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1. Introduction

Since the pioneering work of Akerlof (1970) and Wilson (1979, 1980), adverse selection is

regarded as one of the main sources of market failure.  In a few recent articles Janssen and

Roy (1999a, 1999b) and Janssen and Karamychev (2000) have considered the adverse

selection problem in a dynamic perspective.  They ask the question whether the market

mechanism, by changing prices over time, provide adequate incentives for sellers of

different qualities to sort themselves over time.  This question is relevant in markets where

goods have a use value that extends over some time periods and where high quality goods

have a higher use value than low quality goods.  They show in a variety of settings that

there exist dynamic competitive equilibria where all goods are traded after a finite number

of periods.  The main idea behind this result is that given a sequence of prices high quality

sellers have more incentives to wait (and enjoy a higher use value before selling) than low

quality sellers do.  Once certain (low) qualities are sold, only relatively high qualities

remain in the market.  Risk-neutral consumers can predict that sellers of different qualities

will sort themselves into different time periods and, hence, they are willing to pay higher

prices in later periods.  The equilibria are thus such that higher qualities are sold in later

periods at higher prices.

In these dynamic models, two exogenous factors account for the decision of an

individual seller with a given quality to sell in a certain time period: the rate of time

preferences (discount factor) and the rate at which goods depreciate.  Given the complexity

of the models, it is, however, very difficult (if not impossible) to evaluate the role of each

of these factors in determining the dynamic equilibrium path.  The discount factor plays a

role, but because of the discreteness of the time intervals it is difficult to analyze whether

the qualitative properties of equilibria are affected by changes in the discount factor.

Physical depreciation of the goods, on the other hand, is assumed to be absent in the

models considered by Janssen and Roy (1999a, b) and Janssen and Karamychev (2000).  In

this paper we analyze the role of both factors in a continuous time version of the model.

As the continuous time version is easier to analyze we are, at the same time, able to

generalize the demand side of the model considerably by allowing consumers not to be

risk-neutral.

We consider a competitive market for an imperfectly durable good where potential

sellers are privately informed about the quality of the goods they own.  Each moment in

time a constant flow of sellers with an identical but arbitrary distribution of quality enters
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the market.  All buyers are identical, have unit demand and for any given quality, a buyer’s

willingness to pay exceeds the reservation price of a seller for that quality.  As buyers do

not know the quality, their willingness to pay equals the expected valuation of goods

traded at a certain time.  The flow of such buyers into the market is larger than the flow of

sellers so that, in equilibrium, prices are equal to the expected buyers' valuation.  Once

traded, goods are not re-sold in the same market.1

A first result says that only the relative depreciation rate, defined as the ratio of the

physical depreciation rate and the interest rate, determines the qualitative properties of the

equilibrium path. In particular, changes in the interest rate and the absolute physical

depreciation rate that do not affect the relative depreciation rate do not affect the nature of

equilibria in any way.  The interest rate itself only determines the speed of evolution along

an equilibrium path and in particular, higher interest rates implies a higher volume of trade

at each moment as it is easier to separate goods of different quality.

Next, we analyze the role of the relative depreciation rate.  We first consider the

limit case where goods are perfectly durable so that the relative depreciation rate equals to

zero for any positive value of the interest rate.  The main result here says that there exist an

infinite number of equilibria where every potential seller entering the market trades within

a finite time after entering the market.  When the quality distribution is such that there are

relatively few sellers around the static equilibrium quality such equilibria only exist when

we allow price to be a discontinuous function of time before all goods are sold.  We then

consider the case where goods are imperfectly durable and depreciate over time.  A first

observation is that with depreciation the infinitely repeated version of a static equilibrium

outcome is not an equilibrium anymore in our dynamic model.  Apart from this

observation we have three types of results.  A first result is that if the depreciation rate is

small enough, i.e., if goods are "almost perfectly durable", the qualitative properties of the

dynamic equilibria without physical depreciation hold true.  A second result is that if the

depreciation rate is relatively large, all equilibria result in no trade of new goods after a

finite point in time.  Finally, at intermediate levels of the depreciation rate, stationary

equilibria, different from the static equilibria, may then emerge where low quality "new"

goods and depreciated goods that originally were of high quality are traded at the same

                                                
1 For example, in car markets, it is publicly observable how many owners a car has had up to particular point
in time.  Hence, second hand markets may be distinguished from third-hand markets, and so on.
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time.  A full characterization of the uniform case is given for different values of the

depreciation rate.

The paper is organized as follows.  Section 2 sets out the model and the equilibrium

concept.  Section 3 shows that only the relative depreciation rate has an effect on the

qualitative properties of equilibria.  Sections 4 and 5 discuss the role of the physical

depreciation rate by analyzing the case of perfectly durable goods and imperfectly durable

goods, respectively.  Section 6 concludes.  Proofs are contained in the Appendix.

