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We study how humans make decisions when they collaborate with an artificial intelligence (AI): each

instance of a classification task could be classified by themselves or by the AI. Experimental results suggest

that humans and AI who work together can outperform the superior AI when it works alone. However,

this only occurred when the AI delegated work to humans, not when humans delegated work to the AI.

The AI profited, even from working with low-performing subjects, but humans did not delegate well. This

bad delegation performance cannot be explained with algorithm aversion. On the contrary, subjects tried to

follow a provided delegation strategy diligently and appeared to appreciate the AI support. However, human

results suffered due to a lack of metaknowledge. They were not able to assess their own capabilities correctly,

which in turn leads to poor delegation decisions. In contrast to reluctance to use AI, lacking metaknowledge

is an unconscious trait. It limits fundamentally how well human decision makers can collaborate with AI and

other algorithms. The results have implications for the future of work, the design of human-AI collaborative

environments and education in the digital age.
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1. Introduction

Early AI that tried to mimic human decision rules was only partly successful as it suffered from

what Autor (2014) calls Polanyi’s paradox: The fact that humans can often not describe accurately

by which decision rules they solve a problem. Modern AI like deep neural nets seems to overcome

this limitation by learning flexible models from large training sets instead of relying on human-

set rules (LeCun et al. 2015, Schmidhuber 2015). AI is now widely applicable and effective, and

perceived as a general purpose technology (McAfee and Brynjolfsson 2017) that fuels innovation in

diverse domains, such as medicine (Kononenko 2001, Esteva et al. 2017), and generic perceptional

tasks, such as processing images, text, and speech (Hinton et al. 2012, Deng and Yu 2013). We

agree that AI performance will likely improve further and that AI will be embedded in our day-

to-day life. But, as Brynjolfsson et al. (2018) point out, not all decision making can be automated

completely as some tasks remain challenging for AI.

Perhaps the best prediction we can make today is that humans will remain integral to the

workplace, and they will work together with AI, algorithms, or intelligent machines. This is reflected

in current IS research, having special issues on augmented intelligence in ISR and on managing

AI in MISQ, both issued in 2021. Baird and Maruping (2021) propose a theoretical framework for

next generation of IS research focusing on delegation from and to information systems, such as

AI. They explicitly state that both the information system and the human could be the delegating

unit. This mindset is in line with the concept of Human-in-the-loop AI (Zanzotto 2019), where

humans remain an integral part of AI decision making.

The critical question in delegation is how firms should distribute work between humans and AI.

Polanyi’s work points to a facet of human decision making that is critical to the discussion, but

vastly ignored until now. When humans can solve a problem, but are unable to explain their decision

rules clearly, they should, nonetheless, be able to contribute complementarities to an algorithm

(Autor et al. 2003). Since humans have different experiences and education, decision models and

knowledge also differ between individual humans, and between humans and AI. Because we cannot
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articulate our idiosyncratic “decision rules” well, it is hard for learning algorithms to imitate them

precisely, even from large training sets. Humans’ inability to tell what they know shields their

abilities from perfect digital imitation. The variety of human thought, only partially observable

through their actions, creates the possibility that humans have complementary knowledge with

respect to AI algorithms. The AI, on the other hand, may find a way to solve a problem no human

being has thought about before. Thus, both humans and the AI potentially have complementary

knowledge, and the performance of humans working with an AI system may be better than that

of the AI system (or humans) working alone.

Our study focuses on the case where either an AI algorithm or a human is allowed to perform

a task by itself, or to delegate that task to the other actor. On a generic level, there are three

main boundary conditions that enable the combined performance to exceed the performance of the

better performing actor:

1. Existence of complementarities: In order to enhance performance through delegation between

two actors, complementary knowledge has to exist between the two actors, that is, a human and

an AI system. We claim that this should be the case for all tasks where Polanyi’s paradox applies,

i.e., where humans cannot exactly specify their decision rules.

2. Recognition of complementarities: A delegating partner needs to recognize that complemen-

tarities between the two partners exist and that the tasks should be performed by the better-suited

partner. While having information on the other partner’s ability helps, the most important ability

is to estimate one’s own ability. If an actor knows that they can perform a task, it is always wise for

them to complete the task themselves. On the other hand, it is wise to delegate if the actor knows

that they cannot perform the task buttheir partner potentially can. In line with Lories et al. (1998)

and Evans and Foster (2011), we denote this ability to assess own capabilities as “metaknowledge.”

Therefore, we argue that metaknowledge is a crucial resource for recognizing complementarities.

3. Execution of efficient delegation rules: Once a delegating partner recognizes complementari-

ties, they haves to delegate tasks to the better-suited actor. While this can be easily constructed
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and executed for an AI system, humans have to be willing to construct and follow such a delegation

rule.

In a series of behavioral experiments, we investigate how work is delegated between humans and

an AI algorithm. When designing the experiments, we aimed at making the results as generalizable

as possible. Central to the paper is a delegation rule that does not make assumptions about the

context in which it is used. Further, we conducted the experiments in a context where humans

make good decisions naturally, and modern AI performs equally well or even better. We chose

an environment where humans do not require any specific training. Contexts requiring specific

training make the results less generalizable, whereas abilities in more general settings can carry

over into more specialized tasks. Furthermore, expertise may not enable better decision making:

Metaknowledge seems to be only minimally increased by training (Hansson et al. 2008), and trained

experts could even show lower levels of metaknowledge compared to inexperienced subjects (Brezis

et al. 2018).

Therefore, we chose image classification as the focal task for our experiments. While humans are

naturally skilled at it, deep learning has improved AI algorithms beyond the human performance

level recently (Russakovsky et al. 2015). In our experiments, humans and an AI algorithm work

together on the same image classification tasks. In rest of the paper, we refer to to the image

classification AI algorithm as the “AI.” Humans can delegate images to the AI, and the AI can

delegate images to humans in a condition called inversion.

Such collaboration between AI systems and humans is currently under-researched. A related field

analyzes human decision makers’ attitude toward algorithms. Several researchers have documented

the reluctance of human decision makers to use algorithms (Bazerman 1985, Dawes 1979, Klein-

muntz 1990), although some recent research has challenged this notion. In a recent seminal work,

Dietvorst et al. (2015) demonstrated that humans might react more strongly to errors made by

machines than to errors made by humans, even if the machine performs better, and if its errors are

smaller than those of human decision makers. The authors label this loss of confidence “algorithm



Fügener et al.: Challenges in Human-AI Collaboration
00(0), pp. 000–000, c© 0000 INFORMS 5

aversion,” a term picked up willingly be the popular press. But neither Dietvorst et al. (2015) nor

a follow-up study (Dietvorst et al. 2018) document general human distrust towards algorithms.

Logg et al. (2019) study multiple prediction tasks and find that humans are indeed willing to work

with machines, a tendency they label as “algorithm appreciation.”

We are not aware of research that studies delegation between AI and humans in a setting with

complementary skills, and explores fundamental factors which might hinder or support collabora-

tion. The central questions that our study answers are:

• Study 1: Can delegation between humans and AI outperform humans or AI working alone,

and who can delegate better?

• Study 2: What factors limit human delegation performance? How can we overcome these

limitations?

