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Generalized Fractional Programming 
and Cutting Plane Algorithms I 

A. I. BARROS 2 AND J. B. G. F R E N K  3 

Communicated by S. Schaible 

Abstract. In this paper, we introduce a variant of a cutting plane 
algorithm and show that this algorithm reduces to the well-known 
Dinkelbach-type procedure of Crouzeix, Ferland, and Schaible if the 
optimization problem is a generalized fractional program. By this obser- 
vation, an easy geometrical interpretation of one of the most important 
algorithms in generalized fractional programming is obtained. More- 
over, it is shown that the convergence of the Dinkelbach-type procedure 
is a direct consequence of the properties of this cutting plane method. 
Finally, a class of generalized fractional programs is considered where 
the standard positivity assumption on the denominators of the ratios of 
the objective function has to be imposed explicitly. It is also shown that, 
when using a Dinkelbach-type approach for this class of programs, the 
constraints ensuring the positivity on the denominators can be dropped. 

Key Words. Generalized fractional programming, boundedly lower 
subdifferentiable functions, cutting plane algorithms. 

1. Introduction 

Let ~ c 2 ~  n be a compact  set, and let w i : 6 P ~ P ,  i e I : = { 1  . . . . .  m}, 
m > 1, be a set of  continuous functions on the open set ~ with ~Y_ 6e and 
with range •,-. I f  f :  Y ~  with U~r~"e~_~gc_R p denotes a boundedly 
lower subdifferentiable function on ~ with blsd bound N and if h: 5 f ~  
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is given by 

h(x) := max f(wi (x)), 
i~I 

consider the optimization problem 

(P) inf h(x). 

To solve the optimization problem (P), a cutting plane method is intro- 
duced. This method is a generalization of a procedure discussed by Plastria 
(Ref. 1). It is shown in Section 3 that this method reduces to the Dinkelbach- 
type algorithm for a generalized fractional programming problem (Ref. 2), 
and so this yields a geometrical and at the same time classical interpretation 
of one of the most important and seemingly ad hoc algorithms in generalized 
fractional programming. Moreover, by this interpretation, we obtain imme- 
diately for a generalized fractional programming problem an upper and a 
lower bound on the optimal objective value, and so by comparing these 
bounds an objective-value stopping rule can be constructed. This result is 
not clear immediately from the original Dinkelbach-type algorithm. Finally, 
a class of generalized fractional programs not satisfying the standard positiv- 
ity assumption of the denominator of the objective function is considered. 
For this class of optimization problems, it is shown that each member of 
this class can be handled by a Dinkelbach-type algorithm applied to a corre- 
sponding standard generalized fractional program. Moreover, an example 
of such a problem occurring in location theory is outlined. 

2. Cutting Plane Algorithm 

Before discussing a general cutting plane method to solve optimization 
problem (P), we need to introduce the following notation (Ref. 1). For an 
arbitrary function f :  S---, R with domain S ~ ~", its strict lower level set of 
level p is given by 

~ f  (]./):= { y e S [  f ( y )  <p}.  

Moreover, the function f :  S ~ ~ is called lower subdifferentiable at z e S if 
there exists some z*e R n satisfying 

f (y) >_f (z) + (y - z ,  z*), 

for every y belonging to ~ s  ( f (z)) ,  with ( . , . )  denoting the inner product. 
The set of these so-called lower subgradients z* is denoted by #-f(z). The 
functionfis called lower subdifferentiable on S if the set O-f (z) is nonempty 
for every z belonging to S .  Observe that O-f (z) equals ~" if z is a minimal 
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point of f on ~ .  Finally, the functionfis called boundedly lower subdiffer- 
entiable (blsd) on X with blsd bound N i f f  is lower subdifferentiable on 
se  and, for each z ~ r  ~, there exists a lower subgradient z*~Uf(z )  with 
Euclidean norm IIz*ll bounded from above by N. The above generalization 
of convexity was first studied by Plastria (Refs. 1 and 3) and independently 
by Konnov (Ref. 4). Moreover, its relation to the generalized conjugation 
theory of Moreau was discussed by Martinez-Legaz (Ref. 5). Among other 
properties, it was proved by Plastria (Ref. 1) that every blsd function f is 
Lipschitz continuous on ~ .  This implies, by the continuity of the functions 
wi : 5 a ~  p, i~I, and by the compactness o f f  that the optimization problem 
(P) is solvable; i.e., there exists some x~Sf solving problem (P). Moreover, 
if XkEff is a nonoptimal point, the set 

Zeh(h(x~)) = {x ~ ~;I h(x)  < h(x~) } 

is nonempty and equals 

0 {x~Y'l f (wi(x))  <f(wlk(x~))}, 
i~I  

with & belonging to the set I(xk) of active indices at xk; i.e., 

I(xk) := { iEII f (w~(xg) ) = h(xk)}. 

