Response evaluation and follow-up by imaging in brain tumours

Chapter 26 in
Imaging and interventional Radiology for Radiation Oncology
Renske Gahrmann
Javier Arbizu
Anne Laprie
Maribel Morales
Marion Smits

ACCEPTED
ABSTRACT

Brain tumours, either primary or secondary, are frequent. Primary brain tumours include mainly glioma, lymphoma and meningioma. Secondary tumours, i.e. brain metastasis, are a frequent event during the disease course of patients with cancer. The evaluation of response to treatment is often difficult with structural imaging due to the interference of treatment effects. In this chapter, the role of advanced imaging for the differential diagnosis between pseudoprogression, radiation necrosis and tumour recurrence is described with perfusion and diffusion MR imaging, MR spectroscopy, and PET imaging with amino acid analogues, fluorodeoxiglucose and other tracers. Furthermore, the commonly used response criteria for various brain tumours are described. For glioma, these are those set out by the Response Assessment in Neuro-Oncology (RANO) group. For brain metastases the RANO-brain metastasis (RANO-BM) and RECIST criteria are commonly used. While conventional T1w post-contrast imaging is the mainstay imaging modality for basic response assessment, multimodal imaging is commonly necessary to evaluate the response to treatment of primary and secondary brain tumours.
INTRODUCTION

Brain tumours can be either primary (gliomas, lymphomas, meningiomas) or secondary (metastases). They carry a substantial burden of severe symptoms and complications. Their treatment often includes radiotherapy. The evaluation of tumour response can be challenging particularly in gliomas with the issue of pseudoprogression. For all tumours, another challenge is to differentiate radiation necrosis from tumoural residue or recurrence. The use of advanced imaging modalities is commonly useful in these situations.

Imaging methods

Structural imaging

Treatment response assessment of brain tumours is generally performed using structural magnetic resonance (MR) images, such as T2-weighted (T2w), T2w Fluid Attenuation Inversion Recovery (FLAIR), and pre- and post-contrast T1-weighted (T1w) imaging. Most tumours show enhancement on post-contrast T1w images and 2D measurements on this sequence remain the basis of treatment assessment.

Additional information on tumour pathophysiology can be obtained with advanced MR imaging techniques and nuclear medicine imaging.

Advanced MR imaging

Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) can be considered as both structural and functional techniques. The amount of diffusion (or random motion) of water molecules is measured with DWI. In DTI, diffusion is measured in multiple directions (minimum of 6) to calculate the tensor or general direction of diffusion. Diffusion can be limited due to structures within the voxel. In tumour, high cellular density restricts diffusion, which is reflected in the DWI-derived Apparent Diffusion Coefficient (ADC). DTI-derived measures include fractional anisotropy (FA), which provides information on the degree of directional diffusion along the three main axes, and mean diffusivity (MD), which is similar to ADC. It is important to note that ADC is not only influenced by extracellular space tortuosity, but also by membrane damage and perfusion.

Most commonly used for perfusion imaging is T2*-weighted dynamic susceptibility-weighted contrast-enhanced (DSC) imaging. When the blood-brain-barrier is breached, contrast-agent leaks from the vessels into the surrounding tissue, increasing T1w-signal intensity and decreasing the T2*-signal. This effect must be counteracted (either in advance or during post-processing) when maps of relative cerebral blood volume (rCBV) are calculated, but can also be used to calculate other parameters, such as the peak height (PH) and percentage signal intensity recovery (rPSR).
perfusion techniques include dynamic contrast enhanced (DCE) imaging and arterial spin labelling (ASL). DCE-derived measures include cerebral blood flow (CBF), capillary permeability (K^{trans}), and extravascular extracellular volume fraction (V_e)5. Where for both DSC- and DCE-imaging intravascular injection of contrast-agent is required, the blood itself forms the contrast in arterial spin labelling (ASL). ASL-derived CBF has been shown to correlate well with DSC-derived rCBV measures6.

In MR spectroscopy different resonance frequencies of specific molecules and metabolites can be measured within different tissues, most commonly using protons (^1H-MRS). In brain tumours, N-acetyl aspartate (NAA), Choline (Cho), myo-Inositol (mI), lactate/lipid Lac), and Creatine (Cr) are commonly assessed, although many more may be measured7.

Chemical Exchange Saturation Transfer (CEST) imaging is a more recent technique, which can be used to measure amides (-NH), amines (-NH$_2$), and hydroxyl (-OH) groups among others, but is still very much in the research arena8.

Nuclear medicine imaging

Nuclear medicine techniques such as single photon tomography (SPECT) and positron emission tomography (PET) are being used worldwide for the characterisation, therapy planning and recurrence assessment of brain tumours. SPECT using cellular viability radiotracers like as 99mTechnetium- sestamibi (99mTc-MIBI) and 201T1hallium were initially employed in clinical practice due to its high availability910. However, in recent years PET has been gradually introduced into the clinical practice instead of SPECT for the evaluation of brain tumours as a complementary and supplementary tool of standard MR imaging sequences. It is important to note that fusion images between structural (computed tomography (CT) and/or MR imaging) and PET or SPECT images are highly recommended to achieve better accuracy. Multimodality systems are now available that combine SPECT and PET scanners and structural imaging devices like CT (SPECT-CT and PET-CT) and more recently MR imaging (PET-MR imaging). Visual analysis of images is the most common method for scan evaluation in clinical practice. The study is classified as positive when the activity observed in the lesion exceeds the reference region (usually normal cortex). However, semiquantitative analysis of PET studies can also be performed using the standard uptake value (SUV), commonly calculated for quantifying systemic tumours. This parameter however has a limited role in the clinical interpretation of images in neuro-oncology. Instead, tumour or lesion to brain reference region ratios using mean or maximum SUV (TBR) are used to provide a measure of PET radiotracers uptake in brain tumours.