Our experiments reveal that while the AI improves considerably by delegating to humans,

humans are naturally bad delegators to the AI. Even worse, and more interestingly, humans’ per-

formance only slightly improves when they are taught a good delegation rule, even when they apply

it consistently and rationally. We observe little or no bias against the use of AI, in other words,

our results indicate that our subjects do not exhibit general algorithm aversion. Instead, in our

studies, humans try to work with the AI to best of their abilities, however, they fail despite their

best intentions. Humans seem to be unable to judge their own capabilities, and/or the difficulty

of the task, which in turn leads to bad delegation decisions. Thus, humans delegating to the AI

do not meet the boundary condition of a sufficient level of metaknowledge to enable a successful

human-AI collaboration. We also conduct additional robustness studies addressing the impact of

continuous feedback and increasing task difficulty.

In the following, we summarize the theoretical underpinnings of our study and differentiate our

study from the existing literature. We discuss theoretical antecedents in Section 2, describe the

experimental studies and the robustness checks in Sections 3 and 4, and conclude with a discussion

and an outlook on future research directions in Section 5.
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2. Theory

We describe extant work and theories that inform our research questions and experimental design.

In the following subsections, we discuss contributions of our work. Specifically, we shed light on

human attitude towards algorithms (Section 2.1), consider the role of delegation settings (Section

2.2), the role of complementarities on the task instances level (Section 2.3), and the role of feedback

(Section 2.4) to lay the foundation for our work.

2.1. Attitude towards AI

Research that studies how humans use computers for problem solving dates back decades and

includes works that compare human decisions with results from mathematical models (Meehl 1954).

Even during the infancy of computing environments in the 1950s, some computer models outper-

formed human decision makers. It was observed that in many instances, humans were reluctant to

use algorithms, despite possible performance benefits (Bazerman 1985, Dawes 1979, Kleinmuntz

1990). However other studies, such as Dijkstra (1999), demonstrated general willingness of humans

to use algorithms, even allowing machines to overrule their own inferior decisions. How humans

make decisions in concert with algorithms has been revisited lately and has been of great interest

with the surge in usage of AI techniques. Current applications look at investor usage of robo-

advising services in fintech (Ge et al. 2021), reactions to AI advice in health care (Jussupow et al.

2021), or the effect of similarity to human language used by chatbots (Schanke et al. 2021).

In a seminal work on attitude towards algorithms, Dietvorst et al. (2015) demonstrate that

humans react differently to errors made by humans as compared to algorithms. In their experiments,

they let humans work with AI algorithms for prediction tasks. When the subjects saw the AI

perform, and err, they lost confidence in it. Interestingly, this loss is much stronger than the loss

in confidence in humans who made mistakes in the same task. The authors label this tendency

“algorithm aversion.” Logg et al. (2019) studied whether human decision makers prefer external

advice from other humans or algorithms and found that decision makers show a clear tendency for

preference for algorithmic advice over human advice. This preference holds for multiple prediction
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tasks, and (according to a survey the authors conducted) was not expected by most academics.

In contrast to Dietvorst’s work, Logg et al. (2019) label their results as “algorithm appreciation.”

While this seems like a contradiction, Dietvorst’s work does not show a general aversion towards

algorithms but rather a different reaction towards errors made by algorithms and human decision

makers.

2.2. Delegation

We consider a scenario, where a human has to perform a task without information about the

solution or performance of the AI for a specific task. We denote this as a “delegation” scenario. We

allow delegation to work in both directions. The human may delegate work to the machine, and the

machine may delegate work to the human. The latter approach is sometimes called inversion, or

using the human as an exit option (McAfee 2013). In delegation settings, a good decision heuristic

is the following: “If I am certain to know the correct answer, I should do the job. If I am uncertain

I should delegate!” This rule works well, because delegating a task that the decision maker is not

able to perform cannot decrease performance, independent of the other party’s abilities.

When humans apply this rule, they have to rely on their metaknowledge. This is the ability to

assess one’s own capabilities, that is, to know what you know (Lories et al. 1998, Evans and Foster

2011). A decision maker with strong metaknowledge can delegate well, as she will know whether

her answer is correct or not. If her level of metaknowledge is insufficient, she might be certain that

incorrect answers are correct, and she might be uncertain about the correctness of correct answers.

In such cases, the joint performance of a human and an algorithm will suffer due to inappropriate

delegations.

Note that this entire idea – to delegate tasks when you are uncertain – is particularly relevant if

delegation does not move an entire stack of tasks, or all the work, but when it occurs on the level

of task instances. We discuss this in the next section.

2.3. Complementarity on the instance level

Occupations typically consist of bundles of tasks (Autor et al. 2003), some of these tasks are suitable

for machine learning, others not (Brynjolfsson and Mitchell 2017). Because of this many experts
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do not expect that AI will automate entire bundles of tasks associated with a job but only specific

parts of the bundle (Brynjolfsson et al. 2018). Therefore, a likely consequence of automation on

the task level is that some tasks are automated, while others are not. This leads to redesigned job

profiles and workflows based on the economic benefits associated with such work arrangements,

e.g., Agrawal et al. (2018) discuss ways to compute the economic value of automation on the task

level and present a related AI canvas.

We take this argument further and argue that structural complementarities between humans

and AI may exist even on the task instance level. Our reasoning builds on the design principles for

current AI systems. While traditional expert systems were built by humans who coded concrete

decision rules, current AI algorithms discover their own decision rules based on training data. Due

to structurally different decision rules, we argue that for each task there might be instances where

human decision rules work better that AI decision rules, and vice versa.

Sharing work between humans and AI algorithms on the task level can leverage these comple-

mentarities, and joint performance of an AI working with humans may exceed the performance of

either of the parties individually. Even if the AI performance is better than the human performance,

the optimal allocation will assign some work to a human and some to the AI, and humans and AI

both can provide value. Therefore, it is important to conduct research in the area of human-AI

collaboration on the level of task instances. As we demonstrate in this paper, it offers significantly

different implications for the future of work than the established paradigms have argued and/or

demonstrated.

2.4. The role of feedback

While some extant research has used the effect of feedback on task level performance and accuracy,

we decided to not include such feedback to concentrate on our main research questions. The

reason for our choice is manifold. For successful human-AI collaboration, several factors have to be

considered on the human side of the equation. When prior research considered environments where

humans make their decisions on the basis of observed AI performance and errors, they found that
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receiving immediate feedback on AI performance might trigger behavioral effects that undermine

the collaborative setting. Prominent examples include diminished trust in algorithms (measured

by a lower adherence to algorithmic advice) when humans see the algorithm err (Dietvorst et al.

2015), or the overweighting of signals from forecasting errors (Kremer et al. 2011). In that case,

errors resulting from random variation of data are misinterpreted as systematic errors.

There are many situations where AI feedback is not even available or practical, for example

when predicting long-term effects, such as climate change (Logg et al. 2019). In other situations,

decisions have to be made quickly, such as in autonomous driving, or very frequently, such as in

digital markets. In these contexts, AI errors are either not available, it may not be economical to

consider them repeatedly, or there may simply be no time to integrate AI performance in decision

making.

While we do not study the effects of feedback in our main study, we do explore whether continuous

feedback affects our findings in a dedicated study in the robustness check section.

In the following sections, we provide details of our experimental studies.

3. Experimental Studies

After providing a rationale on the study context, we describe the hypotheses, designs and results

of two primary experimental studies with 902 subjects in total. We followed Nosek et al. (2018)

and pre-registered the experiments at the Open Science Foundation (Foster and Deardorff 2017),

including the recruitment and data collection process, the initial hypotheses, and the statistical

analysis.

