6 Impairments and activity limitations in subjects with chronic upper limb complex regional pain syndrome type I

Schasfoort FC, Bussmann JBJ, Stam HJ.

Archives of Physical Medicine and Rehabilitation, In press.

6.1 Abstract

Objective: Complex Regional Pain Syndrome type I (CRPSI) is a symptom complex comprised of several impairments, which may lead to activity limitations. Our aim was to determine the degree of impairments and activity limitations and their interrelationship. Design: Cross-sectional study inter-relating impairments and objectively measured activity limitations. Setting: Ambulatory/home environment. Patients: Thirty non-acute upper limb CRPSI subjects. Main outcome measure(s): Sensory, motor and autonomic impairments, as well as activity limitation outcome measures. The latter were objectively measured with a novel Upper Limb-Activity Monitor (based on ambulatory accelerometry). Results: All subjects were impaired to some degree but with a large variability with respect to magnitude. Regarding activity limitations, the involved upper limb was clearly less active (lower intensity and percentage of activity) than the non-involved side. Impaired active range of motion (adjusted R² 18-39%) and grip strength (adjusted R² 12-45%) were the most important factors explaining variance in activity limitations. Conclusions: All subjects were still impaired nearly three years after the causative event. The involved upper limb was also clearly less active than the non-involved side, especially when the subjects were sitting and when the dominant side was involved. The more impairments a subject had, especially motor impairments, the more activity limitations were present.

6.2 Introduction

Complex Regional Pain Syndrome type I (CRPSI; also known as reflex sympathetic dystrophy) remains a poorly understood and variously defined symptom complex 1-9. When CRPSI occurs, it usually follows surgery or trauma and it is generally expressed in the extremities. Its course shows large variability, which makes diagnosis and interpretation of clinical findings and research data difficult. Uncertainty surrounding the disorder is also reflected by the wide variety of treatments and, consequently, the numerous measures used to determine treatment outcome 9-12. Sensory, autonomic, trophic and motor impairments may be found in CRPSI 10, 13, 14 Furthermore, activity limitations during normal daily life including occupation 8, 15-24 and participation problems such as social functioning and role fulfillment have been reported ^{25, 26}. These studies show that CRPSI encompasses impairments, activity limitations and partictipation problems as described in the International Classification of Functioning (ICF, ICIDH $_2$) $^{27\text{-}30}$. However, most outcome measures used in CRPSI research concentrate on impairments 10, 31. Up to now, there has been a lack of appropriate instruments to objectively determine activity limitations of subjects with upper limb CRPSI 10. The small number of instruments used in CRPSI research to determine activity limitations were retrospective scales and questionnaires.

From a rehabilitation viewpoint, it is important to analyse the relationship between impairments and activity limitations in order to address such questions as: 'does an impairment always lead to activity limitations?', 'should treatment or prevention focus on impairment or activity limitations?' ¹⁶ and 'which impairment mainly affects activities?'. However, only two studies have investigated the relationship between impairment-activity limitations relationship in CRPSI ^{16, 25}. In both these studies scales and questionnaires were used to determine activity limitations; a Visual Analogue Scale for perceived activity limitations (VAS-ADL) and the Groningen Activity Restrictions Scale for activity limitations (GARS) ^{16, 25}.

For this reason, an Upper Limb-Activity Monitor (ULAM) was developed, which allows objective measurement and quantification of upper limb activity while a subject is functioning during normal daily life ³². The ULAM has proven its ability to noninvasively detect limitations in upper limb activity in chronic upper limb CRPSI subjects ³³. The advantages of the ULAM over scales and questionnaires are, for example, that it is more extensive than a VAS-ADL and, more importantly, it provides objective outcome measures for activity limitations that allows quantification of what subjects actually do in normal daily life and not what they report they are capable of. Our aim was to analyse the relationship between impairments and objectively measured activity limitations in upper limb CRPSI subjects. This will be the first study to determine how impairments and objectively measured activity limitations are interrelated in upper limb CRPSI.

The research questions were:

- What is the degree of impairments and activity limitations?
- What is the relationship between impairments and activity limitations?
- Which impairment(s) mainly explain(s) activity limitations?
- Do other variables influence the relationship between impairment-activity limitations?

6.3 Methods

Design and subjects

Thirty subjects with CRPSI in one upper limb volunteered for this cross-sectional study inter-relating impairments and objectively measured activity limitations. In 15 subjects the dominant side was involved and in the other 15 the non-dominant side. Only 1 subject was male; the average age was 55.1 (sd ± 14.9, range 20-81) years. Mean duration of CRPSI was 33 months (table 6.1). Inclusion criteria were: 1) presence of Veldman's criteria ¹³ at diagnosis and 2) ongoing CRPSI-related complaints at enrollment into the study. The criteria of Veldman were a) four or five of the following: unexplained diffuse pain, different skin color relative to other side, diffuse edema, different skin temperature relative to other side, limited active range of motion, b) occurrence or increase of signs and symptoms after use, and c) presence of signs and symptoms in an area larger than was initially involved, including the area distal to primary injury. These criteria do not substantially differ from the IASP criteria ^{3, 34}. Subjects were excluded if co-morbidities affecting upper limb usage or general mobility were present. Informed consent was obtained from all subjects and the study was approved by the Medical Ethics Committee of Erasmus MC.

Impairment outcome measures

The 'Impairment level Sum Score' (ISS) ¹¹, a validated set of five items (temperature, VAS-pain, McGill-pain, AROM, volume) especially developed for upper limb CRPSI, was used to determine the degree of impairment. However, because the ISS, as most other sum scores ^{4, 11, 16, 35-37}, is based on diagnostic criteria, it was considered incomplete to study the present population. Since it has recently been recognised that motor impairments are not only prominent in chronic CRSPI ^{8, 13, 18, 19, 38-42} but are also a distinct component to be incorporated in the IASP criteria for CRPSI ⁴, loss of grip strength was chosen as an additional item:

ISS-Temperature

An infrared thermometer $^{\rm a}$ was used (measurement range 0–42.2°C, accuracy \pm 0.2 °C). Temperature can be reliably measured dorsally perpendicular to the middle of the hand after 10-15 minutes acclimatisation $^{\rm 43}$. Normal temperature difference between both hands was set at \leq 0.3 °C $^{\rm 11}$

ISS-VAS

Pain resulting from effort was measured with a Visual Analogue Scale (VAS)

indicated on a 100-mm long horizontal line. This is a reliable and valid instrument to measure intensity of pain ⁴⁴.

ISS-McGill

The McGill Pain Questionnaire (MPQ) is often used in CRPSI research ⁴⁵⁻⁴⁷. The total number of words chosen from the list of sensory, affective and evaluative pain words from the reliable ⁴⁸ Dutch language version (MPQ-DLV) was used to assess pain during the previous week.

ISS-AROM

Maximum active range of motion (AROM) within pain threshold was measured. Percentages of normal AROM (involved versus non-involved side) were determined for the wrist (dorsal/palmar flexion) and MCP and PIP (flexion/extension) of the two most impaired digits. Each joint movement was measured three times and averaged ^{11, 49, 50}.

