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General Models in Min-Max Planar Location: 
Checking Optimality Conditions 1'2 
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Communicated by S. Schaible 

Abstract. This paper studies the problem of deciding whether the 
present iteration point of some algorithm applied to a planar single- 
facility min-max location problem, with distances measured by either 
a n / : n o r m  or a polyhedral gauge, is optimal or not. It turns out that 
this problem is equivalent to the decision problem of whether 0 belongs 
to the convex hull of  either a finite number of points in the plane or 
a finite number of different/q-circles_ R 2. Although both membership 
problems are theoretically solvable in polynomial time, the last problem 
is more difficult to solve in practice than the first one. Moreover, the 
second problem is solvable only in the weak sense, i.e., up to a predeter- 
mined accuracy. Unfortunately, these polynomial-time algorithms are 
not practical. Although this is a negative result, it is possible to construct 
an efficient and extremely simple linear-time algorithm to solve the first 
problem. Moreover, this paper describes an implementable procedure 
to reduce the second decision problem to the first with any desired 
precision. Finally, in the last section, some computational results for 
these algorithms are reported. 
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1. Introduction 

In this paper, we discuss two related membership problems in ~2. The 
first problem is to decide whether 0 belongs to the convex hull of a finite 
number of  points. Moreover, the second problem is to find out whether 0 
belongs to the convex hull of a finite number of different/q-circles. Under 
some conditions, it is shown in Ref. 1 that these decision problems are 
equivalent to testing whether a given point is an optimal solution of a min- 
max single-facility continuous location problem with polyhedral gauges or 
/p-norms. To assist the reader, a short introduction to rain-max single-facility 
continuous location models is presented in the next section. Also in this 
section, it is proved that both membership problems belong to the class of 
polynomially solvable problems. Since this result is only of theoretical inter- 
est, a description of a practical linear-time algorithm to solve the first deci- 
sion problem together with its proof of correctness is given in Section 3. In 
Section 4, it is shown that the second decision problem can be reduced to 
the first. Also in this section, the properties of  the associated reduction 
algorithm are discussed. Finally in Section 5, computational experiments 
including both algorithms are reported. To conclude this introduction, we 
remark that this paper is a continuation of Ref. 1, where an algorithm to 
optimize the underlying min-max location problem is presented. 

2. Single-Facility Min-Max Continuous Location 

Single-facility continuous location models restricted to the plane include 
so-called min-max optimization problems (Refs. 2 and 3). As an example 
of such a problem, we mention the location of an emergency unit. In this 
case, it is important that each client located at one of the n known different 
demand points dl, d2 . . . . .  d, can be reached as soon as possible, and so the 
appropriate objective function is clearly of the min-max type. In a general 
setting, it is assumed that dl, d 2 , . . . ,  d, belong to Es, s > 2, and the distance 
between the location x of a facility and a demand point d,., 1 < i < n, is given 
by Z~i(x) with 

7~,(x) := inf{t > O: xet~}. 

Observe that the set fgi, i = 1 . . . . .  n, is a given compact convex set satisfying 
0 e int(fCi), with int(ff;) denoting the interior of if;. The above distance func- 
tion is called a gauge and for (r symmetric it is called a norm. The motive 
to consider continuous location problems with arbitrary gauges is discussed 
in detail in Refs. 3 and 4. To introduce our location model, let the function 
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S ~ n 7: R •+ be given by 

7r(x) := ( 7 ~ , ( x - d ,  ), . . . , y ~ , ( x - d , , ) ) ,  

and assign to each demand point dr, 1 < i < n, a lower semicontinuous func- 
t i o n f  : R"--.R+, 1 < i < n ,  which is nondecreasing on ff~_. The general single- 
facility unconstrained rain-max location model is then given by 

(P) inf max q~e(x), 
x ~ R  s 1 <_ i<_n 

with ~0,-:Rs~ defined by ~01(x):=f(7(x)). It is shown in Ref. 5 that an 
optimal solution exists, and so we may replace "inf" by "rain" in (P). Under 
various additional assumptions on the functions f ,  different algorithms exist 
to solve (P) (Refs. 1 and 3). The general framework of each of these algo- 
rithms is as follows. The algorithm starts with some initial point x0. If the 
algorithm decides that x0 is not a local or global optimal point, then it 
constructs a new iteration point xl and repeats the optimality check, etc. 
Since in each step the optimality check has to be executed, it is important 
that an efficient algorithm is available to evaluate this decision. Under the 
additional assumptions that the functions f~ are quasiconvex and differenti- 
able on an open convex set 5e with ~-  _ 5 ~, that its gradient Vf (z) contains 
at least one positive component for every ze5  ~, and that the distance in (P) 
is given by polyhedral gauges, it is proved in Ref. 1 that a global optimality 
check is equivalent to the decision whether 0 belongs to conv({pl . . . .  , Pc } ), 
with p ~ , . . . ,  Pc some finite number of points in ~s and conv({p~ . . . .  , p~ } ) 
denoting the convex hull of these points. Moreover, for each demand point 
di, 1 < i < n ,  if the distance in (P) is given by some lp,-norm x~-, Ilxllp,, 
1 <pi< ~ ,  then a global optimality check reduces for some k < n  either to 
the decision of whether 0 belongs to conv(U~ <_i<_k ci + ri~qi),  with 

~q, := {xe~2: tlXllq,< 1} 

the so-called unit lqrcircle, c,-e ~ ,  r; > 0, 1/p~ + 1/q~ = 1, or to the decision of 
whether 0 belongs to conv({p~ , . . . ,  pk } ). Frequently for the last two prob- 
lems, k is much smaller than n. We will call the first decision problem (D) 
and the second decision problem (D'), and observe that these are special 
cases of the so-called strong membership problem (Ref. 6). Due to this, one 
can show for problem (D) the following theoretical result. Observe that the 
inner product of two vectors is denoted by ( . ,  �9 ). 

Lemma 2.1. If  the components of the points p~ . . . . .  pk are rational 
numbers, then problem (D) is solvable in polynomial time. 