3.1. Study context

When designing the experimental studies, we aimed for a non-specialized setting, as we claim that

contexts that do require specific training make results less generalizable, while findings in general

tasks can carry over to more specialized tasks. We also aimed for a task, where the three boundary

conditions for value-adding delegation between humans and AI are potentially met: 1) Existence

of complementarities, 2) recognition of complementarities, and 3) execution of efficient delegation
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rules. We chose image classification as our experimental study context. Image classification is the

task of assigning a focal image to a class. A class can be thought of as a content group. A classifica-

tion is correct if the focal image is assigned to the right class (a focal picture with the ground truth

“poodle” is assigned to the “poodle” class, not to “huskie” or “cat”). We sampled 100 focal images

with known class labels from the ImageNet database. The ImageNet database consists of tens of

millions of human-annotated images that are used by current image recognition challenges, such

as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al. 2015).

We sample images used in the ILSVRC image classification task that contain everyday objects

and animals, and that are assigned to one of 1,000 possible classes. The difficulty of each task

may be associated with three main dimensions: 1) The image itself. This might include visibility of

the object, size of the object, or whether multiple objects are present. 2) Possible classes. A main

driver for difficulty of image classification tasks is the definition of possible choices, for example,

fine-grained recognition between similar classes, such as breeds of dogs, is more difficult compared

to more different classes, such as between zebra, lion, or tiger. 3) The annotator. Familiarity with

image and with possible classes is a big driver of subjective difficulty. This could depend on training

data (in case of an AI) or on personal experiences and interests (in case of a human). A difficulty

of human annotators is to cope with a large number of classes, as they might not be aware of the

existence of a specific class (Russakovsky et al. 2015). To avoid this effect, we chose to display

ten possible classes along with the focal image. As in Russakovsky et al. (2015), we illustrated

each possible answer class by name and 13 example images. One answer was correct. A central

performance measure was classification accuracy, the percentage of correctly classified images.

We chose GoogLeNet Inception v3 (Szegedy et al. 2016) as AI. It is among the best AIs for image

classification and was trained on the ImageNet database with 1,000 classes. GoogLeNet assigns

a score to each classthat can be interpreted as the likelihood of being correct. We obtained its

classification accuracy by applying it to the 100 images, and by comparing the image with the

highest score to the correct answer. As the AI is trained based on outcome data, the decision rules

differ from human decision rules, and complementarities between the AI and humans should exist.
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We recruited human subjects via Amazon’s Mechanical Turk (MTurk). We believe using MTurk

to recruit subjects is particularly suitable for our study for the following reason: we are interested

in assessing basic human capabilities and image classification is a natural task for humans that

requires no specific training. Many tasks at MTurk relate to classification problems (Difallah et al.

2015), thus, our experiment is a natural task for MTurk workers. We provide evidence that subjects

took the tasks seriously and performed them with a high degree of internal validity. They made

logical delegation decisions based on their internal assessment (see Figure 6 and the subsequent

discussion).

Study 1 “Delegation and Inversion” compares four different types of delegation: AI working alone,

humans working alone, humans who may delegate to AI, and an AI that may delegate to humans

(inversion). As expected, the AI outperforms humans. Surprisingly, the AI delegates better than

humans when it follows a simple rule. Study 2 “Explaining and Enforcing a Delegation Strategy”

explores the root cause for poor human delegation and analyzes the effects of teaching humans a

similar strategy to that of the AI.

3.2. Study 1: Delegation and Inversion

Hypotheses. Study 1 tackles our first research question: can delegation outperform humans or AI

working alone, and who can delegate better? Thus, we compare four different settings: AI working

alone, humans working alone, humans who may delegate to AI, and an AI that may delegate to

humans (inversion). We chose image classification as focal task, and use an AI that is expected to

perform (slightly) above human performance. Our key measure is classification accuracy, that is, the

percentage of correctly classified images. We formulated and preregistered four initial hypotheses

considering the relation of accuracy between those options. In the following, we present three of

those hypotheses and theory that motivates them. One pre-registered hypothesis claimed that a

state-of-the-art AI outperforms human decision makers on average. While this is supported for our

specific setting (Szegedy et al. 2015, 2016), it lacks generality, and we decided to exclude it.

The first two hypotheses motivate the value added through delegation. In the introduction, we

defined three boundary conditions: Existence of complementarities between the AI and humans,
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recognition of complementarities, and execution of efficient delegation rules. We assume the first

property, existence of complementary knowledge, to hold for all tasks that follow Polanyi’s paradox,

such as image classification. While we are not aware of any structural evidence regarding the recog-

nition of complementarities and the execution of efficient delegation rules, there is ample research

from the domain of humans working with decision support systems, ranging from seminal theoret-

ical work, such as Huber (1990), to recent experimental studies as carried out in Dietvorst et al.

(2018), confirming that humans can benefit from working with advanced information technologies,

and that the second and third boundary conditions are at least partially given. This directly leads

to our second hypothesis:

Hypothesis 1.1 : Humans who can delegate tasks to the AI (after seeing the image to be classified)

perform better than humans who can not.

A more difficult question is to hypothesize on the effect of providing AI the possibility to delegate

to humans (inversion), given that human performance is potentially inferior to that of the AI.

To be able to improve accuracy, the AI has to delegate those tasks that AI is not able execute

with accuracy, but humans can potentially execute with higher accuracy. For the second boundary

condition, the recognition of complementarities, it is important that the AI can assess its own

certainty, that is, probability of success. Assessing its own certainty is a main feature of modern

AI that has gone through appropriate level of training, and enables the AI to perform in a robust

manner by using its certainty assessment to make the final choice. In our case of image classification,

the AI score of the sample of 100 images estimated an average likelihood of being correct of 0.769,

and classified 77 images correctly. Using AI score as an indicator for certainty and some benchmark

for expected human certainty, we define an efficient delegation mechanism that the AI follows to

leverage the potential of complementary knowledge. We formulate our next hypothesis:

Hypothesis 1.2 : AI that can delegate image classification tasks to humans (after seeing the image)

performs better than an AI that can not.

In theory, both delegation and inversion could achieve the same accuracy: If the delegating actor

delegates all tasks that she or he is not able to perform, all tasks that at least one could perform
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would be considered correct. We denote this as ex-post optimal combination of humans and AI,

where all complementarities are realized. The AI in our inversion condition applies such a strategy

under uncertainty.

Whether humans or AI is better at delegating tasks might depend on the second and third

boundary conditions of successful delegation: humans need to have a sufficient level of metaknowl-

edge, that is, correctly identifying tasks where they do not perform well, and humans have to come

up with an efficient delegation strategy, and be willing to follow it through. We know that the AI

has a very high level of metaknowledge, and will follow an efficient delegation strategy, whereas

both boundary conditions are uncertain for human delegators. This leads to our final hypothesis

of Study 1:

Hypothesis 1.3 : AI that can delegate image classification tasks to humans performs better than

humans who can delegate to the AI.

In the following, we lay out the details of our study design before presenting our results.

Design. We compare classification accuracy between four conditions. In the “AI alone” condition

(1), GoogLeNet classified alone. In the “humans alone” condition (2), subjects classified alone.