ISS-Volume

Volumetric measurements of the hands were taken with a volumeter ^b which determines fluid overflow. The difference in volume between both hands was considered in relation to the volume of the unimpaired hand. A difference in volume up to 3.5% was considered normal ¹¹.

Strength

A portable hand-held dynamometer ^c was used, which allows quantification and, if performed in a standardized manner, reproducible and reliable ⁵¹ determination of grip strength. Only four-point grip strength was measured because several forms of grip strength were well correlated in CRPSI subjects ²⁵. Subjects were instructed to squeeze as hard as possible with hands in the 'lumbrical' grip (thumb at bottom and digits II-IV on top of the device). Strength was measured three times after one practice and the average was calculated for both the involved and non-involved side.

Oerlemans et al. converted the ISS impairment items to a range of 1-10 (based on intra-individual comparisons for AROM, volume and temperature of both hands) ¹¹. A score of 1 was interpreted as absence of that impairment. In the present study, to make grip strength comparable with ISS scores, intra-individual comparisons for grip strength were also ascribed scores of 1 to 10 (if strength of the involved side was > 90% of the non-involved side then the score was 1, if strength of the involved side is 0-10% then 10 was scored, the intermediate strength differences were ascribed scores 2-9). This score was added to the five ISS scores to create the Total Impairment Score ranging from 6-60, with a higher score indicating more severe impairment.

Activity Limitations outcome measures

The Upper Limb-Activity Monitor (ULAM) is an extended version of the 'classic' Activity Monitor (AM) which has been developed and validated in our department ⁵²- ⁵⁷. The AM allows objective measurement of mobility-related activities such as lying, sitting, standing, walking, cycling and general movement. This portable device enables detailed long-term ambulatory measurement of what subjects actually do

during normal daily life and can therefore be used to determine activity level and, if present, activity limitations. The ULAM was developed to determine activity limitations of subjects with disorders related to the upper limbs. It enables one to determine whether or not the upper limbs are active when a subject is performing one of the mobility-related activities ³². The combination of mobility-related activities and upper limb activity allows one to obtain more specific information than with less advanced techniques, such as a wrist actigraph or actometer ⁵⁸⁻⁶².

Uni-axial piezoresistive acceleration sensors $^{\rm d}$ attached to thighs (sensitive direction in sagital plane), trunk (sensitive direction in sagital and longitudinal plane) and forearms (sensitive direction in sagital plane being in the anatomical position) are connected to a small recorder $^{\rm e}$ that is worn around the waist (figure 6.1). The raw acceleration signals are expressed in g (9.81 ms $^{-2}$) and are a combination of two components: gravitational acceleration and accelerations due to activity $^{57, 63}$. The raw data was stored digitally on a PCMCIA flash card with a sample frequency of 32 Hertz downloaded onto a PC for subsequent analysis.

Automatic detection of mobility-related activities and upper limb activity was done by kinematic analysis based on Signal Processing and Inferencing Language (SPIL) routines, yielding 'C'-code ⁶⁴. For detection, three feature signals are derived from each raw accelaration signal: the angular, motility and frequency feature (time resolution 1 second). The subsequent steps of analysis have been described previously ^{53-55, 57, 65, 66}. To detect upper limb activity, the motility feature (Finite Impulse Response filter 0.3-16 Hz, envelope of the AC component of the acceleration signal), which is the variability around the mean in the raw acceleration signal expressed in g (9.81 ms⁻¹), is used. This variability can be considered as a measure for the intensity of upper limb activity: the more intensely active, the higher the motility value. For a more technical description of the detection method we refer to other studies ^{32, 57}. Based on previous research ^{33, 56} the following outcome measures were used:

- Mean intensity of upper limb activity of the involved side during sitting and standing
 - The mean intensity of upper limb activity of the involved side was expressed in mean (scaled) motility values during the time the involved upper limb was active while the subjects were sitting and standing. The lower the mean intensity of upper limb activity the more limited the activity.
- Percentage of upper limb activity of the involved side during sitting and standing
 - The percentage of upper limb activity of the involved side was expressed as the percentage of the time that the involved upper limb was active (i.e. exceeding a threshold in the motility value) while the subjects were sitting and standing. The lower the percentage of upper limb activity the more limited the activity.

- Proportion of activity between both upper limbs during sitting and standing. The proportion of activity of one upper limb relative to the other upper limb was expressed as a ratio: the percentage of activity of the non-dominant side relative to the percentage of activity of the dominant side. These ratios were normalised based on a reference value derived from ten healthy subjects in an earlier study 33. For subjects with dominant side involvement, a ratio higher than 1 was associated with activity limitations. For subjects with non-dominant side involvement, a ratio lower than 1 was associated with activity limitations. The higher/lower these respective ratios, the more limited the activity.
- Percentage of dynamic mobility-related activities
 In addition to outcome measures related to the upper limbs, the percentage
 of the measurement period during which dynamic mobility-related activities
 (i.e. walking, cycling and general non-cyclic activity) were performed was
 also used as activity limitation outcome measure. The lower the percentage
 of dynamic mobility-related activities, the more limited the activity.

Figure 6.1: A subject wearing the Upper Limb-Activity Monitor

Other variables

Some demographic variables, such as age, gender, marital status and employment status, may influence the relationship between impairments and activity (limitations). Duration of CRSPI, time between onset and diagnosis and whether or not receiving therapy/medication may also influence this relationship. Involvement of dominant or non-dominant side should also be taken into account, because the inter-relation between impairment and activity may differ depending on whether or not the dominant side is involved.

Protocol

To reduce interference with normal daily life, the ULAM was fitted at home and worn for 24 hours. Subjects were instructed to continue their ordinary activities, except for swimming, bathing or showering. To avoid bias, initially, the exact technique and output parameters were not explained: the subjects were just told that the sensors detect movement of body parts to which they were attached. After 24 hours, the device was removed, subject characteristics and activities performed were noted and the six impairments were measured. At this stage, complete information was given about what the ULAM actually measures: a 24-hour activity pattern of whether the upper limbs are active or not plus which mobility-related activity was performed. All subjects agreed with this protocol. Measurements on the second day took approximately 1.5 hours; the order of measurement was the same for each subject with grip strength being measured last to avoid provoking physical complaints (e.g. pain) or increasing temperature.

Statistics

Non-parametric statistical methods were used: Spearman rank coefficients were used to describe correlations between outcome measures and other variables, the Wilcoxon signed rank test was used to determine whether outcome measures differed between involved and non-involved sides, and the Mann-Whitney test was used to determine whether activity limitation outcome measures differed between subjects with dominant and non-dominant side involvement.

After confirmation that linear regression was allowed to analyse the relationship between impairment-activity limitations, simple linear regression was carried out for each dependent variable with impairment outcome measures as independent variables. Statistically significant ($p \le 0.05$) impairments that explained 10% or more of the variance in the simple models were included in the multiple models. Separate regression models were made for the two subgroups for the proportion of activity between both upper limbs during sitting and standing. SPSS for Windows (version 10.0) statistical package was used for data analysis.

6.4 Results

Subject characteristics

Most subjects were aged 40-70 years (table 6.1). Only one man participated, and overall the main precipitating event was one or more fracture(s). Most subjects had CRPSI for more than 1 year, with a mean duration of 32.8 months (sd 31.3 months, range 4-143 months). In about one third, the time between onset and diagnosis was more than 2 months (range 3-33 months).

