are above one for horizons of

six months and longer. The results are also worse for personal income. The gains are

still positive, but no longer significantly so. The gains come mostly from the financial

crisis period.

The quantile forecasts indicate that the gains for the one factor model are

comparable to those for the short panel. Further, if we split the performance in ten year

periods, the gains are consistent across these periods. The magnitude of gains varies

though, as the quantile forecasts are mainly improved during recessions. For industrial

production, the historical quantile is actually better than the one factor model, again in

line with the results for the shorter panel. For sales, the forecast accuracy for the lower

quantiles and a short horizon improves upon the shorter sample in terms of statistical

significance. Overall, the results for the long panel confirm the general findings for the

shorter but wider panel.

4.7.2 Unbalanced panel

We can expand the set of uncertainty measures if we allow for an unbalanced panel

as input for the factor analysis. By treating the unobserved values as missing, it is

straightforward to use an EM algorithm to estimate the factors (Stock and Watson,

2002a). The Scotti uncertainty measure and the Google trends based GTU index are

included in the data set after five years of data is available.

The factor structure is largely unchanged, and the interpretation is not affected.

Similarly, the forecasting results do not change much. Quantitatively, the results are

very close, though using the balanced panel seems to yield slightly smaller losses.

The robustness in this unbalanced panel setting is perhaps not surprising, given that



Table 4.1: Hit rates by forecast horizon

Horizon 1 3 12 1 3 12

Industrial production Sales

HQ 0.236†§‡ 0.252† 0.302 0.167† * 0.215† * 0.224†
Factor models
r = 1 0.259 §‡* 0.266 * 0.327 0.181†§‡* 0.201† * 0.244†
r = 2 0.255 §‡* 0.285 0.395 0.185†§‡* 0.224† * 0.298
r = 3 0.241†§‡* 0.224† * 0.361 0.167†§‡* 0.192† * 0.283
FRED-MD 0.236†§‡* 0.234† * 0.327 0.162†§‡* 0.234† 0.259
FRED-MD and r = 2 0.227†§‡ 0.229† * 0.459 0.171†§‡* 0.243† 0.342
Uncertainty measures
VXO 0.259 §‡* 0.276 0.346 0.181†§‡* 0.229† * 0.249†
TYVIX 0.236†§‡ 0.238† 0.298 0.190†§‡* 0.252† * 0.263
OVX 0.255 §‡ 0.234† * 0.283 0.153†§‡* 0.206† * 0.254† *
CGU 0.250†§‡* 0.262 * 0.302 0.190†§‡* 0.262 0.283
CSDR 0.264 § 0.257 * 0.351 0.190† ‡* 0.262 * 0.293
CSDRsic 0.232† ‡ 0.234† 0.356 0.185†§‡* 0.243† * 0.361
FDISP 0.255 §‡* 0.238† * 0.332 0.185†§‡* 0.243† * 0.263 *
LLv 0.222†§‡* 0.229† * 0.298 0.153†§‡* 0.196† * 0.259
LLh 0.232†§‡* 0.229† * 0.298 0.153†§‡* 0.192† * 0.244†
EPU+ 0.264 §‡ 0.243† * 0.327 0.157†§‡ 0.201† 0.288
EPU 0.236†§‡* 0.206† * 0.302 0.181†§‡* 0.201† * 0.244†
MPU 0.269 § 0.248† * 0.332 0.213†§‡* 0.229† * 0.234†
JLNm 0.250†§‡* 0.243† * 0.249† * 0.111 § 0.168† * 0.229†
JLNf 0.241†§‡* 0.276 0.317 0.185†§‡* 0.220† * 0.244†
JLNr 0.255 §‡* 0.234† * 0.298 0.153†§‡* 0.196† * 0.224† *

Employment Personal income

HQ 0.181† * 0.187† * 0.263 0.148† * 0.202† * 0.256
Factor models
r = 1 0.148†§‡* 0.196† * 0.278 0.148†§ * 0.226† * 0.236† *
r = 2 0.157†§‡* 0.201† * 0.273 0.124 0.202† * 0.292
r = 3 0.162†§‡* 0.173† * 0.298 0.148†§ 0.188† 0.261
FRED-MD 0.167†§‡* 0.206† * 0.254† 0.143 § 0.178† 0.281
FRED-MD and r = 2 0.204†§‡* 0.220† * 0.337 0.148†§‡ 0.178† * 0.286
Uncertainty measures
VXO 0.144 0.196† * 0.273 0.143 * 0.231† * 0.281
TYVIX 0.176† * 0.196† * 0.278 0.162† * 0.226† * 0.271
OVX 0.157† 0.182† * 0.254† * 0.143 § 0.197† * 0.256 *
CGU 0.139 0.201† * 0.302 0.162† 0.245† 0.327
CSDR 0.171† * 0.215† * 0.293 0.157†§‡* 0.236† * 0.271
CSDRsic 0.227† * 0.196† * 0.298 0.181†§‡* 0.226† * 0.251†
FDISP 0.176† * 0.196† * 0.288 0.148† * 0.221† * 0.276
LLv 0.153† * 0.182† * 0.283 0.143 § * 0.173† * 0.246† *
LLh 0.162† * 0.168† * 0.283 0.138 * 0.168† * 0.226† *
EPU+ 0.171† * 0.173† * 0.283 0.143 0.216† 0.256
EPU 0.153† * 0.178† * 0.268 0.143 0.192† * 0.236† *
MPU 0.176† * 0.187† * 0.278 0.148† * 0.212† * 0.256
JLNm 0.120 0.159† 0.205† * 0.138 * 0.173† * 0.196†
JLNf 0.157† 0.182† * 0.244† * 0.148†§ * 0.212† * 0.271
JLNr 0.144 0.178† * 0.234† * 0.143 * 0.173† * 0.231† *

The table presents hit rates for various forecasting horizons, for the full sample and a quantile level
α = 0.2. † denotes no rejection of the null hypothesis of correct unconditional coverage, § denotes no
rejection of the null hypothesis of independence, ‡ denotes no rejection of the null hypothesis of correct
conditional coverage, and * denotes no rejection of the null hypothesis of correct coverage conditional
on an intercept and the quantile estimates qt, all at a 5% significance level. See Table 4.A.1 for an
explanation of the abbreviations.
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these are only two extra uncertainty measures. Still, it is a confirmation of the factor

structure that we find in the balanced panel.

4.7.3 Exclude EPU and JLN

The JLN and EPU measures are not measured in real-time, strictly speaking. Here,

we check their impact, by removing them from the sample. Because the revisions in

the EPU measures are supposed to be small, whereas it is unclear how revisions affect

JLN, we also consider only removing the JLN measures from the sample of uncertainty

measures.

Without JLN and EPU measures, the factor structure remains strong. The first

factor is still identified as average economic uncertainty and explains about 39%.

Moreover, the correlation with the factor when all measures are included is 94%.