Subjects in the delegation condition (3) could choose for each image to either classify alone, or

to delegate the image to the AI (subjects were informed about the AI accuracy measure). In the

inversion condition (4), the AI could choose for each image to classify alone or to delegate the

image to humans.

For conditions (2)-(4), we ran a between-subject design with 449 subjects in August 2018. We ran-

domly assigned subjects to the conditions humans alone (149 subjects), delegation (154 subjects),

and inversion (146 subjects). The humans alone (2) and inversion (4) conditions were identical.

Figure 1 shows a screenshot of the humans alone/inversion and delegation conditions.

In the delegation conditions, we added a button labeled “Delegate this question to the AI” at a

random position between the answers. If a subject clicked, she did not classify the image herself,

but delegated it to the AI. She would not see the AI’s answer. The AI’s answer was considered
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Figure 1 Screenshots of the humans alone/inversion condition (left) and the delegation condition (right).

hers, and she received her payment accordingly. We made it clear that each correct classification

earned a payment, regardless of whether the AI or the human classified the image. Subjects in

the delegation condition were informed about the AI and its accuracy at the beginning of the

experiment.

To ensure that the effects can be related to different delegation, and not to different human

classification behavior, subjects in the inversion condition had to classify all 100 images, like sub-

jects in the other conditions. We constructed the results for the inversion condition (4) after the

experiment. The AI classifies images or delegates them to humans based on a simple rule: if the

score for the best answer was below a certain threshold, then GoogleNet delegated this image to

the humans. Otherwise, GoogLeNet classified the image. To simulate this mechanism we paired

GoogleNet with each subject from the inversion condition. The threshold was the average accu-

racy of subjects in the humans alone condition (2). The AI thus delegated all images where the

estimated likelihood of being correct was below average human accuracy.

All subjects received instructions, had to pass a short quiz so that we could exclude robots,

and completed an example classification to ensure that they understood the task. They then had

to classify the 100 images in random order. Each subject received a base fee of 50 cents, and an

additional 5 cents for each correct answer. Afterwards, they were asked how many images they
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think they classified correctly. They could earn 1 additional dollar if this estimation did not differ

from the actual number by more than five images.

Average pay was $4.45, slightly above average pay on MTurk in general (Hara et al. 2018). The

average duration of the experiment was 57.7 minutes.

Table 1 Summary statistics for accuracy (Study 1).

Summary statistic

Dep. Var.: Treatment N Min. Mean Max. St. Dev. Pctl(25) Median Pctl(75)

Accuracy
AI alone 0.770
Humans alone 149 0.310 0.716 1.000 0.132 0.650 0.740 0.810
Delegation 154 0.250 0.740 0.990 0.101 0.700 0.760 0.800
Inversion 146 0.710 0.870 0.980 0.042 0.850 0.870 0.898

Results. Descriptive statistics (Table 1) and visual evidence (Figure 2) suggest that the ability to

delegate affects classification accuracy. On average, accuracy is highest in the inversion condition

(87.0%), followed by the delegation condition (74.0%) and humans alone (71.7%). By itself, AI

accuracy is 77.0% (vertical dashed line in Figure 2). The standard deviation of accuracy (in number

of images) is highest when humans work alone (13.2), smaller when humans can delegate (10.1)

and smallest when the AI delegates to humans (4.2). We used .717 as the threshold in the inversion

condition. The results for inversion are robust for different threshold values (inversion accuracy is

above .840 for all thresholds between the 25th and 75th percentile of human performance, that is,

.650 and .810). The ex-post optimal combination of human and AI of Treatment 1 would lead to

an upper bound of 89.9% accuracy – that is, assuming that each image is classified correctly, where

either the AI or the human classified the image correctly.

The variance of accuracy is significantly different across experimental conditions (Levene test,

F(2, 446) = 36.752, p < .001; Hartleys Fmax test, Fmax = 9.962 > critical value), and means are

significantly different as well (ANOVA with heterogeneous variances, F(2, 245.05) = 178.41, p <

.001, η2 = .315, which represents a large effect). Post-hoc tests with Tanhames T2 statistic for
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Figure 2 Distribution plots for accuracy per experimental condition (Study 1). The vertical dashed line is the AI

classification accuracy of 77%.

multiple comparisons show that most pair-wise mean differences are significant (see Table 2 for a

summary of pairwise comparisons). Humans in the delegation condition seem to outperform humans

alone. However, this difference (2.37 percentage points) is not significant (p= .120) and represents

a relatively small effect (d= .2). Inversion clearly outperforms humans alone. This difference (15.38

percentage points) is significant (p < .001) and represents a large effect (d= 1.67). Inversion also

outperforms the delegation condition. This difference (13 percentage points) is significant (p < .001)

and represents a large effect (d= 1.56).

Table 2 Summary of p-values for pairwise comparisons of accuracy (Study 1).

Humans alone Delegation Inversion

AI <0.001 <0.001 <0.001
Humans alone 0.120 <0.001
Delegation <0.001

Mean accuracies for the humans alone, delegation and inversion conditions are significantly dif-

ferent from AI alone (p < .001), and except for inversion, are all lower than AI alone. Performance
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Figure 3 Scatter plot of accuracy per image (horizontal axis) against delegation rate per image (vertical axis).

The regression line is estimated from all images.

in the inversion condition is significantly higher than when the AI is working alone, suggesting

that humans can improve the performance of an AI by providing their input. Not only is inversion

better than the other settings on average, we also notice that the AI benefits from working with

almost all humans. In the inversion condition, only three of the 146 AI-human pairs had a perfor-

mance smaller than the AI itself; even the 25th accuracy percentile of inversion (85.0%) is much

larger than AI accuracy. To summarize, sharing work between humans and AI could outperform

humans and AI working alone. Inversion was highly effective, but human delegation was not.

To understand inferior human performance in the delegation condition, we investigate how

humans delegate. In Figures 3 and 4, image difficulty is depicted on the horizontal axis. Image

difficulty is the average accuracy in the humans alone condition of the respective image. A .2 dif-

ficulty/accuracy means 20% of subjects classified the image correctly. The vertical axis in both

figures shows the delegation rate, i.e., the ratio of subjects who delegated the image to the AI.

If we consider the entire data set (Figure 3), a weak trend can be detected where images with

higher accuracy (lower difficulty) are delegated less often and vice versa. Thus, humans seem

to “rationally” delegate those images more often, which they are less able to classify correctly.

However, if we partition the data into images with less than 70% accuracy (these images are more
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Figure 4 Scatter plot of accuracy per image (horizontal axis) against delegation rate per image (vertical axis).

The two regression lines are estimated from two partitions of the data.

difficult than average human performance), and above 70% accuracy (these images are easier than

average human performance), the pattern changes (Figure 4): Human delegation is not influenced

by the difficulty of an image, if the image is relatively “difficult.” Human delegation seems to follow

a “rational” pattern if the image was relatively “easy” to classify. Note that we chose the threshold

of 70% consistently over the following studies - as no image had an average accuracy between 0.7

and 0.717, setting the threshold to the precise average accuracy of 0.717 does not lead to any

changes. Effect sizes and significance levels are in Table 3. Why did humans delegate randomly if

images were hard?

In the next section, we present Study 2 that explores possible explanations related to the bound-

ary conditions of successful delegation as potential mechanisms for the observed phenomenon.