Proof. By Theorem 6.4.9 of Ref. 6, the strong separation problem is 
polynomially equivalent to the strong optimization problem, and strong 



68 JOTA: VOL. 89, NO. 1, APRIL 1996 

separation implies immediately strong membership. Hence, we need only to 
verify the polynomial solvability of the strong optimization problem. 
Observe that the strong optimization problem connected with the convex 
set conv({pl . . . . .  Pk }) is given by max{(c, x) :  x~conv({pl . . . . .  pk } )} for 
any vector c with rational components. For each rational vector c, this 
problem can be solved by evaluating (c, pi),  i= 1 . . . .  , k, and selecting the 
vector pj, with 

(c, pj)=max{(c, pi): i = l , . . . , k } .  

Clearly, this can be done in polynomial time, and so the result is 
proved. [] 

If one of the points pi has an irrational component, it is impossible to 
solve (D) in polynomial time, due to the fact that no irrational number can 
be represented by a finite string of zeros and ones. To discuss in this case 
polynomial solvability, we need to introduce a rational number e > 0 and 
restrict ourselves to the associated weak membership problem of (D) (Ref. 
6). The same holds for (D'), since the operations involved in calculating lq- 
norms for general 1 < q < oe produce in most cases irrational numbers. 

Lemma 2.2. For any rational number E > 0, the associated weak mem- 
bership problems of (D) and (D') are solvable polynomially. 

Proof. By Theorem 4.4.7 of Ref. 6, the weak separation problem is 
polynomially equivalent to the weak optimization problem, and so we can 
apply a similar argument as in Lemma 2.1 for the first decision problem. 
To prove the result for the second problem, we observe that the maximum 
of any linear function over the convex hull of a finite number of/q-balls can 
be obtained by maximizing the same objective function over each of the balls. 
This problem can be solved analytically as will be shown in the remainder of 
the proof. Observe that 

max{ (d, x):  xec + r~q } (1) 

is equivalent to 

(d, c) + r max{ (d, y) :  y ~ q  }. (2) 

By the H61der inequality (Ref. 7), it follows that 

max{(d, y )  : y e ~ q  } = Ildllp, 

with 

1 / p + l / q = l .  
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Moreover, the solution of (2) is given by the vector 

y *  :=  ( y * ,  * , . . . .  y j  . . . .  , y s  ), 

with 

y* := a(g)14 lP /q l ld l (~-P ,  j =  1 . . . .  , s, 

and fi(x) denoting the sign function of x. Hence, the optimal solution of 
(1) can be computed analytically; by taking a vector with rational compo- 
nents in some q-neighborhood of this solution with 7/ small enough, we 
have solved the weak optimization problem. By the first part of this 
proof and since weak separation implies weak membership, the result is 
proved. [] 

Although the polynomial solvability is proved in weak and/or strong 
sense for both decision problems, it is not possible from a practical point 
of view to apply these reduction algorithms, since they are based on applying 
the ellipsoid algorithm a polynomial number of times. Moreover, for our 
location model, the most important instance is the planar case (s = 2), and 
so we will discuss in the next sections some practical algorithms for solving 
(D) and (D') in ~2. Although (D') is solved only approximately, the solution 
can be found up to any degree of approximation. 

3. Solving Problem (D) 

Clearly, if p i=0  for any l_<i_<k, then 0 belongs to 
conv({pl, p2 . . . . .  pk }), and so we assume that 0r {pl, p2 . . . .  , Pk }- 

A straightforward way to check whether 0 belongs to the convex hull 
of a set of points {Pl, P: . . . . .  Pk ) starts by constructing the convex hull of 
the enlarged set of points {0, p~, P2 . . . . .  pk }. This can be done by using an 
efficient algorithm like the Graham scan; see Ref. 8. After executing this 
(9(klogk) algorithm, we know the extreme points of the polytope 
conv({0,p~,p2 . . . .  ,Pk}). It can be verified easily that 0 is an extreme 
point of conv({0,pl,p2 . . . .  ,pk}) if and only if 0 does not belong to 
conv({pl ,p2 . . . . .  pg}). Although it is not difficult to adapt the Graham 
scan in such a way that the algorithm will stop with a positive or a 
negative answer before the complete construction of the polytope 
conv({0,p~,p2 . . . .  ,Pk}), it still might take (9(klogk) operations in the 
worst case. As shown in Section 2, we have to solve this decision problem 
in each step of an iterative procedure, and so constructing an algorithm with 
lower complexity might reduce the overall computational effort. The best 
that we can hope for is a linear-time algorithm. 
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This is achieved by means of the following construction. First, reformu- 
late the problem into a linear programming problem (Ref. 9) with two 
variables and k constraints; then, apply to it a known linear-time algorithm 
(e.g., as in Refs. 10, 11, 12, or 13). However, although being linear in the 
number of constraints when the number of variables is fixed, the existing 
procedures exhibit exponential dependence on the space dimension. This 
dependence is at least of (.0(3 ~:) (Ref. 12), which even for the simpler case 
s = 2 of our planar problem yields a solution procedure consisting of about 
34k operations. Although undoubtedly linear, this is not attractive. 

Before presenting a much more efficient algorithm for solving directly 
our decision problem in the planar case, we need the following well-known 
definition and results from computational geometry (Ref. 8). 

Definition 3.1. A point p o ~  2 is to the right of a directed segment 
from point p~ to point p2 if it is not an element of the line going through p~ 
and p2 and if moving along this line in the direction of pl to P2 the point Po 
is an element of the right-hand side half-plane. 

The definition of points to the left of a directed segment is similar. 
Moreover, given a line segment from p~ to p2 and another line segment from 
P3 to p4, a point Po is said to be between these two line segments when p0 is 
to the right of one and to the left of the other. 

In the remainder, a directed line segment from p; to pj will be denoted 
by [p;,pj]. 

The following result can be used in order to determine to which side 
of a directed line segment a given point belongs. 