Though the second factor cannot load on the EPU measures, it does load heavily

on the consumer confidence measures LLv and LLh, and has an 87% correlation with

the second factor from Section 4.3. The main difference with Section 4.3 is that the

third factor drops out. But it was hard to assign a label to it anyway. Instead, the

fourth factor (mainly explaining FDISP) becomes the third most important factor.

The mean forecasting results are very similar to those in Section 4.5. The quantile

forecasting results are affected quantitatively. The tick loss is larger when JLN (and

EPU) measures are excluded. The largest effect occurs when the JLN measures are

excluded. In a way this is not too surprising, since they are some of the best performing

individual uncertainty measures, see Section 4.6. Still, using the factors based on the

set of uncertainty measures that excludes JLN (and EPU) measures yields significant

gains at the lower quantiles of employment and sales. Some deterioration of the results

could be expected simply because a relatively large part of the cross-section is removed.

The main patterns still emerge, and we interpret this is as a sign of robustness.
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4.7.4 Rolling window

Because of possible concerns of structural changes in the sample period, we also consider

estimation results based a rolling window of 12 years.29 The general results are similar,

though some models’ performance deteriorates substantially when estimated using the

rolling window, especially at the longer horizons and for the factor models with both

uncertainty and FRED-MD factors.

These results show that there is little to suggest a structural change in the factor

structure of economic uncertainty measures. Using an expanding window is preferred

then, to improve convergence of the factor estimates. We also allow the factors to be

estimated using the full available sample (i.e. using a recursive window), while the

relationship between the uncertainty measures/factors and the coincident variables is

estimated using a rolling window in case of structural changes. This yields similar

results, supporting the main findings.

4.8 Conclusion

Many economic uncertainty measures have been proposed over the last decade. We

find that they share a factor structure. One common component is probably quite close

to the target: economic uncertainty. A second component represents media/consumer

uncertainty.

Despite the big interest in economic uncertainty measures and its relationship with

the business cycle, they do not have much predictive power for the mean of coincident

variables. There is some predictive power in other parts of the density, in particular

for employment at lower quantiles. Most gains are during recessions. This suggests

a nonlinear relationship between economic uncertainty and economic activity. In that

light, Fan et al. (2017) propose a way to estimate a non-linear relationship using factor

models that might be interesting to explore.

29This corresponds with the range that holds two full business cycles of an average length, according
to the NBER business cycle dating committee.
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4.A Additional data description

This appendix present the time series plots of the time series, and the correlation

matrix for the uncertainty measures.
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Figure 4.A.1: Uncertainty measure time series
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Figure 4.A.1: Uncertainty measure time series (continued)
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The figure presents the time series of the uncertainty measures.



Figure 4.A.2: Correlation matrix
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The figure presents the correlation matrix of the uncertainty measures for the full sample.
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4.B Additional results on mean forecasts

This section present additional tables and figures related to the mean forecasting

results.

Figure 4.B.1: Mean forecasts, h = 3
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The figures present the mean forecasts and the realized values for the factor models and the AR(p)
model for a three month forecast horizon. The solid black line are the prebenchmark values, the solid
blue line forecasts from the AR(p) model, the dashed orange line forecasts from the factor model with
two uncertainty factors, the dash-dotted green line forecasts from the factor model with FRED-MD
factors, and the red dashed line are forecasts from the factor model with FRED-MD factors and two
uncertainty factors.



Figure 4.B.2: Cumulative sum of squared errors differential, h = 3
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The figures present the cumulative sum of squared errors differential compared to the AR(p) model.
Negative values indicate better forecasts compared to the benchmark. The solid blue line represents
the factor model with two uncertainty factors, the dashed orange line the factor model with FRED-MD
factors, and the dash-dotted green line represents the factor model with FRED-MD factors and two
uncertainty factors.



Table 4.B.1: Relative mean squared prediction error by forecast horizon

Horizon (months) 1 3 6 12 24

Panel A: Industrial production

MSPE AR(p) 61.968 27.474 24.065 19.205 11.604
Factor models
r = 1 0.924* 0.894 0.958 0.995 1.039
r = 2 0.920* 0.899 0.942 0.961 0.922
r = 3 0.901 0.882 0.951 1.174 1.313
FRED-MD 0.865** 0.712* 0.767 0.894 0.866
FRED-MD and r = 2 0.885** 0.730* 0.815 0.978 1.085
Uncertainty measures
VXO 0.982 0.902* 0.953 0.998 1.016
TYVIX 1.002 1.014 1.021 1.024 0.998
OVX 0.980 0.910* 0.947** 0.970 1.011
CGU 0.998 0.927* 0.973 1.093 1.503
CSDR 1.012 0.966 1.022 1.023 1.132
CSDRsic 1.013 1.010 1.015 1.038 1.155
FDISP 1.009 0.960** 0.996 0.995 0.986
LLv 1.010 1.019 1.036 1.035 0.968
LLh 1.006 1.003 1.064 1.086 0.981
EPU+ 1.024 1.033 1.044 1.023 0.948***
EPU 1.016 0.974 1.049 1.008 0.994
MPU 0.996 0.973 1.042 0.999 1.007
JLNm 0.923 0.864 0.866 0.963 1.073
JLNf 0.987 0.945 0.974 0.995 1.086
JLNr 0.937 0.836 0.876 0.965 1.019

Panel B: Nonfarm payroll employment

MSPE AR(p) 1.425 1.230 1.351 1.708 2.220
Factor models
r = 1 0.890*** 0.842** 0.870 0.930 0.995
r = 2 0.926* 0.873* 0.869 0.869 0.824*
r = 3 0.886* 0.817 0.909 1.141 1.137
FRED-MD 1.022 0.779 0.875 0.980 1.074
FRED-MD and r = 2 1.058 0.795 0.918 1.033 1.270
Uncertainty measures
VXO 0.922*** 0.916* 0.923 0.957 0.983
TYVIX 0.995 1.033 1.053 1.038 1.023
OVX 0.946*** 0.918** 0.943** 0.969 1.003
CGU 0.957** 0.906* 0.881* 1.003 1.367
CSDR 0.993 0.972 0.964 1.002 1.078
CSDRsic 1.014 1.021 1.018 1.046 1.153
FDISP 0.939*** 0.963 1.016 1.007 0.976
LLv 1.024 1.030 1.026 1.011 0.968
LLh 0.987 0.987 1.025 1.051 0.993
EPU+ 1.005 1.022 1.031 1.020 0.977
EPU 0.979 0.977 0.994 1.015 1.017
MPU 0.991 0.979 0.994 0.998 1.006
JLNm 0.846*** 0.716** 0.694 0.758 0.738
JLNf 0.968*** 0.933** 0.923 0.940 1.031
JLNr 0.870*** 0.762** 0.787 0.846 0.845

The table presents the relative mean squared prediction error (RMSPE) with the autoregressive
model with automatic lag selection (AR(p)) as benchmark for various forecasting horizons for the
out-of-sample period 1998M12+h-2016M12. Further, the table presents the mean squared prediction
error (MSPE) of the AR(p) model. ***,**, and * denote significance of a one-sided Diebold-Mariano
test at the 1%, 5% and 10%, respectively. See Table 4.A.1 for an explanation of the abbreviations.



