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Abstract

This paper develops a model for multi-store competition between firms. Using the fact that

different firms have different outlets and produce horizontally differentiated goods, we obtain a pure

strategy equilibrium where firms choose a different location for each outlet and firms’ locations are

interlaced. The location decisions of multi-store firms are completely independent of each other.

Firms choose locations that minimize transportation costs of consumers. Moreover, generically, the

subgame perfect equilibrium is unique and when the firms have an equal number of outlets, prices

are independent of the number of outlets.
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1. Introduction

Retail chains, which operate a chain of stores or outlets, account for the majority of all

retail sales (Jones and Simmons, 1990). Retail chains are common throughout the retailing

industry. The largest retail chains are department stores and supermarkets. Taken together,
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all shops or outlets of a certain retail chain usually have a regional, national or

international geographical coverage. The success of retail chains is due to their easy

recognition by customers and the realization of economies of scale through market power

in purchasing, more efficient and effective marketing and advertising, and lower costs in

distribution. Stores within a chain share the same façade, shop format and pricing policy.

Typically, if a retail chain owns its own shops, prices are set at the central firm level and

are the same for all outlets within a certain geographical scope (e.g., national level). For

example, IKEA uses a national catalogue for its furniture, where nationwide prices are

quoted, and also clothing chains such as H&M and C&A have a uniform pricing policy for

all their shops.1,2

Retail chains invest heavily in the attractiveness of their concept, and with some

success. Consumers clearly have different preferences concerning shops belonging to

different chains, although the products sold in these different chains may be very similar

from a more technological point of view. Thus, outlets are homogeneous when owned by

the same firm, but they are heterogeneous across firms.

The location of stores or outlets can be modeled as a linear or circular city problem (as

in Hotelling, 1929, or Salop, 1979), with three main differences. First, companies may

have several outlets; each with its own endogenously determined location. Second, within

a chain, outlets are homogenous, but across chains, they are heterogeneous. Third, firms’

prices are identical across outlets, i.e., all outlets of one firm charge the same price. In this

paper, we modify the circular city model to accommodate these three features mentioned

above in order to analyze firms’ choice of outlet locations and pricing policy.

The analysis of multi-store location and competition issues has a troublesome history in

the economics literature. Teitz (1968) introduced multi-store competition in Hotelling’s

original model and showed that no pure strategy equilibrium exists in the firms’ location

decisions. Subsequently, Martinez-Giralt and Neven (1988) using the assumption of

quadratic transportation cost as introduced by d’Aspremont et al. (1979) obtained an

equilibrium in which firms agglomerate all their outlets at the same point and at opposite

ends of the market.3 Hence, in their model neither firm will open more than one store.

Since competition between firms with multiple outlets is very common indeed, the

outcomes of the horizontal differentiation models of Teitz (1968) and Martinez-Giralt and

Neven (1988) are difficult to accept. Recently, Pal and Sarkar (2002) approached the issue

of multi-store competition in a completely different way. Instead of having consumers
UNC
1 An exception to this general pricing rule is that individual shops may decide on the prices for their sale articles

to clear their stock.
2 Retail chains not always own all of their shops, with franchising as an important alternative. Contrary to retail

chains that own their own shops, a franchisor (such as McDonalds or Shell) may legally not restrict the

determination of sale prices by franchisees, but may recommend sale prices. (This legislation is stipulated for the

European Union in Commission Regulation [EEC] No. 4087/88 of 30 November 1988 on the application of

Article 85[3] of the Treaty to categories of franchise agreements [Official Journal L 359, 28/12/1988, pp. 46–52]).

In practice, however, the result is that prices are still quite homogenous across outlets. Most customers will even

not be aware of any difference in prices, especially due to the similarity in shop format and products.
3 Martinez-Giralt and Neven (1988) assume that each outlet can choose its own price. It is easy to see, however,

that introducing the restriction in their model that all outlets of one firm charge the same price, does not affect the

results they obtain.
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choosing which outlet to visit taking the different prices and locations into account, they

model a situation where firms choose the amount they want to sell at each point on the

circle assuming Cournot competition at each point. Moreover, the firms bring the products

to the consumers’ doors4 and the question they ask is where the firms will locate their

stores to minimize transportation costs.

In analyzing the multiple store location decision issue, we go back to the original model

of Salop and have consumers buy from the (nearest) outlet they prefer the most. Firms’

location and pricing decisions are modeled as a three-stage game where firms

simultaneously choose the number of outlets in the first stage, their locations in the

second stage and, subsequently, their prices in the third stage.5 Apart from the fact that

firms can choose multiple outlets, we recognize the fact that consumers have

heterogeneous preferences across chains even if these chains’ outlets charge identical

prices and locate at the same spot. In modeling this second (exogenous) dimension of

product differentiation, we follow De Palma et al. (1985).6 There are different ways to

interpret this assumption. One interpretation, due to De Palma et al. (1985), is that sellers

are unable to establish the differences in customers’ tastes and the underlying variables.