Lemma 3.1. Letp~=(pil,p~2f, 0 < i < 2 .  And let 

A := det 
(r o, po21]) 

Pl, Pl2 1 . 

Lp2, P22 1 

Then, the following results hold: 

(i) Po is collinear with [p~, P2], if and only if A = 0; 
(ii) Po is to the right of [p~, p2], if and only if A < 0; 
(iii) Po is to the left of [p~,P2], if and only if A>0.  

Proof. A proof of this result can be found in Ref. 8; hence, it is omitted 
here. [] 
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In order to explain our linear-time algorithm, we need also the following 
result, which is a trivial consequence of Lemma 3.1. 

Lemma 3.2. The point p0 is between the two directed line segments 
[pl, P2] and [P3,P4] if and only if A~ and A2 have opposite signs, where 

L  P~ po2 il) det / ll pl2 
\ P2~ P22 

AE:=det~iP3,  P32 1 �9 

\ I-p41 P42 1 

Observe that, in the sequel of this paper, P0 will always be 0. Therefore, 
only a 2 x 2 determinant need be computed. 

Let us denote by ~(l, r) the closed convex cone with vertex at 0 and 
generated by the line segments [0, l] and [0, r] ; and let l and r be chosen in 
such a way that l is to the left of [0, r]. The test xe(~(l, r) can be implemented 
using Lemma 3.2. 

We now present our algorithm to decide if 0 belongs to 
conv({pl . . . .  , p~ } ). 

Algorithm 3.1. 

Step 1. If  k = 1 then stop with Yes in case pl = 0 or with No in case 
p~ #0.  Otherwise, proceed to Step 2. 

Step 2. Search {p2 . . . .  ,Pk} for the first point not collinear with 
[0, p~ ]. If  during the search 0 ~ [p l, pi] for some i = 2 . . . . .  k, then stop with 
Yes. Otherwise, if all the points are collinear with [0, pl ], then stop with 
No. If  not all the points are collinear, a first point, say pi, is found being 
either to the right or to the left of [0, p~ ]. In case it is to the right, let r := Pi 
and l := p~; otherwise, let r := Pl and l := pi. Proceed to Step 3. 

Step 3. For each not yet examined point p~, i < l < k, check the follow- 
ing four mutually exclusive conditions. I f  pte Cg(-r, l), then update I := pl. 
Ifpt~C~(r, - l ) ,  then update r :=Pt. Finally, ifpl~Cg(/, r), then leave I and r 
untouched; and ifpz~Cg(-/, - r ) ,  then stop with Yes. If  the algorithm did 
not stop, repeat Step 3 considering the next point, or stop with No if all the 
points have been examined. 

The present algorithm is a simplification of  the algorithm proposed in 
Ref. 14. First, the trivial case of just one point is eliminated in Step 1. I f  
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there are two or more points, then an initialization occurs in Step 2. For 
the purpose of initialization, p~ is selected and the algorithm searches for 
the first point in {p2 . . . .  , Pk } noncollinear with [0, pl ]. If  during the search 
0 is found to belong to [pl, &] for any i, the algorithm stops without reaching 
the main loop and answers Yes. However, if all the points are exhausted 
without finding either a noncollinear point or a point such that 0e  [p~, p~], 
the algorithm also stops before the main loop but answers No. If a noncollin- 
ear point p~ is found, then l (left) and r (right) are assigned to p~ and p; or 
viceversa, and the main loop begins in Step 3. The main loop is based on 
the trivial observation that 0 is outside conv({p~ . . . . .  pk}) if and only if 
some I and r exist in {p~ . . . . .  pk } defining a closed conex cone ~(l, r) such 
that c o n v ( { p l , . . . ,  Pk } )---~(l, r). The main loop (Step 3) updates qf(l, r), 
while it remains convex or concludes that 0~conv({p~ . . . .  ,pk } ). In each 
iteration, the plane is partitioned by the interior-disjoint cones 

~(l, r), g ( - r ,  l), g(r ,  - I ) ,  5f(-l ,  - r ) ,  

and one of  the following actions is carried out. In case piE~(l, r), nothing 
is done. However, if p i e ~ ( - r ,  l), then l is replaced by pl;  if p lsCg(r , - l ) ,  
then r is replaced by pi. Finally i fple~g(-r ,  - l ) ,  then the algorithm stops 
with Yes since 0 belongs to the triangle cony({/, r, pi} ) and this is a subset 
of  conv({pl . . . . .  pk}). Algorithm 3.1 is thus a very simple and correct 
algorithm. Moreover, as the following result states, both the total number 
of  operations and storage requirements are obviously linear functions in the 
number of points with very small coefficients. Actually, the total number of 
logical conditions evaluated is below 4k, while the total number of arithmetic 
operations is below 7k, as the proof  of  the next lemma shows. 

Lemma 3.3. Algorithm 3.1 gives the correct answer in all cases. More- 
over, both its computational complexity and storage requirements are of 
O(k). 

ProoL The correctness of  the algorithm follows from the previous 
discussion. The storage requirements amount to storing pl . . . . .  Pk plus a 
pair of index pointers to identify I and r. For each point Pi, 1 < i<  k, one 
(Step 2 by means of Lemma 3.1) or two (Step 3 by means of  Lemma 3.2) 
2 x 2 determinants are computed and at most four logical conditions are 
evaluated. Each 2 x 2 determinant requires two multiplications and one sub- 
traction. This yields the complexity as stated in the lemma. []  

In the next section, we show how (D') can be converted into (D) and 
present a numerical procedure to carry out this reduction. 
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4. Solving Problem (D') 

to 
In the second decision problem, we want to verify whether 0 belongs 

Clearly, by computing ]Pcillq,, we first check whether O~ci+ri~3q~, i.e., 
IIcillq~<_ri, for some l< i<k .  If this holds, then 0 clearly belongs to 
conv(Uj<~_<k ci+ri~q,). However, if this is not true, we have to solve the 
following nontrivial decision problem: 

O•ci+ ri.~q~, 1 <_i<_k, 

? Iu ) 0 ~ conY ci + ri~q~ . \1 <_i<_k 
For O~ci+ri~q,, there must exist one pair of supporting hyperplanes ~ 
and oefff of ci+ ri~q, going through 0. Moreover, let t~ and t~ denote the 
pair of unique intersection or tangent points of the corresponding hyper- 
planes and ci + riMq,. We will refer to ~ as the left tangent hyperplane and 
to ~ f f  as the right tangent hyperplane. The left hyperplane is defined as the 
one whose tangent point is to the left of [0, ci], while the right hyperplane 
is given by the other one. Keeping in mind the definition of t~ and t~, one 
can now prove the following result for problem (D'). 