One of the hallmarks of PET is the variety of parameters that can be observed and measured in brain tumours by means of specific radiotracers. Some of the most commonly used in clinical practice are reviewed in this section.
Glucose metabolism

Brain 2-deoxy-2-[18F]-2-fluoro-2-deoxy-D-glucose (FDG) uptake is usually acquired 45 to 60 minutes after the injection of 185 MBq of FDG. Patients must be fasting for 4 hours prior to injection, and it is recommended to obtain a measurement of blood glucose prior to the exam: high blood glucose levels at the time of injection decreases uptake in tumour and healthy tissue, although it may not affect lesion detection detectability. In case sedation is required, this can be carried out 45-60 minutes after injection, just prior to the time of the acquisition\(^{11}\).

FDG accumulates in the majority of tumours due to elevated glucose metabolism in response to increased energy demand. This technique has been applied to brain tumour imaging for many years. The relationship of FDG uptake to tumour glioma grade and prognosis has been reported in several studies\(^{12}\). However, FDG is in some way limited in neuro-oncology due to the high rate of glucose metabolism in normal brain parenchyma resulting in diminished signal-to-noise ratio for brain tumours. Another problem with FDG is the high uptake of this tracer in inflammatory cells, which can occur in a variety of disease processes and can be independent of tumour growth or response\(^{13}\). Consequently, as newer PET tracers have become available, the use of FDG for imaging in neuro-oncology has declined.

Amino acid transport

System L amino acid transport PET radiotracers ([11C-methyl]-methionine (-MET), O-[2-[18F]-fluoroethyl]-L-tyrosine (FET) and 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) are currently used in neuro-oncology. MET has been used since 1983\(^{14}\), but is limited to centres with an on site cyclotron because it is labelled with \(^{11}\)Carbon, a radioisotope with a very short half-life (20 minutes). FET and FDOPA are labelled with \(^{18}\)Fluorine, a radioisotope with a longer half-life, which allows radiotracer transportation from the manufacturing laboratory to the PET centre\(^{12}\).

The uptake of radiolabelled amino acids observed in normal brain tissue as well as in brain lesions including tumours of many types is predominantly conditioned by the transmembrane active transport, which is responsible for the biological activity in tissues, including cell proliferation. The uptake by cerebral tumour tissue appears to be caused almost entirely by increased transport via the specific amino acid transport system L for large neutral amino acids\(^{12}\). The uptake is also influenced by passive diffusion in regions with blood-brain-barrier disruption, and by stagnation in regional vascular beds that depends on blood volume due to a large vascular bed\(^{15}\). In contrast to tumour, the uptake of radiolabelled amino acids in normal brain is very low resulting in a high contrast between tumour and normal brain tissue.

After a recommended period of 4 hours of fasting, 200 MBq of FET, 370-555 MBq of MET, or 185 MBq of FDOPA are injected and a static PET acquisition is performed.
20 minutes later. In addition to static images, dynamic FET PET data can be acquired, which allows the characterisation of the temporal pattern of FET uptake by deriving a time-activity curve (TAC) in brain tumours16,17. It remains to be shown, however, whether dynamic MET and FDOPA can contribute significantly to the characterisation of brain tumours. The more widespread use of amino acid PET for the management of patients with brain tumours has been strongly recommended by the Response Assessment in Neuro-oncology (RANO) group13,18.

Somatostatine receptors

The most common somatostatin receptor (SSTR) radioligands for PET imaging are 68Ga-DOTA-Tyr3-octreotide (68Ga-DOTATOC), 68Ga-DOTA-D-Phe1-Tyr3-octreotate (68Ga-DOTATATE) or 68Ga-DOTA-I-Nal3-octreotide (68Ga-DOTANOC). These radiotracers, frequently used for imaging of neuroendocrine tumours, have been introduced in neuro-oncology due to the overexpression of SSTR subtype 2 in almost all meningiomas19. 68Ga has a physical half-life of 68 minutes and can be produced with a 68Ge/68Ga generator system, which enables in-house production without the need for an on-site cyclotron. PET ligands to SSTR provide high sensitivity with excellent target-to-background contrast due to low uptake in bone and healthy brain tissue20.

There are no comparative studies of 68Ga-DOTATOC, 68Ga-DOTATATE and 68Ga-DOTANOC, but the uptake of all these tracers is relatively high compared to normal brain; thus, possible differences between these tracers are not really relevant. Procedure guidelines for PET imaging with 68Ga-DOTA-conjugated peptides have been published recently21.

Other radiotracers

Several other radiotracers are used to image brain tumours. The thymidine nucleoside analogue 3’-deoxy-3’-18F-fluorothymidine (FLT) is a substrate for thymidine kinase-1 and reflects cell proliferation. Although previous studies suggest that FLT is a promising tool for glioma detection and grading22 and is able to predict improved survival after bevacizumab therapy22,23, the uptake of this tracer is dependent on disruption of the blood-brain barrier, thereby limiting its clinical value.

Hypoxia in brain tumours has been demonstrated with use of the PET tracer 18F-Fluoromisonidazole (FMISO)24. FMISO enters tumour cells by passive diffusion and becomes trapped in cells with reduced tissue oxygen partial pressure by nitroreductase enzymes. This tracer thus allows the identification of hypoxic tumour areas, which are thought to be more resistant to irradiation25, as well as a trigger for neoangiogenesis. Thus far, FMISO has predominantly been used in a preclinical setting.