3.3. Study 2: Explaining and Enforcing a Delegation Strategy

Hypotheses. This study seeks to analyze the cognitive challenges in human delegation, and aims

at providing assistance to explore potential paths towards more productive delegation. In the

previous study, we observed random delegation patterns for hard images. Our boundary conditions

of successful delegation lead to different possible explanations that we test in this study:

1. Humans might not have a sufficient level of metaknowledge. To be able to analyze this, we

asked humans to self-report their level of certainty for each image in all treatments.
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Table 3 Regression results for delegation (Study 1).

Dependent variable: delegation rate

< 70% Accuracy ≥ 70% Accuracy

Accuracy 0.029 −0.535∗∗∗

(0.104) (0.067)

Constant 0.169∗∗∗ 0.557∗∗∗

(0.052) (0.059)

Observations 41 59
R2 0.002 0.529
Adjusted R2 -0.024 0.521
Residual Std. Error 0.090 (df = 39) 0.038 (df = 57)
F Statistic 0.080 (df = 1; 39) 64.138∗∗∗ (df = 1; 57)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors in parentheses

2. Humans might not be able to come up with a good delegation strategy: We added a treatment

where we advised humans with a strategy that imitates the inversion logic.

3. Humans might not be willing to delegate sufficiently: We added a treatment where delegation

was enforced based on human certainty - this treatment applies inversion with humans.

Consequently, Study 2 contains three treatments, all allowing the option to delegate to the AI:

A “baseline” condition that replicates the delegation condition of Study 1 asking for self-reported

certainty for each image, a “strategy explained” condition, where we suggest a delegation strategy

that imitates the delegation logic of inversion based on human certainty, and a “strategy enforced”

condition, where we enforce a strategy by automatically delegating images to the AI if a human

reports low certainty. As was the case in Study 1, we preregistered two initial hypotheses based on

classification accuracy.

Assuming that all three explanations of inferior human delegation performance apply, we state

two hypotheses. First, if humans are simply unaware of good delegation strategies, they should

improve if such a delegation strategy is suggested. Thus, we pose our first hypothesis:

Hypothesis 2.1 : Explaining the delegation strategy leads to a slight improvement in accuracy.

If humans are reluctant to delegate, then enforcing a good strategy should increase accuracy

even stronger than just suggesting it, which leads to our second hypothesis:
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Hypothesis 2.2 : Enforcing the strategy leads to a stronger improvement in accuracy.

In the following, we present the detailed experimental design and the results of Study 2.

Design. In this study we compare three between-subjects conditions. We also asked humans to

report their level of certainty for each image on a scale from 1 (uncertain) to 4 (certain) in all

conditions. The first condition, “baseline”, was set up like the delegation condition of Study 1. For

the remaining two conditions, we propose a simple delegation rule similar to that the AI in the

inversion condition, where (1) it assessed its classification certainty and (2) delegates to humans

if the certainty score was below average human performance. Accordingly, we advised subjects

in the second condition, “strategy explained,” to delegate images for which they were uncertain

(certainty levels between 1 and 3, average accuracy expected to be below the AI performance of

0.77). If subjects’ certainty was high (certainty level 4, average accuracy expected to be above the

AI performance of 0.77), we advised them to classify the image themselves. In the third condition,

“strategy enforced,” subjects could not delegate actively. We informed them that images will be

delegated automatically if their self-reported certainty was between 1 and 3. The human answer

was only considered if the reported score was a 4. This treatment represents most closely the human

version of our inversion condition of our first experimental study.

We recruited 453 subjects via MTurk and randomly assigned them to experimental conditions.

Average pay was $5.19, average duration was 56.2 minutes. The assignment process and experi-

mental protocol was equivalent to that of Study 1.

Results. Table 5 shows summary statistics for accuracy and delegation rates. Accuracy improved

slightly and delegation rates increased strongly when the delegation strategy was explained or

enforced. Delegation rates in the strategy enforced condition look similar to the strategy explained

condition. This suggests that humans indeed followed the suggested delegation rule.

This is supported by statistical analysis. A Levene test reveals no significant differences between

the variances across experimental conditions (F(2, 450)=.849, p = .429), but means are different

(ANOVA, F(2, 450)=2.97, p= .052, η2 = .13 which represents a medium effect). All pairwise com-

parisons are summarized in Table 4. Tukey’s significance test shows that humans in the strategy
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enforced condition outperform humans in the baseline condition. This difference (2.714 percentage

points) is significant (p= .048) and represents a small to moderate effect (d=.281). Mean accuracy

in the strategy explained condition is similar to that in the strategy enforced condition (p= .761).

Also, the difference between the strategy explained group and the baseline group (1.913 percentage

points) is not significant (p= .207). It would represent a small effect (d=.185). We have then com-

pared the condition’s accuracies with AI performance. The baseline condition shows a significantly

lower performance (p = .010), but there is no significant difference between AI and the strategy

explained (p= .727) or the strategy enforced condition (p= .484). In total, engaging with a good

delegation strategy led to more delegation, but accuracy did not increase proportionally. We also

compute the accuracy of humans per (self-reported) certainty score. From pre-tests, we expected

the accuracy for images with certainty scores between 1 and 3 to be below 0.77, and for images

with a certainty score of 4 to be above 0.77. Our results validate this assumption: For Treatment

1, the average accuracies for non-delegated images were 0.43 (certainty score 1), 0.52 (certainty

score 2), 0.68 (certainty score 3), and 0.87 (certainty score 4).

Table 4 Summary of p-values for pairwise comparisons of accuracy (Study 2).

Baseline Strategy explained Strategy enforced

AI 0.010 0.727 0.484
Baseline 0.207 0.048
Strategy explained 0.761

Figure 5 shows the delegation pattern. The horizontal axis depicts image difficulty (average

human accuracy of Treatment 1, Study 1), the vertical axis delegation rates. The baseline condition

replicated the results of Study 1. Further, humans delegated more when the strategy was explained

or enforced. However, their behavior for difficult images was still random. The randomness just

centered around a higher average than in the baseline condition. Therefore, knowing a good del-

egation strategy did not prohibit random delegation of difficult images. Hence, we can rule out

the second explanation one from above: while providing a strategy helps to increase delegation, it
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Table 5 Summary statistics for accuracy and delegation rate (Study 2).

Summary statistic

Dep. Var.: Treatment N Min. Mean Max. St. Dev. Pctl(25) Median Pctl(75)

Accuracy
Baseline 150 0.160 0.748 0.900 0.104 0.720 0.770 0.810
Strategy explained 157 0.240 0.767 0.880 0.103 0.750 0.800 0.825
Strategy enforced 146 0.140 0.775 0.900 0.088 0.750 0.790 0.823

Delegation rate
Baseline 150 0.000 0.131 0.680 0.151 0.010 0.080 0.200
Strategy explained 157 0.000 0.342 0.950 0.203 0.185 0.330 0.475
Strategy enforced 146 0.010 0.335 0.960 0.183 0.190 0.315 0.463
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Figure 5 Scatter plots of accuracy against delegation rate per image and experimental conditions (Study 2).

The two regression lines are estimated from the two partitions of the data.

Table 6 Regressions per experimental condition (Study 2). The dependent variable is the images’ delegation

rate. The data is partitioned into two regions.