Lemma 4.1. If 0 does not belong to ci+ ri~q, for every 1 < i < k, then 

OEc~ ) , 

if and only if 

O~conv({tf, t f , . . . ,  t~, t•}). 

Proof. Since if,  tiR6ci+riMq,, for every 1 <i<k, it follows that 

conv({tf, Ii R . . . .  , t  L , tff} ) ~-~conv ( U I  <_iNk ci~-ri~qi) ~ 

hence, the second condition implies the first. For the proof of the reverse 
implication, let 

0~conv(\l<i<kU Ci+ri~qi) "~ 
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i.e., there exist some ctf>O, l<i<_k, such that Y'ik_-lat=l and 
k 0=~i=1 aipi, with each pi belonging to c~+r~q,, 1 < i N k .  Consider now, 

for each pi belonging to ci + ri~q,, the straight line ,Y~ going through 0 and 
p;. Since p~ belongs to the cone generated by the two hyperplanes oW~ and 
oW~, it follows that the straight line 3(fg intersects the line segment connect- 
ing t~ and tf in the point q~. Hence, we can find constants ci > 0 and 0 < r~ < 1 
such that 

p~=ctq~ and q~=ri t~+(1-r~) t i  R. 

This implies that 

pi = c,(rit~ + (1 - ri)ti R); 

so, after normalizing, it follows that 0 can be written as a convex combina- 
tion of the tangent points t~, t ~ , . . . ,  t~, t~. [] 

The result stated by Lemma 4.1 gives us the possibility to reduce every 
instance of the decision problem (D') into an instance of the decision prob- 
lem (D). First, the normal vectors of the tangent hyperplanes need to be 
computed. After that, we determine the tangent point of each hyperplane 
and apply Algorithm 3.1 to the set of these points. Let us denote these points 
by {t~, t R . . . .  , t~, t~} as in Lemma 4.1. 

In the remainder, we will omit the indices for the sake of notationa! 
convenience; so, a tangent hyperplane will be given by J f  regardless of being 
left or right. We will now discuss the computation of each a E ~2 with a a 
normal vector of ~vf, i.e., 

~ =  {ze~2: <a, z> =0}. 

Let us assume without loss of generality that ]lal[p = 1, with p such that 
1/p+ 1/q= 1 ; also, let us assume that <a, x> _ 0  holds for every x e c + r ~ q .  
This means that a points from 0 to the halfspace not containing c + r~q. 

Since there is a tangent point t e ~ ( c + r ~ q ) ,  it must follow that 
<a, t> = 0; so, by the previous condition, we obtain 

max{<a, x>: x e c + r ~ q }  =0.  (3) 

Clearly, every element x~c + r.~q can be written as x = c + ry, where y~.~q ; 
hence, (3) is equivalent to 

<a, c> + r max{<a, y>: y e ~ q  } = 0 .  (4) 

Applying the H61der inequality (Ref. 7) to the second term in (4), it follows 
that 

max{ <a, y> : y e ~ q  } = Ila[{ p. (5) 
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Another way to see (5) is to observe (Ref. 15) that IJ" lip is the norm of the 
dual space d *  of  the normed space ~r = (~2, I[" If q). Hence, by (4) and (5), 
we obtain that the normal vector a of ~rg must satisfy 

I la l lp=-(1/ r ) (a ,  c ) > 0 ;  

so, using the normalization [fallp= 1 and defining c* := - ( 1 / r ) c ,  we have 

(a, c*) = 1. 

By the above observations, we have verified that the vector a satisfies 

(a, c * ) =  1, J[alFp = 1. (6) 

A geometrical argument based on the existence of exactly two supporting 
hyperplanes guarantees that there are exactly two real-valued vectors solving 
this system, corresponding to the normal vectors of these hyperplanes. Since 
it is not yet possible to decide which one is left or right, we index them as 
one and two. 

Unfortunately, in general it is not possible to write down analytical 
solutions of these nonlinear equations, and so we have to use a numerical 
procedure to find them. However, for some special cases, this can be done. 
These cases are listed now. We denote by ei the ith unit vector; that is, 

e l = ( 1 ,0 )  t and e2=(0, 1)'. 

Case 1. Particular values of p or q. 

Case ( la) :  p = 1 or q = ~ .  We have 

(((1 - c * ) / ( c * - c * ) ,  ( c * -  1 ) / ( c * - c * ) ) ,  if it belongs to if(el, e2), 

t _ J ((1 - c* ) / (c*  + c* ), (c* + 1)/(c* + c* )), if it belongs to Cg(e2, - e l  ), 

aj - ] (( 1 + c* ) / ( c*  - e* ), ( -  1 - c* ) / ( c*  - c* )), if it belongs to cg(-el,  -e2 ), 

((1 + c* ) / (c*  + c~ ), (1 - c* ) / (c*  + c* )), if it belongs to cg(-e2, el ). 

Case ( lb):  p - -2  or q=2 .  We have 

a) = ((c* + c*w/~) / (A*  + 1), (c* �9 c ~ w / ~ ) / ( A *  + 1)), 

where A* = c *z + c . 2 -  1. 
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Case (1 c): 

{ ( ( 1 - c ~ ) / c * ,  1), 
( -1 ,  (1 +c*)/c*),  

a~-= ((1 +c*)c*,  - 1 ) ,  

(1, ( 1 -  e* ) / c*) ,  

Case 2. Particular values of c*. 