Another interesting PET target is the translocator protein (TSPO), a mitochondrial membrane protein that has been used as biomarker for neuroinflammation. TSPO is
highly expressed in activated microglia, macrophages and neoplastic cells. Imaging with the TSPO ligand 11C-(R)PK11195 demonstrates increased binding in high-grade glioma compared to low-grade glioma and normal brain parenchyma. More recently, the TSPO ligand 18F-DPA-714 labelled with 18F has been evaluated in glioma animal models.

Choline is a marker of phospholipid synthesis involved in the synthesis of cell membrane components. The radiolabelled choline (either 11Carbon and more recently 18Fluorine) is trapped by glioblastoma with a very high contrast to normal brain, whereas its role in lower grade gliomas is limited. When compared with FDG, radiolabelled choline appears to be superior in terms of diagnostic performance in glioma and metastasis.

TREATMENT RESPONSE

Glioma

Background

Newly diagnosed anaplastic glioma and glioblastoma (GBM) are the most frequent primary brain tumours in adults. They are treated with the Stupp protocol, consisting of surgery, whole-brain radiotherapy (WBRT) and temozolomide (TMZ), followed by adjuvant TMZ. In diffuse low-grade gliomas the presence of certain negative prognostic factors can be considered a reason for adjuvant radiotherapy. The effects of radiotherapy combined with TMZ positively influences patient survival in GBM, especially in those with a methylated O6-methylguanine DNA methyltransferase (MGMT).

Radiological treatment assessment

Radiological assessment of treatment response in glioma was traditionally based on the bidimensional measurement of the area of enhancement, but the introduction of angiogenesis inhibitors (such as bevacizumab) has led to the diagnostic challenge of pseudoresponse: enhancement decreases or disappears because the tumour vasculature normalises and is therefore no longer permeable, while the tumour itself may not be responding to treatment. The RANO criteria therefore now includes the assessment of non-enhancing in addition to enhancing lesions, which also make them applicable to non-enhancing, commonly lower grade, glioma. The time between scans is generally 6-12 weeks, but is sometimes increased in case of stable disease. A summary of the RANO criteria for both GBM and lower grade glioma can be found in *Table 1*.
Table 1. Summary of the RANO criteria for glioblastoma (GBM) and low-grade glioma (LGG)34,37.

<table>
<thead>
<tr>
<th>Response</th>
<th>Criteria GBM</th>
<th>Criteria LGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Requires all of the following: complete disappearance of all enhancing (non-)</td>
<td>Requires all of the following: complete disappearance of the lesion on T2w/</td>
</tr>
<tr>
<td></td>
<td>measurable disease sustained for at least 4 weeks. No progression of non-enhancing</td>
<td>FLAIR images. No new lesions aside from radiation effects. No corticosteroids. Stable</td>
</tr>
<tr>
<td></td>
<td>disease. No new lesions. No corticosteroids. Stable or improved clinically.</td>
<td>or improved clinically.</td>
</tr>
<tr>
<td>PR</td>
<td>Requires all of the following: ≥50% decrease in the sum of products of perpendicular diameters of all measurable enhancing lesions compared to baseline sustained for at least 4 weeks. No progression of non-enhancing disease. No new lesions. Stable or reduced corticosteroids. Stable or improved clinically.</td>
<td>Requires all of the following: ≥50% decrease in the sum of products of perpendicular diameters on T2w/FLAIR imaging compared to baseline sustained for at least 4 weeks. No new lesions aside from radiation effects. Stable or reduced corticosteroids. Stable or improved clinically.</td>
</tr>
<tr>
<td>Minor response</td>
<td>-</td>
<td>Requires all of the following: 25-50% decrease of non-enhancing lesion area on T2w/FLAIR images compared to baseline. No new lesions aside from radiation effects. Stable or reduced corticosteroids. Stable or improved clinically.</td>
</tr>
<tr>
<td>SD</td>
<td>Does not qualify for CR, PR or PD. Stable or reduced corticosteroids. Stable clinically.</td>
<td>Does not qualify for CR, PR, minor response or PD. No new lesions aside from radiation effects. Stable or reduced corticosteroids. Stable or improved clinically.</td>
</tr>
<tr>
<td>PD</td>
<td>Requires any of the following: ≥25% increase in the sum of products of perpendicular diameters of enhancing lesions compared to the smallest tumour measurement from earlier studies. Significant increase in non-enhancing lesions. Any new lesion. Clinical deterioration.</td>
<td>Requires any of the following: Development of new lesions or increase of enhancement. ≥25% increase of T2w/FLAIR non-enhancing lesions while on stable or increasing steroid-dosage and not caused by radiotherapy or other. Clinical deterioration.</td>
</tr>
</tbody>
</table>

*CR=complete response, PR=partial response, SD=stable disease, PD=progressive disease.

Advanced methods of treatment assessment (MR imaging)

In a pretreatment setting, *diffusion MR imaging* derived parameters, such as ADC and FA, can aid in grading gliomas and localising areas of high cellularity suitable for biopsy35. After treatment, however, these parameters no longer correlate with cellular density, as they are influenced by other factors such as cell swelling and necrosis36. At a group level, ADC values still tend to be higher in gliomas than in normal appearing white matter (NAWM), but at an individual level there is considerable overlap and they are therefore not useful for response assessment37.
Perfusion imaging derived rCBV and CBF in both grey and white matter are decreased after radiotherapy and can remain low for up to 6 and 9 months respectively in high-dose areas38,39. High rCBV values (>2.0 times that of the contralateral NAWM) can be used to distinguish tumour from pseudo-progression or radiation necrosis with reported sensitivities of up to 82% and specificity of 7830,41. In diffuse astrocytoma, an increase in rCBV indicates malignant transformation37. In oligodendroglioma rCBV tends to be moderately increased even when low grade, but a further increase indicates malignant transformation37.