Since f :  ~ ~ ~ is by assumption boundedly lower subdiffereutiable with blsd 
bound N, we obtain for every ieL aikeUf(wi~(x~)), and Xe~h(h(xl,)) that 

f (wi(x)  ) > f(wik(Xk) ) + (WI(X) -- Wi~(Xk), aik) 

= h ( x ~ )  + ( w , ( x )  - wi~(x~), a,k). 

Hence, it follows that, for every x~h(h(x~) ) ,  

h(x) > hk (x) := h(xk) + max(wi (x) - wi~(x~), ai~). (1) 
i~ l  

Clearly the function h~: Y ' ~ ,  depending uniquely on the index i~I(xk) 
and the lower subgradient a~eO-f(wik(Xk)), is properly defined; but only 
for xk~SF nonoptimal is it a lower bound of h o n  ,.~h(h(xk)). 

By (1), it is possible to introduce iteratively a set of subproblems (Pj+ 1), 
j>0 ,  for the solution of (P). Let x~YC, O<k<j, be given with x~, 1 <k<j,  
an optimal solution of (P~); let x0 be an initial feasible solution; and con- 
struct for each xk a continuous function hk: Y'~ ~ given by (1). The subprob- 
lem (Pj-+ 1) has now the following form: 

(Pj§ l) min max h~(x). 
x~Y[" O < k < j  
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Denoting by 9 (P) [respectively, ~ (Pj+ l)] the optimal objective value of 
problem (P) [respectively, (Pj+a)], the proposed cutting plane method is 
described as follows. 

Cutting Plane Algorithm 

Step 1. 
Step 2. 

Step 3. 

Step 4. 

Choose x0eSf. Set UB~+oo, and se t j~0.  
Take any ijeI(xj) and a~eO-f(w~, (xj)) with Ilaijjl<N. If 
UB>h(xj), then set UB~h(xj) and set ~-x j .  
If II a/ill = 0, then stop. Otherwise, s e t j ~ j +  1 and solve problem 
(Pj). 
If O(Pj)< UB, then let x/be an optimal solution of problem 
(Pj), and return to Step 2. Otherwise, stop. 

The above problem (P) might have local optimal solutions. Also, since 
we do not assume besides continuity any additional structure on the 
functions wi, ie/, function h might not be boundedly subdifferentiable, and 
so the usual cutting plane approach (first-order approximation around x) 
cannot solve these optimization problems. However, the above procedure, 
by locally approximating h by a first-order approximation around wik(x~ ) 
instead of xk, will discover for these optimization problems a global solution. 
At the same time, the algorithm yields during its execution a lower and an 
upper bound for the optimal objective value. Clearly, the efficiency and 
implementation of this procedure depends on the structure of the subprob- 
lems. Moreover, this approach, based on classical principles, gives a clear 
interpretation to the seemingly ad hoc Dinkelbach procedure. Finally, if 
each w~ is the identity mapping and the set I consists of one element, the 
cutting plane method of Plastria is recovered (Ref. I). 

To analyze the properties of the above conceptual algorithm, denote 
by j* the number of times the main step was started by the algorithm. 
Clearly, if j*  equals + ~ ,  the algorithm does not stop, while for j*  finite 
either 0 (Pj.) > UB or II a~. II equals zero. The proof of the next result is related 
to the proof of Lemma 2.1 in Ref. 6. 

Proposition 2.1. The sequence 0(Pj), j< j* ,  is nondecreasing and 
O (Pj)< 8 (P), for every j<j*. Moreover, if j* is finite, then )2 is an optimal 
solution of (P). 