Table 4.B.1: Relative mean squared prediction error by forecast horizon
(continued)

Horizon (months) 1 3 6 12 24

Panel C: Manufacturing and trade sales

MSPE AR(p) 88.594 27.013 18.289 14.090 9.529
Factor models
r = 1 0.973 0.895 0.912 0.974 1.046
r = 2 1.005 0.891 0.876 0.925 0.943
r = 3 0.981 0.826 0.847 1.107 1.190
FRED-MD 1.047 0.879 0.814 0.904 0.938
FRED-MD and r = 2 1.083 0.851 0.812 0.917 1.046
Uncertainty measures
VXO 0.967* 0.948 0.958 1.007 1.035
TYVIX 0.973* 0.985 0.983 1.022 1.119
OVX 0.987 0.944 0.941* 0.975 1.011
CGU 0.978* 0.933* 1.013 1.267 1.518
CSDR 0.997 0.968 0.979 1.039 1.070
CSDRsic 1.010 1.006 1.032 1.065 1.197
FDISP 0.978* 0.959* 0.961* 0.959 0.983
LLv 1.023 1.003 1.031 1.059 1.026
LLh 0.993 0.999 1.059 1.087 1.056
EPU+ 1.064 1.041 1.044 1.029 1.082
EPU 1.027 1.018 1.011 1.041 1.023
MPU 1.022 1.008 1.009 1.029 1.005
JLNm 0.896** 0.743* 0.719 0.890 1.099
JLNf 0.973** 0.925* 0.928 0.977 1.068
JLNr 0.887** 0.749* 0.728 0.835 0.974

Panel D: Personal income excluding transfer receipts

MSPE AR(p) 20.475 7.810 4.958 4.892 4.259
Factor models
r = 1 0.955 0.779** 0.662* 0.683* 0.871
r = 2 1.001 0.805* 0.706 0.694* 0.886
r = 3 1.027 0.796 0.604* 0.642 1.220
FRED-MD 1.000 0.734* 0.556* 0.520* 0.752
FRED-MD and r = 2 1.023 0.791 0.595* 0.564 0.806
Uncertainty measures
VXO 0.972** 0.900** 0.868* 0.917* 0.982
TYVIX 0.954** 0.911** 0.879* 0.937 0.987
OVX 0.979 0.914* 0.854* 0.874* 0.932
CGU 1.003 0.952** 0.934* 1.025 1.656
CSDR 0.984 0.938 0.974 0.952 0.995
CSDRsic 1.013 1.057 1.057 1.048 1.092
FDISP 1.005 0.997 1.001 0.946* 0.940
LLv 0.922* 0.815* 0.876 0.858 0.998
LLh 0.956 0.749** 0.758* 0.775* 0.968
EPU+ 1.075 0.946 1.005 0.946 1.049
EPU 1.005 0.924 0.947 0.905 1.002
MPU 0.994 0.994 0.989 0.958* 0.988
JLNm 0.975 0.821 0.607 0.508* 0.668
JLNf 0.961** 0.864** 0.842* 0.855* 0.976
JLNr 0.968 0.808* 0.584* 0.541* 0.731*

The table presents the relative mean squared prediction error (RMSPE) with the autoregressive
model with automatic lag selection (AR(p)) as benchmark for various forecasting horizons for the
out-of-sample period 1998M12+h-2016M12. Further, the table presents the mean squared prediction
error (MSPE) of the AR(p) model. ***,**, and * denote significance of a one-sided Diebold-Mariano
test at the 1%, 5% and 10%, respectively. See Table 4.A.1 for an explanation of the abbreviations.



Table 4.B.2: Relative mean squared prediction error by evaluation period

1998M12+h– 2000M01– 2010M01–
Period 2016M12 Recessions Expansions 2009M12 2016M12

Panel A: Industrial production

MSPE AR(p) 27.474 108.809 16.226 40.264 12.035
Factor models
r = 1 0.894 0.670* 1.102 0.813 1.256
r = 2 0.899 0.685* 1.097 0.829 1.228
r = 3 0.882 0.431* 1.299 0.737 1.592
FRED-MD 0.712* 0.461* 0.945 0.629** 1.117
FRED-MD and r = 2 0.730* 0.449* 0.990 0.647* 1.130
Uncertainty measures
VXO 0.902* 0.818* 0.980 0.863* 1.074
TYVIX 1.014 1.023 1.006 1.017 0.998
OVX 0.910* 0.906 0.913** 0.929 0.817**
CGU 0.927* 0.841** 1.008 0.920* 0.936
CSDR 0.966 0.929* 1.000 0.977 0.893**
CSDRsic 1.010 0.999 1.020 1.009 1.006
FDISP 0.960** 0.941* 0.978 0.944** 1.038
LLv 1.019 0.926 1.104 0.966 1.283
LLh 1.003 0.862* 1.134 0.941 1.309
EPU+ 1.033 0.934 1.124 0.968 1.360
EPU 0.974 0.920 1.024 0.922 1.227
MPU 0.973 1.051 0.900*** 0.980 0.950*
JLNm 0.864 0.496** 1.205 0.807 1.111
JLNf 0.945 0.834** 1.047 0.915* 1.064
JLNr 0.836 0.478* 1.168 0.746 1.243

Panel B: Nonfarm payroll employment

MSPE AR(p) 1.230 4.802 0.736 1.642 0.734
Factor models
r = 1 0.842** 0.726* 0.946 0.803** 0.955
r = 2 0.873* 0.763* 0.972 0.828* 1.020
r = 3 0.817 0.525* 1.080 0.697* 1.166
FRED-MD 0.779 0.481* 1.047 0.714 0.899
FRED-MD and r = 2 0.795 0.475* 1.083 0.738 0.915
Uncertainty measures
VXO 0.916* 0.867 0.960 0.902* 0.952
TYVIX 1.033 1.073 0.996 1.050 0.976**
OVX 0.918** 0.914 0.922*** 0.930* 0.885**
CGU 0.906* 0.819** 0.984 0.904* 0.892**
CSDR 0.972 0.956* 0.987 0.981 0.942
CSDRsic 1.021 0.997 1.043 1.011 1.051
FDISP 0.963 0.915** 1.006 0.947* 1.008
LLv 1.030 0.990 1.066 0.978 1.211
LLh 0.987 0.891* 1.074 0.920* 1.207
EPU+ 1.022 0.909 1.124 0.923 1.349
EPU 0.977 0.892 1.054 0.865** 1.351
MPU 0.979 1.007 0.953** 0.969* 1.009
JLNm 0.716** 0.464** 0.944 0.677* 0.817**
JLNf 0.933** 0.871** 0.988 0.924* 0.957
JLNr 0.762** 0.548** 0.955 0.728* 0.856*

The table presents the relative mean squared prediction error (RMSPE) with the autoregressive model
with automatic lag selection (AR(p)) as benchmark for various evaluation periods, for a forecasting
horizon of h = 3 months. Recessions and expansions are identified as determined by NBER’s Business
Cycle Dating Committee. Further, the table presents the mean squared prediction error (MSPE) of
the AR(p) model. ***,**, and * denote significance of a one-sided Diebold-Mariano test at the 1%,
5% and 10%, respectively. See Table 4.A.1 for an explanation of the abbreviations.