MR spectroscopy shows (transient) changes in molecules and metabolites in relation to treatment-related changes, such as neuronal dysfunction, oedema, damage to oligodendrocytes, demyelination, and inflammatory effects. Metabolites such as NAA, Cr, Cho and Lac change during and after radiation. For instance, a decrease in NAA occurs early after radiotherapy co-occurring with an increase in Cho, which can remain present for up to 6 months42-44. Due to the transient nature of metabolite changes, MR spectroscopy results need to be either interpreted in combination with other measures (MR imaging and/or PET) or with repeated measures in time.

PET imaging
A higher FDG uptake by glioma is correlated with higher tumour grade and worse prognosis45-47. With the exception of pilocytic astrocytomas, WHO grade I and II grade gliomas are typically negative on FDG PET (uptake similar to or less than white matter), and consequently this tracer is not suitable for response evaluation of low-grade glioma13. On the other hand, increased levels of FDG uptake in enhancing brain lesions are correlated with tumour recurrence in anaplastic glioma and glioblastoma.

In recurrent high-grade glioma, the uptake of FDG has been shown to be predictive of tumour metabolic response to TMZ versus TMZ plus radiotherapy48, and for predicting survival following anti-angiogenic therapy with bevacizumab45.

Current amino acid PET data suggest that both a reduction of amino acid uptake and/or a decrease of the metabolically active tumour volume are signs of treatment response associated with improved long-term outcome13. Moreover, the amount of residual tracer uptake in FET PET after surgery/prior to chemoradiation of glioblastoma (within 7-20 days after surgery) has a strong prognostic influence, even after adjustment by multivariate survival analyses for the effects of treatment, MGMT promoter methylation and other patient and tumour-related factors (Figure 1)49. The experience with amino acid PET for monitoring after treatment in patients with WHO grade II glioma is however limited.

The prognostic value of early changes of FET uptake 6-8 weeks after postoperative radiochemotherapy in glioblastoma patients has been evaluated prospectively50,51. PET responders with a decrease in the TBR of more than 10% had a significantly
longer disease-free and overall survival than patients with stable or increasing tracer uptake after radiochemotherapy. The kinetic analysis of FET uptake was not helpful in the evaluation of treatment effects to radiochemotherapy. Patients with low-grade glioma evaluated 12 months after brachytherapy exhibit significantly reduced MET uptake. For patients treated with alkylating chemotherapy, MET and FET PET may improve response assessment. Reliable monitoring of temozolomide and nitrosourea-based chemotherapy (PCV scheme including procarbazine, CCNU and vincristine or CCNU monotherapy) has been demonstrated in patients with recurrent high-grade glioma. Similarly, FET PET has been used to assess effects of TMZ according to the EORTC protocol 22033-26033 (application of 75 mg/m² TMZ per day over 21 days in a 28-day cycle). Additionally, a reduction of the metabolically active tumour volume after treatment initiation can be observed considerably earlier than volume reductions on FLAIR imaging. Several studies suggest that treatment response and outcome in bevacizumab therapy can be assessed better with amino acid PET using 18F-FET and 18F-FDOPA than with MR imaging (see also section 4.2).

Lymphoma

Background

The classification of central nervous system (CNS) lymphoma now corresponds with the WHO 2016 classifications of systemic haematopoietic/lymphoid disease. A
distinction is made between primary CNS lymphoma (PCNSL) and secondary CNS lymphoma. Secondary CNS lymphoma generally arises from aggressive non-Hodgkin lymphoma and has commonly (2/3) a leptomeningeal, and less commonly (1/3) a parenchymal localisation. PCNSL almost invariably has a parenchymal localisation. Typically, single or multiple contrast-enhancing lesions are seen surrounding the ventricles or in the corpus callosum. Patients are treated with WBRT and multiple chemotherapeutic agents (including methotrexate) given both systemically and intrathecally or intraventricularly. Additionally steroids are given.

Radiological treatment assessment
Conventional treatment response assessment of brain parenchymal lymphoma is by contrast-enhanced MR imaging with an average time between follow-up scans of 2 months during therapy. The International Primary CNS Lymphoma Collaborative Group has determined response criteria in 2005. Complete response (CR) is determined by a lack of contrast-enhancement on MR imaging, no steroid-treatment and

Figure 2. FLAIR and T1w post-contrast images in a 60-year old man with PCNSL in the right frontal lobe (A and B), treated with rituximab and MBVP followed by WBRT (30 Gy in 20 fractions) with resulting partial remission. Treatment continued with cytarabine and WBRT with SIB (30Gy in 20 fractions) and an additional boost on the tumour (10Gy in 20 fractions), resulting in complete remission with minimal white matter abnormalities considered to be a post-treatment effect (C and D). Recurrent disease four years later (E and F). After renewed treatment with MBVP and WBRT (20Gy in 5 fractions), a clear response was seen. Periventricular white-matter abnormalities and ex vacuo dilations of the ventricles is present as a post-treatment effect (G and H).
normal eye examination and cerebrospinal fluid (CSF) cytology. An unconfirmed complete response (CRu) is CR with minimal abnormalities on MR imaging and eye examination and/or any steroid use. Patients with a partial response (PR) have a 50% decrease of enhancing tumour without or only minor or decreasing eye disease with either negative or persistent/suspicious CSF cytology. Progressive disease (PD) is characterised by a ≥25% increase in enhancing lesions, new sites of disease, recurrent or new ocular disease and recurrent or positive CSF cytology. Treatment response in parenchymal PCNSL is depicted in Figure 2.