Experimental condition

Baseline Strategy explained Strategy enforced

Dependent variable: Delegation rate for images with accuracy of
< 70% ≥ 70% < 70% ≥ 70% < 70% ≥ 70%

Accuracy -0.041 -0.588∗∗∗ -0.230 -1.610∗∗∗ -0.131 -1.486∗∗∗

(0.121) (0.072) (0.182) (0.165) (0.180) (0.142)
Constant 0.233∗∗∗ 0.592∗∗∗ 0.650∗∗∗ 1.626∗∗∗ 0.579∗∗∗ 1.520∗∗∗

(0.060) (0.064) (0.090) (0.146) (0.090) (0.126)

Observations 41 59 41 59 41 59
R2 0.003 0.537 0.039 0.625 0.013 0.657
Adjusted R2 -0.023 0.529 0.015 0.619 -0.012 0.651
Residual Sd. Error 0.105 0.041 0.158 0.094 0.157 0.081
F Statistic 0.117 66.08∗∗∗ 1.59 95.14∗∗∗ 0.531 109.30∗∗∗

Note: * p< .1; ** p< .05; *** p< .01
Standard errors in parentheses
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Figure 6 Scatter plots of certainty against delegation rate per image and experimental conditions (Study 2).

could not fix the random delegation pattern for difficult images. Table 6 shows the corresponding

statistical results.

We now address explanation three (humans do not want to use the AI). We analyzed how

delegation rates changed with perceived image difficulty (i.e., self-assessed certainty). Figure 6 plots

delegation rates (vertical axis) against self-assessed certainty (horizontal axis). The figure suggests

that humans delegated with great internal consistency. Images they perceived as more difficult were

delegated more often. This was true, independent of whether they knew the delegation strategy or

not. The subjects appeared to be aiming for a consistent delegation pattern. Once they learned a

good delegation strategy, delegation rates more than doubled. Therefore, we conclude that in our

experiments humans did not show reluctance towards using the AI.

In light of these findings, the first explanation seems likely. Humans might not be able to judge

the difficulty of images when the images are hard. They may thus not be able to use the AI

systematically for these images, a problem associated with lack of metaknowledge.

To explore this explanation, we study how well humans can assess their own ability to classify

images. In Figure 7 we plot the average self-assessed certainty of an image (vertical axis) against

the average accuracy of the image (horizontal axis). The visual impression and the regression

results in Table 7 suggest that humans can assess their ability for relatively easy images (accuracy

above 70%), but they can not assess it for difficult images. An interesting side finding can be

observed for the strategy enforced condition. Here, the constant of the regression model is positive

and significant for easy images. Thus, objective difficulty explains perceived difficulty (as in the
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Figure 7 Scatter plots of accuracy against certainty per image and experimental conditions (Study 2).

other conditions), but subjects seem to report higher certainty values independent of actual image

difficulty. A possible explanation is that subjects avoided automated delegation by (mis)reporting

certainty values of four.

Table 7 Regressions per experimental condition (Study 2). The dependent variable is the subjects’ certainty

per image. The data is partitioned into two regions.

Experimental condition

Baseline Strategy explained Strategy enforced

Dependent variable: Certainty, where images have accuracy of...
< 70% ≥ 70% < 70% ≥ 70% < 70% ≥ 70%

Accuracy 0.249 3.524∗∗∗ 0.368 3.505∗∗∗ 0.109 2.363∗∗∗

(0.384) (0.344) (0.465) (0.374) (0.384) (0.238)
Constant 2.716∗∗∗ 0.383 2.675∗∗∗ 0.453 3.161∗∗∗ 1.608∗∗∗

(0.191) (0.304) (0.231) (0.332) (0.191) (0.211)

Observations 41 59 41 59 41 59
R2 0.011 0.648 0.016 0.606 0.002 0.633
Adjusted R2 -0.015 0.642 -0.009 0.599 -0.024 0.626
Residual Sd. Error 0.334 0.196 0.403 0.214 0.334 0.136
F Statistic 0.419 105.10∗∗∗ 0.626 87.64∗∗∗ 0.081 98.25∗∗∗

Note: * p< .1; ** p< .05; *** p< .01
Standard errors in parentheses

Therefore, while humans delegate quite rationally based on their internal assessment (Figure 6),

this assessment is not precise for relatively difficult tasks (Figure 7). Put differently, although human

delegation decisions are often misaligned with real problem difficulty, they are not misaligned with

their perceived problem difficulty. We conclude that lack of metaknowledge seems to drive the

inferior delegations. According to this explanation, humans did not know what they knew and

delegated the wrong images to the AI.
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4. Robustness Checks

In this section, we test robustness of our findings with two additional studies. In the first robustness

check, we analyze whether continuous feedback on both human and AI performance has an impact

on delegation behavior and human metaknowledge. In the second robustness check, we test whether

an AI could realize complementarities with humans, even in cases, where the tasks are more difficult

than those the AI was trained with. We manipulate task difficulty by scaling the images to a lower

resolution, and test the effectiveness of inversion.

4.1. Study 3: The Role of Feedback

Purpose. Study 3 relaxes the assumption of receiving no feedback on task results to analyze the

effects of feedback on human delegation behavior and on human metaknowledge.

At the outset, we would like to point out that the potential effects are unclear, ex-ante, and the

literature provides no clear direction. We lay out possible effects in the following discussion. First,

metaknowledge might be increased by providing continuous feedback because it could improve the

human perception with regards to their own performance. However, we observe that even long-term

experience does not seem to prevent poor metaknowledge (Brezis et al. 2018). Thus, the effect

remains unclear. Second, feedback on human and AI performance might increase salience of AI

superiority, and could consequently lead to higher delegation rates. On the other side, Dietvorst

et al. (2015) demonstrated that humans relied less on algorithmic advice after seeing it err, even if

the algorithmic performance was superior. Thus, we do not state any directional hypotheses in this

study. In the following, we lay out the details of our study design before presenting our results.

Design. We compare classification accuracy and delegation rate between two conditions. The

“baseline” condition (1) replicates the “delegation” condition of Study 1 and the “baseline” condi-

tion of Study 2. In the “feedback” condition (2), subjects received feedback after each classification

task, consisting of their own answer, the AI answer, and the correct answer. We ran a between-

subject design with 289 subjects in February 2021, and randomly assigned subjects to the baseline

condition (148 subjects) and the feedback condition (141 subjects).
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All subjects received instructions, had to pass a short quiz so that we could exclude robots,

and completed an example classification to ensure they understood the task. They then had to

classify the 100 images in random order. Each subject received a base fee of $2 , and an additional

5 cents for each correct answer. Afterwards, they were asked how many images they think they

classified correctly. They could earn 1 additional dollar if this estimation did not differ from the

actual number by more than five images. Average pay was $4.92, slightly above average pay on

MTurk in general (Hara et al. 2018). The average duration of the experiment was 62.7 minutes.

Results. Descriptive statistics (Table 8) show little difference among the the experimental con-

ditions, regarding both accuracy (baseline: 53.4% feedback : 54.4%) and delegation rate (baseline:

12.0%, feedback : 12.4%). Accuracy does not significantly differ in the baseline and the feedback

conditions (p= .697), neither does the delegation rate (p= .860). Thus, there is no indication that

continuous feedback on human and AI performance affects human delegation behavior. Note that

in line with literature on MTurk performance during COVID-19, the average accuracy values are

below those of our previous studies, while delegation rates remain similar.

Table 8 Summary statistics for accuracy and delegation rate (Study 3).