Table 4.B.2: Relative mean squared prediction error by evaluation period
(continued)

1998M12+h– 2000M01– 2010M01–
Period 2016M12 Recessions Expansions 2009M12 2016M12

Panel C: Manufacturing and trade sales

MSPE AR(p) 27.013 118.362 14.380 39.873 10.119
Factor models
r = 1 0.895 0.682*** 1.136 0.839* 1.155
r = 2 0.891 0.665*** 1.148 0.838* 1.131
r = 3 0.826 0.440*** 1.265 0.745* 1.318
FRED-MD 0.879 0.503*** 1.308 0.784 1.439
FRED-MD and r = 2 0.851 0.457*** 1.299 0.761 1.369
Uncertainty measures
VXO 0.948 0.859** 1.049 0.916* 1.095
TYVIX 0.985 0.961** 1.012 0.983 1.004
OVX 0.944 0.862** 1.037 0.929* 1.010
CGU 0.933* 0.835*** 1.046 0.927 0.994
CSDR 0.968 0.926** 1.017 0.965* 0.969
CSDRsic 1.006 1.007 1.005 1.008 0.987
FDISP 0.959* 0.918*** 1.004 0.933*** 1.098
LLv 1.003 0.869** 1.155 0.952 1.314
LLh 0.999 0.851** 1.167 0.947 1.302
EPU+ 1.041 0.850** 1.258 0.980 1.447
EPU 1.018 0.937** 1.110 0.991 1.178
MPU 1.008 0.997 1.021 1.012 0.998
JLNm 0.743* 0.329*** 1.214 0.644** 1.193
JLNf 0.925* 0.793*** 1.074 0.883** 1.090
JLNr 0.749* 0.422*** 1.121 0.668** 1.121

Panel D: Personal income excluding transfer receipts

MSPE AR(p) 7.810 19.811 6.095 9.751 5.346
Factor models
r = 1 0.779** 0.510* 0.904 0.732* 0.825
r = 2 0.805* 0.556* 0.921 0.771* 0.868
r = 3 0.796 0.527 0.921 0.737 0.973
FRED-MD 0.734* 0.385* 0.896 0.662* 0.931
FRED-MD and r = 2 0.791 0.431 0.958 0.729 0.945
Uncertainty measures
VXO 0.900** 0.807** 0.943 0.883** 0.921
TYVIX 0.911** 0.827* 0.950 0.915* 0.902
OVX 0.914* 0.760* 0.985 0.890* 0.964
CGU 0.952** 0.938* 0.959 0.945** 0.940
CSDR 0.938 0.832* 0.987 0.889* 0.942
CSDRsic 1.057 1.025 1.072 1.054 1.005
FDISP 0.997 0.980** 1.004 1.003 0.979
LLv 0.815* 0.562** 0.933 0.705** 1.112
LLh 0.749** 0.479** 0.875 0.661** 0.980
EPU+ 0.946 0.712 1.055 0.874 1.175
EPU 0.924 0.810* 0.976 0.932 0.921
MPU 0.994 0.982 1.000 1.009 0.975
JLNm 0.821 0.440* 0.998 0.717 1.013
JLNf 0.864** 0.763** 0.911* 0.822*** 0.905
JLNr 0.808* 0.509* 0.947 0.739* 0.929

The table presents the relative mean squared prediction error (RMSPE) with the autoregressive model
with automatic lag selection (AR(p)) as benchmark for various evaluation periods, for a forecasting
horizon of h = 3 months. Recessions and expansions are identified as determined by NBER’s Business
Cycle Dating Committee. Further, the table presents the mean squared prediction error (MSPE) of
the AR(p) model. ***,**, and * denote significance of a one-sided Diebold-Mariano test at the 1%,
5% and 10%, respectively. See Table 4.A.1 for an explanation of the abbreviations.
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4.C Additional results on quantile forecasts

This section present additional tables and figures related to the mean forecasting

results.

Figure 4.C.1: Quantile forecasts and hits, α = 0.2, h = 3

(a) Industrial production, forecast
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(b) Employment, forecast
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The figure presents the quantile forecasts and the realized shocks for the factor models and the
historical quantile for a three month forecast horizon.

Figure 4.C.2: Cumulative tick loss differential, α = 0.2, h = 3
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The figure presents the cumulative tick loss differential compared to the historical quantile. Lower
values indicate better quantile forecasts.



Table 4.C.1: Relative mean tick loss by forecast horizon, α = 0.2

Horizon (months) 1 3 6 12 24

Panel A: Industrial production

MTL AR(p) 2.129 1.509 1.533 1.464 1.205
Factor models
r = 1 0.953* 0.912 0.886 0.943 0.999
r = 2 0.954* 0.930 0.872 0.885 0.872
r = 3 0.894** 0.906 0.816 0.891 0.980
FRED-MD 0.901** 0.863* 0.785* 0.936 0.879
FRED-MD and r = 2 0.934* 0.875 0.819 0.895 0.816
Uncertainty measures
VXO 0.972* 0.946 0.919 0.975 1.073
TYVIX 1.003 1.029 1.020 1.017 1.082
OVX 0.961*** 0.978 0.937 0.957* 1.095
CGU 0.979* 0.960 0.910 1.002 1.936
CSDR 0.999 0.984 0.951 0.961 1.113
CSDRsic 1.015 1.026 1.008 1.040 1.168
FDISP 0.979* 0.960** 0.967* 1.002 0.977
LLv 0.973 0.995 1.028 1.001 0.913*
LLh 0.972 1.007 1.046 1.032 0.963
EPU+ 0.971 0.993 1.019 1.024 1.045
EPU 0.959* 0.951 1.004 1.002 0.992
MPU 0.959** 0.945* 0.981 0.993 1.001
JLNm 0.912** 0.906 0.778* 0.766 0.864
JLNf 0.980 0.949 0.914 0.949 0.972
JLNr 0.890** 0.899 0.810 0.884 0.886