Firms can at best determine the buying behavior of customers’ up to a probability

distribution. Another interpretation is that firms cannot adapt their product line (in the

short-run) to take these differences in tastes into account. We assume that consumers’

preferences for this second dimension of product differentiation are uniformly distributed.

This second dimension in our case includes different tastes for specific store formats such

as façade, design and layout, image and product collection.

The resulting model generates a number of interesting outcomes. First, contrary to Teitz

(1968) and Martinez-Giralt and Neven (1988), and due to the second dimension of

heterogeneity, a pure strategy equilibrium where firms employ multiple outlets exists.

More strikingly, the location decisions of multi-store firms are completely independent of

each other. The spatial distribution of demand determines the specific locations. If the

distribution of demand along the circle is uniform, a firm will choose to locate stores

equidistantly. Any interlacing structure is an equilibrium, from head-to-head competition

(where firms occupy the same locations) to perfect interlacing (where the difference

between outlets belonging to different chains is maximal). This indeterminacy result is due

to the indifference of each firm with regard to the distance between his shops and those of

his competitor. If the distribution of demand is non-uniform, a firm differentiates the

distance between stores according to the density of demand, and generally speaking, each

chain has a unique optimal choice of locations. Consequently, if firms have the same

number of stores, competition will be head-to-head. It follows that market segmentation

where each firm has a bhome baseQ of clustered outlets cannot be an equilibrium outcome.
U
4 This implicitly assumes that consumers cannot choose to buy at different prices at different points on the

circle. Hence, the Pal and Sarkar (2002) model is of a very different nature from the other models.
5 It turns out that the analysis is not affected if the first two stages are analyzed as one stage; see also Section 3.
6 They introduced this second dimension of product differentiation in order to restore HotellingTs equilibrium of

minimal differentiation that was invalidated by D’Aspremont et al. (1979). Other literature that has analyzed two

or more (endogenous) dimensions of product differentiation includes papers by Tabushi (1994), Irmen and Thisse

(1998) and Ansari et al. (1998).
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We have two interesting findings in terms of the equilibrium prices that emerge. First,

equilibrium prices reflect the dominance of firms in terms of the number of outlets within

their chain. Being dominant in terms of the number of outlets, a firm is able to provide the

nearest store to the larger part of the market. The resulting market power is reflected in a

higher price than the competitor’s price, the price difference being increasing in the

difference in the number of outlets. Second, and more surprisingly, provided firms have

the same number of outlets, the total number of stores in the market appears to have no

influence on the pricing decision, i.e., firms charge the same prices independent of the

actual number of outlets. This finding, which may seem somewhat counterintuitive at first

sight, is explained by the fact that when the outlets of a firm are located optimally, the

number of outlets of the two firms determines the demand each firm faces. If both

competitors have the same number of outlets their demand functions are identical and do

not depend on that number.

Above, we have already mentioned the literature that is most directly connected to the

present paper. If we acknowledge that product line competition is similar to multi-store

competition, then there is another related literature that comes to the fore. Brander and van

Eaton (1984) and Klemperer (1992) are important contributions in this field of product line

competition that use similar models. The main difference with our paper lies in the fact

that these papers only analyze and compare exogenously given product lines. On the other

hand, contrary to us, they allow firms to charge different prices for the different brands.

Interestingly, Brander and van Eaton (1984) show that market segmentation can be an

equilibrium outcome. Since this is against the gist of our results, it can be inferred that

non-uniform pricing (across outlets or product lines) is a necessary condition for a

segmented market structure to arise.

The paper is organized as follows. Section 2 describes the model. The main results are

given in Section 3 where we sequentially analyze location and pricing decisions for the

model in the most general form. Section 4 analyzes location decisions in three special

cases. This section provides more detailed results for the cases when distribution of

consumers along the circle is uniform, when transportation costs are symmetrically linear

and, finally, when both firms have chosen the same number of outlets in the first stage.

Section 5 provides a discussion on how many outlets a firm wants to choose, and Section 6

concludes. Proofs are contained in Appendix A.
127
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2. The model

Consider the following circular city model. There are two sellers (chain owners), each

of whom can build a chain of outlets. The location of outlet k of firm i is denoted by xi
k and

the number of outlets of firm i is denoted by Ni. All locations of firm i on the circle are

denoted by xi=(xi
1,. . .,xi

Ni), i=1,2. The length of the circle is normalized to be equal to 1.