Case (2a): 

Case (2b): 

Case (2c): 

p = oo or q = 1. We have 

if - l  <(1-c*) /c*  < l, 
i f - l < ( l + c * ) / c * < l ,  

i f - l < ( l + c ~ ) / c * < l ,  

i f - 1  <(1 -c*) /c*  < 1. 

c* = 0 ~ a~= (+(Ic* I p -  1)'/PIle*I, 1/c~ ). 

c* =0  =~ a~= (1/c*, +(Ic* ] p -  1)'/P/Ic~{ I). 

Incomplete solutions for particular values of c*, 

(i) c * = l  =~a~=(1,0) ,  

(ii) c* = - 1 =:, a~ = ( -  1, 0), 

(iii) c * = l  ~ a ] = ( 0 , 1 ) ,  

(iv) c* = - 1 =:- a~ = (0, - 1). 

For Case (2c) only one solution was found analytically. Cases ( la)  and 
(lc) are listed only for completeness, since 1 <p  < oo is assumed. In fact, the 
cases p = 1 and p = oo correspond to polyhedral gauges. Moreover, the solu- 
tion given in Case (lc) will be needed later. 

In order to find a solution for the other cases, we need to use a nonlinear 
procedure. Without loss of generality, assume now that c*, c* 6 { -  I, 0, I }. 
Observe that the solution of (6) is given by the two points where the line 

X := {xe0~2: (x,  c*) = 1} 

intersects the unit/p-circle ~p. 
In Fig. 1, the three cases, modulo possible rotations, are shown. For 

the sake of abstraction, Euclidean/2-circles are used in Fig. 1 to represent 
general/p-circles. Clearly, every point x e ~" can be represented by x = b +/.t u, 
where b is some point on ~ and u is a vector parallel to ~ .  

a2 

E 

Fig. 1. Intersections of off and the unit/p-circle. 
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The problem now reduces to finding the roots of the equation Vt(p)= 
1, with ~t: R ~  E given by 

V/(la) := Ilb+ ~ullp. 

We first give some properties of the function ~t. These properties are indepen- 
dent of the choice of b and u. 

Lemma 4.2. The real function ~: p ~-~ lib + p u II p is a differentiable con- 
vex function. Moreover, it is Lipschitz continuous with Lipschitz constant 
Ijullp. 

Proof. The convexity of the function ~ is an easy consequence of the 
convexity of the mapping v ~-~ ][ VHp. Also, since this mapping is Fr6chet 
differentiable in R2\{0} and 0 does not belong to the line ~ ,  the differenti- 
ability Of ~t follows. Hence, it remains only to verify the Lipschitz continuity 
of ~. Clearly, for every p~ and P2, we obtain 

[ I/t(//, ) -- IF(/,t2) [ = [llb+lt,U]lp- IJb +p2u j rp l  

II(b+ p~u)-(b+ p2u)l]p 

= r l ( n , - ~ ) u l l ~  = I n , - ~ l  JPuHp, 

and this concludes the proof. [] 

For the computation of the two roots p* and p~, corresponding to the 
normal vectors 

al : = b + p * u  and a 2 : = b + p * u ,  

we first derive an interval containing both roots. 
Recall the well-known inequality (Ref. 7) 

1 <pl <p2-< oo 

PIxllpl >-Ilxllp2. 

Moreover, if x does not belong to any of the coordinate axis, it is easy to 
show that the inequality sign between the /p-nOrmS can be replaced by a 
strict inequality sign. 
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Ot 2 Or2 
Or2 

"~'/c 

I I I 

Fig. 2. Starting points. 

From this inequality, it follows that the unit/p-circle is contained in the 
unit/~-circle. Hence (see also Fig. 2), the two intersection points a~ and a2 
of the line ,,~ and the unit lo~-circle are outside the unit/p-circle, and so it 
must follow that both solutions a~ and a2 of  (6) belong to the open line 
segment (a~, a2). 

Since by Case (lc),  al and ct2 can be computed analytically, we take 
b := al and u := a 2 - a ~  (cf. Fig. 3). This implies that the pair of different 
roots/~* and p* belongs to (0, 1). Also, since 

~/ ( /~*)=V(/~*)=I  and ~ ( 0 ) > 1 , ~ ( 1 ) > 1 ,  

it follows by the convexity of  ~ that a minimum point belongs to 
( /~*, /~ ') ;  so, again by the convexity of  ~, we obtain (see Fig. 4) that 

~ ' ( /0  < 0, if/~ _</~1', ~'(/~) > 0, if/~ >_/~*. 

These observations allow us to state the following well-known result 
for the Newton-Raphson method (Ref. 16). We list an alternative short 
proof  for completeness. 

Lemma 4.3. If  the Newton-Raphson method is applied with starting 
point 0 to solve the equation ~(p)  - 1 = 0, it produces an increasing sequence 
of  iterates converging from below to p 1". 

Fig. 3. Construction of ~. 
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1 

0 #i #~ 1 

Fig. 4. Sample graph of ~. 

Proof. Let us denote by/1 t, l=  1, 2 . . . .  , the sequence of iterates pro- 
duced by the Newton-Raphson method, i.e., 

/at+ 1 :=/a t+ [1 - ~(/a,)]/~,(/at).  (7) 

By the subgradient inequality (Ref. 17), it follows that, for every/at, 

1 = ~t(/a* ) ___ ~tt (/a t) + ~r t)C/a, _/at) .  (8) 

Take now/ao := 0. Since ~,( /ao)<0 and ~tt(/a ~ > 1, we obtain 

[1 - ~ ( / a 0 ) ] / ~ t , ( / a 0 )  > 0 .  (9 )  

Using (7) and (8) and taking l=  0 leads to 

/a' :--/a~ [1 - ~0'(/a~176 </a * . (10) 

Now from (7), (9), and (10), we conclude that/a0</al < / a , ;  by induction, 
it is easily proved that/a t is increasing and bounded from above by/a*.  Due 
to/a ~</a* for every l>  0, it follows that the sequence converges and satisfies 