Panel B: Nonfarm payroll employment

MTL AR(p) 0.354 0.332 0.356 0.437 0.523
Factor models
r = 1 0.882*** 0.855** 0.827** 0.880* 0.977
r = 2 0.858*** 0.848** 0.832** 0.821*** 0.786**
r = 3 0.851*** 0.833* 0.760* 0.885 0.780*
FRED-MD 0.933 0.869* 0.897 0.916* 0.910
FRED-MD and r = 2 0.945 0.839* 0.837 0.874 0.822
Uncertainty measures
VXO 0.903*** 0.941* 0.899** 0.927* 0.986
TYVIX 0.980** 0.987 0.977 0.985 1.040
OVX 0.951** 0.963 0.928** 0.954* 1.032
CGU 0.901*** 0.930* 0.933 1.018 1.479
CSDR 0.948** 0.971 0.934** 0.938* 0.998
CSDRsic 0.950** 0.989 0.995 1.024 1.076
FDISP 0.941*** 0.965** 0.979 0.952** 0.882*
LLv 0.988 1.013 1.001 1.008 0.932*
LLh 0.973 0.980 1.008 1.037 0.958
EPU+ 0.967 0.974 1.007 1.026 1.075
EPU 0.956 0.968 0.973 0.994 0.999
MPU 0.963*** 0.965** 0.933*** 0.949* 1.016
JLNm 0.921** 0.850** 0.746** 0.645** 0.660**
JLNf 0.917*** 0.928** 0.858*** 0.877** 0.948
JLNr 0.929** 0.869** 0.799* 0.828 0.741**

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various forecasting horizons for the out-of-sample period 1998M12+h-2016M12 and quantile level
α = 0.2. Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**, and
* denote significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. See
Table 4.A.1 for an explanation of the abbreviations.



Table 4.C.1: Relative mean tick loss by forecast horizon, α = 0.2 (continued)

Horizon (months) 1 3 6 12 24

Panel C: Manufacturing and trade sales

MTL AR(p) 2.652 1.536 1.304 1.160 0.990
Factor models
r = 1 0.974 0.893 0.869* 0.964 1.164
r = 2 1.001 0.918 0.842* 0.903 1.059
r = 3 0.994 0.879 0.826 0.966 1.018
FRED-MD 0.936 0.970 0.886 1.058 1.018
FRED-MD and r = 2 1.017 0.937 0.873 1.047 1.084
Uncertainty measures
VXO 0.980 0.952 0.937 0.978 1.184
TYVIX 0.996 0.980 1.005 1.036 1.210
OVX 0.993 0.931 0.945 0.950 1.059
CGU 1.006 0.986 1.074 1.279 2.437
CSDR 0.991 0.986 0.988 1.056 1.216
CSDRsic 0.992 0.985 1.002 1.011 1.203
FDISP 0.987 1.001 0.958* 0.953 0.948
LLv 1.017 1.006 1.029 1.021 0.952
LLh 0.998 0.985 1.045 1.046 1.023
EPU+ 1.049 1.043 1.012 1.061 1.085
EPU 1.039 1.014 1.011 0.997 0.950*
MPU 1.008 0.973* 0.999 1.015 1.024
JLNm 0.936 0.794** 0.717* 0.851 1.083
JLNf 0.981** 0.945 0.951 0.982 1.241
JLNr 0.906** 0.815** 0.716** 0.780* 0.898

Panel D: Personal income excluding transfer receipts

MTL AR(p) 1.266 0.789 0.639 0.705 0.674
Factor models
r = 1 0.946** 0.928 0.799* 0.919 1.138
r = 2 0.986 0.991 0.843 1.003 1.136
r = 3 0.981 0.959 0.835 0.791 0.988
FRED-MD 0.896* 0.892 0.805 0.822 0.961
FRED-MD and r = 2 0.930 0.885 0.868 0.830 1.165
Uncertainty measures
VXO 0.997 1.007 0.956 0.974 1.028
TYVIX 0.956*** 1.000 0.951** 0.995 0.973
OVX 0.969*** 0.959 0.955 0.975 0.967
CGU 1.016 1.026 0.999 1.128 1.623
CSDR 0.984* 1.005 0.985 0.989 1.005
CSDRsic 0.958*** 1.018 1.039 1.058 1.141
FDISP 0.998 0.997 0.994 1.016 0.867**
LLv 0.962 0.967 0.872 0.941 1.008
LLh 0.952 0.917 0.835* 0.893 1.051
EPU+ 1.041 1.077 0.969 0.984 1.143
EPU 1.027 1.014 0.972 0.984 1.042
MPU 0.979 0.987 1.004 1.013 1.012
JLNm 0.969 0.865 0.740* 0.734 0.958
JLNf 0.994 0.991 0.943 1.053 1.213
JLNr 0.954** 0.867 0.745* 0.743 0.800**

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various forecasting horizons for the out-of-sample period 1998M12+h-2016M12 and quantile level
α = 0.2. Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**, and
* denote significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. See
Table 4.A.1 for an explanation of the abbreviations.



Table 4.C.2: Relative mean tick loss by evaluation period, h = 3 and α = 0.2

1998M12+h– 2000M01– 2010M01–
Period 2016M12 Recessions Expansions 2009M12 2016M12

Panel A: Industrial production

MTL AR(p) 1.509 4.322 1.119 1.962 0.953
Factor models
r = 1 0.912 0.682** 1.034 0.846* 1.049
r = 2 0.930 0.676** 1.065 0.878 1.032
r = 3 0.906 0.580* 1.080 0.812* 1.176
FRED-MD 0.863* 0.606** 1.001 0.806* 1.053
FRED-MD and r = 2 0.875 0.570** 1.038 0.813* 1.055
Uncertainty measures
VXO 0.946 0.852* 0.996 0.911* 1.031
TYVIX 1.029 1.065 1.010 1.032 1.017
OVX 0.978 0.912* 1.012 0.972 0.971
CGU 0.960 0.859** 1.014 0.948 1.007
CSDR 0.984 0.940* 1.007 0.986 0.934**
CSDRsic 1.026 0.992 1.045 1.014 1.047
FDISP 0.960** 0.917*** 0.983 0.929*** 1.043
LLv 0.995 0.922* 1.035 0.971 1.076
LLh 1.007 0.902* 1.063 0.981 1.096
EPU+ 0.993 0.908* 1.038 0.964 1.095
EPU 0.951 0.842** 1.009 0.905* 1.086
MPU 0.945* 0.936 0.950 0.923** 1.010
JLNm 0.906 0.578** 1.081 0.838* 1.065
JLNf 0.949 0.781*** 1.039 0.907* 1.041
JLNr 0.899 0.572** 1.073 0.810* 1.127