There is a unit measure of consumers distributed around the circle in accordance with a

differentiable distribution function l(x), l(0)=0, l(1)=1. All consumers are heterogeneous

with respect to their preferences over the brands that are offered by the two different

sellers. This type of heterogeneity is modeled by assuming that at any given location

xa[{0,1}), where the density of buyers is f(x)ulV(x), consumers come in different types,
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denoted by y, and y is uniformly distributed over the range [�k, k]. The overall two-

dimensional density function of a type y at a location x is therefore given by h(x,y)=(1)/

(2k)f(x). A consumer j of type yj whose location on the circle is xj gets a utility

�p1�t(d(xj,x1)) if he buys from seller 1 at price p1, where d(xj,xi) is the distance the

consumer has to travel from his location xj to the closest location of seller i and t(d) is the

buyer’s transportation costs.7 If the consumer buys from seller 2, however, his utility is

given by �p2�t(d(xj,x2))�yj. Hence, a buyer of type y is willing to pay y (with y being

positive or negative) more for the good of seller 1 than for the good of seller 2, ceteris

paribus. We assume that every buyer ought to buy a good from either of the two sellers and

they buy from the seller where the buyer’s utility is maximized.

Firms’ production costs are represented by the cost functions Ci(Di), where Di is the

demand for firm i and CiVN0, CiWz0. In addition to the production costs, firms have to

invest Ii(Ni) in order to build a chain of Ni outlets, where IiVN0, IiUz0. We assume that

investment costs Ii and operational costs Ci are not very high such that both firms are

always willing to build at least one outlet.8

Firms’ location and pricing decisions are modeled as a three-stage game where in the

first stage firms simultaneously decide how many outlets to build; in the second stage, they

choose their locations, and in the third stage, having observed each other outlets’ locations,

they simultaneously choose prices. Firms maximize their profits.

Given the sellers’ locations xi and prices pi, for any location xa[{0,1}) we define a

marginal type y*(x) as the consumer’s type who is indifferent between buying from either

of the sellers. All types yNy*(x) prefer buying from seller 1, while all types yby*(x) prefer

buying from seller 2. The marginal type itself is determined by

� p1 � t d x; x1ð Þð Þ ¼ � p2 � t d x; x2ð Þð Þ � y4 xð Þ;

and takes the following form:

y* xð Þ ¼ p1 � p2 þ t d x; x1ð Þð Þ � t d x; x2ð Þð Þ:

We assume that y*(x)a[�k,k], i.e., k is sufficiently large in comparison with the

transportation costs. This, in fact, implies that at every location x, there is an indifferent

consumer. Then, the measure of buyers at location x who prefer to buy from seller 1 is

Z k

y4 xð Þ
h x; yð Þdy ¼ 1

2k
f xð Þ k � y4 xð Þ

� �

¼ 1

2k
f xð Þ k � p1 � p2ð Þ � t d x; x1ð Þð Þ þ t d x; x2ð Þð Þð Þ:

Hence, total demand for seller 1 becomes

D1 p1; p2; x1; x2ð Þ ¼ 1

2
� p1 � p2

2k
� T1 � T2

2k
; ð1Þ
7 We could easily add a reservation price to this utility function assuming that the reservation price is high

enough so that consumers will always buy one of the products.
8 In Section 5, we will make this assumption more precise.
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Fig. 1. Division of the total demand over the firms for the linear bidirectional transportation costs.
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UNCORRECTEwhere Ti xið Þ ¼
R 1

0
t d x; xið Þð Þf xð Þdx, i=1,2. Ti has a straightforward interpretation: it is

simply the sum of the transportation cost of all consumers to travel to an outlet of firm i.

Finally, operational profit firm i gets is given by

pi p1; p2; T1; T2ð Þ ¼ piDi � Ci Dið Þ: ð2Þ

It should be noted that we have not made any specific assumptions about the shape of

the transportation cost, the density of consumers along the circle and whether consumers

can travel in both directions along the circle or there is a directional constraint.9 In the next

section, we analyze the model in this general form. The main assumption that is

incorporated in this general model is the one with respect to the second dimension of

consumer heterogeneity, namely, that this heterogeneity of the preferences over brands is

important enough (k is large) and that consumers are distributed uniformly along this

second dimension. Without these assumptions, the analysis becomes technically very

complicated.