PET imaging

PCNSL often have high cellular density and consequently a markedly increased FDG uptake compared to other brain tumours, including glioblastoma and metastasis, and when compared to many infectious and inflammatory processes. Cerebral infections such as toxoplasmosis and tuberculoma are a common differential diagnosis to PCNSL and exhibit a significantly lower uptake than patients with lymphoma, with no overlap of the uptake values (0.3-0.7 versus 1.7-3.1 respectively). There is no significant difference between MET PET and FDG PET in terms of sensitivity. FDG PET has shown some clinical advantage in the differential diagnosis of lymphoma as most cerebral lymphomas have a high cell density and a high glucose metabolism, which is usually even higher than that of malignant gliomas and cerebral metastasis. In addition, FDG it is clinically more available and it can be performed as a whole-body scan for the assessment of systemic lymphoma involvement. Interestingly, FDG PET might also useful to demonstrate a response to chemotherapy in lymphoma patients very early after the initiation of therapy (Figure 3).

Figure 3. Brain FDG PET of primary CNS lymphoma at baseline (A), and 3 months after two cycles of chemotherapy (Carmustine, Methotrexate, Cytarabine, Rituximab according to the R-BAM scheme) and autologous hematopoietic stem cell transplantation (B) showing complete response.
Metastasis

Background

The main primary sites of brain metastases are lung, breast, and skin (melanoma). About 80% of brain metastases are located in the supratentorial brain (mainly frontal lobes) and about half of all patients have more than one metastases at the time of diagnosis\(^68\). Treatment consists of WBRT and/or stereotactic radiosurgery (SRS) depending on the size and number of lesions. Larger metastases may be surgically removed\(^69\).

Radiological treatment assessment

The RANO Brain Metastases (RANO-BM) working group created radiological criteria for treatment assessment in clinical trials, which can also be used in clinical practice\(^70\). The metastases are categorised as target and non-target lesions. Target lesions are parenchymal metastases of at least 10x5 mm\(^2\) in size. Up to five target lesions can be

<table>
<thead>
<tr>
<th>CR</th>
<th>Requires all of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disappearance of all target lesions sustained for at least 4 weeks.</td>
</tr>
<tr>
<td></td>
<td>No new lesions.</td>
</tr>
<tr>
<td></td>
<td>No corticosteroids.</td>
</tr>
<tr>
<td></td>
<td>Stable or improved clinically.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PR</th>
<th>Requires all of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥30% decrease in the sum of perpendicular diameters of target lesion size compared to the baseline sustained for at least 4 weeks.</td>
</tr>
<tr>
<td></td>
<td>No new lesions.</td>
</tr>
<tr>
<td></td>
<td>Stable or reduced corticosteroids.</td>
</tr>
<tr>
<td></td>
<td>Stable or improved clinically</td>
</tr>
</tbody>
</table>

| SD | Does not qualify for CR, PR or PD. |

<table>
<thead>
<tr>
<th>PD</th>
<th>Requires all of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥20% increase in the sum of longest diameters of target lesions compared to the smallest sum from earlier studies.</td>
</tr>
<tr>
<td></td>
<td>At least one lesion has increased ≥5mm.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CR</th>
<th>Requires all of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disappearance of all enhancing non-target lesions</td>
</tr>
<tr>
<td></td>
<td>No new lesions.</td>
</tr>
</tbody>
</table>

| PR/SD | Persistence of one or more non-target lesions. |

<table>
<thead>
<tr>
<th>PD</th>
<th>Requires any of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unequivocal progression of existing enhancing non-target lesions.</td>
</tr>
<tr>
<td></td>
<td>New lesions (except while on immunotherapy-based treatment*)</td>
</tr>
<tr>
<td></td>
<td>Unequivocal progression of existing tumour-related non-enhancing (T2w/FLAIR) lesions.</td>
</tr>
</tbody>
</table>

*In case of immunotherapy-based treatment, new lesions alone may not constitute PD.

**CR=complete response, PR=partial response, SD=stable disease, PD=progressive disease.
measured. Non-target lesions include smaller parenchymal lesions, but also dural, leptomeningeal, and cystic (or non-measurable) lesions. In case of a mixed response to treatment, lesions that increase in size are considered leading. Recommended time between scans is 6-12 weeks. Aside from radiological features, the RANO-BM also includes clinical status and steroid dosage. The RANO-BM criteria can be found in Table 2. Other response assessment methods include the RECIST criteria, in which lesions are measured in a single direction (≥30% decrease in the sum of diameters of the target lesions constitutes partial response, and a ≥20% increase progressive disease) and the WHO criteria, which include bi-dimensional measures (≥50% decrease in the sum of the product of the diameters constitutes partial response, and ≥25% increase progressive disease). The appearance of a new lesion always indicates progressive disease71.

PET imaging

PET imaging in the context of treatment assessment of metastasis is mostly used to distinguish tumour recurrence from treatment effects (see section3). FDG PET can add to the specificity for enhancing lesions that are equivocal or suspicious for recurrent tumour based on contrast-enhanced MR imaging alone in patients with brain metastases treated with SRS72.

Meningioma

Background

The WHO classification distinguishes three grades of meningiomas: Grade I, or benign meningioma, constitute the vast majority (about 90%); Grade II (atypical) and grade III (malignant) meningiomas are considerably less common. Benign meningiomas can be eligible for (radio)surgery if the cause of symptoms. Radiotherapy can be considered in case of incomplete resection or at recurrence. Atypical and malignant meningiomas are surgically removed when possible and irradiated60,73,74. Both atypical and malignant meningiomas can metastasise to the lungs, liver and spine, although this is rare (0.1% of cases) and screening is therefore not routinely recommended75.