Proof. Clearly, by the definition of (P/), it follows that 

O(Pj)_<~9(P~+I), for every 1 <j<j*. 
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I f j < j *  and x0 . . . . .  xj_ 1 contain an optimal solution of (P), then at the j th  
iteration the upper bound UB equals 0 (P). This implies, since j< j*  and 
hence 0 (Pj) < UB, that ~ (Pj) < 0 (P). Moreover, if the sequence x 0 , . . . ,  xj_ 
contains no optimal solution of (P), then the set 

j - - I  

~ j - I  := (-~ ~'h(h(Xk)) 
k = 0  

is nonempty, and so by (1) we obtain 

0 ( P j ) <  min max h~(x)< min h (x )=0(P ) .  (2) 
x~,SPj 10<_k<_j-1 XE,,~j--  I 

Also, if j *  is finite and the algorithm stops due to I1%.11 =0, it follows by 
the definition of  a lower subgradient that ff = xj. is an optimal solution of 
(P). On the other hand, if the algorithm stops due to 0 (Pj.) >_ UB and 2 is 
nonoptimal, we obtain that 

UB=h(2)= min h(xk)>0(P) .  
0 < k ~ < j * -  1 

By (2), it follows that 0 (Pj*) < 9 (P), and so 0 (Pj*) < UB, which contradicts 
the stopping rule. []  

In the cutting plane method, it may happen that some xj is an optimal 
solution of  (P), but this is not detected immediately due to 0 (Pj+ 1)< 0 (P). 
If  the algorithm performs an infinite number of  iterations (i.e., j * =  +oo), 
one can prove the following result. 

Proposition 2.2. If j*  equals + ~ ,  every accumulation point of the 
sequence {xj}j~o is an optimal solution of (P). Moreover, the sequence 
{~9(Pj)}j>_1 converges from below to ~9(P). 

Proof. For 5 f _  R" compact, it follows that the sequence {xj, j >_ 0 } ~_ Ys 
has accumulation points in 5f. Let xoo be such a point (i.e., there exists a 
subsequence J___ N with limj~l~ ~ xj = xoo), and suppose by contradiction that 
h(x~) > ~9(P)+ e0 for some E0> 0. Since limj~j_.oo xj=x~,  we can find, by 
the continuity of  h and w~, ieL and b y f b o u n d e d l y  lower subdifferentiable 
with blsd bound N, some loeJ satisfying h(xn)> 0 ( P ) +  e0 and 

(Wi,o(X,,)-wi,o(Xlo), aoo)<Nmiax (IIw~(x,,)-w~(Xto)]l) < Co/2, (3) 

for every 6oeI(xlo) and n>lo, neJ. Hence by (3), it follows that 

h(xlo) + (w% (x,) - Wito (Xto), ai~ o) >_ h(xto) - e0 > ,9 (P). (4) 
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However, by Proposition 2.1, we obtain for n > lo, n ~ J  that 

~9 (P) > 0 (P,) > h(x, o) + ( w i l  0 (Xn)  - -  Wil 0 (Xlo) ,  ai, 0 >, (5) 

and this contradicts (4), implying that x~ is an optimal solution of  (P). 
To prove that 

lim~ (Ps) = a (P), 

we observe that, for any leJ,  i leI(xt) ,  and n>l ,  n J ,  

0 _< ~9 (P) - 0 (P~) < ,9 (P) - h(xl) - (w,, (x.)  - w,, (xt), a,,) 

<_ - ( w , , ( x . )  - w, ,(xt) ,  ai,).  

As in (3), the last expression can be made arbitrarily small, and applying 
the monotonicity of  ~9 (Pj), j >  1, yields the desired result. []  

Note  that, for a large class of  blsd functions, it is possible to construct 
a lower subgradient (Refs. 1 and 6-8), and so in principle it is possible 
to implement the above algorithm for this class. Finally, observe that the 
convergence proof  requires explictly that all previous generated cuts 
x ~ h~(x) should be retained. 

3. Generalized Fractional Programming 

Before discussing the relation between the cutting plane method and 
the Dinkelbach-type algorithm, we analyze for avf :=[&,A1]x[62 ,  Aa], 
fi2>0, the function f :  :/f--+E given by f ( z ) :=Zl /Z2.  This function is both 
quasiconvex and quasiconcave and is differentiable on ~ .  Moreover, it is 
easy to check that 

(y  - z, Vf (z)) -- (y2 / z2)[ f (y )  - f  (z)], (6) 

for all z, y E Y .  By this relation, it follows that f is boundedly subdiffer- 
entiable on :r  Also for 

~ s  ( f ( z ) ) : =  {yeaffl f ( y )  <f(z)}  

nonempty, we obtain by (6) that 

{ )~Vf (z)lZ_> Zz/a(z) } ~_ a - f  (z), (7) 

with 

8(z) := inf{y2[ y e  s ( f  (z))} _> 82, 
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while for LPf( f (z ) )  empty, it follows by definition that 

O-f (z) = R 2. (8) 

By (7), it is clear that in general a lower subgradient depends on the 
domain ~ .  