Fig. 1 gives, for some arbitrarily chosen parameter values, an illustration how demand

is divided between the firms at given locations and prices for linear transportation costs

when buyers can travel in either direction along the circle.10
9 In some applications, such as television news scheduling and bus and airline scheduling, it is natural to

assume that consumers can only move forward to the next dselling pointT. Literature on these applications with

directional constraints is quite recent and involves Cancian et al. (1995), Nilssen (1997), Salvanes et al. (1997),

Nilssen and Sørgard (1998), and Lai (2001).
10 Non-linear transportation costs will generate similar pictures but with curved segments instead of straight

lines.
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3. Location and pricing decisions: general results

In this section, we analyze the last two stages of the model in its general form using

backwards induction. We first analyze the last, price competition stage of the game and

derive Nash equilibrium prices for given N1 and N2 and given location choices. Then, we

study the second stage of the game, where firms choose their locations.

From the previous section, we know that in the third stage of the game demands are

given by expression (1), where Ti depends only on the locations of firm i. In a lemma

stated and proved in Appendix A, we show that every subgame in the third stage has a

unique Nash equilibrium provided that k is large enough.

The main result of our paper can then be formulated as follows.

Proposition 1. For any number of outlets N1 and N2 chosen in the first stage the

corresponding subgame has a subgame perfect Nash equilibrium. This equilibrium is

unique for all generic spatial distributions of buyers and has the following properties:

(a) Each firm chooses its locations in order to minimize the sum of the transportation

costs of all consumers to travel to its outlets.

(b) The location choices of the two firms are in dominant strategies. Moreover,

equilibrium locations of a firm depend only on the number of outlets it has

chosen in the first stage and do not depend on the number of outlets the other

firm has.

(c) All locations of a firm are distinct, i.e., no two locations of the same firm coincide.

(d) The equilibrium price and profit of a firm are strictly increasing and bounded

functions of its own number of outlets and strictly decreasing functions of the

number of outlets of its rival.

As it follows from Eq. (1), the number of outlets firms have and their locations affect

firms’ profits only through T1 and T2. It turns out that the profit of firm i monotonically

decreases with respect to Ti. Consequently, the firm chooses locations of its outlets that

minimize the sum of transportation costs of all consumers Ti, as stated in part (a) of

Proposition 1. In order to understand the monotonic influence of Ti on profit pi, it is useful

to disentangle the way in which a firm’s choice of locations affects its own profit. First,

firm’s profit pi directly and negatively depends on Ti. We label this the direct effect.

Second, the choice of Ti strategically affects the second stage equilibrium prices p1* and p2*

which, in turn, also affect firm’s profit pi. This strategic or indirect effect of Ti on profit is

positive.

It turns out that the direct effect always dominates the indirect effect. Indeed, the direct

effect accounts for extra demand a firm can get by shifting its demand curve upwards. The

indirect effect, on the other hand, accounts for a loss of demand due to the price reaction of

the competing firm in order to partially recover the initial allocation of demand between

the firms.

An interesting consequence of having an equilibrium in dominant strategies (part (a) of

Proposition 1) is that firms do not need to observe the choice of the number of outlets N1

and N2 made in the first stage. Hence, even if both firms did not observe the number of
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outlets chosen in the first stage of the game, they would still choose the same locations.

This non-observability of the outcomes is equivalent to simultaneity of choosing both the

number of outlets and all their locations. Consequently, Proposition 1 remains valid for the

corresponding changes in the game structure.

Similarly, even if one firm were able to observe the location choice of the other

firm before choosing its own locations, it would still choose the same locations. This

availability of extra information is equivalent to making the second stage of the game

sequential. Thus, Proposition 1 remains valid also for this change in the game

structure.

The fact that generically no two locations coincide (i.e., part (c) of Proposition 1) is, at

an intuitive level, a consequence of the fact that firms want to minimize the transportation

costs of the consumers. Two separate locations will in this sense always be better than two

outlets on one location. Part (d) of Proposition 1 is mainly explained by the fact that if a

firm has more locations, consumers are (generally speaking) more keen to buy from that

firm as transportation costs will be lower. This increase in a firm’s demand curve translates

itself into higher equilibrium prices and profits.

It is difficult to characterize the location choices any further on the current level of

generality. In the next section, we derive more detailed results in three special cases under

more restrictive assumptions.
 D
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UNCORRECTE4. Equilibrium locations and prices: three special cases

We can derive some interesting properties of location choices and price decisions by

making some specific assumptions with regard to distribution of consumers, transportation

costs and number of outlets. We begin the investigation of the equilibrium locations by

assuming linear transportation cost. Then we look at location decisions when consumers

are uniformly distributed around the circle while keeping transportation costs general.

Finally, we show what happens if both firms have decided to build the same number of

outlets for any distribution of consumers along the circle.