/a~ := lira/at</a~,. 
ztoo 

After observing that the derivative V' is continuous and negative on 
[0,/1" ], we obtain from (7) that this limit satisfies 

/aoo =/aoo + [ 1 _ ~,(/aoo)]/~e,(/a ~ ) ,  

and hence ~t(/a ~)  = 1. By the strict monotonicity of ~t on [0,/a* ], this finally 
yields/a ~ =/a*. [] 

In order to guarantee finite termination, it is now important to derive 
a stopping rule for this procedure meeting any prespecified error bound. 
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First, we show that a minimum point of ~, or equivalently a point 
p* such that ~g'(p*)=0, is analytically computable. We recall that ~ is 
differentiable everywhere. Moreover, its derivative ~' has the following 
expression: 

2 
I/ / ' (p)= W(p) I-p ~. Ibi+ lgUilP- Z(bi+ l.lui)ui. 

i=1 

Hence, p* satisfies the equation 

2 
~ ( ] 2 " )  I - p  2 Ibi+l'l*uilP-2(bi-}-]'l*ui)ui -~0" 

i=1 

Since OCJt ~, it follows that ~(p)>O,  for every p, and so #* must satisfy 

[bl +/A'u1 [ P-2(bl + ]-/*Ul )Ul = -[b2+p*u2lP-2(b2+l,t*Uz)U2 . (11) 

Obviously u # 0, and so only the following two cases hold. 

Case 1. Either uj = 0 or u2 = 0 but not both. Without loss of generality, 
we can assume that u j = 0. In this case, (11) reduces to b2 + p 'u2 = 0 or p* = 
-b2/u2 and ~g(p*) = ]bl I. 

Case 2. Both u l r 0 and u2 r 0. After taking absolute values in (11), 
we obtain 

Ibl +p*ullP-llUll = Ib2 +/-t*u21P--llu21. 

Raising now both members to the power 1 / ( p -  1), it follows that 

(bj +~*u~ ) =  • +p*u2)lu2/ul ) 1/(p-1), 

and so we get 

p* = -[b1.4- l u2/u,I ~ /(P" l)bv]/[U1-4- lu2/ull 1/(p- I)U2 ] " 

Substituting the above expression for p* in (11), one can check that the 
undetermined sign • should be a + if u2 and u~ have the same sign and - 
otherwise. This leads to the final expression, where ~(x) stands for the sign 
function of x, 

I./* ----- - [ h i  -~ 6(/~2//-/1)1 u2/ul [ l/(p-l)b2]/[Ul ..[_ (~(u2/ul)l u2/u I [ l/(p-1)u2]" 

For this p*, it follows that r  [ujb2-u2bl I/llul[q. 
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The following lemma provides a stopping rule for the Newton-Raphson 
procedure. 

Lemma 4.4. If the Newton-Raphson  method is applied with starting 
point 0 to solve the equation ~(/t) - 1 =0,  it follows that, for every l>  1, 

p~_</t* < o d , 

where 

ty' := l a * + ( p z - p * ) [ 1  - gr(/ t*)] /[~(g ')  - ~t(p*)]. (12) 

Moreover, the sequence o -~ is decreasing and converges from above to p* .  

Proof. Observe first that 

a t = 2 p z +  (1 - 2 )p* ,  (13) 

with 

0 < 2  : =  [1 - P ' ( B * ) ] / [ ~ ( P ' ) -  ~t(p*)] < 1. 

Therefore, since ~t is convex by Lemma 4.2, we obtain that 

~,(a') _< 2 ~(/~ ~) + (1 - 2 )  u/(~*). 

It is now easy to check that 

2~t(p z) + (1 - 2)  ~(p*)  = 1, 

and so, 

p,(o-') < 1 = p,(p]~). 

Moreover, since p t</ t*,  it follows that o J < / t * ;  since ~ is decreasing in the 
interval ( -  ~ , /~  *] and ~t(o -I) < gt(p * ), this yields o-l>/t ]~. Observe now that 

O"+ ' ~___ O "/"r {[1 - -  IV(/./*)]/[Ipt(/./,+1 ) - -  I//(U *)]}  (/./I+ 1 _ _ / . / g o )  

_> {[1 - ~ , ( ~ * ) ] / [ v ( u ' ) -  ~ , 0 , * ) ] } ( ~ ' -  u*)  

In'+' - n *]/[  ~,(n '+ ' ) - v ( u  *)] --- [~ ' -  ~ *]/[ v(~ ') - v ( ~  *)], 

and this is immediately clear from the convexity of  ~t. The remainder of  the 
proof  follows easily from the continuity of ~ by computing the limit in (12) 
after observing that ~(/~* ) - ~(/~*) > 0. []  

Clearly, Lemma 4.4 yields the following stopping rule: 

a l - I ~ t  < e ~ 0 < 1 ~ * - I l t  < e .  

Obviously, to find p* ,  it is enough to take b := a2, u := a l - a 2 ,  and then 
apply exactly the same steps as for computing/J ~. 



82 JOTA: VOL. 89, NO. 1, APRIL 1996 

As a final remark, we note that, for 1 <p  < 2, the unit 12-circle plays the 
same role as the unit l~o-circle; i.e., there are two intersection points of the 
line o~( and the unit 12-circle (let us denote them by flj, j =  1, 2), and they 
satisfy 

[ . , ,  a2] c [/~,, #21 c [a , ,  a2]. 

Hence for 1 < p < 2 ,  the points fl:, also analytically computable by Case 
(lb), can be used instead of the points a:, and they provide a better first 
approximation with the same properties. 

So, we can find both values of p* , j =  1, 2, and consequently both values 
of the normal vectors a:, by solving a pair of independent nonlinear equa- 
tions of the form 

Ilb+ ~ullp= l, 

with given b and u, using the Newton-Raphson method. Let us assume now 
that the two values of a: are known. We still need to find the pair of tangent 
points t L and t R in order to apply Lemma 4.1. 