Radiological treatment assessment

Meningiomas at risk for recurrence are those with pial invasion, and in the case of grade II and III meningioma when there is bone involvement or peritumoural oedema76,77. Meningiomas generally show intense homogeneous enhancement on post-contrast T1w images, and measurements are therefore performed on this sequence. Generally, the modified MacDonald criteria are used to determine treatment response, but it has been suggested that volumetric measures are more sensitive when it comes to
Figure 4. CT, MR imaging (T1w post-contrast), angiographic and FDG-PET images in a 40-year old woman with grade II meningioma primarily located in the skull (A and B). The tumour was resected and irradiated with 59.4Gy. Recurrent tumour growth appeared five years later intracranially (C) with compression of the superior sagittal sinus (D). Again, the tumour was resected. At second recurrence, multiple intracranial meningiomas appeared within the radiation field (E) and the patient was irradiated again (49.5Gy in 33 fractions). Aside from intracranial disease, the patient had histologically confirmed metastases in the lungs (F).
determining tumour growth due to the slow-growing nature of the tumours. Additional meningiomas may appear in the course of time at other locations.

Early radiotherapy-related effects are tumour necrosis and oedema in the white matter. Radiation-induced peritumoural changes occur in about 25% of patients, mainly in convexity, parasagittal and falk cerebri meningiomas after SRS. Later radiotherapy-effects such as white matter abnormalities are often seen in high-dose areas and the periventricular white matter. An example of an irradiated patient with an atypical meningioma and its treatment course is depicted in Figure 4.

PET imaging

The use of PET in meningioma patients is gradually increasing. Nevertheless, the usefulness of FDG PET is limited because meningiomas are mostly slow-growing and the metabolism of FDG is only elevated in atypical or anaplastic meningiomas. MET PET scanning has been used to evaluate the effect of stereotactic high-energy proton beam treatment has been evaluated in a prospective study with 19 meningioma patients. A reduction in the TBR was observed (even over several years) in the total patient group without a reduction in tumour size. Moreover, prior to the volume increase on MR imaging, MET uptake ratios were found to be increased, suggesting that treatment effects can be seen earlier than with CT or MR imaging.

Even though amino acid PET exhibits a better tumour-to-background contrast than FDG PET, the availability of specific SSTR ligands with even higher tumour-to-background contrast has led to a limited use of amino acid PET in meningioma assessment. 68Ga-DOTA peptides PET have been shown more accurate than standard MR imaging to discriminate meningioma tissue from scar tissue related to pretreatment using both DOTATOC and DOTATATE, even in transosseous extension of intracranial meningiomas. Consequently, 68Ga-DOTA peptides may be useful in cases of unclear differential diagnosis between tumour progression and treatment-induced changes.

TREATMENT EFFECTS

Pseudo-progression and radiation necrosis

Background

Progressive disease can be mimicked by treatment-related toxicity from radiotherapy (pseudoprogression and radiation necrosis), immunotherapy, chemotherapy, and anti-epileptic drugs. Additional imaging techniques and sequential imaging combined with clinical characteristics may be needed to distinguish these entities from actual progressive disease. Pseudoprogression occurs in a subacute setting after radiotherapy treatment combined with TMZ (within approximately 2-3
months after the start of treatment). Tumours with a methylated O6-methylguanine DNA methyltransferase (MGMT) promoter respond best to TMZ. Initially it seemed that this group showed a higher incidence of pseudoprogression, but this has later been disputed85. Direct damage after radiotherapy is likely due to vasodilatation and increased capillary permeability, leading to disruption of the blood-brain-barrier and oedema. In case of pseudoprogression the response is excessive causing enhancement on post-contrast T1w images due to the damage to the blood-brain-barrier, and which is indistinguishable tumour progression86,87.

Radiation necrosis is a chronic response to radiotherapy, which can occur from just months up to many years (median 1-2 years) after treatment; up to 90% occurs within the first 5 years posttreatment. There is endothelial damage, enzyme changes and immunological response leading to necrosis. Radiation necrosis similar to pseudoprogression causes enhancement on post-contrast T1w images, mimicking tumour recurrence or progression86,88.

The reported incidences of pseudoprogression and radiation necrosis vary widely, from 2% to 48%, depending on the source and the definition used. The incidence is influenced by radiation dose, field size, number of fractions, prior WBRT, chemotherapy (mainly cisplatin, carboplatin, doxorubicin, methotrexate, and temozolomide), immunotherapy, length of survival, age at time of radiotherapy, and diabetes mellitus88.

Standard structural imaging

Distinguishing pseudoprogression and radiation necrosis from tumour residue or recurrence is challenging. Radiation-induced lesions can occur at the primary tumour site, but also at a distance, including the contralateral hemisphere, if included in the field of radiation. There is a predilection for white matter, especially the corpus callosum, because of the higher susceptibility of oligodendrocytes to radiation damage (compared to neurons) and relatively lower blood supply89. In patients with low-grade gliomas there is also a predilection for subependymal localisation90. The enhancing area is surrounded by oedema, which tends to be somewhat more extensive in radiation-induced lesions91.

Different patterns of enhancement have been described, including nodular and rim enhancement with either regular or irregular margins and combined nodular and linear enhancing foci that create a mosaic-like appearance88,92, but no reliable distinctive characteristics have been found. Radiation-induced lesions more often contain haemorrhagic lesions visible on T2*-weighted images, although these can also occur in glioma and metastases (especially malignant melanoma)88. To complicate things further, lesions containing both radiation damage and tumour commonly occur. Patients with multiple lesions can show a mixed response, which can indicate the presence of pseudoprogression or radiation necrosis. More advanced imaging techniques, follow-up and sometimes histopathological assessment are generally necessary to make the final diagnosis.
Advanced MR imaging

With *diffusion MR imaging*, ADC values tend to be lower in recurrent tumour compared to radiation necrosis at the group level, likely due to increased cellularity, but at the individual level these values overlap\(^93\). Comparing ADC measures from the enhancing and non-enhancing areas can be helpful: in case of tumour, the ADC values taken from the non-enhancing area tend to be significantly higher than those from the enhancing area, while in radiation necrosis ADC values from both enhancing and non-enhancing areas are similar\(^88\). DTI-derived FA values in enhancing areas tend to be higher in recurrent tumour than in radiation necrosis\(^94\).