4.1. Linear transportation costs

When transportation costs are linear, equilibrium locations exhibit the following local

property: firms choose more outlets where more consumers agglomerate. This result is

formally stated and proved in the next proposition.

Proposition 2. Suppose that transportation costs are linear: t(d)=sd. Then, for any two

given outlet locations of firm i, xi
k�1 and xi

k+1, with exactly one intermediate outlet xi
k, the

intermediate outlet is located closer to xi
k�1 than to xi

k+1 if, and only if, the average density

of buyers in the interval (xi
k�(1)/(2)(xi

k�xi
k�1), xi

k) is higher than in the interval (xi
k, xi

k+

(1)/(2) (xi
k+1�xi

k)).

Proposition 2 is a consequence of the fact that in the general model firms choose

locations so as to minimize the aggregate transportation costs of the consumers. When
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transportation costs are linear, this intuitively implies that firms locate their outlets where

there are more consumers. If transportation costs were not linear, the equilibrium

locations would have had a similar flavor, but then we would have to compare

equilibrium location decisions across different distributions of consumers, l1(x) and

l2(x): if under l1(x) a firm would have chosen the location of two of its outlets at

certain spots and if the distribution density under l2(x) would be higher between these

two locations than under l1(x), then the distance between these two locations would be

smaller under l2(x) than under l1(x).

4.2. Uniform spatial distribution

We now shift our attention to the special case where consumers are uniformly distributed

over the circle. We will show that in this case, firms choose equidistant location structures.

Proposition 3. If consumers are uniformly distributed over the circle, then all the subgame

perfect equilibria have firms spread their outlets evenly over the circle. This equilibrium is

unique up to the choice of the first outlet of each firm.

Since firms choose locations that minimize the sum of consumers’ transportation costs

(see part (a) of Proposition 1), this dequidistantT result for a uniform distribution is

straightforward. It also follows from Proposition 3 that if both firms have more than two

outlets, a form of market segmentation where each firm has its own bhome baseQ where
they cluster their outlets together cannot be an equilibrium outcome. When both firms

have an equal number of outlets, outlets of the two firms have to alternate so that an

interlacing structure emerges.

4.3. Equal chain sizes

We finally return to the generic distributions considered in the previous section and

consider the special case where both firms have the same number of outlets, i.e.,

N1=N2=N. Proposition 1 implies that the two firms then choose the same locations for

their outlets. Thus, firms will be competing head-to-head, i.e., x1
k=x2

k and by the definition

of Ti, T1=T2. This, in turn, has an important implication as in this case the expression for

demand in Eq. (1) simplifies into

fD1 ¼
1

2
� p1 � p2

2k

D2 ¼
1

2
� p2 � p1

2k

This shows that if both competitors have the same number of outlets their demand

functions are identical and, more importantly, do not depend on that number. Thus, the

corresponding equilibrium prices and profits are insensitive to changes in the number of

outlets of both firms N. Firms charge the same prices if they have the same number of

outlets, regardless of that number.
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5. On the number of outlets

The only question that remains open now is the choice of the number of outlets in the

first stage. Substituting the optimal (minimized) Ti=Ti* (Ni) into the profit functions

pi*(T1,T2), we get the reduced-form profit functions in the first stage: pi**(N1,N2)u
pi*(T1*(N1), T2*(N2)). In Section 2, we assumed that investment costs Ii and operational

costs Ci are small enough so that both firms are always willing to build at least one outlet.

We can now make this assumption more precise. Formally, we assume that

pi**(1,N�i)�Ii(1)N0 for all N�i and i=1,2.

Proposition 1 states that pi** decreases with N�i and increases and is bounded with

respect to Ni. Thus,

p44
i Ni;N�ið ÞVp44

i Ni; 1ð Þb lim
NiYl

p44
i Ni; 1ð Þ ¼ p4

i 0; T4
�i 1ð Þ

� �
:

In other words, pi** is bounded uniformly. On the other hand, investment costs Ii(Ni)

are convex and increasing, thus unbounded. This implies that

lim
NiYl

p44
i Ni;N�ið Þ � Ii Nið Þ

� �
¼ �l;

where the convergence is uniform. That is, no firm is going to build infinitely many

outlets. Hence, there exists a number N̂ such that building more than N̂ outlets and getting

negative pay-off, is strictly dominated by building 1 outlet and getting positive pay-off.

This implies, in turn, that the strategy space can be safely assumed to be finite and,

consequently, the reduced form game always has a Nash equilibrium (possibly in mixed

strategies). This is the content of the following proposition.

Proposition 4. The game always has a subgame perfect Nash equilibrium that can involve

mixed strategies in the first stage. In equilibrium, both firms build a finite number of

outlets.