Summary statistic

Dep. Var.: Treatment N Min. Mean Max. St. Dev. Pctl(25) Median Pctl(75)

Accuracy
Baseline 149 0.070 0.534 0.880 0.221 0.373 0.540 0.758
Feedback 141 0.070 0.544 0.950 0.232 0.340 0.620 0.750

Delegation rate
Baseline 149 0.000 0.120 1.000 0.231 0.000 0.010 0.120
Feedback 141 0.000 0.124 0.990 0.212 0.000 0.010 0.155

Next, we analyze the effect of continuous feedback on metaknowledge by replicating the analysis

of the relationship between accuracy and certainty in Study 2. We illustrate the relationship of

delegation rate and difficulty (average human accuracy of Treatment 1, Study 1) in Figure 8.

We further summarize the regression results in Table 9: as in Study 2, we only see a significant

influence of “difficulty” (measured by the average accuracy of each image) for images with an
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Figure 8 Scatter plots of accuracy against certainty per image and per experimental conditions (Study 3). The

two regression lines are estimated from the two partitions of the data.

average accuracy of at least 70%. Note that we use the average accuracy of the first treatment

of Study 1, where humans classified without AI delegation, to maintain a consistent definition of

“easy” and “difficult” tasks.

Table 9 Regressions per experimental condition (Study 3). The dependent variable is the subjects’ certainty

per image. The data is partitioned into two regions.

Experimental condition

Baseline Feedback

DV: Certainty, images accuracy of...
< 70% ≥ 70% < 70% ≥ 70%

Accuracy 0.099 1.527∗∗∗ 0.182 1.372∗∗∗

(0.179) (0.238) (0.134) (0.205)
Constant 3.130∗∗∗ 2.067 ∗∗∗ 3.083∗∗∗ 2.148

(0.089) (0.210) (0.067) (0.205)

Observations 41 59 41 59
R2 0.008 0.420 0.045 0.439
Adjusted R2 -0.018 0.410 0.021 0.430
Residual Sd. Error 0.156 0.136 0.116 0.117
F Statistic 0.305 44.33∗∗∗ 1.09 44.67∗∗∗

Note: * p< .1; ** p< .05; *** p< .01
Standard errors in parentheses

In the next section, we present a robustness check on the impact of more difficult tasks on the

efficiency of delegation and inversion.
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4.2. Study 4: The Role of Difficulty

Purpose. Inversion was the most effective condition in our first experimental study. The key of

its success was the AI’s ability of assessing its own quality. Study 4 confronts the AI with tasks

that are more difficult than those it was trained with. In the case of image classification, this could

relate to images with a lower resolution. Thus, we replicate Study 1 with a higher task difficulty

by applying a lower resolution to all images. We aim to analyze whether the AI would still be able

to delegate efficiently.

Design. We compare classification accuracy between two conditions, “humans alone” (1) and

“delegation” (2). Those conditions mirror the first two conditions of Study 1. We further use

condition (1) to simulate different inversion strategies. We ran a between subject design with 299

subjects in January 2021 and randomly assigned subjects to the “humans alone” condition (150

subjects) and the “delegation” condition (148 subjects).

All subjects received instructions, had to pass a short quiz so that we could exclude robots,

and completed an example classification to ensure they understood the task. They then had to

classify the 100 images in random order. Each subject received a base fee of $2, and an additional

5 cents for each correct answer. Afterwards, they were asked how many images they think they

classified correctly. They could earn 1 additional dollar if this estimation did not differ from the

actual number by more than five images. Average pay was $4.61, slightly above average pay on

MTurk in general (Hara et al. 2018). The average duration of the experiment was 65.9 minutes.

Table 10 Summary statistics for accuracy (Study 4).

Summary statistic

Dep. Var.: Treatment N Min. Mean Max. St. Dev. Pctl(25) Median Pctl(75)

Accuracy
Humans alone 150 0.120 0.481 0.790 0.168 0.360 0.480 0.633
Delegation 148 0.140 0.512 0.790 0.153 0.420 0.510 0.630

Results. Humans slightly improve by about three percentage points with the possibility to del-

egate (p = .093), even though on average, only 7.6% of images were delegated. While no direct
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Figure 9 Inversion accuracy by threshold value.

comparison is possible, we see that the human performance does not seem to be strongly affected

by lower resolution, as the total accuracy seems to be similar to those of Study 3. AI performance,

however, was decreased significantly from 77% to 54%. Human performance still remains below AI

accuracy. Next, we analyze whether the AI is still able to improve by delegating to humans, even

though its own performance dropped strongly. In Figure 9, we simulate inversion accuracies based

on the humans alone condition with varying threshold values. A threshold of 0 symbolizes always

choosing the AI prediction resulting in the AI accuracy of 54%, while a threshold of 1 symbolizes

always choosing the human prediction resulting in the average human accuracy of 48.1%. With

every threshold value below 0.95, the inversion accuracy outperforms both human and AI accu-

racy, with a maximum value at a threshold of 0.50, close to the average human accuracy. Using an

inversion delegation rule with a threshold of 0.50 improves the human accuracy by 15 percentage

points, and the AI accuracy by nine percentage points. Thus, even in a situation where the AI

performs relatively poor, inversion seems to be a powerful delegation mechanism.

5. Discussion and Directions of Future Research

Our results demonstrate that humans and AI can work together on image classification, even if

there is no feedback about the AI performance and errors. In such a situation, it is beneficial to

let the AI delegate work to humans in case the AI is uncertain. Humans were unable to delegate
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well. We claim that the reason for their wrong delegation decisions is that the human subjects were

unable to assess if they know the correct class of difficult images. This result is interesting because

it shows inferior human performance, but no aversion to use the algorithm. Our data supports

the explanation that subjects were indeed motivated to work with the machine, and were willing

to follow rational delegation strategies. They were unable to execute those due to their wrong

perception of task difficulty. We interpret this as a fundamental and latent limitation rather as an

act of conscious reluctance. In this regard, our results are consistent with the general view issued

in Logg et al. (2019): humans do appreciate the help from AI. But we also show that they might

still have problems working with it.

Further, our results challenge the assumption that an entire task should be handed over to an

AI if the AI is better. We stated three three boundary conditions where delegation and a good

distribution of work can outperform the assignment to one party. First, humans and AI have to

have complementary skills. We claim this should be the case for tasks where decision rules are not

clearly defined. We confirm this using image classification as an example: An optimal combination

of the AI and humans from the inversion condition would lead to an accuracy of 89.9%, considerably

more than 77% accuracy for AI alone and 71.7% for humans alone. Second, complementarities have

to be recognized. We define a sufficient level of metaknowledge as a necessary condition. While the

AI seems to have a good perception of own abilities, humans are not able to differentiate between

tasks they are able to do and those where this is not the case, especially for difficult images. Third,

an efficient delegation rule needs to be followed, where a task is moved to the actor that is better at

solving it. Under perfect information, a simple rule is effective: If you are able to do the task, do it

yourself; if you are not, then delegate. We demonstrate that such a rule can easily be implemented

for AI, and that humans can potentially be trained to follow such a rule.