Panel B: Nonfarm payroll employment

MTL AR(p) 0.332 0.916 0.251 0.398 0.254
Factor models
r = 1 0.855** 0.630** 0.969 0.806** 0.947
r = 2 0.848** 0.611** 0.968 0.795** 0.954
r = 3 0.833* 0.504** 0.998 0.751* 0.990
FRED-MD 0.869* 0.540** 1.036 0.780* 1.055
FRED-MD and r = 2 0.839* 0.468** 1.026 0.761* 0.954*
Uncertainty measures
VXO 0.941* 0.913 0.954* 0.946 0.929
TYVIX 0.987 0.973** 0.994 1.007 0.942***
OVX 0.963 0.895* 0.997 0.951 0.989
CGU 0.930* 0.771** 1.011 0.916 0.940***
CSDR 0.971 0.916** 0.999 0.972 0.956
CSDRsic 0.989 0.999 0.984 1.004 0.954**
FDISP 0.965** 0.924*** 0.986 0.942*** 1.012
LLv 1.013 0.937 1.052 0.961 1.144
LLh 0.980 0.831** 1.055 0.921* 1.119
EPU+ 0.974 0.851* 1.037 0.887** 1.186
EPU 0.968 0.794** 1.057 0.865** 1.210
MPU 0.965** 0.955 0.970* 0.945** 1.006
JLNm 0.850** 0.547** 1.002 0.824* 0.887***
JLNf 0.928** 0.826** 0.979 0.916* 0.945
JLNr 0.869** 0.595** 1.007 0.839* 0.920**

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various evaluation periods for a forecast horizon of three months and quantile level of α = 0.2.
Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**, and * denote
significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. See Table 4.A.1
for an explanation of the abbreviations.



Table 4.C.2: Relative mean tick loss by evaluation period, h = 3 and α = 0.2
(continued)

1998M12+h– 2000M01– 2010M01–
Period 2016M12 Recessions Expansions 2009M12 2016M12

Panel C: Manufacturing and trade sales

MTL AR(p) 1.536 4.843 1.078 1.947 0.980
Factor models
r = 1 0.893 0.586*** 1.084 0.833* 0.988
r = 2 0.918 0.592*** 1.120 0.860 1.016
r = 3 0.879 0.477*** 1.129 0.806* 1.123
FRED-MD 0.970 0.597*** 1.201 0.902 1.201
FRED-MD and r = 2 0.937 0.545*** 1.181 0.868 1.151
Uncertainty measures
VXO 0.952 0.866* 1.005 0.934 0.996
TYVIX 0.980 0.921* 1.016 0.989 0.971
OVX 0.931 0.720** 1.062 0.871* 1.064
CGU 0.986 0.843** 1.075 1.013 0.961
CSDR 0.986 0.898** 1.041 0.999 0.961
CSDRsic 0.985 0.992 0.980 1.014 0.897***
FDISP 1.001 0.961** 1.026 0.993 1.033
LLv 1.006 0.776** 1.149 0.921 1.270
LLh 0.985 0.731** 1.143 0.907 1.220
EPU+ 1.043 0.685** 1.266 0.901 1.504
EPU 1.014 0.787** 1.155 0.915 1.310
MPU 0.973* 0.967* 0.976 0.984 0.957*
JLNm 0.794** 0.346*** 1.072 0.698** 1.000
JLNf 0.945 0.784** 1.045 0.899* 1.049
JLNr 0.815** 0.465*** 1.032 0.733** 0.991

Panel D: Personal income excluding transfer receipts

MTL AR(p) 0.789 1.501 0.687 0.910 0.613
Factor models
r = 1 0.928 0.726* 0.991 0.881 0.991
r = 2 0.991 0.852 1.034 0.961 1.050
r = 3 0.959 0.572 1.080 0.866 1.192
FRED-MD 0.892 0.457* 1.027 0.800 1.115
FRED-MD and r = 2 0.885 0.505* 1.004 0.762* 1.137
Uncertainty measures
VXO 1.007 1.016 1.004 0.992 1.034
TYVIX 1.000 1.033 0.989 1.004 0.991
OVX 0.959 0.814* 1.004 0.917* 1.032
CGU 1.026 1.066 1.014 1.030 1.006
CSDR 1.005 0.974 1.015 0.999 0.987
CSDRsic 1.018 1.016 1.018 1.029 0.985
FDISP 0.997 0.957*** 1.010 0.993 1.002
LLv 0.967 0.687* 1.055 0.824** 1.277
LLh 0.917 0.617** 1.011 0.793** 1.181
EPU+ 1.077 0.892 1.134 1.014 1.266
EPU 1.014 0.964 1.030 1.003 1.042
MPU 0.987 0.984 0.987 0.999 0.959**
JLNm 0.865 0.484* 0.984 0.770* 1.035
JLNf 0.991 0.935* 1.009 0.955 1.042
JLNr 0.867 0.490* 0.985 0.768* 1.035

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various evaluation periods for a forecast horizon of three months and quantile level of α = 0.2.
Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**, and * denote
significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. See Table 4.A.1
for an explanation of the abbreviations.



Table 4.C.3: Relative mean tick loss by quantile level, h = 3

α 0.1 0.2 0.5 0.8

Panel A: Industrial production

MTL AR(p) 1.088 1.509 1.815 1.177
Factor models
r = 1 0.806* 0.912 0.981 1.029
r = 2 0.838* 0.930 0.988 1.010
r = 3 0.785* 0.906 0.998 1.020
FRED-MD 0.793* 0.863* 0.917** 0.940*
FRED-MD and r = 2 0.800* 0.875 0.945 0.969
Uncertainty measures
VXO 0.860** 0.946 0.990 1.003
TYVIX 1.054 1.029 1.002 1.003
OVX 0.899* 0.978 0.983* 0.991
CGU 0.954 0.960 1.005 1.006
CSDR 0.916** 0.984 1.007 1.009
CSDRsic 1.006 1.026 1.006 1.004
FDISP 0.937** 0.960** 0.998 1.004
LLv 1.032 0.995 0.991 0.979***
LLh 1.029 1.007 0.997 0.973**
EPU+ 1.003 0.993 0.995 1.003
EPU 0.977 0.951 0.980 1.004
MPU 0.960 0.945* 0.980*** 0.991
JLNm 0.756** 0.906 0.986 1.014
JLNf 0.905* 0.949 1.004 1.017
JLNr 0.787* 0.899 0.985 1.013

Panel B: Nonfarm payroll employment

MTL AR(p) 0.251 0.332 0.386 0.261
Factor models
r = 1 0.729*** 0.855** 1.007 1.024
r = 2 0.748** 0.848** 0.974 1.048
r = 3 0.756** 0.833* 0.963 1.132
FRED-MD 0.786** 0.869* 0.959 1.015
FRED-MD and r = 2 0.779* 0.839* 0.980 1.079
Uncertainty measures
VXO 0.789** 0.941* 0.992 1.018
TYVIX 0.968* 0.987 1.016 0.969
OVX 0.899** 0.963 0.983 1.012
CGU 0.874* 0.930* 0.988 1.019
CSDR 0.877** 0.971 0.996 0.995
CSDRsic 0.950** 0.989 1.012 1.012
FDISP 0.929** 0.965** 0.997 0.984*
LLv 0.978 1.013 0.991 1.020
LLh 0.923 0.980 0.996 1.013
EPU+ 0.917 0.974 1.004 1.014
EPU 0.903* 0.968 1.012 1.012
MPU 0.900*** 0.965** 1.001 0.994
JLNm 0.731** 0.850** 0.943 1.072
JLNf 0.774*** 0.928** 0.989 1.005
JLNr 0.728** 0.869** 0.974 1.063

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various quantile levels for the out-of-sample period 1998M12+h-2016M12, with a forecast horizon of
three months. Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**,
and * denote significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively.
See Table 4.A.1 for an explanation of the abbreviations.