Unfortunately, we cannot be more specific than this about the number of outlets chosen

by firms in equilibrium. There may be asymmetric equilibria where one firm has more

locations than the other. Also, due to the fact that Ni has to be an integer number, it may

happen that a pure strategy equilibrium does not exist and that the only equilibrium

number of locations is in mixed strategies.
N
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340
U6. Conclusion

In this paper, we have analyzed a model where firms choose multiple outlets and

uniform prices across outlets to compete in the market place. The products the firms

produce are horizontally differentiated. Contrary to conventional wisdom in this field

(see, e.g., Teitz, 1968; Martinez-Giralt and Neven 1988), we obtain that a pure strategy

subgame perfect Nash equilibrium where firms choose different locations for each

outlet exists. Moreover, for all generic distribution functions, this equilibrium is unique.
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Firms, independent from each other, choose locations that minimize transportation

costs. When firms choose an equal number of outlets, they choose identical locations.

Consequently, market segmentation can never be an equilibrium. Firms that dominate

in terms of number of locations charge higher prices and if the two firms have an

identical number of outlets, equilibrium market prices are independent of the number of

outlets chosen.
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Lemma 1. For any locations x1 and x2 chosen in stage 2 and for any cost functions Ci the

third stage subgame has a unique Nash equilibrium in prices if k is taken to be large

enough. Equilibrium prices are continuously differentiable functions of T1 and T2.

Proof of Lemma 1. Maximizing firm i’s profit (2) with respect to pi yields

2kDi(p̃i)�p̃i+CiV(Di(p̃i))=0. This first-order condition defines a unique reaction function

p̃ i( p�i ,T1,T2) of firm i . To this end, define a function F1( p1) as F1( p1)u
2kD1( p1)�p1+C1V(D1( p1)). It is easy to see that F1(0)=2kD1(0)+C1V(D1(0))N0 as D1(0)

must be positive at zero prices for the firm to make non-negative profits. Then, as the

demand D1 is linear in p1, there exists a price p1
PN0 such that D1 p1

Pð Þ ¼ 0. Hence, it must be

true that F1 p1
Pð Þ ¼ C1V 0ð Þ � p1

Pb0; otherwise, the firm again would make losses. Finally, F1

is a decreasing function as F1V=�2�(1)/(2k)C1U(D1)b0. Thus, there exists a unique reaction

function p̃p1 p2; T1; T2ð Þa 0; p1
Pð Þ satisfying F1 (p̃1)=0.

Similarly, the second reaction function is given by F2 (p̃2)=0, where F2

( p2)u2kD2�p2+C2V(D2). For every pair (T1,T2), the third stage Nash equilibrium in

prices ( p1*,p2*) is determined by the following system:

p41 T1; T2ð Þ ¼ p̃p1 p42; T1; T2
� �

p42 T1; T2ð Þ ¼ p̃p2 p41; T1; T2
� �Z p41 ¼ 2kD1 þ C1V D1ð Þ

p42 ¼ 2kD2 þ C2V D2ð Þ

��
ðA:1Þ

We will show that for all sufficiently large values of k, this system has a unique solution.

To this end, we rewrite the system using c=(1)/(k), zi=cpi* and the definition of the

demands Di:

z1 ¼
1

2
1þ z2ð Þ � 1

2
c T1 � T2 � C1V D1ð Þð Þ ¼ 1

2
1þ z2ð Þ � 1

2
cR1 z1; z2ð Þ

z2 ¼
1

2
1þ z1ð Þ � 1

2
c T2 � T1 � C2V D2ð Þð Þ ¼ 1

2
1þ z1ð Þ � 1

2
cR2 z1; z2ð Þ

;

8><
>:
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where Ri and all their first order partials are finite. At c=0, the system has a unique solution

z1(0)=z2(0)=1. On the other hand, the solution zi continuously depends on c at c=0 as

z1V 0ð Þ ¼ � 1

3
R2 1; 1ð Þ þ 2R1 1; 1ð Þð Þ

z2V 0ð Þ ¼ � 1

3
R1 1; 1ð Þ þ 2R2 1; 1ð Þð Þ

8><
>:

Hence, there exits a K such that for all kNK the system has a unique solution.