Table 6.1: Several characteristics of the thirty subjects with upper limb CRPSI. n = number of subjects, % = percentage of subjects.

Subject characteristics	n	%
Age (years)		
20-30	2	6.7
31-40	2 3	10.0
41-50	5	16.7
51-60	10	33.3
61-70	5	16.7
71-80	3	10.0
80+	2	6.7
Gender		
Male	1	3.3
Female	29	96.7
Causative event		
Fracture	15	50.0
Other	11	36.7
Idiopathic	4	13.3
Time since onset (months)		
0-3	0	0
3-12	9	30
12+	21	70
Duration between onset & diagnosis		
≤ 2 months	19	63.3
> 2 months	11	36.7
Employment		
Yes, part time	7	23.3
No, retired	4	13.3
No, work compensation	10	33.3
No, housewife	9	30.0

Impairments

Impairment scores ranged considerably (table 6.2): nearly all possible values were present for each outcome measure. Median scores for ISS-AROM, Strength, ISS-McGill and ISS-VAS were higher than for ISS-Volume and ISS-Temperature. The only impairment that was present to a some degree in all subjects was impaired AROM. None of the subjects was completely unimpaired as indicated by the minimum Total Impairment Score of 13. Total Impairment Scores were not related to any of the other variables such as age or other demographic variables, duration of CRPSI, time between onset and diagnosis and having therapy or not. No significant differences were found between those with dominant side and those with non-

dominant side involvement with respect to impairment outcome measures or any other variables. ISS-VAS did not correlate well with ISS-McGill (r_s =0.21). Momentary pain (additionally measured with a VAS) ranged from 0-70 mm (median 13 mm) and was significantly correlated with ISS-VAS pain resulting from effort (r_s =0.71, p=0.000). Momentary pain was significantly less than pain resulting from effort (p=0.000).

Table 6.2: Descriptive statistics (median scores and range) for the impairment outcome measures.

Impairment (possible range)	Median [range]
ISS-VAS (1-10)	5 [1-10]
ISS-McGill (1-10)	6 [1-10]
ISS-AROM (1-10)	7 [3-10]
ISS-Volume (1-10)	2 [1-10]
ISS-Temperature (1-10)	3 [1-10]
Strength (1-10)	6 [1-10]
Total Impairment Score (6-60)	31.5 [13-52]

Activity limitations

The mean intensity and percentage of upper limb activity of the involved side were significantly less than the non-involved side, during both sitting and standing (upper part table 6.3). The percentage of dynamic mobility-related activities did not differ significantly between subjects with dominant side involvement and those with non-dominant side involvement (lower part table 6.3); also, between these two subgroups there were no significant differences for the mean intensity and percentage of upper limb activity of the involved sides. Compared to the mean activity intensity of the dominant (4.04 g) and non-dominant (3.66 g) side of 10 healthy subjects during sitting ³³, in these CRPSI subjects the activity of the involved side was low (3.10 g). This is also true for the percentage of upper limb activity during sitting (healthy subjects: dominant side 37.5%, non-dominant side 35.6%).

Table 6.3: Activity Limitation outcome measures (I)

Descriptive statistics (mean and standard deviation; SD) for the mean intensity of upper limb activity (expressed as scaled (*100) motility values) and the percentage of upper limb activity (expressed as % of the time the limb was active during a specific mobility-related activity). The upper part presents within subject comparisons between involved and non-involved side (Wilcoxon signed rank). The lower part presents between subject comparisons between subjects with dominant and non-dominant side involvement (Mann-Whitney). n = number of subjects.

Activity limitations	Mean	SD	Mean	SD	p-value
Within subject comparison:					
		olved side (n=30)		olved side =30)	(Wilcoxon)
	•		(,,	-00)	(VVIICOXOII)
Intensity sitting (g *100)	3.10	± 0.99	4.17	± 1.66	0.001
Intensity standing (g *100)	9.96	± 3.16	12.88	± 3.38	0.001
Percentage sitting (%)	29.20	+ 8.54	34.64		
Percentage standing (%)	72.96	± 10.85	78.66	± 9.96	0.008
(70)	72.30	± 10.65	70.00	± 10.06	0.002
Between group comparison:					
Between group companison.	Dominen	t involvement	Non domina	nt involvement	
		n=15)		it involvement :15)	(Mann-Whitney
Percentage of dynamic					•
mobility-related activities (%)	10.32	± 4.04	12.22	± 5.68	0.604
Involved side:					
ntensity sitting (g *100)	2.98	+ 1.08	3.21	± 0.91	0.455
ntensity standing (g *100)	10.82	± 3.72	9.11	± 2.30	0.455
Involved side:					
Percentage sitting (%)	27.76	± 9.56	30.63	. 7.40	
Percentage standing (%)	72.69	± 10.66	73.23	± 7.42	0.237
	12.00	£ 10.00	13.23	± 11.4	0.820

Table 6.4 gives data on the proportion of activity between both upper limbs during sitting and standing separately for both subgroups. Not all subjects were limited with respect to these outcome measures, as indicated by the fact that most interquartile ranges included the reference value: seven subjects (23%) were classified as limited. After subsequent analysis of the percentages of activity of both upper limbs of the individual subjects, it appeared that for the subjects with dominant side involvement, limitations in the proportion of upper limb activity during sitting were due to a decreased percentage of upper limb activity of the involved dominant side; during standing, the activity of the non-involved (non-dominant) upper limb was increased. Unlike the subjects with dominant side involvement, there were no such patterns with respect to increase and/or decrease of percentage of upper limb activity in those with non-dominant side involvement.

Table 6.4: Activity Limitation outcome measures (II)

Median scores [and interquartile range] for the normalised ratios for the proportion of activity between both upper limbs during sitting and standing for both subgroups. For dominant side involvement, a ratio higher than 1 was associated with activity limitations. For non-dominant side involvement, a ratio lower than 1 was associated with activity limitations. The higher/lower these respective ratios, the more limited a subject was.

Proportion of upper limb activity	1			
non-dominant : dominant side	During sitting	During standing		
	Median [interquartile range]	Median [interquartile range]		
Dominant involvement (n=15)	1.20 [0.85 – 1.61]	1.13 [1.05 – 1.19]		
Non-dominant involvement (n=15)	0.88 [0.74 – 0.98]	0.98 [0.96 – 1.01]		

Impairment-activity limitations relationship

The Total Impairment Score, ISS-AROM and Strength were significant in each simple model for the mean intensity and percentage of activity of the involved upper limb during sitting and standing (table 6.5). In addition, ISS-VAS and ISS-Temperature were significant in both the simple models during sitting. Since age was considered as a potential confounder for activity (i.e. the older, the less active), it was always included in the multiple models. In the multiple models AROM (p=0.009) and age (p=0.001) were significant contributors to the percentage of upper limb activity during standing. The variability in upper limb outcome measures explained by impairments and age ranged from 24% to 52%. Because the percentage of dynamic mobility-related activities (average 11.3%) performed by CRPSI subjects did not differ from earlier findings in healthy subjects ^{65, 66}, indicating that the CRPSI subjects were not limited with respect to mobility, it was decided not to make regression models for this ULAM outcome measure.