When AI delegates to humans: Inversion. If AI would be responsible to delegate to humans,

several interesting things could happen. First, in our experiment the resulting performance was

higher than that of the AI alone. This makes inversion economically desirable. Second, humans
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would do some of the work. They contribute to the superior result, without them we would not

reach it. Inversion might also improve human work perspectives. Humans are more motivated when

working in a stimulating environment (Pink 2011). In our example, classifying easily identifiable

images is perhaps routine and boring, whereas the classification of difficult images could be an

interesting challenge. Inversion might enable humans to spend less time on mundane tasks and more

time on challenging tasks, thereby creating a more fulfilling workplace. Thus, receiving assignments

from a machine could be interpreted not only as a delegation to humans, but also as freeing humans

some valuable time. The AI would not be the humans’ boss, but rather an assistant who swipes

away distractions from the real work. Hoewever, inversion comes with a loss of human control.

The AI decides about the delegations, it asks the human for support only if it is required. It

does this without emotions, only to leverage complementarities that exist as foreseen by Polanyi’s

pathbreaking work.

When humans delegate to AI: Metaknowledge and the quest for good delegation. Our research

points to a fundamental characteristic of human behavior that needs to be understood in order to

design more effective human-AI collaborative environments: Humans did not perform well in dele-

gating tasks to the AI. We can design and teach simple delegation rules, especially in modularized

tasks. However, even when humans diligently and rationally apply a delegation rule (Figure 5) that

is internally consistent with their perception of task difficulty, humans that delegate to AI do not

perform as well as they should. The reason for this (Table 9) is an apparent lack of understanding

what is difficult for them, and what is not. This phenomenon is not isolated to working with AI or

computers. Humans tend to misjudge their certainty when dealing with high difficulty questions

as compared to medium-difficulty or easier questions (Pulford and Colman 1997). In our research

context, this translates into humans making more arbitrary delegation decisions when dealing with

difficult tasks, which worsens their overall performance.

More generally, the phenomenon to not understand the difficulty of a task at hand relates to a

lack of metaknowledge in terms of “appreciation of what we do know and what we do not know”



Fügener et al.: Challenges in Human-AI Collaboration
32 00(0), pp. 000–000, c© 0000 INFORMS

(Russo and Schoemaker 1992, p.8). In our formal education, we do not emphasize this higher

level of learning to recognize our own strengths and shortcomings. Often, the impact of lacking

metaknowledge when facing difficult issues is mitigated by team work, when other human group

members point out alternatives, logical and procedural inconsistencies and/or errors. One way to

interpret group discussions is to try and achieve the best compromise based on metaknowledge

and primary knowledge based on facts, concepts, models, relationships and solution techniques.

However, humans working with AI are unlikely to be in an environment where they can reason

with AI, or more specifically where AI engages humans in a dialogue to resolve issues related

to metaknowledge. If we want to produce students that will be effective in the future workforce,

improving metaknowledge should be a central tenet of higher education.

Limitations. Our study informs on delegation between humans and AI. To ensure a certain

degree of generalizability of results, we aimed for a generic, non-specialized task and non-specialized

workers relying on image classification and MTurk workers. While we do believe that our findings

should carry over to many other settings, there might be additional effects in any specialized

environment, that strengthen or weaken our findings. While relying on non-specialized situations

is a limitation of this study, it also creates and opportunity for future research, and to test whether

our findings can be replicated in specialized environments.

There has been a lot of discussion on the suitability of MTurk workers for behavioral experiments.

These discussions concentrate on three main criticisms of using MTurk in behavioral experiments:

First, non-naivete, that is, subjects might be experienced in similar experiments and behave strate-

gically (Chandler et al. 2019). Second, carelessness, that is, subjects act with a lower degree of rigor

leading to noisy and partially inconsistent results (Aruguete et al. 2019). Third, representativeness,

that is, the MTurk population does not reflect the composition of society in general. However, it

should be noted that MTurk subjects are better representatives of the general population compared

to typical student subjects used in a large number of academic studies (Chandler et al. 2019).

How could we safeguard against these issues? We contend that non-naivete does not apply in this

instance since our study is unique in character, compared to, for example, potentially hundreds of
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studies looking at newsvendor problems or dictator games. A potential solution could be to rely

on new MTurk workers (Robinson et al. 2019), or to exclude workers who participated in similar

studies if this information is available. We excluded all subjects who participated in our own related

studies or pre-tests. In terms of carelessness of MTurk workers, Aruguete et al. (2019) show some

evidence of carelessness in terms of a higher spread in data quality in MTurk samples compared to

traditional student samples and recommend measures to ensure validity of results. Following these

suggestions, we decided to: a) restrict our subject pool to subjects with a positive track record and

at least 90% positive reviews; and b) included an attention check and a classification exercise that

had to be passed without errors in order to participate in the study. Please note that for our set of

robustness experiments (Study 3 and 4), we had to conduct the experiments during the COVID-19

pandemic. This led to an increased level of subjects’ carelessness and lower performance compared

to the other studies. This finding is in line with the literature (Arechar and Rand 2021), and we

refrain from direct comparisons of the specific results between the first set of experiments and the

robustness checks. We admit that our study does not claim to represent a general population. Thus,

we do not make any claims regarding absolute results of our study, such as “we expect humans

to delegate 13% of tasks to an AI,” rather we compare differences in behavior between conditions.

Replicating several studies from different subject samples with MTurk samples, Coppock (2019)

conclude that MTurk samples can be compared to other national samples. Many other studies

validate the appropriateness of MTurk samples for experimental studies in social sciences, such as

Buhrmester et al. (2016), Horton et al. (2011), or Lee et al. (2018).

Future research. As laid out above, a potentially relevant limitation of our sample lies in an

expected low performance, especially for the samples drawn during the COVID-19 pandemic. In

concert with focusing on non-specialized tasks, this limits the generalizability of the results regard-

ing the absolute performance of our experiment. While we do not expect that those limitations

have affected our main findings regarding different configurations of delegation schemes, or the

mechanisms we observed, we believe that analyzing similar settings with high-impact decisions and

dedicated workers is a fruitful avenue for future studies.
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In addition to addressing potential limitations of our study, a key research area should be about

making humans better delegators in order to develop effective human-AI collaborative environ-

ments. This requires research on three fronts:

a) Research on human-computer dialogue and decision authority. How should an AI engine com-

municate and adapt when working with humans that have different levels of metaknowledge, and

how should it develop an appropriate framework for decision making in these environments? For

example, an AI engine can delegate decision authority to individuals with high levels of metaknowl-

edge, whereas it may simply receive inputs from highly competent individuals lacking metaknowl-

edge.

b) Research on system feedback to increase metaknowledge. Prior research (Pulford and Colman

1997) has shown that feedback may not affect metaknowledge, especially when the task is diffi-

cult. No concerted effort has been made to design feedback environments that lead to improved

individual metaknowledge when other options are available.

c) Research on improving metaknowledge. Laboratory studies have shown that experience only

partially impacts metaknowledge (Hansson et al. 2008), and our robustness check in Study 3 showed

no effect of providing continuous feedback on metaknowledge. We still cannot rule out that long-

term debriefing, for example as it is common with airline pilots (Kikkawa and Mavin 2017), might

improve metaknowledge by providing a better understanding of our own strengths, weaknesses and

boundaries. This may lead to better appreciation of alternative sources that can help in decisions. In

human-only environments, providing long-term feedback and intensive debriefing is costly. Human

feedback may show internal consistency problems and may be intrusive at the task level. However,

modern technology, including realistic simulations (see Ketter et al. (2016) as an example), can

potentially provide innovative solutions that help improve our metaknowledge.
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