Although not necessary for the verification of the equivalence between 
the cutting plane method and the Dinkelbach-type algorithm of Crouzeix, 
Ferland, and Schaible (Ref. 2), it is interesting to give a complete charac- 
terization of O-f (z). Since the set s (f(z)) might be empty at the boundary 
of X ,  we assume for simplicity that zeint(o~(). If this holds, it is easy to 
verify that 5~ ( f (z ) )  is nonempty. Moreover, since Vf(z) r 0 for every z~cg, 
it follows that the open halfspace 

Jvf-(Vf(z)) := {d~ ~2[(d, Vf(z)} < 0} 

is always nonempty and its closure equals 

{a~ [~21 (a, Vf(z)}_< 0}. 

For zeint(Yf) we obtain now, for every d e ~ - ( V f ( z ) ) ,  that 

z + td~ s ( f (z)) ,  

with t > 0 sufficiently small, and so 

gvf-(Vf(z)) ~ U )~ (s  - {z} ). 
s 

The other inclusion can be proved using (6), and hence this yields 

9F-(Vf(z)) = [.) X ( ~ f ( f ( z ) )  - {z} ). (9) 
z>0 

The above relation is in general not true for z belonging to the boundary 
of Yg. Since Vf(z)~0, and hence z belongs to the closure cl(s of 
the nonempty set ~es( f (z) ) ,  we can introduce the normal cone X(z)  of 
s  at z~int (~) ,  i.e., 

JV(z) := {z* ~ ~2: < y - z ,  z*> _<0, for everyy~Sef ( f ( z ) )} .  

It is now possible to give a complete characterization d- f  (z) for zeint(X).  

Lemma 3.1. If f :  ~ - + ~ ,  with J"(:=[Sl, Al] x [52, A2] , 5 2 > 0 ,  is given 
byf(z)  = 7_1/22, then for every z~int (~) ,  it follows that 

~-f(z) = { ZVf(z) I Z >_ z2/a (z) }, 
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6 (z) := inf{ Y2 [ Y e LPW (f(z)) }. 

Proof. By (7), we have only to verify _c. To prove this, we first show 

Uf(z) ___.At(z), for any ze in t (~) .  

Let z* ~ Uf(z), and consider an arbitrary y ~ ~ f  (f(z)). If (y - z, z* } > 0, we 
obtain that 

f ( y )  >_f(z) + ( y - z ,  z*} >f(z),  

and so y does not belong to ~f ( f ( z ) ) .  This yields a contradiction, and 
hence z* aY(z) .  

To derive an alternative description of X(z) ,  z~int(.Z(), we observe by 
(9) that 

�9 ,~/'(Z) = {Z* ~: ~2[  (d, z*} < 0, for every de~ff-(Vf(z))} 

= {z* s N2[ (d, z*} < 0, for every decl (Yf-(Vf(z)))} 

=: (cl(oVf-(Vf (z) ) ) ) ~ (10) 

with (cl (J~'~-(Vf(z)))) ~ the polar of the closed half-space cl(JCf-(Vf(z))). 
Since this last set equals 

{de R2I (a, Vf(z)} <0}, 

it is the polar of the closed set 

~ : =  {~,Vf(z)[~._> 0}. 

Applying now Theorem 14.1 of Ref. 9 yields by (10) and the above observa- 
tion that 

X ( z )  = (~o)o = ~ ,  

and we have shown that 

O-f (z) =_ {ZVf(z)IZ >_0}. 

If z* ~Uf(z), it follows by the above inclusion that there exists some ). >_ 0 
such that 

f ( y )  - f ( z )  >_,~(y- z, Vf(z) }, 

for any y e ~ f ( f ( z ) ) .  By (6), this implies 

(z2/y2)<y- z, Vf(z) } > Z<y-  z, Vf(z) }, 
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for every y~Sfs( f (z)) ,  and since again by (6) it follows that 

( y - z ,  Vf(z)) <0, 

we obtain that 

~> z2/ a(z). [] 

The above result improves, for this special case, a more general result 
on the lower subgradient set for the ratio of a convex and a concave function 
given by Proposition 2.1 of Ref. 8. 