In order to show that equilibrium prices p1*(T1,T2) are continuously differentiable one

can differentiate (A.1) and solve for partials (Bp1*)/(BT1) and (Bp2*)/(BT1):

Bp41
BT1

¼ � 2k þ C1W D1ð Þ
6k þ C2W D2ð Þ þ C1W D1ð Þ

Bp42
BT1

¼ 2k þ C2W D2ð Þ
6k þ C2W D2ð Þ þ C1W D1ð Þ

;

8>><
>>:

ðA:2Þ

that ends the proof. 5

Proof of Proposition 1. We first show that if equilibrium exists it must satisfy properties

(a), (b) and (c) of Proposition 1. Then, the existence of dominant strategies for both firms

guarantees the existence of subgame perfect Nash equilibrium. Finally, we prove its

uniqueness and establish part (d) of Proposition 1.

In any subgame (N1, N2) the locations x1 and x2 hence, T1 and T2 as well, are chosen in

the second stage so as to maximize the reduced-form profit functions

p4
i T1; T2ð Þupi p

4
1 T1; T2ð Þ; p42 T1; T2ð Þ; T1; T2

� �
:

Differentiating p1* with respect to T1 and taking into account (A.1) and (A.2) yields:

Bp4
1

BT1
¼ �

4k þ C1W D4
1

� �
6k þ C2W D4

2

� �
þ C1W D4

1

� � D4
1b0:

It follows that each firm minimizes the sum of the transportation cost of all consumers to

travel to one of its outlets. Each firm thus chooses its locations to minimize the

corresponding Ti and part (a) of Proposition 1 is proven.

It is easily seen now that due to the monotonicity of p1* with respect to T1 firm 1 has a

dominant strategy, namely choosing locations in such a way that T1 is minimized

irrespective of T2. The existence of the optimal location structure follows from the facts

that, first, the reduced-form profit function p1* (T1,T2) is continuous in T1, which, in turn,

continuously depends on x1 and, second, the feasible set for x1 is compact. Thus, part (b)

of Proposition 1 is proven.

In order to show that all equilibrium locations are distinct, we set up the problem of

minimization of T1 and derive the first order conditions. In case of no directional

constraints, they take the following form

Z xk
i

xk
i
�1

2
xk
i
�xk�1

ið Þ
tV xki � x
� �

f xð Þdx ¼
Z xk

i
þ1

2
xkþ1
i

�xk
ið Þ

xk
i

tV x� xki
� �

f xð Þdx; k ¼ 1; N ;Ni;

ðA:3Þ
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It is easily seen that if xi
k=xi

k+1 for some k then it must hold for all k=1,. . ., Ni, which is

impossible. In case of directional constraints the arguments are the same. Thus, no two

locations coincide and part (0 of Proposition 1 is proven).

In order to prove the uniqueness of the subgame perfect Nash equilibrium for all

generic distributions we proceed in two steps. First, we show that every solution to (A.3) is

an isolated solution, i.e., the solution is locally unique.11 Thus, there can be generically

only a finite number of solutions. Then, we show that if a given distribution l is such that

(A.3) has multiple solutions, each one generating the same profit level to the firm, then the

profit generated by each solution has different sensitivity to all generic changes of the

distribution. This implies that in case of multiple local maxima, all of them yield different

profits, and therefore, generically, there exists a unique location pattern that maximizes the

firm’s profit.

The F.O.C. (A.3) forms a system of equations F(xi)=0. The Jacobian matrix of F has

the following structure:

BFj

Bxki
¼

2tV 0ð Þf xki
� �

� 1
2

tV
xki � xk�1

i

2


 �
f

xk�1
i

þxk
i

2

� 

þ tV

xkþ1
i

�xk
i

2

� 

f

xk
i
þxkþ1

i

2

� 

 �
þ

Z 1
2
xk
i
þxkþ1

ið Þ
1
2
xk�1
i

þxk
ið Þ

tW jxki � xj
� �

dl; if j ¼ k

� 1
2
tV

xki � xk�1
i

2


 �
f

xk�1
i

þxk
i

2

� 

; if j ¼ k � 1

� 1
2
tV

xkþ1
i � xki

2


 �
f

xk
i
þxkþ1

i

2

� 

; if j ¼ k þ 1

0; otherwise

8>>>>>>>>><
>>>>>>>>>:

It is clearly seen that f(xi
k), i.e., the distribution density at the exact location xi

k, affects only

the corresponding diagonal entry in the Jacobian matrix of F and has no influence on any

other entries. Hence, the Jacobian generically has full rank, and therefore, every solution

of F(xi)=0 is locally unique.