Recall that each a is orthogonal to the corresponding ~ and is pointing 
to the half-plane not containing c + r~p. From a similar argument as used 
in the proof of Lemma 2.1, by using the H61der inequality (Ref. 7) we can 
compute that 

tj := argmax{<aj, t>: t e c + r ~ q } ,  

for j =  1, 2. Now, it is trivial to label them as left and right. 
Concerning each approximation p l of p*, we can derive an approxima- 

tion r of t. The question that arises naturally concerns now the safety of 
such an approximation regarding the optimality of the underlying location 
problem. Observe that the decision upon optimality is taken by Algorithm 
3.1 when applied to check whether 0 belongs to the convex hull of the set 
of approximated points {r~, r~" 1 < i< l}. 

~L 7-{ L 

Fig. 5. Assigning left and right. 
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Consider a 1:= b + I.ttu. Since a I converge to a from outside the unit lp- 
circle, it follows that Ilalllp> 1 and d ~ a ,  i.e., [latl[p$1. So, with respect to 
system (6), a t satisfies the following system: 

( d , c * ) = l  and p/atlJp>l, 

and so, 

max{(a t, y)  : y ~ q  } = Jla t [J p > 1. 

This implies that 

(a t, c) + r max{ (a t, y) :  y ~ q  } = - r ( d ,  c*) + rl] a t [I p > O, 

and hence there exists one x ~ c  + r~q such that (a t, x ) >  O. This yields that 
the hyperplane 

j g t :=  {z~2 :  (d ,  z )=0} 

is secant t o  cq-r~q and that r is a lower estimate of t; i.e., it belongs to the 
cone generated by ~r and 3(f R (see the proof of Lemma 4.1). 

This guarantees that, if the output of Algorithm 3.1 regarding the set 
of approximations {r L, r~" 1 <_i<_l} is Yes, then the true answer is also Yes; 
therefore, regarding the underlying location problem mentioned in Section 
2, no false optimality is detected, making this decision a safe one. Of course, 
a point may be optimal and, due to the approximation used may be identified 
as nonoptimal. This is in general safer than the opposite situation. 

However, a safe No can be produced by the same reasoning, if the roles 
o fp  t and a t are reversed. This time Yes would be unsafe, but in early stages 
of the underlying optimization procedure, it may be interesting to first expect 
a sequence of negative answers, and only after the first Yes is reported, 
switch to the safe Yes form. 

5. Computational Results 

In order to test the algorithms, they were coded completely in Turbo 
Pascal version 7.0 and executed on an AST Bravo 4/33, a PC/AT compatible 
with an Intel 80486 CPU with built-in numerical processor and clock speed 
of 33 MHz. The numerical precision used is the Turbo Pascal specific 
extended precision, a non-IEEE 80-bit numerical format superior in preci- 
sion to the IEEE 64-bit double precision format. The computational experi- 
ence was carried out over 360 uncorrelated instances of problem (D'). Those 
instances were generated randomly in the following way. 

The ntmaber rn of/p-circles belongs to {10, 25, 50, 100, 250, 500}. For 
the /e-norms being used, we take pc{1.1, 1.5, 1.9, 2.1, 3.0}. Finally, the 
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Table 1. Results of  the decision algorithm in the "easy"  case. 

Problem Newton-Raphson Algorithm 3.1 CPU Time 
n p It max(It) % T  % T  % Yes (sec) 

10 1.1 2.4 5 97.5 2.5 20.0 0.017 
10 1.5 3.9 6 98.7 1.3 20.0 0.025 
10 1.9 4.1 5 98.7 1.3 30.0 0.026 
10 2.1 3.8 4 98.8 1.2 50.0 0.024 
10 3.0 4.1 5 98.7 1.3 20.0 0.026 
10 mixed 3.7 6 98.6 1.4 40.0 0.024 

25 1.1 2.5 5 98.5 1,5 50.0 0.044 
25 1.5 3.9 6 99.0 1.0 60.0 0.063 
25 1.9 4.2 6 99.0 1.0 50.0 0.064 
25 2.1 3.7 4 98.9 1.1 50.0 0.059 
25 3.0 4.2 5 99,2 0.8 100.0 0.067 
25 mixed 3.6 6 98,7 1.3 40.0 0.059 

50 1.1 2.5 6 98.7 1.3 70.0 0.089 
50 1.5 3.9 6 99.1 0.9 80.0 0.124 
50 1.9 4.1 6 99.3 0.7 100.0 0.127 
50 2.1 3.8 4 99.2 0.8 90.0 0.118 
50 3.0 4.1 5 99.3 0.7 100.0 0.132 
50 mixed 3.7 6 99.2 0.8 100.0 0.118 

100 1.1 2.6 6 99.5 0.5 100.0 0.175 
100 1.5 3.9 6 99.4 0.6 100.0 0.248 
100 1.9 4.1 6 99.2 0.8 100.0 0.256 
100 2.1 3.7 4 99.2 0.8 100.0 0.235 
100 3.0 4,1 5 99.6 0.4 100.0 0.264 
100 mixed 3.7 6 99.5 0.5 100.0 0.236 

250 1.1 2.6 6 99.8 0.2 100.0 0.438 
250 1.5 3.9 6 99.9 0.1 100.0 0.616 
250 1.9 4.1 6 99.8 0.2 100.0 0.637 
250 2.1 3.7 4 99.7 0.3 100.0 0.586 
250 3.0 4.1 5 99.8 0.2 100.0 0.653 
250 mixed 3.7 6 99.8 0.2 100.0 0.587 

500 1.1 2.6 6 99.9 0.1 100.0 0.878 
500 1~5 3.8 6 99.9 0.1 100.0 1.231 
500 1.9 4.1 6 99.9 0.1 100,0 1.270 
500 2.1 3.7 4 99.9 0.1 100.0 1.171 
500 3.0 4.1 5 99.9 0.1 100.0 1.306 
500 mixed 3.7 6 99.9 0.1 100.0 1.173 

t o l e r a n c e  p a r a m e t e r  used  in the  s t o p p i n g  ru le  is g iven  by  e :=  5 x 10 -16. Th i s  

un rea l i s t i c  p rec i s ion ,  o n l y  poss ib ly  by  m e a n s  o f  the  e x t e n d e d  prec i s ion ,  was  

de l ibe ra t e ly  a d o p t e d  to  tes t  the  N e w t o n - R a p h s o n  m e t h o d  to  t he  l imit .  