Table 4.C.3: Relative mean tick loss by quantile level, h = 3 (continued)

α 0.1 0.2 0.5 0.8

Panel C: Manufacturing and trade sales

MTL AR(p) 1.104 1.536 1.868 1.255
Factor models
r = 1 0.813** 0.893 1.000 1.004
r = 2 0.841* 0.918 0.983 1.002
r = 3 0.797* 0.879 0.942 1.004
FRED-MD 0.936 0.970 0.989 1.110
FRED-MD and r = 2 0.937 0.937 0.971 1.045
Uncertainty measures
VXO 0.876** 0.952 0.995 1.002
TYVIX 0.890** 0.980 1.002 1.012
OVX 0.881* 0.931 1.005 1.001
CGU 0.936 0.986 0.995 0.995
CSDR 0.893*** 0.986 1.006 1.004
CSDRsic 0.944* 0.985 1.009 0.998
FDISP 0.951*** 1.001 0.994 1.004
LLv 0.953 1.006 1.010 1.009
LLh 0.925 0.985 1.013 1.020
EPU+ 1.008 1.043 1.030 1.016
EPU 0.959 1.014 1.012 1.028
MPU 0.950** 0.973* 1.004 1.006
JLNm 0.721** 0.794** 0.924 0.967
JLNf 0.842** 0.945 0.994 0.998
JLNr 0.717** 0.815** 0.906* 0.982

Panel D: Personal income excluding transfer receipts

MTL AR(p) 0.548 0.789 1.061 0.745
Factor models
r = 1 0.911 0.928 0.932 0.937**
r = 2 0.941 0.991 0.940 0.936*
r = 3 0.914 0.959 0.923 0.949
FRED-MD 0.791* 0.892 0.874** 0.944
FRED-MD and r = 2 0.805* 0.885 0.934 0.984
Uncertainty measures
VXO 0.994 1.007 0.977* 0.975**
TYVIX 0.962 1.000 0.975 0.971**
OVX 0.887* 0.959 0.988 0.974**
CGU 1.042 1.026 1.009 0.985*
CSDR 0.978 1.005 1.045 0.987
CSDRsic 0.998 1.018 1.060 1.024
FDISP 0.958** 0.997 1.006 1.006
LLv 0.898 0.967 0.908** 0.925**
LLh 0.840* 0.917 0.882** 0.911**
EPU+ 1.065 1.077 0.987 0.957
EPU 1.043 1.014 0.968 0.969
MPU 0.999 0.987 0.990 0.977*
JLNm 0.815* 0.865 0.928 0.991
JLNf 0.986 0.991 0.981 0.962**
JLNr 0.790* 0.867 0.932 0.986

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various quantile levels for the out-of-sample period 1998M12+h-2016M12, with a forecast horizon of
three months. Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**,
and * denote significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively.
See Table 4.A.1 for an explanation of the abbreviations.



Table 4.C.4: Hit rates by quantile

α 0.1 0.2 0.5 0.1 0.2 0.5

Industrial production Sales

HQ 0.140† 0.252† 0.519† * 0.117† 0.215† * 0.556†
Factor models
r = 1 0.136† * 0.266 * 0.519† * 0.079† * 0.201† * 0.547† *
r = 2 0.131† * 0.285 0.509† * 0.094† * 0.224† * 0.547† *
r = 3 0.103† * 0.224† * 0.542† * 0.089† * 0.192† * 0.505† *
FRED-MD 0.117† * 0.234† * 0.533† * 0.126† 0.234† 0.551† *
FRED-MD and r = 2 0.126† * 0.229† * 0.533† * 0.131† 0.243† 0.556† *
Uncertainty measures
VXO 0.122† * 0.276 0.519† * 0.094† * 0.229† * 0.551† *
TYVIX 0.140† 0.238† 0.519† * 0.122† * 0.252† * 0.556† *
OVX 0.112† * 0.234† * 0.509† * 0.103† * 0.206† * 0.551† *
CGU 0.136† * 0.262 * 0.542† * 0.140† 0.262 0.565 *
CSDR 0.112† * 0.257 * 0.528† * 0.122† * 0.262 * 0.570 *
CSDRsic 0.145 0.234† 0.528† * 0.164 0.243† * 0.537† *
FDISP 0.136† * 0.238† * 0.514† * 0.126† * 0.243† * 0.551† *
LLv 0.136† 0.229† * 0.519† * 0.094† * 0.196† * 0.551† *
LLh 0.131† * 0.229† * 0.519† * 0.084† * 0.192† * 0.542†
EPU+ 0.122† * 0.243† * 0.495† * 0.112† 0.201† 0.514†
EPU 0.098† * 0.206† * 0.486† * 0.089† * 0.201† * 0.533† *
MPU 0.112† * 0.248† * 0.528† 0.122† * 0.229† * 0.551† *
JLNm 0.108† ‡* 0.243† * 0.500† * 0.065†§ * 0.168† * 0.486† *
JLNf 0.136† * 0.276 0.528† * 0.117† * 0.220† * 0.533† *
JLNr 0.150 * 0.234† * 0.472† * 0.070† * 0.196† * 0.537† *

Employment Personal income

HQ 0.108† 0.187† * 0.500† 0.111† * 0.202† * 0.587
Factor models
r = 1 0.084† 0.196† * 0.523† * 0.106† * 0.226† * 0.514† *
r = 2 0.089† 0.201† * 0.561† * 0.130† * 0.202† * 0.495† *
r = 3 0.084† * 0.173† * 0.551† * 0.120† 0.188† 0.447†
FRED-MD 0.103† * 0.206† * 0.528† * 0.101† 0.178† 0.476† *
FRED-MD and r = 2 0.103† * 0.220† * 0.533† * 0.096† * 0.178† * 0.490† *
Uncertainty measures
VXO 0.098† 0.196† * 0.533† * 0.115† * 0.231† * 0.591
TYVIX 0.117† * 0.196† * 0.500† * 0.111† * 0.226† * 0.572 *
OVX 0.112† * 0.182† * 0.500† * 0.101† * 0.197† * 0.572 *
CGU 0.089† * 0.201† * 0.542† * 0.115† 0.245† 0.625
CSDR 0.122† * 0.215† * 0.519† * 0.115† * 0.236† * 0.567
CSDRsic 0.131† * 0.196† * 0.486† * 0.130† * 0.226† * 0.563†
FDISP 0.136† * 0.196† * 0.514† * 0.111† * 0.221† * 0.596
LLv 0.108† * 0.182† * 0.509† * 0.101† * 0.173† * 0.438† *
LLh 0.084† * 0.168† * 0.500† * 0.082† ‡* 0.168† * 0.452† *
EPU+ 0.108† * 0.173† * 0.523† * 0.130† 0.216† 0.486†
EPU 0.079† * 0.178† * 0.509† * 0.106† * 0.192† * 0.505† *
MPU 0.112† * 0.187† * 0.514† * 0.120† * 0.212† * 0.587
JLNm 0.070† 0.159† 0.519† * 0.082† * 0.173† * 0.505† *
JLNf 0.084† 0.182† * 0.542† * 0.106† * 0.212† * 0.582 *
JLNr 0.094† * 0.178† * 0.523† * 0.067† * 0.173† * 0.548† *