Regarding the proportion of activity between both upper limbs during sitting and standing, ISS-AROM and the Total Impairment Score were significant in three of the four simple regression models made for both subgroups (table 6.6). Strength was significant in each simple model. The multiple regression models for the two subgroups explained variances ranging from 34-57%.

Table 6.5: Impairment-activity limitation relationship (I)

Simple and multiple regression models with activity limitation outcome measures (mean intensity and percentage of upper limb activity during sitting and standing) as dependent variables and impairment outcome measures as independent variables. For the simple models, the adjusted R squares are shown. For the multiple models, the standardized beta regression coefficients and the total adjusted R square are shown for impaiments that were significant in the simple regression models (and age). Intensity sitting and standing = Mean intensity of upper limb activity of the involved upper limb during sitting and standing seperately, Percentage sitting and standing = Percentage of upper limb activity of the involved upper limb during sitting and standing respectively, - not significant in the simple model and therefore not included in the multiple model, *** $p \le 0.001$, ** $p \le 0.05$.

Impairment	Intensity sitting		Intensity standing		Percentage sitting		Percentage standing	
	β	Adj. R sq.	β	Adj. R sq.	β	Adj. R sq.	β	Adj. R so
Simple models:	1	ı		ı			ı	
ISS-VAS		0.12*		0.00		0.12*		0.00
ISS-McGill		0.00		0.00		0.00		0.00
ISS-AROM		0.24**		0.23**		0.18**		0.29***
ISS-Volume		0.04		0.06		0.07		0.00
ISS-Temperature		0.12*		0.00		0.04		0.00
Strength		0.34***		0.15*		0.31***		0.12*
Total Impairment Score		0.36***		0.14*		0.31***		0.14*
Multiple models:								
Age	0.21	1	0.22		0.14		0.50	***
ISS-VAS	0.03		-	1	-0.04		-	
ISS-AROM	-0.23		-0.40	I	-0.17		-0.47	**
ISS-Temperature	-0.31	1	-	1	-			
Strength	-0.35		-0.12		-0.41		-0.03	
Total Adjusted R sq.		0.39**		0.24*		0.27*		0.52***

Other variables

The relative temperature score (the degree to which the involved side is colder or warmer than the non-involved side) was significantly correlated with the percentage of upper limb activity (r_s = 0.38, p=0.037): the colder the hand, the less the percentage of activity. Also, the involved side of subjects having CRPSI for longer than 12 months was significantly colder compared to those with CRPSI of shorter duration (p=0.02). Duration of CRPSI, time between onset and diagnosis, employment status, marital status and level of education were not related to the upper limb activity outcome measures.

Table 6.6: Impairment-activity limitation relationship (II)

Simple and multiple regression models with activity limitation outcome measures (proportion of upper limb activity during sitting and standing) as dependent variables and impairment outcome measures as independent variables, for both subgroups separately. For the simple models, the adjusted R squares are shown. For the multiple models, the standardized beta regression coefficients and the total adjusted R square are shown for impaiments that were significant in the simple regression models (and age). Proportion sitting = Proportion of upper limb activity of the nondominant side relative to dominant side during sitting, Proportion standing = Proportion of upper limb activity of the non-dominant side relative to dominant side during standing, - not significant in the simple model and therefore not included in the multiple model, *** $p \le 0.001$, ** $p \le 0.001$, * $p \le 0.005$.

	Dominant side involvement (n=15)				Non-dominant side involvement (n=15)			
Impairment	Proportion sitting		Proportion standing		Proportion sitting		Proportion standing	
	β	Adj. R sq.	β	Adj. R sq.	β	Adj. R sq.	β	Adj. R sq
Simple models:	I		I	I			ı	
ISS-VAS		0.13		0.02		0.08		0.00
ISS-McGill		0.00		0.00		0.00		0.00
ISS-AROM		0.38 **		0.39 **		0.08		0.29 *
ISS-Volume	1	0.07		0.08		0.00		0.00
ISS-Temperature	1	0.00		0.00		0.06		0.14
Strength		0.45 **		0.26 *		0.31 *		0.35 *
Total Impairment Score		0.21 *		0.14		0.46 **		0.38 **
Multiple models:								
Age	0.41		0.36		0.28		0.14	
ISS-AROM	-0.31		-0.57		-		-0.37	
Strength	-0.30		-0.01		-0.56		-0.42	
Total Adjusted R sq.		0.57**		0.43*		0.34*		0.37*

6.5 Discussion

Impairments

There was large intersubject variability in magnitude of impairments, which is in accordance with other studies $^{11,\ 13}.$ The mutual impairment correlations did not differ from the findings of Oerlemans et al. 11 in more acute CRPSI, with the exception of the present significant correlations between VAS-AROM (r_s =0.50) and VAS-Volume (r_s =0.37). None of the impairments was related to duration of CRPSI. In our chronic population, impaired strength, AROM and pain were most prominent, which supports earlier findings that motor impairments become more important as the complicated syndrome becomes chronic $^{8,\ 13,\ 18,\ 19,\ 38-42}.$

AROM was most impaired in our group of subjects, but did not differ between subjects with multiple fractures or another causative event. In contrast to other motor impairments, because AROM and strength are relatively constant throughout the day, they were considered more suitable as outcome measures. The problem remains, however, that although rigidly standardized in every aspect, AROM and grip strength measurements may be subject to considerable systematic and random variation ^{49, 51}. which was anticipated by determining average scores of three movements per joint. Geertzen et al.49 also reported AROM differences between involved and noninvolved side in shoulder, elbow and wrist, but considered these differences not clinically relevant because AROM was within the range needed for normal daily life. Since small reductions in mobility of especially the hand are thought to predominantly affect fine motor skills 11, we considered AROM of wrist and fingers more important outcome measures than AROM of shoulder and elbow. We did not notice other motor impairments such as tremors, spasms or dystonia during the measurements on the second day. These latter impairments have been reported in small patient groups with more generalized and severe CRPSI 8, 13, 40-42, 67, but are not common 16, 41, 42, 68, ⁶⁹. Also, their underlying mechanism is unclear ^{19, 40, 41, 70}.

Temperature and volume appeared least impaired. Regarding skin temperature, Oerlemans et al. ¹¹ pointed out that unequivocal measurement is difficult, because temperature may change with time in CRPSI ^{11, 13, 71} and may be higher or lower than on the contralateral side ^{72, 73}. Moreover, objective and subjective temperature measurements do not always correspond in CRPSI ⁷⁴. To partly overcome such validity problems, we differentiated between a warmer or colder involved side compared to the non-involved side. The finding that the involved sides were significantly colder in CRPSI of longer duration was in accordance with findings from advanced techniques measuring the vascular reflex response during a complete thermoregulatory cycle ⁷⁵. No subjects was in the 'acute phase' (< 3 months), so we could not contribute to the discussion about subsequent stages in CRPSI ^{13, 68, 75-80}.