Figure 5. T1w post-contrast, FLAIR and DSC-perfusion rCBV maps in a glioblastoma patient with new enhancing lesions (A) and surrounding oedema (B) after prior treatment by the Stupp protocol. The rCBV map (C) shows low perfusion in the enhancing areas. The patient was enrolled in a clinical trial and treated with both bevacizumab and lomustine. At 6 weeks’ follow-up the enhancement had disappeared (D) and the surrounding oedema was decreased (E). A small artefact is present on the rCBV map (F), but there is no evidence of increase in perfusion.
Perfusion-imaging derived rCBV is commonly assessed as a ratio of the area of interest over the normal appearing white matter (NAWM) in the contralateral hemisphere. In high-grade tumours and metastases the rCBV ratio is high, whereas in radiation necrosis/pseudoprogression the rCBV ratio is low. The proposed cut-off value lies between 1.5 and 2.6. In about 8% of cases results are false-negative, as tumours can have rCBV ratios <1.5. Radiation necrosis can be safely diagnosed when the ratio is <0.6 (Figure 5). In current clinically used software it is easy to measure rCBV in multiple regions of interest (ROIs), but the interrater variability is quite large when it comes to deciding ROI size and placement. Other methods for measuring perfusion, such as using a different contrast-agent than gadolinium like ferumoxytol and using a different technique such as ASL are under investigation, showing promising results.

MR spectroscopy shows different metabolite concentrations in radiation necrosis from those measured in tumour. Reductions in individual metabolites Cho, Cr, and NAA indicate tissue damage and thus radiation necrosis. Favours tumour are high ratios of Cho/Cr and Cho/NAA and low ratios of NAA/Cr and Lac/Cho. In order to distinguish tumour from radiation necrosis different cut-off values for these ratios have been proposed: Cho/Cr >1.5-1.8, Cho/NAA >1-1.8, and Lac/Cho <0.75-1.05. Single voxel MR spectroscopy techniques requires precise placement of the voxel to be measured. In the presence of mixed tumour and radiation necrosis within the same voxel, tumour signal can be obscured because the metabolite concentration is averaged and then tends to suggest inflammatory changes. Such partial volume effects can be reduced with multivoxel MRS, in which multiple small voxels are placed. It is sometimes also important to look at changes over time, because of certain transient changes in metabolite concentrations: Cho for instance can be temporarily increased in radiation necrosis, falsely indicating tumour presence.

A relatively new method of measuring metabolites is **CEST**, which can potentially also be used to distinguish radiation damage from tumour: Amide proton transfer (APT), for instance, is found to be increased in tumour tissue. CEST studies to date are still scarce and the true clinical value remains to be determined.

PET imaging

After radiation therapy, **FDG** can be used to distinguish radiation necrosis from recurrent glioma. Although different rates of diagnostic accuracy has been been reported in the literature, FDG seems to be less sensitive than amino acid radiotracers with lower inter-observer agreement. However, diagnostic accuracy increases when FDG is evaluated in combination with MR imaging. Amino acid PET radiotracers are useful for the differentiation between treatment related changes
Recent studies with a larger glioblastoma patient cohort reported a diagnostic accuracy of FET PET of at least 85% for differentiating both typical (within 12 weeks) and late (> 12 weeks) pseudoprogression after radiochemotherapy completion from true tumour progression (Figure 1).

Pseudoprogression after immunotherapy has been reported using FET PET in a small retrospective pilot study in patients with malignant melanoma brain metastasis treated with ipilimumab or nivolumab.

TBR, uptake kinetics and tumour volumes using FET PET have been evaluated for their value in monitoring stereotactic brachytherapy using iodine-125 seeds. FET PET correctly differentiated with a high diagnostic accuracy late posttherapeutic effects after 6 months from local tumour progression in patients with recurrent high-grade glioma.

Comparison/combination of methods
Perfusion-derived and PET-derived measures are considered the most reliable when it comes to discerning tumour from radiation necrosis. ASL may be preferable over
DSC-perfusion imaging because it does not suffer from T1 leakage effects and it allows for quantitative measurement of CBF\(^97\).

In clinical practice a combination of MR imaging sequences are used and they can be complementary. When the diagnosis is unclear based on MR imaging alone, PET-imaging can be considered. An ideal situation would be to use hybrid PET-MR imaging. Information on tissue perfusion, cellularity, integrity of neurons, anaerobic glycolysis during hypoxia, status of cellular membranes and metabolic pathways can then be acquired in one setting\(^5\).

Angiogenesis inhibitors and pseudoresponse

Background

Angiogenesis inhibitors, such as the VEGF-inhibitor bevacizumab, are now used in variety of tumours including (recurrent) glioblastoma and meningioma. In addition, bevacizumab is now used to alleviate oedema surrounding the tumour, but also oedema due to radiation necrosis. Due to vascular normalisation ‘leaky’ tumour vasculature is normalised and new vessel growth is inhibited. This not only reduces oedema but also reduces or even complete dissolution of tumour enhancement. This phenomenon is known as pseudoresponse because the tumour may still present\(^107\).