The table presents hit rates for various forecasting horizons, for the full sample and a quantile level
α = 0.2. † denotes no rejection of the null hypothesis of correct unconditional coverage, § denotes no
rejection of the null hypothesis of independence, ‡ denotes no rejection of the null hypothesis of correct
conditional coverage, and * denotes no rejection of the null hypothesis of correct coverage conditional
on an intercept and the quantile estimates qt, all at a 5% significance level. See Table 4.A.1 for an
explanation of the abbreviations.



Nederlandse Samenvatting

(Summary in Dutch)

In de economische wetenschap zijn er veel vraagstukken, met name op

macro-economisch en financieel gebied, die moeilijk beantwoord kunnen worden zonder

het analyseren van tijdreeksen. Bijvoorbeeld het bepalen van welke factoren gebruikt

kunnen worden om aandelenrendementen te voorspellen. Of de vraag of het risico

dat bankleningen niet terug worden betaald hoger is tijdens recessies. Antwoorden op

deze vragen zijn van belang voor investeerders, banken en beleidsmakers die hier hun

portfolio, beleid of regelgeving op kunnen aanpassen. Dit proefschrift is een verzameling

van drie essays op het gebied van toegepaste tijdreeksanalyse, waarin een variëteit

aan econometrische technieken wordt gebruikt voor het analyseren van belangrijke

financiële en economische vraagstukken.

Het eerste essay behandelt de conjunctuurgevoeligheid van verliezen op

bankleningen. Het is waarschijnlijk dat bedrijven die geld geleend hebben meer moeite

hebben om hun betalingen te voldoen als het economisch slecht gaat dan in een periode

waarin het economisch goed gaat. Echter, een bank heeft invloed op dit proces en kan

de conjunctuurgevoeligheid van verliezen mogelijk verminderen. De vraag is wat de

gevoeligheid in werkelijkheid is. Met behulp van een unieke dataset worden de verliezen

tezamen met macro-economische variabelen gemodelleerd. Om rekening te houden met

de karakteristieke kenmerken van de distributie van verliezen, wordt deze gemodelleerd

als een combinatie van twee normale verdelingen. De ene verdeling staat voor de

kleine verliezen, en de andere voor de zware verliezen. De distributie van verliezen

verandert over de tijd doordat de fractie van zware verliezen t.o.v. kleine verliezen

verschilt over de tijd en hangt mogelijk samen met fluctuaties van macro-economische
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variabelen. De schattingsresultaten laten zien dat de verliezen op bankleningen hoger

zijn tijdens periodes van slechtere economische condities. Uit simulaties blijkt dat

een bank hierdoor tijdens recessies ongeveer twee keer zoveel kapitaal zouden moeten

aanhouden dan tijdens expansies om kredietwaardig te blijven.

De economie is een dynamisch systeem dat onderhevig is aan veranderingen.

Relaties tussen economische variabelen kunnen veranderen over de tijd, bijvoorbeeld

door innovaties zoals de computer of de auto. Daarnaast is het gedrag van bedrijven en

consumenten anders tijdens recessies dan tijdens expansies. Het tweede essay gaat over

het correct detecteren van dit soort mogelijke veranderingen in de relatie over de tijd.

Het gaat in op het risico dat een lange termijn investeerder – zoals een pensioenfonds

– loopt bij het verkeerd identificeren van de relatie van aandelenrendementen met

een voorspeller, in dit geval de dividend-prijs ratio. Eerder onderzoek wijst uit dat

de voorspellende waarde van bekende factoren varieert over de tijd. Hier wordt de

instabiliteit geschat, in plaats van van te voren aan te nemen dat er of een klein aantal

(grotere) wisselingen zijn, of een groot aantal (kleinere) veranderingen. Er blijkt dat de

relatie substantieel verschilt over de tijd. De relatie zwakt vanaf de jaren ’70 geleidelijk

af tot de jaren ’90, maar wordt rond 2000 en tijdens de financiële crisis weer iets sterker.

Tegelijk is er veel onzekerheid is over hoe vaak de relatie precies verandert. Een analyse

van de kosten van het verkeerd bepalen van de instabiliteit geeft aan dat het voor een

lange termijn investeerder belangrijk is om toe te staan dat de relatie verandert over

de tijd, maar de manier waarop lijkt minder uit te maken.

Het derde essay evalueert of iemand die gëınteresseerd is in het voorspellen

van economische output gebruik kan maken van maatstaven van economische

onzekerheid. De ‘reële optie’ theorie geeft economische onzekerheid als verklaring voor

conjunctuurbewegingen: als er veel onzekerheid is, stellen bedrijven investeringen uit,

wat leidt tot een reductie in economische activiteit. De theorie is lastig te staven,

omdat economische onzekerheid niet direct geobserveerd is, en geen exacte definitie

heeft. Daarom is er een benadering nodig. De afgelopen tien jaar zijn veel verschillende

maatstaven van economische onzekerheid voorgesteld. Er worden 15 maatstaven

verzameld en ingedeeld in vijf categorieën op basis van hoe economische onzekerheid

gemeten wordt. Uit een factor analyse blijkt dat er een algemene onzekerheidsfactor is,

en een media-/cosumentenvertrouwen factor die een groot deel van de fluctuaties van
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de maatstaven samenvatten. Bij de voorspellingsopzet wordt er rekening mee gehouden

dat de informatie beschikbaar moet zijn geweest op het moment van voorspellen. Dit is

relevant, omdat macro-economische cijfers gereviseerd worden na publicatie. Daarnaast

wordt er niet alleen naar het gemiddelde gekeken, maar ook naar het voorspellen

van waarden in het geval van economisch mindere periodes. De resultaten laten

zien dat onzekerheid vooral informatief is ten tijde van economische neergang, met

name voor werkgelegenheid. Dit suggereert een niet-lineaire relatie tussen economische

onzekerheid en output.
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