ISS-McGill was poorly correlated with other impairments both in our study and in that of Oerlemans et al ¹¹. The McGill Pain Questionnaire (MPQ) assesses sensory, affective and evaluative aspects of pain ⁸¹ and, for this reason, measures beyond impairment level ¹¹. Our data were in accordance with the finding that chronic pain patients such as in CRPSI choose affective and especially evaluative aspects with greater frequency than acute patients ^{74, 82}. Sensory indicators tingling, stiff and nagging, affective indicator tiring and evaluative indicators tolerable/bearable and annoying (Dutch Language Version) were indicated most often. ISS-VAS was more strongly correlated with ISS-McGill's affective and evaluative aspects than with its sensory aspects; although a VAS is intended to measure pain intensity, chronic CRPSI subjects may indeed use it to reflect affective and evaluative aspects of pain ^{11, 83}. Because acute pain becomes chronic pain as the CRPSI syndrome continues, the MPQ is important to monitor changes over time. Although not all CRPSI patients have pain ^{8, 13}, it is too important an aspect to quantify using only a simple VAS ²⁵.

Activity limitations

Although our subjects with dominant side involvement were somewhat less active, in general, CRPSI in one upper limb does not appear to limit general mobility. The involved side was on average significantly 'disused' or 'spared/protected', both during sitting and standing. Unfortunately, it was not possible to detect to what degree disuse and/or sparing/protecting were responsible for this inactivity ³². Moreover, because upper limb activity during standing in our CRPSI group did not differ from healthy subjects, upper limb activity during sitting seems to be the most important aspect when determining activity limitations resulting from an upper limb disorder.

In our study, the lack of significant differences for mean intensity and percentage of activity of the involved upper limb between both subgroups (table 6.4) seems to indicate that both subgroups were equally limited; however, dominant side involved subjects were more limited. With respect to intensity and percentage of upper limb activity, equal absolute values of the dominant and non-dominant involved sides are due to a relatively larger decrease in activity of the dominant involved side than of the non-dominant involved side; in 'healthy' upper limb activity the dominant side is more active than the non-dominant side ^{84, 85}. Since our two subgroups were similar with respect to duration of CRPSI, impairment outcome measure scores and a number of other relevant variables, it can be concluded that the impact on normal daily life of CRPSI in the dominant side is larger than when the non-dominant side is involved. This is in accordance with earlier findings and supports the intuitive idea that a dominant upper limb involvement generally has greater impact than non-dominant involvement.

Subjects with dominant side involvement who were classified as limited showed a clearly decreased percentage of activity of the involved dominant side during sitting and a clearly increased percentage of activity of the non-involved (non-dominant) side during standing. It may be relatively easier to activate the non-involved (non-dominant) upper limb to compensate for decreased activity of the involved limb during standing in order to do what one wants to do. However, since upper limb activity during sitting requires more precision skills (fine motor skills, manipulative upper limb usage) ³², compensating decreased activity of the involved limb with the non-involved (non-dominant) limb may be more difficult during sitting. It was difficult to compare our findings with other studies reporting 77% ²⁴, 62% ¹⁶ and 78% ²⁰ of the subjects with chronic CRPSI being limited because the ULAM measurement technique we used was not used in these other studies.

Relationship between impairments and activity limitations

Impaired AROM and grip strength and to a lesser extent pain resulting from effort were the most important factors explaining variance in activity limitations in normal daily life in chronic upper limb CRPSI. The fact that the Total Impairment Score was significant in each simple regression model underlines the fact that heterogeneous presence of impairments is a complicating factor when studying the 'impairment-activity limitation'-relationship in CRPSI ¹¹. In our opinion, however, it would have been inadequate to take only one or a few impairments into account.

In the studies by Geertzen et al. ^{16, 25}, a VAS for perceived activity limitations (VAS-ADL) and two subscores of the Groningen Activity Restrictions Scale (GARS), performance of activities of daily life (ADL) and instrumental activities of daily life (IADL), were used as outcome measures for activity limitations. Pain appeared to be the most important impairment limiting activity ^{16, 25}, which is in contrast to the present findings and may have been due to different operationalisation of pain degree.

One may hypothesize that the ULAM is inherently more related to motor impairments since it measures only activity limitations and not other limitations (e.g. situational or communicational limitations), thereby being more associated with pain resulting from effort ('activity') than with momentary pain. However, the items assessed with the GARS and VAS-ADL were also solely activity limitations. Therefore, it was considered unlikely that different operationalisations explain why pain was less important than motor impairments. Moreover, since our data on momentary pain did not differ from Geertzen et al. (range 0-80 mm, mean 12 mm) we think this excludes volunteer/selection bias with respect to pain. The different results with respect to pain may have been due to different characteristics of the instruments used to determine activity limitations: the ULAM is a non-retrospective, objective outcome measure to quantify what subjects actually do and did not quantify perceived or self-reported limitations as did the VAS-ADL and GARS.

The importance of motor impairments in chronic CRPSI was stressed by Geertzen et al. and others ^{11, 16, 19, 25}. Clinically, this may indicate that increasing AROM and grip strength as early as possible is as (or even more) important than pain management when treating CRPSI in order to prevent or reduce CRPSI-related complaints. Our aim was to find out which impairment(s) were most prominent and least variable among 30 subjects with chronic upper limb CRPSI as well as which impairment(s) explained most of the variability at the ICF activity level. It appeared that motor and sensory impairments were most prominent and equally variable. However, impaired AROM and grip strength clearly explained a higher percentage of the variability in activity limitations.

Therefore we conclude that the more impaired a subject was, the more activity limitations were present. It should be noted, however, that caution is needed when

relating quantified impairment to quantified activity limitations ⁸⁶. This cross-sectional study does not allow us to conclude that an impairment always leads to activity limitations; linear regression analysis does not say anything about causality between variables. For example, it cannot be said that the percentage of activity was less because a hand was colder, or the other way around (i.e. because of a lower activity percentage, a hand becomes colder). This may also partly explain why the relationship between the ICF consequences of a disease is often found to be ambiguous ^{16, 86, 87}. It was our intention to determine which impairment(s) explained most of the variability in activity limitations.

Other variables

There was no relationship between the duration of CRPSI and either of the outcome measures, which was probably due to large intersubject variability in the presence and severeness of impairments and activity limitations. Age was always included in the regression models, although it was not always significantly related to the activity limitation outcome measures. The present subjects were representative of the CRPSI population with respect to age ^{13, 16, 24}. Although CRPSI affects predominantly women ¹³, men were clearly underrepresented in this study. This homogeneity with respect to gender should be taken into account when findings are extrapolated to the male CRPSI population. This study clearly demonstrates the important influence of the involved side (dominant or non-dominant) on the degree of activity limitations.

Similar to Geertzen et al. 16, we found no evidence that early diagnosis and subsequently early initiation of therapy might give better long-term outcome 88. As stated, causative event, employment status, marital status and level of education were not related to any of the upper limb activity outcome measures; this might be due to the relatively small number of subjects or possible selection bias. Finally, it can not be excluded that factors other than those examined in the present study need consideration. Other impairments such as hyperhydrosis, discoloration, dystonia, tremor or psychosocial factors such as motivation, kinesiophobia, presence of social life events may also explain some of the variance in the activity limitation outcome measures, but were not assessed in this study.