N o w ,  we  desc r ibe  t he  p r o c e d u r e  to  g e n e r a t e  t he  circles.  Al l  the  

cen te r s  a re  g e n e r a t e d  u n i f o r m l y  w i t h i n  the  s q u a r e  [ - 1 0 ,  90] • [ - 1 0 ,  90]. 
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Table  2. Results  o f  the decision a lgor i thm in the "difficult" case. 

85 

Problem Newton-Raphson Algorithm 3.1 CPU Time 
n p It max(It) % T  % T  %Yes (sec) 

10 1.1 2.5 6 97.6 2.4 0.0 0.018 
10 1.5 3.8 6 98.5 1.5 0.0 0.025 
10 1.9 4.2 5 98.6 1.4 0.0 0.026 
10 2.1 3.8 4 98.5 1.5 0.0 0.024 
10 3.0 4.0 5 98.6 1.4 0.0 0.026 
10 mixed 3.7 5 98.5 1.5 0.0 0.024 

25 1.1 2.5 6 97.9 2.1 0.0 0.044 
25 1.5 3.9 6 98.5 1.5 0.0 0.063 
25 1.9 4.1 6 98.5 1.5 0.0 0.065 
25 2.1 3.7 4 98.6 1.4 10.0 0.065 
25 3.0 4.2 5 98.6 1.4 20.0 0.067 
25 mixed 3.6 5 98.4 1.6 0.0 0.059 

50 1.1 2.5 6 97.8 2.2 0.0 0.089 
50 1.5 3.8 6 98.4 1.6 0.0 0.125 
50 1.9 4.1 6 98.5 1.5 10.0 0.129 
50 2.1 3.8 4 98.4 1.6 0.0 0.119 
50 3.0 4.1 5 98.5 1.5 0.0 0.133 
50 mixed 3.7 6 98.3 1.7 0.0 0.119 

100 1.1 2.5 6 97.7 2.3 0.0 0.176 
100 1.5 3.8 6 98.4 ! .6 0.0 0.250 
100 1.9 4.1 6 98.4 1.6 0.0 0.258 
100 2.1 3.7 4 98.3 1.7 10.0 0.237 
100 3.0 4.1 5 98.9 1.1 80.0 0.265 
100 mixed 3.7 6 98.4 1.6 10.0 0.238 

250 1.1 2.6 6 97.9 2.1 10.0 0.447 
250 1.5 3.8 6 98.5 1.5 20.0 0.623 
250 1.9 4.1 6 98.5 1.5 20.0 0.645 
250 2.1 3.7 4 98.5 1.5 20.0 0.594 
250 3.0 4.1 5 99.0 1.0 100.0 0.657 
250 mixed 3.7 6 98.5 1.5 30.0 0.593 

500 1.1 2.6 6 97.8 2.2 10.0 0.895 
500 1.5 3.8 6 98.5 1.5 20.0 1.247 
500 1.9 4.1 6 98.5 1.5 20.0 1.286 
500 2.1 3.7 4 98.9 1.1 70.0 1.183 
500 3.0 4.1 5 99.1 0.9 100.0 1.312 
500 mixed 3.7 6 99.0 1.0 90.0 1.182 

S u b s e q u e n t l y ,  we  g e n e r a t e  r a n d o m l y  o n e  r a d i u s  f o r  e a c h  c i rc le  in  t h e  i n t e r v a l  

(0,  (3 /4 ) l i c l l  q).  L i k e  th is ,  e a c h  c i rc le  is g u a r a n t e e d  n o t  t o  i n c l u d e  0, a n d  we  

t r y  to  a v o i d  h a v i n g  0 a l m o s t  a l w a y s  i n s i d e  t h e  c o n v e x  hu l l .  

T h e  r e s u l t s  o b t a i n e d  a r e  i n c l u d e d  in  T a b l e  1. E a c h  l ine  o f  t h e  t a b l e  

c o r r e s p o n d s  t o  a v e r a g e s  o f  10 u n c o r r e l a t e d  e x a m p l e s .  T h e  f i r s t  t h r e e  c o l u m n s  
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of Table 1 describe the problem characteristics. The last row in each group, 
mixed norms, is generated by selecting randomly pis { 1.1, 1.5, 1.9, 2.1, 3.0} 
for each circle 1 < i < n. The following two columns describe the behavior of 
the Newton-Raphson algorithm to find the two tangent hyperplanes, i,e., 
It contains the average number of iterations per execution of the Newton- 
Raphson algorithm, max(It) contains the maximum number of iterations 
taken by an execution of the same algorithm, and % T  contains the percent- 
age of the total average computation time spent on finding the hyperplanes, 

The following two columns describe the behavior of Algorithm 3.1 ; i.e. 
% T  is the percentage of the total average time taken by Algorithm 3.1, and 
% Yes is the percentage of problems where 0 was found to be in the convex 
hull of the corresponding tangent points. 

Finally, the last column includes the total average execution times in 
seconds of AST Bravo. 

Since in Table 1 we generated instances with a high percentage of Yes 
answers, we also applied the algorithm to the probably more difficult 
instances with a high percentage of No answers. This is achieved by changing 
in the procedure that the centers are drawn uniformly from 
[-1,  99] x [-1,  99]. These results are summarized in Table 2. 

Some interesting conclusions can be drawn from these results. First of 
all, the number of Newton-Raphson iterations required to compute each 
hyperplane with the given precision is always very low. Secondly, Algorithm 
3.1 proves to be extremely efficient in practice (recall that the number of 
points of its input is twice the number of circles). Finally, when the percent- 
age of time taken by each stage of the algorithm is considered, the joint 
effort exhibits a very strong regularity. 
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