Returning to our algorithm, we will show that the cutting plane method 
discussed in Section 2 reduces to the Dinkelbach algorithm (Ref. 10) for 
classical fractional programming (m = 1) and to the Dinkelbach-type algo- 
rithm of Crouzeix, Ferland, and Schaible (Ref. 2) for generalized fractional 
programming (m> 1). For this optimization problem, it follows that 
wi: 5 e ~  2 is given by 

w , ( x )  :=  [ u , ( x ) ,  v , ( x ) ] ,  

with v~(x)>0 for every xeY'. Moreover, the ratio function f (z)=z, /z2 is 
defined on JF = [31, &] x [32, A2] satisfying 

3, :=min min u,(x) <max  max u,(x) = : & ,  
x e ~  i ~ l  x~ ,L  r i ~ l  

0 < 32 := min min vi (x) < max max vi(x) =: A2. 
x~Td" i e I  x ~ &  r i E I  

Finally, we obtain that 

h(x) =max{ui(x)/vi(x) }. 
i e l  

Since Wik(Xk) belongs to ~ ,  it is clear by (7) and (8) that a lower subgradient 
aikEUf(wik(Xk)) is given by 

a;k:= Vik( Xk) Vf  ( w~k(Xk) ) / 32 ---- (1/52)[1, --h(xk) ] T. 

Notice that a~k is never zero. Moreover by (6), we obtain 

(w , (x )  - w,Axk), aO,  a~> = [v~ (x) /a2][u, (x) /v , (x)  - u,k(xk)/v,Axk)] 

= ( 1 / 3 2 ) [ u , ( x )  - h ( x ~ ) v i ( x ) ] ,  

and so the function hk: X--+~ given by (1) reduces to 

hk (x) = h(Xk) + (1/fi2) max { ui (x) -- h(Xk)Vi (x) }. (11) 
i ~ l  

We are now able to prove the following result. 
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Lemma 3.2. If  the standard assumptions for a generalized fractional 
program are satisfied and the cutting plane method applied to this special 
case stops after a finite number of  steps, then 2 equals xj._ t, and this is the 
first optimal solution among Xo . . . . .  xj*-l .  Moreover, the sequence h(xj),  
0 < j < j * <  + ~ ,  is strictly decreasing, and for every x~W it follows that 
maxo_<k_w hk (x) = hj (x). 

Proof. Since a~,, k = 0 ,  1 . . . .  , is never zero, the algorithm can stop 
only if 0 ( P j ) >  UB. Therefore, if it stops after a finite number of steps, it 
follows by the last part of Proposition 2.1 that there exists an optimal 
solution of  (P) among Xo . . . . .  xj*-l .  Suppose now that xk with k < j * -  1 
is the first optimal solution of (P) among Xo . . . . .  xj,_ 1. Hence by (11), we 
obtain that 

O(Px+ i) >_ hg(xg + 1) ~h(xg)  + ( l /~2){Uik+,(Xk+ ,) -- h(xg)vek+,(Xg + l) }. 

Since xk is an optimal solution, 

Uik+l(Xk+ 1) - -  h(xk)~)ik+l(Xk+ 1) ~> O, 

and thus ,9 ( Pk + 1) > h( x~). By this inequality and UB = h( Xk) at the beginning 
of  the (k+  1)th main step, the algorithm should have stopped at step 
k + 1 <j* ,  and so X o , . . . ,  x j ._  2 are not optimal. By the first part, this implies 
that xj._ 1 is optimal. 

Also by (11) and Proposition 2.1, we obtain for every l < j < j * < ~  
that 

~9(P)>_,9(Pj)>hj_l(xj)>_h(xj_1)+(1/32){u~(xg)-h(xj_l)v~j(xj)} ,  

and since by the first part xj_ 1 is nonoptimal [i.e., h(xj_ 1) > # (P)], this yields 

u6.(xj) - h (x j_  , )v , j (x j )  < o, 

or equivalently 

h(xj) <h(xj-1). 

Applying again (11) and using the monotonicity of  the sequence h(xj),  
j< j*<_ o% the last result follows. [] 

From the above proposition and the definition of  (Pj+ 1), it follows that 
the optimization problem (Pj+I) reduces to 

~9 (Pj+ 1) = min hi(x). 
xE~" 
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Also, 

h(xj) = m a x { u / ( X j ) / ! )  i (Xj) }, 
i~1 

and by taking pj=h(xs) ,  it follows by (11) that 

oq (Ps+ 1 ) =min hs(x ) = (1/~SR)F(us) +U j, 
x ~ "  

where F(Uj) denotes the optimal value of the parametric problem, with 
parameter Us, used in the Dinkelbach-type procedure (Refs. 2 and 11); i.e., 

F(Us) := rain max {ui (x) - Us vi (x) }. 
xe~"  iE1 

By our cutting plane interpretation, we also obtain immediately that 
(1/~2)F(uj) +Uj is a lower bound on the value of the optimal solution of 
(P), and so a good stopping rule is given by 

F(Uj) < E82, for some E>0. 