Practical and methodological issues

Our aim was to use outcome measures that were workable and allowed quantification. In addition, the outcome measures had to be as far as possible objective, reliable and valid to factually describe the 'impairment-activity limitation' relationship in subjects with chronic upper limb CRPSI. A potential limitation of this study, however, was its cross-sectional nature. Since CRPSI is a chronic disease with exacerbations and remissions even throughout the same day ¹¹, this may hamper reliable measurement of some of the outcome measures. Despite this, the fact that the ULAM outcome measures were relatively comprehensive, plus the small group of subjects and resulting potential lack of explanatory power and biological variance in daily activity, the explained variances in the multiple models were not low.

Linear regression was used because there was no co-linearity between impairment variables. Because of the subject-to-variable ratio, no independent variables other than impairment and age were included in the multiple models.

With a novel device like the ULAM, activity limitations of subjects with an upper limb disorder can be viewed from a perspective other than the usual one. The additional value of the ULAM is that it allows objective and ambulatory determination of (in-)activity of both upper limbs while a subject is performing specific mobility-related activities. This technique also enables differentiation between the impact of dominant side or non-dominant side involvement on activity during normal daily life, a topic that has not yet been investigated. Of course, a new technique also has some disadvantages ⁵⁷. The recorder and sensor could be smaller and lighter, little is known about between-day variability in activity patterns of subjects, and fitting the ULAM at home to reduce interference with normal life is time-consuming. In addition, manipulative/fine upper limb activity, holding of objects and leaning are currently not 100% well detected with the ULAM 32. Since a large number of upper limb CRPSI subjects also experience problems with these forms of upper limb usage in addition to decreased gross motor activity, the explained variances from the regression models probably would have been higher had we been able to detect all forms of upper limb usage 100% correctly. Fortunately, development of instruments, such as the ULAM, is an ongoing process of extending possibilities and optimizing current properties.

6.6 Conclusion

These thirty subjects with chronic upper limb CRPSI showed large variability with respect to magnitude of impairments. All subjects were impaired to some degree, but AROM, strength and pain were far more severe than impaired volume or temperature. Subjects with dominant and non-dominant side involvement were equally impaired and both subgroups were also comparable with respect to other relevant variables. With respect to activity limitations, the involved upper limbs were all less active for the mean intensity and percentage of upper limb activity; the subjects clearly spared or protected their involved side during normal daily life. This impact of upper limb CRPSI was more obvious during sitting than during standing. As measured with the ULAM, subjects with dominant side involvement had more activity limitations than subjects with non-dominant side involvement.

Analysis of the relationship between impairment-activity limitation showed that impairments associated with upper limb CRPSI are not related to the percentage of dynamic mobility-related activities performed. However, impaired AROM and grip strength, and to a lesser extent pain resulting from effort, were the most important factors explaining variance in activity limitations in normal daily life in these 30 subjects with chronic CRPSI of one upper limb. Thus the more impaired a subject was, the more activity limitations were present.

Acknowledgments

The authors would like to thank J.J. van Hilten (Department of Neurology, LUMC, Leiden, the Netherlands) and H.J. Krijnen (Pain Clinic / Department of Anesthesiology, Ikazia Hospital, Rotterdam, the Netherlands) for their help in recruiting the subjects, H.M. Oerlemans (Department of Allied Health Services, University Hospital Nijmegen, the Netherlands) for information related to the Impairment Sum Score.

Suppliers

- ^a Braun Pro 3000 Type 6014, Kronberg, Germany
- ^b Volumeters Unlimited, Idywild, USA
- ^c Microfet, Force Evaluating and Testing System, Hoggan Health Industries Inc., Draper, USA
- ^d Analog Devices, ADXL201 (size 1x1x0.5 cm)
- e TEMEC Instruments BV, Kerkrade, the Netherlands

6.7 References

- Manning DC. Reflex sympathetic dystrophy, sympathetically maintained pain, and complex regional pain syndrome: diagnoses of inclusion, exclusion, or confusion? J Hand Ther 2000; 13:260-8.
- Stanton-Hicks M. Reflex sympathetic dystrophy: a sympathetically mediated pain syndrome or not? Curr Rev Pain 2000; 4:268-75.
- Bruehl S, Harden RN, Galer BS, et al. External validation of IASP diagnostic criteria for Complex Regional Pain Syndrome and proposed research diagnostic criteria. International Association for the Study of Pain. Pain 1999; 81:147-54.
- Harden RN, Bruehl S, Galer BS, et al. Complex regional pain syndrome: are the IASP diagnostic criteria valid and sufficiently comprehensive? Pain 1999; 83:211-9.
- Fournier RS, Holder LE. Reflex sympathetic dystrophy: diagnostic controversies. Semin Nucl Med 1998: 28:116-23.
- Galer BS, Bruehl S, Harden RN. IASP diagnostic criteria for complex regional pain syndrome: a preliminary empirical validation study. International Association for the Study of Pain. Clin J Pain 1998: 14:48-54.
- Monti DA, Herring CL, Schwartzman RJ, Marchese M. Personality assessment of patients with complex regional pain syndrome type I. Clin J Pain 1998; 14:295-302.
- Schwartzman RJ, Kerrigan J. The movement disorder of reflex sympathetic dystrophy. Neurology 1990; 40:57-61.
- Atkins RM, Duckworth T, Kanis JA. Algodystrophy following Colles' fracture. J Hand Surg [Br] 1989; 14:161-4.
- Schasfoort FC, Bussmann JB, Stam HJ. Outcome measures for complex regional pain syndrome type I: an overview in the context of the international classification of impairments, disabilities and handicaps. Disabil Rehabil 2000; 22:387-98.
- Oerlemans HM, Goris RJ, Oostendorp RA. Impairment level sumscore in reflex sympathetic dystrophy of one upper extremity. Arch Phys Med Rehabil 1998; 79:979-90.
- Geertzen JH. Reflex sympathetic dystrophy. Outcome and measurement studies. Introduction. Acta Orthop Scand Suppl 1998; 279:1-3.
- Veldman PH, Reynen HM, Arntz IE, Goris RJ. Signs and symptoms of reflex sympathetic dystrophy: prospective study of 829 patients. Lancet 1993; 342:1012-6.
- Kurvers HA. Reflex Sympathetic Dystrophy: a clinical and experimental study. Department of Neurology. Maastricht: University Hospital Maastricht, The Netherlands, 1997:208.
- Geertzen JH, Dijkstra PU, Groothoff JW, ten Duis HJ, Eisma WH. Reflex sympathetic dystrophy of the upper extremity--a 5.5-year follow- up. Part II. Social life events, general health and changes in occupation. Acta Orthop Scand Suppl 1998; 279:19-23.
- Geertzen JH, Dijkstra PU, Groothoff JW, ten Duis HJ, Eisma WH. Reflex sympathetic dystrophy of the upper extremity--a 5.5-year follow- up. Part I. Impairments and perceived disability. Acta Orthop Scand Suppl 1998; 279:12-8.
- Borg AA. Reflex sympathetic dystrophy syndrome: diagnosis and treatment. Disabil Rehabil 1996; 18:174-80.