Now let us suppose that there are multiple solutions of F(xi)=0. In particular, let x̂i and
ˆ̂xx̂xxi be two solutions, i.e., F x̂xið Þ ¼ F ˆ̂xx̂xxi

� �
¼ 0 provided ˆ̂xx̂xxi p x̂xi. Both locations generate the

following total transportation costs (in case of no directional constraint):

Ti x̂xið Þ ¼
Z 1

0

t d x; x̂xið Þð Þf xð Þdx and Ti ˆ̂xx̂xxi
� �

¼
Z 1

0

t d x; ˆ̂xx̂xxi
� �� �

f xð Þdx:

Suppose that l is such that Ti x̂xið Þ ¼ Ti ˆ̂xx̂xxi
� �

, i.e., this two solutions x̂i and ˆ̂xx̂xxi generate the

same level of transportation costs, thus, profits as well. Let us consider the following

perturbation of the distribution density function: f(x)+ah(x), where h is an arbitrary

function satisfying
R 1

0
h xð Þdx ¼ 0. Then, both Ti become functions of a. Their derivatives

a are given by

d

da
Ti x̂xið Þ ¼

Z 1

0

t d x; x̂xið Þð Þh xð Þdx;

d

da
Ti ˆ̂xx̂xxi
� �

¼
Z 1

0

t d x; ˆ̂xx̂xxi
� �� �

h xð Þdx

8>><
>>:
11 The arguments can be easily adjusted for the directional constraints case.
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This is so because x̂i and ˆ̂xx̂xxi are maximizors of Ti(xi) (envelope theorem). Then,

d

da
Ti x̂xið Þ � Ti ˆ̂xx̂xxi

� �� �
¼

Z 1

0

t d x; x̂xið Þð Þ � t d x; ˆ̂xx̂xxi
� �� �� �

h xð Þdx

The last expression generically is not equal to zero as ˆ̂xx̂xxi p x̂xi and h is an arbitrary

function. Thus, every locally optimal location pattern generates generically different

profit levels, and therefore, there exists a unique equilibrium location that maximizes

profit.

Finally, we derive the relations between the size of a chain, prices and profits. One may

verify that Ti(x̂i) strictly decreases with Ni. Indeed, adding up one additional outlet to the

firm’s locations leads to a strictly higher profit due to the possibility of imitating the boldQ
pattern with two coinciding outlets, which is strictly sub-optimal. Then, in the Proof of

Lemma 1 we already derived that (Bp1*)/(BT1)b0 and (Bp2*)/(BT1)N0; hence, pi* strictly

increases and p�i* strictly decreases with Ni. Similarly,

Bp4
1

BT1
¼ Bp42

BT1
� 1


 �
D4

1 T1; T2ð Þ ¼ �
4k þ C1W D

4
1

� �
6k þ C1W D4

1

� �
þ C2W D4

2

� �D4
1 T1; T2ð Þb0

Bp4
2

BT1
¼ Bp41

BT1
þ 1


 �
D4

2 T1; T2ð Þ ¼
4k þ C2W D4

2

� �
6k þ C1W D4

1

� �
þ C2W D4

2

� � D4
2 T1; T2ð ÞN0

;

8>>><
>>>:

hence, pi* strictly increases and p�i* strictly decreases with Ni.

Finally, as the F.O.C. (A.3) implies that limNiYl xki � xk�1
i

� �
¼ 0 for all k, the following

limits can be readily shown: limNiYl Ti x̂xið Þ ¼ 0, limNiYl pi* Ti x̂xið Þ; T�ið Þ ¼ pi* 0; T�ið Þ
and limNiYl pi* Ti x̂xið Þ; T�ið Þ ¼ pi* 0; T�ið Þ, that ends the proof of Proposition 1. 5

Proof of Proposition 2. Rewriting (A.3) for t(d)=sd yields:

Z xk
i

xk
i
�1

2
xk
i
�xk�1

ið Þ
f xð Þdx ¼

Z xk
i
þ1

2
xkþ1
i

�xk
ið Þ

xk
i

f xð Þdx:

Writing h f i(a,b) for the average density over an interval (a,b), results in

xki � xk�1
i

� �
hf i

xk
i
�1

2
xk
i
�xk�1

ið Þ;xkið Þ ¼ xkþ1
i � xki

� �
h f i

xk
i
;xk
i
þ1

2
xkþ1
i

�xk
ið Þð Þ:

The statement of the proposition then follows immediately. 5

Proof of Proposition 3. Rewriting (A.3) for f(x)=1 yields tV((1)/(2)(xi
k�xi

k�1))=t((1)/(2)

(xi
k+1�xi

k)). It can be easily verified that in the case of the directional constraint, when

buyers have to travel only clockwise to the nearest outlet of the seller, (A.3) takes the

following form:

t xkþ1
i � xki

� �
¼ t xki � xk�1

i

� �
:

As tVN0, it is easy to see that xi
k=(1)/(2) (xi

k+1�xi
k�1) in both cases. Hence, an equidistant

location structure is the unique optimum for any given Ni. 5
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