Observe that this result can also be proved by analyzing the behavior of the 
function F around the point U = ~9 (P) ; see Proposition 2.2 of Ref. 2. More- 
over, by Lemma 3.2 and by Propositions 2.1 and 2.2, the well-known results 
(Ref. 2) that the sequence U j, J >--0, is strictly decreasing and that 

limuj= ~9 (P), lim F(Uj) = F(~9 (P)) =0 
jT ~ j $ ~  

are easily recovered. 
Finally, by observing that the Dinkelbach-type algorithm for gen- 

eralized fractional programming can be seen as an approach based on cutting 
planes in the space ~,  we refine and extend the remarks regarding classical 
fractional programming [i.e., m = 1, given by Sniedovich (Ref. 12)], and thus 
we show that this Dinkelbach-type approach is classical par excellence. 

Boncompte and Martinez-Legaz in Ref. 8 apply the cutting plane 
algorithm of Plastria to generalized fractional programs. Hence, they 
approximate 

h(x) = max{ui (x)/v~ (x) } 
i ~ I  

by a first-order approximation around the point x. In order to derive lower 
subgradients of the function h at x, they construct sets which contain and 
are contained in the lower subgradient set of h; see Proposition 2.1 of Ref. 
8. Observe that an improvement of a special case of their proposition corre- 
sponds to our Lemma 3.1. Moreover, in order to speed up the solution of 
the subproblems, one of the versions of the cutting plane algorithm tested 
in Ref. 8 takes into account a method proposed by Plastria in Ref. 13 for 
dropping cuts generated in previous iterations. 
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4. Nonstandard Class of Generalized Fractional Programming Problems 

Generalized fractional programs are optimization problems dealing 
with the minimization of the maximum of finitely many ratios over some 
feasible region (Ref. 2). As a working hypothesis, it is always assumed that 
the denominators of the ratios of the objective function are positive on the 
domain considered. In this section, we will consider a nonstandard class of 
generalized fractional programs for which the positivity assumption is part 
of the feasible region. The study of these fractional programs is motivated 
by an allocation model occurring in stochastic queue location theory. For 
completeness, this model will be explained in detail at the end of this section. 

Let us assume, as in the previous section, that s R n is compact and 
that ui, v,: 6a.-+N are continuous functions for all isI:= { 1 , . . . ,  m} on the 
open set 5,' containing ~/'. Moreover, the function h: 5f-+ R w { + oo } is given 
by 

h(x) :=max{u,(x)/v,(x)} 
i e l  

and 

~c: = {xsW[vi(x) >0, for every ieI}.  

We will now consider the generalized fractional program given by 

(Q) inf h(x), 
x ~ e  

under the assumptions that 

(a) ui(x) >_ O, for every x 6 ~  and icI. 
(b) If ui (x) = O, for some x 6 ~F and i6/, then vi (x) > O. 

For the optimization problem (Q), the feasibility set Xc may be empty. 
To check whether ~r  is nonempty, by the compactness of ~F and the continu- 
ity of v~, iEI, it is necessary and sufficient that 

max rain ~i(x) > O. 
xe,.qF i e l  

In the remainder of this section, we will assume that some ~s~c  is known. 
Since h(x)>_O for every xehrc by assumption (a), we may assume that 
/~ := h(2) > 0 without loss of generality. Although the set s  is in general not 
dosed, it will be shown in Lemma 4. I that (Q) is solvable. It will also be 
proved in Lemma 4.2 that the associated parametric problem, 



JOTA: VOL. 87, NO. 1, OCTOBER 1995 115 

is solvable for 0 (Q) < p. This implies by Proposition 3.2 of Ref. 2 that the 
Dinkelbach-type method of Crouzeix, Ferland, and Schaible can be applied 
to (Q) and has a linear convergence rate. However, since Xc is in general 
not closed, it might be difficult to solve each subproblem (Qu) by standard 
methods. For instance, if ui, vi, ieL are affine and if X is defined by linear 
constraints, the subproblem (Qu) is no longer a linear programming 
problem. 