- 18. Galer BS, Butler S, Jensen MP. Case reports and hypothesis: a neglect-like syndrome may be responsible for the motor disturbance in reflex sympathetic dystrophy (Complex Regional Pain Syndrome-1). J Pain Symptom Manage 1995; 10:385-91.
- Ribbers G, Geurts AC, Mulder T. The reflex sympathetic dystrophy syndrome: a review with 19. special reference to chronic pain and motor impairments. Int J Rehabil Res 1995; 18:277-95.
- 20. Inhofe PD, Garcia-Moral CA. Reflex sympathetic dystrophy. A review of the literature and a longterm outcome study. Orthop Rev 1994; 23:655-61.
- 21. Field J, Warwick D, Bannister GC. Features of algodystrophy ten years after Colles' fracture. J Hand Surg [Br] 1992; 17:318-20.
- Goris RJA, Reynen JAM, Veldman P. De klinische verschijnselen bij posttraumatische dystrofie 22 (In Dutch). Nederlands Tijdschrift voor Geneeskunde 1990; 134:2138-2141.
- 23. Poplawski ZJ, Wiley AM, Murray JF. Post-traumatic dystrophy of the extremities. J Bone Joint Surg [Am] 1983; 65:642-55.
- Subbarao J, Stillwell GK. Reflex sympathetic dystrophy syndrome of the upper extremity: analysis 24. of total outcome of management of 125 cases. Arch Phys Med Rehabil 1981; 62:549-54
- 25. Geertzen JH, Dijkstra PU, van Sonderen EL, Groothoff JW, ten Duis HJ, Eisma WH. Relationship between impairments, disability and handicap in reflex sympathetic dystrophy patients: a longterm follow-up study [In Process Citation]. Clin Rehabil 1998; 12:402-12.
- Kemler MA. Furnee CA. The impact of chronic pain on life in the household. J Pain Symptom 26 Manage 2002; 23:433-41.
- Gray DB, Hendershot GE. The ICIDH-2: developments for a new era of outcomes research. Arch 27. Phys Med Rehabil 2000; 81:S10-4.
- 28 Halbertsma J, Heerkens YF, Hirs WM, de Kleijn-de Vrankrijker MW, Dorine Van Ravensberg CD, Napel HT. Towards a new ICIDH. International Classification of Impairments, Disabilities and Handicaps. Disabil Rehabil 2000; 22:144-56.
- Simeonsson RJ, Lollar D, Hollowell J, Adams M. Revision of the International Classification of 29 Impairments, Disabilities, and Handicaps: developmental issues. J Clin Epidemiol 2000; 53:113-
- WHO. International Classification of Impairments, Disabilities, and Handicaps. Geneva: World 30. Health Organization, 1980.
- 31. Oerlemans HM, Cup EH, DeBoo T, Goris RJ, Oostendorp RA. The Radboud skills questionnaire: construction and reliability in patients with reflex sympathetic dystrophy of one upper extremity. Disabil Rehabil 2000: 22:233-45.
- 32 Schasfoort FC, Bussmann JB, Stam HJ. Ambulatory measurement of upper limb usage and mobility-related activities during normal daily life with an upper limb-activity monitor: a feasibility study. Med Biol Eng Comput 2002; 40:173-82.
- Schasfoort FC, Bussmann JBJ, Zandbergen AMAJ, Stam HJ. The impact of upper limb Complex 33. Regional Pain Syndrome type I on everyday physical life, as measured with a novel Upper Limb-Activity Monitor. Pain 2003; 101:79-88.
- Stanton-Hicks M, Janig W, Hassenbusch S, Haddox JD, Boas R, Wilson P. Reflex sympathetic dystrophy: changing concepts and taxonomy. Pain 1995; 63:127-33.

 Zuurmond WW, Langendijk PN, Bezemer PD, Brink HE, de Lange JJ, van loenen AC. Treatment 34.
- 35. of acute reflex sympathetic dystrophy with DMSO 50% in a fatty cream. Acta Anaesthesiol Scand 1996; 40:364-7.
- 36. Braus DF, Krauss JK, Strobel J. The shoulder-hand syndrome after stroke: a prospective clinical trial. Ann Neurol 1994; 36:728-33.
- Geertzen JH, de Bruijn H, de Bruijn-Kofman AT, Arendzen JH. Reflex sympathetic dystrophy: 37 early treatment and psychological aspects. Arch Phys Med Rehabil 1994; 75:442-6. Deuschl G, Blumberg H, Lucking CH. Tremor in reflex sympathetic dystrophy. Arch Neurol 1991;
- 38. 48:1247-52
- 39. van Hilten JJ, van de Beek WJ, Vein AA, van Dijk JG, Middelkoop HA. Clinical aspects of multifocal or generalized tonic dystonia in reflex sympathetic dystrophy. Neurology 2001; 56:1762-
- Marsden CD, Obeso JA, Traub MM, Rothwell JC, Kranz H, La Cruz F. Muscle spasms associated 40. with Sudeck's atrophy after injury. Br Med J (Clin Res Ed) 1984; 288:173-6.
- Verdugo RJ, Ochoa JL. Abnormal movements in complex regional pain syndrome: assessment of 41 their nature. Muscle Nerve 2000; 23:198-205.
- van Hilten BJ, van de Beek WJ, Hoff JI, Voormolen JH, Delhaas EM. Intrathecal baclofen for the 42. treatment of dystonia in patients with reflex sympathetic dystrophy. N Engl J Med 2000; 343:625-
- Oerlemans HM, Graff MJ, Dijkstra-Hekkink JB, de Boo T, Goris RJ, Oostendorp RA. Reliability 43. and normal values for measuring the skin temperature of the hand with an infrared tympanic thermometer: a pilot study. J Hand Ther 1999; 12:284-90.
- Carlsson AM. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual 44. analogue scale. Pain 1983; 16:87-101.

- 45. Davidoff G, Morey K, Amann M, Stamps J. Pain measurement in reflex sympathetic dystrophy
- syndrome. Pain 1988; 32:27-34.

 Rauck RL, Eisenach JC, Jackson K, Young LD, Southern J. Epidural clonidine treatment for refractory reflex sympathetic dystrophy. Anesthesiology 1993; 79:1163-9; discussion 27A.