With radiation necrosis already difficult to distinguish from residual or recurrent tumour, the addition of angiogenesis inhibitors further complicates image interpretation as it can mask the tumour as well as reduce radiation necrosis effects. Varying or mixed response to the treatment between patients further plays a confounding role\(^108,109\). In the context of treatment for radiation necrosis, patients responding to bevacizumab treatment only infrequently show recurrence or progression of radiation necrosis after discontinuation\(^110\).

PET imaging

The problem of accurately identifying non-enhancing tumour (pseudoresponse) has been investigated using amino acid PET to assess treatment response to antiangiogenic therapy\(^111\). Recent studies and case reports indicate that FET and FDOPA PET are useful in the context of pseudoresponse both detecting and ruling out the presence of tumour\(^54\). FET and FDOPA PET have also been used to predict a favourable outcome in responders to bevacizumab\(^54\).

A cost effectiveness analysis of FET PET for therapy monitoring of antiangiogenic therapy suggests that the combined use of MR imaging and FET PET in the management of these patients have the potential to avoid overtreatment and corresponding costs, as well as unnecessary patient side effect\(^112\).
LATE EFFECTS OF RADIOThERAPY

In addition to radiation necrosis, radiotherapy has other late effects on the brain parenchyma, including demyelination, vascular abnormalities and atrophy. Radiation-induced tumours and malignant transformation have also been reported\(^{87,113}\). The extent of these effects is related to total radiation dose, field size, number of fractions and frequency, chemotherapy and other medication (methotrexate, corticosteroids, anti-epileptic drugs), patient survival and age at the time of radiation therapy\(^ {87}\).

White matter abnormalities

White matter is rich in glial cells, such as oligodendrocytes, which are more sensitive to radiation than neurons\(^ {43}\). White matter damage is a common finding in irradiated patients and includes reactive gliosis, inflammation, oedema, demyelination, atrophy, coagulative necrosis, cavitation/cysts and calcification\(^ {87,114}\). These different entities are difficult to distinguish on histological data and practically impossible to differentiate with MR imaging. White matter damage is visible as atrophy and/or T2w/FLAIR hyperintensity, also known as leukoencephalopathy\(^ {87,92}\). The damage can be limited to small discrete lesions or there can be large confluent areas.

Radiation-induced damage to the white matter starts to appear on T2w/FLAIR images just months after treatment and is generally more severe in older patients\(^ {113}\). Areas with limited blood supply, such as the periventricular white matter, are affected more than for instance the arcuate fasciculus which also receives cortical arterial supply\(^ {88,89}\). Before abnormalities are visible on the T2w/FLAIR images, DTI can already pick up changes in white matter, using parameters such as MD, FA, and diffusivity perpendicular and parallel to the white matter fibres\(^ {115}\). It has been postulated that some of these observed changes may be reversible\(^ {116}\).

Grey matter abnormalities

Because neurons are less sensitive to radiation than glial cells the grey matter is generally less affected than white matter. Effects that occur are cortical thinning, irregularity within the cortex (visible as T2w-hyperintensity) and blurring of the grey matter white matter junction\(^ {92,117}\). Both grey and white matter damage can result in cognitive decline with deficits in learning, working memory and executive functions. Symptoms are more prominent when specific areas, such as the hippocampus and corpus callosum, are damaged\(^ {118}\).
Figure 7. 35-year old woman treated for medulloblastoma 14 years ago. After subtotal resection, the tumour was irradiated (57.5Gy) and there has been no recurrent disease. T1w-image shows post-operative effects in the posterior fossa (A). The T2* (gradient echo) sequence shows multiple lesions with signal loss infra- and supratentorially (B, C, and D), consistent with cavernomas.
Vascular changes
Direct damage to endothelial cells leads to an increase in permeability, vasogenic oedema, ischemia and hypoxia. Complications that develop after four months include lacunar infarcts, microbleeds, large-vessel occlusions with moyamoya syndrome, (capillary) teleangiectasias, cavernomas (Figure 7), and stroke86.

A rare late complication after radiotherapy is the so-called SMART syndrome: Stroke-like Migraine Attacks after Radiation Therapy (Figure 8). Patients have transient clinical symptoms and radiological findings suggestive of tumour recurrence such as unilateral enhancement of the cortex and T2w-hyperintense white matter. The posterior regions of the brain is predominantly involved. The effects are reversible119.

Radiation-induced tumours and malignant transformation
A radiation-induced tumour is a new tumour that grows within the radiation field and different histology from the original tumour. Tumours most often encountered are meningiomas, followed by glioma and sarcoma87,113. The reported incidence of radiation-induced tumours is 2.6% in irradiated children. In adults however, the incidence is much lower87,120.

Malignant transformation of meningioma due to irradiation is disputed. The reported incidence is 2.2%, but since malignant transformation of meningioma can also occur in the absence of radiotherapy, the true incidence is probably lower. Vestibular schwannoma has been reported to undergo malignant transformation due to radiation therapy in 0.3% of cases73,121.

PET imaging
Treatment effects may decrease FDG uptake in the treatment area as well as in brain regions that receive synaptic input from the treated area.
Figure 8. 43-year old male with oligodendroglioma initially treated with radiotherapy (50.4Gy) 6 years previously and with chemotherapy at progression 4 years later. T1w post-contrast (A), FLAIR (B), and rCBV (C) after therapy show stable residual abnormalities. The patient subsequently developed headaches and disorientation. On the T1w post-contrast image there is enhancement of the cortex (D) adjacent to the FLAIR hyperintense area (E). rCBV is increased in the enhancing area (F). At 2 months’ follow-up imaging findings had regressed (G, H, I). Symptoms and imaging findings were consistent with SMART-syndrome.
REFERENCES