Instead of following the above classical approach to solve (Q), we 
will show that it is also possible to apply the same algorithm to smaller 
subproblems. In these subproblems, the constraints on the denominator are 
dropped from the feasible region. In order to prove the first lemma, we 
introduce the nonempty compact set ~ ~ ~" given by 

~ : =  {x~X[ ui(x) -t2vi(x) <0, for every i~I}, (12) 

and consider the optimization problem 

(Q) in f h(x). 
xEod" 

The following result is easy to prove. 

Lemma 4.1. The optimal solution sets of (Q) and (0) coincide and 
are nonempty. 

Proof. To prove the first part, it is enough to verify that 

= {XeXclh(x) <fi}. 

Clearly, for some xeXc satisfying h(x)<fi, it follows that x e ~ .  Also, if 
x e X, we obtain by assumption (a) that ui (x)>_ O. If ui (x)= 0, this yields by 
assumption (b) that vi (x) > 0. Moreover, since fi > 0, we obtain for ui (x) > 0 
that 

vi(x) >_ (1/fi )u,(x) > O, 

and thus X~Xc. Finally, for xeXc,  it follows that 

ui(x) -I~vi(x) _<0, for every ieI, 

if and only if h(x)_< fi, and this proves the result. 
To prove the second part observe, ^by the continuity of h on 

{xeSPlvi(x) >0, ieI},  the compactness of Y', and ~eX, that the optimal 
solution set of (O) is nonempty. This implies by the first result that the 
optimal solution set of (Q) is also nonempty. [] 
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We still have to show that (Qu) is solvable for # > ~9 (Q). This is achieved 
by showing that the parametric problem 

has the same set of optimal solutions as (Q,) for/1 > 9 (Q). 

Lemma 4.2. For every # > 0 (Q), it follows that x, is an optimal solu- 
tion of (P,) if and only i fx ,  is an optimal solution of (Qu). Moreover, both 
optimal sets are nonempty. 

Proof. From Lemma 4.1, we have that 

= {X~clh(x) _<p}. 

Hence, by applying T~orem 4.1 of Ref. 2 to (Q) and Lemma 4.1, we obtain 
that F(O (Q))= 0 and F is decreasing with 

the objective value of the parametric problem associated with (Q). Since 
~_=Y', this implies that 

a (#)  < ~'(#) < 0, for every U > • (Q). 

If x u eY[ is an optimal solution of (Pu), the above inequality yields 

Ui(Xl~) --  ].~)i(Xl.t) <~O, 

for every i~I and/z_>~9(Q)_>O. Hence, if ui(xu)>O, for some isI, then 
necessarily vi(xu)>0. Also, if ui(xu)=0, then by assumption (b) we obtain 
that v;(x,)>O. This shows that x, sY'c, and using ~r c_y', it must follow 
that xu is also an optimal solution of (Qu). 

To prove the reverse implication, we first observe that, by the continuity 
of u~, v~, isI, and Y" compact, the optimization problem (P,) has an optimal 
solution y , .  Hence, by the first part y,  �9 Y'c, and so for x, an optimal solution 
of (Qu), it must follow that 

max {u~ (xu) - ].l ~ / (x / z )  } <max{u~(Yu) -/ . t /) i  ( y u )  } . 
iEI iEl 

This yields that x, is also an optimal solution of (Pu), and hence the lemma 
is proved. [] 
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By Lemmas 4.1 and 4.2, and by the observations before Lemma 4.1, it 
is obvious that the Dinkelbach-type algorithm for solving (Q) can be applied 
in the following way: 

Step 1. Choose Xo~2e~rc, and set pl+--~ =h(x0) and k ~ l .  
Step 2. Solve G(pk), and let xk be an associated optimal solution. 
Step 3. If G(pk)< 0, then set p~ +l~-h(x~), k ~ k  + 1, and return to Step 

2. Otherwise, stop. 

Although the optimization problem (Q) with a noncompact feasible set 
can be solved directly by the Dinkelbach-type procedure described in Ref. 
2, the above approach simplifies considerably the feasibility set of the sub- 
problems by deleting the nonnegative constraints on the denominators. This 
observation improves clearly the applicability of  the Dinkelbach-type algo- 
rithm to this class of  problems. Obvious examples are linear generalized 
fractional programs belonging to this class. 