 Ramamurthy S, Hoffman J. Intravenous regional guanethidine in the treatment of reflex 46.
- 47. sympathetic dystrophy/causalgia: a randomized, double-blind study. Guanethidine Study Group. Anesth Analg 1995; 81:718-23.
- van der Kloot WA, Oostendorp RA, van der Meij J, van den Heuvel J. [The Dutch version of the 48. McGill pain questionnaire: a reliable pain questionnaire]. Ned Tijdschr Geneeskd 1995; 139:669-
- Geertzen JH, Diikstra PU, Stewart RE, Groothoff JW, Ten Duis HJ, Eisma WH, Variation in 49. measurements of range of motion: a study in reflex sympathetic dystrophy patients. Clin Rehabil 1998: 12:254-64.
- 50. Adams LS, Green LW, Topoozian E. Range of Motion. In: Therapists ASoH, ed. Clinical assessment recommendations. Vol. 2. Chicago: American Society of Hand Therapists, 1992:55-
- Geertzen JH, Dijkstra PU, Stewart RE, Groothoff JW, ten Duis HJ, Eisma WH. Variation in 51 measurements of grip strength. A study in reflex sympathetic dystrophy patients. Acta Orthop Scand Suppl 1998; 279:4-11.
- 52. Tulen JH, Bussmann HB, van Steenis HG, Pepplinkhuizen L, Man in 't Veld AJ. A novel tool to quantify physical activities: ambulatory accelerometry in psychopharmacology. J Clin sychopharmacol 1997; 17:202-7.
- Bussmann HB, Reuvekamp PJ, Veltink PH, Martens WL, Stam HJ. Validity and reliability of measurements obtained with an "activity monitor" in people with and without a transtibial 53. amputation. Phys Ther 1998; 78:989-98.
- Bussmann JB, van de Laar YM, Neeleman MP, Stam HJ. Ambulatory accelerometry to quantify 54. motor behaviour in patients after failed back surgery: a validation study. Pain 1998; 74:153-61.
- Bussmann JB, Tulen JH, van Herel EC, Stam HJ. Quantification of physical activities by means of 55. ambulatory accelerometry: a validation study. Psychophysiology 1998; 35:488-96.
- Van den Berg-Emons HJG, Bussmann JBJ, Balk AHMM, Stam HJ. Validity of ambulatory 56. accelerometry to quantify physical activity in heart failure. Scandinavian Journal of Rehabilitation Medicine 2000; 32:187-192.
- Bussmann JBJ, Martens WLJ, Tulen JHM, Schasfoort FC, Berg-Emons HJGvd, Stam HJ. 57 Measuring daily behaviour using ambulatory accelerometry: the Activity Monitor. Behavior Research Methods, Instruments & Computers 2001; 33:349-56.
- 58. Renfrew JW, Moore AM, Grady C, et al. A method for measuring arm movements in man under ambulatory conditions. Ergonomics 1984; 27:651-61.
- 59. Renfrew JW, Pettigrew KD, Rapoport SI. Motor activity and sleep duration as a function of age in healthy men. Physiol Behav 1987; 41:627-34
- 60. Patterson SM, Krantz DS, Montgomery LC, Deuster PA, Hedges SM, Nebel LE. Automated physical activity monitoring: validation and comparison with physiological and self-report measures. Psychophysiology 1993; 30:296-305.
- 61. van Hilten B, Hoff JI, Middelkoop HA, et al. Sleep disruption in Parkinson's disease. Assessment by continuous activity monitoring. Arch Neurol 1994; 51:922-8.
- 62. van Vugt JP, van Hilten BJ, Roos RA. Hypokinesia in Huntington's disease. Mov Disord 1996;
- Veltink PH, Bussmann HB, de Vries W, Martens WL, Van Lummel RC. Detection of static and 63. dynamic activities using uniaxial accelerometers. IEEE Trans Rehabil Eng 1996; 4:375-85. Jain A, Martens WLJ, Mutz G, Weiss RK, Stephan E. Towards a comprehensive technology for
- 64. recording and analysis of multiple physiological parameters within their behavioral and environmental context. In: Fahrenberg J, Myrtek M, eds. Ambulatory assessment; computerassisted psychological and psychophysiological methods in monitoring and field studies. Seatle: Hogrefe&Huber Publishers, 1996:215-236.
- Van den Berg-Emons HJG, Bussmann JBJ, Brobbel AS, Roebroeck ME, Meeteren Jv, Stam HJ. 65. Everyday physical activity in adolescents and young adults with meningomyelocele as measured with a novel activity monitor. J Pediatr 2001; 139:880-6.
- Van den Berg-Emons HJG, Bussmann JBJ, Balk A, Keijzer-Oster D, Stam HJ. Level of activities 66. associated with mobility during everyday life in patients with chronic congestive heart failure as measured with an "activity monitor". Phys Ther 2001; 81:1502-11.
- Jankovic J, Van der Linden C. Dystonia and tremor induced by peripheral trauma: predisposing 67. factors. J Neurol Neurosurg Psychiatry 1988; 51:1512-9.
- Galer BS, Henderson J, Perander J, Jensen MP. Course of symptoms and quality of life 68 measurement in Complex Regional Pain Syndrome: a pilot survey. J Pain Symptom Manage 2000: 20:286-92.
- 69. Schott GD. The relationship of peripheral trauma and pain to dystonia. J Neurol Neurosurg Psychiatry 1985; 48:698-701.

- 70. Bhatia KP, Bhatt MH, Marsden CD. The causalgia-dystonia syndrome. Brain 1993; 116:843-51.
- Sherman RA, Karstetter KW, Damiano M, Evans CB. Stability of temperature asymmetries in reflex sympathetic dystrophy over time and changes in pain. Clin J Pain 1994; 10:71-7. 71.
- Awerbuch MS. Thermography--its current diagnostic status in musculoskeletal medicine. Med J 72 Aust 1991; 154:441-4.
- Bej MD, Schwartzman RJ. Abnormalities of cutaneous blood flow regulation in patients with reflex 73. sympathetic dystrophy as measured by laser Doppler fluxmetry. Arch Neurol 1991; 48:912-5.
- 74. Oerlemans HM, Perez RS, Oostendorp RA, Goris RJ. Objective and subjective assessments of temperature differences between the hands in reflex sympathetic dystrophy. Clin Rehabil 1999;
- Wasner G, Schattschneider J, Heckmann K, Maier C, Baron R. Vascular abnormalities in reflex 75. sympathetic dystrophy (CRPSI): mechanisms and diagnostic value. Brain 2001; 124:587-99.
- Bonica JJ. Causalgia and other reflex sympathetic dystrophies. Postgrad Med 1973; 53:143-8
- Steinbrocker O. The shoulder-hand syndrome: present perspective. Arch Phys Med Rehabil 1968; 77. 49:388-95
- 78. Bickerstaff DR, Kanis JA. Algodystrophy: an under-recognized complication of minor trauma. Br J Rheumatol 1994; 33:240-8.
- 79
- Zyluk A. The sequelae of reflex sympathetic dystrophy. J Hand Surg [Br] 2001; 26:151-4. Bruehl S, Harden RN, Galer BS, Saltz S, Backonja M, Stanton-Hicks M. Complex regional pain 80. syndrome: are there distinct subtypes and sequential stages of the syndrome? Pain 2002; 95:119-
- 81. Melzack R. The McGill Pain Questionnaire: major properties and scoring methods. Pain 1975;
- Reading AE. A comparison of the McGill Pain Questionnaire in chronic and acute pain. Pain 1982; 82. 13:185-92
- Wewers ME, Lowe NK. A critical review of visual analogue scales in the measurement of clinical 83. phenomena. Res Nurs Health 1990; 13:227-36.
- Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. 84. Neuropsychologia 1971; 9:97-113.
- 85. Henkel V, Mergl R, Juckel G, et al. Assessment of handedness using a digitizing tablet: a new method. Neuropsychologia 2001; 39:1158-66.
- Rondinelli RD, Dunn W, Hassanein KM, et al. A simulation of hand impairments: effects on upper 86. extremity function and implications toward medical impairment rating and disability determination. Arch Phys Med Rehabil 1997; 78:1358-63.
- Brummel-Smith K. Research in rehabilitation. Clin Geriatr Med 1993; 9:895-904. 87.
- Baron R, Maier C. Reflex sympathetic dystrophy: skin blood flow, sympathetic vasoconstrictor reflexes and pain before and after surgical sympathectomy. Pain 1996; 67:317-26.