To conclude this section, we consider an allocation problem in location 
theory satisfying the assumptions of optimization problem (Q). Let 

J :={a l  . . . . .  at}-cN 2 

denote the set of  l different demand points, and let 

I : = { b l , . . . , b m } - R  2 

be the set of  m different locations of identical facilities. Let the sum of the 
distances from facility i at bi, i = 1 . . . .  , m to the demand point j at aj, j = 
1 , . . . ,  l, and from demand point j to facility i be denoted by the positive 
constant d o. It is assumed that each demand poin t j  generates calls according 
to a Poisson process Pj(t) ,  t > 0, with rate ;tj> 0 and that the Poisson pro- 
cesses P~(t) . . . . .  Pt (t) are independent. In the remainder, calls generated by 
demand point j are called type j calls. If  a call from one of the demand 
points is assigned to facility i, it joins a fictitious queue at facility i and waits 
for service. To keep the model mathematically tractable, it is assumed that 
each facility has only one server and that the queuing discipline is work- 
conserving and nonpreemptive. This means that the server is not idle if the 
queue is nonempty, the queuing discipline does not affect either the amount 
of  service time given to a call or the arrival time of any call, and once a 
service is started to a given call this service will be completed. Well-known 
examples of  work-conserving and nonpreemptive queuing disciplines are 
FCFS (first come, first served) and random order of  service. Once the server 
starts to serve a given call, this server travels at unit speed from facility i to 
the demand point which generated this call and returns after servicing to 
the home facility i. Without loss of  generality, it is assumed that the on- 
scene and off-scene service times (Ref. 14) can be ignored, and so the total 
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service time s U given to a type j call by the server of facility i equals d U. 
Since in our optimization problem we like to determine the best random 
assignment policy of calls to facilities, it is necessary to introduce random 
policies xe  R "z consisting of components xo, i= 1, . . . ,  m, j =  1, . . . ,  l, with 

xo.:= Pr{typej  call is assigned to facility i}. 

Clearly, 

0 < x 0 < l  and ~ x 0 = l ,  f o r e v e r y j =  1 . . . . .  l. 
i = 1  

After having chosen an arbitrary random policy x, it follows by the well- 
known superposition and decomposition properties of independent Poisson 
processes (Ref. 15) that the overall arrival process at facility i is again a 
Poisson process with rate ~t. 1 ~jXij" Moreover, the service time distribution 
Bi(y ,  x) of an arbitrary cafiassigned to facility i under the random policy 
x is given by 

l 

Bi(y ,  x)  = ~ B~(y)  Pr{arbitrary call is of type j} 
j = l  

= Bij(Y))~jxij ,~kXik , 
j=l l 

with Bu(y)  the service time distribution of the service time of a type j call 
assigned to facility i. By our assumption on the service times, it follows that 

{;, i fy>s~ ,  
B'7 (Y) = if y < sij. 

From the above observations, it is clear that, for each fixed random policy 
x, the queuing process at facility i, i=  1,- . . . .  m, is a M/G/1  queue with a 
nonpreemptive work-conserving queuing discipline. Denote now by We(x) 
the average amount of unfinished work in the steady state (due to the 
assigned calls) for the server at facility i if the random policy x is used. By 
a well-known result for arbitrary M/G/1  systems with a work-conserving 
discipline (Ref. 16), it follows that 

We(x) 

( '  ), 
"(1/2) ~js~.xo 1 -  2 ~,k=~ ~kSi~X~ , i f l - -  2 ,~kS~kX~k>O, 

j = l  k = l  k = l  

+ ~ ,  otherwise. 
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The objective is now to select that random policy which minimizes the 
maximum of this so-called average work-in-system (Ref. 16) at each facility 
i, i--- 1 . . . . .  m. Introducing the compact set Y" ~ R "t of random policies, i.e., 

YC:={xe~mtlxij>O,~xij=l, foreveryj=l  . . . .  ,l}, 
i ~ l  

this boils down to the generalized linear fractional programming problem 

min max W/(x), 
x e  YQ i=  1,. . . ,m 

with 

{ , } We: = xeY'[ 1 - ~ ~,jsijxu>O, for every i=  1, . . . ,  m . 
j=l 

Clearly, the above optimization problem satisfies the conditions of problem 
(Q) and was the main motivation for studying these types of problems. 

Finally, we like to remark that no computational experiments for the 
above problem are included in this paper, since the standard procedure 
which can be applied to this nonstandard problem is already extensively 
tested (Ref. 17). 
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