2. The Model

Consider a Walrasian market for a good whose quality, denoted by , depreciates over time

with a rate ∈δ [ ∞,0 ).  Time, denoted by t, is continuous and ∈t [ ∞,0 ).  For every time

moment t a constant flow of sellers I enters the market.  Let it  be the entry time of seller i

and let iθ  be the quality he is endowed with at the time of entry.  This implies that the

quality owned by a seller i at time t is a function ( ) ( )itt
ii t −−= δθθ e .  We assume that iθ

varies between θ  and , where ∞<<<0 .  The set of all sellers, therefore, is

{ } ( ){ }ii ti ,θ==I .  We denote by ( )θµ  the Lebesgue measure of sellers in the flow I who

own a good of quality less than or equal to .  We assume that ( )θµ  is strictly increasing,

absolutely continuous with respect to the Lebesgue measure and constant over time.

Each seller i knows the quality iθ  of the good he is endowed with and derives flow

utility from ownership of the good until he sells it.  Therefore, the seller’s reservation price

is the present discounted value of the flow of gross utility and we normalize this to be

equal to iθ .  This implies that the gross utility flow is ( ) ( )tr iθδ+ , where r is the interest

rate:

( )( ) ( )∫
∞ −− +=
i

i

t i
ttr

i dttr θδθ e .

On the demand side there is an inflow of new buyers at every time moment, which is

larger in size than ( ) .  All buyers are identical and have unit demand and quasi-linear

preferences.  A buyer’s valuation of quality  is ( )θv , where ( ) θθ >v  and 0>′v .  Thus,

under full information, first, there are always gains from trade and, second, higher quality

goods are valued more than lower qualities.  Having bought a good of quality  at time
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itt ≥  against price ( )tp , a buyer derives utility ( )( )pvu −θ , where 0>′u , and we

normalize ( ) 00 =u .

All buyers know the ex ante quality distribution ( )θµ  but do not know the quality of

the good offered by a particular seller.  Goods that are once bought are not re-sold in the

same market.  Buyers and sellers discount the future at the common interest rate r and

maximize their expected utility.

Before proceeding, we introduce some additional notation.  Let ( )tI ,′π  be the price

that makes a buyer indifferent between buying a good from a seller i that belongs to a

certain subset I⊂′I  at time t and not buying at all.  It follows that

( )( ) ( )( ) 0,e
,

=′−∫ ≤′∈

−−

ttIi i
tt

i

i dtIvu µπθδ .  Adverse selection implies that ( )� <�I , i.e., the

willingness to pay for the average quality in the population is lower than the reservation

price of the seller of the best quality.  Thus, the static Akerlof-Wilson version of the model

has a largest equilibrium quality, which we denote by Sθ , satisfying { }( ) SSii θθθπ =≤ 0, .

The measure of sellers in the set I ′  is denoted as ( ) { }( )IiiI ′∈=′ µµ  such that

( ) [ ]{ }( )ttii i =∈= ,,θθµθµ  for all t.

To simplify our analysis we introduce the following regularity assumptions.

Throughout this paper, we assume that these assumptions hold.

Assumption 1.  The measure function ( )θµ  is differentiable on [ � ] with strictly

positive and Lipschitz-continuous density function ( ) ( )θµθ ′=f , i.e., ( ) 0>≥ ff εθ  and

( ) ( ) θθθθ −′<−′ fMff  for some fε , I�  and for all ∈′ θθ , [ � ].

Assumption 2.  The buyers’ valuation function ( )θv  is continuously differentiable on

[ � ] and there exists 0>vε  such that for all : ( ) vv εθθ >−  and ( ) vv εθ >′ .

Assumption 3.  The buyers’ utility function ( )mu  is continuously differentiable on

[ ( ) ( ) ( )��� −− � ] and there exist 0>> uuM ε  such that ( ) uu muM ε>′>  and ( ) 00 =u .

Given an evolution of market prices ( )tp , [ )∞∈ ,0t , each seller i chooses whether or

not to sell and if he decides to sell, the selling time.  If he chooses not to sell his gross
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surplus is equal to iθ  and, therefore, his net surplus equals to zero.  If, on the other hand,

he decides to sell at time itt ≥  his gross surplus becomes

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
L

WWWWU

L

WWU
W

W

WWU

L

LLL

L

L �������� −−−−−−−− −+=++∫ ���� ,

and, therefore, his net discounted surplus is equal to

( ) ( ) ( )( )i
ttrt

i
itpts θδ −−− −= ee .

The set of time moments in which it is optimal to sell for a seller i is given by

( )( ) ( ) ( ){ }0maxarg ≥≡
≥

tststpT ii
tt

i
i

.

If ( ) ( ) 0e <− −−
i

tt itp θδ  for all itt ≥  then ( )( ) ∅=tpTi .  Each potential seller i chooses a time

ii T∈τ  when to sell.  Let { } I∈= iiτ  be a set of all selling decisions.  This implies that there

is a flow of goods being offered for sale.  We will denote this flow by tJ  and it follows

that { }tiJ it =≡ τ .

At any time moment t buyers expect a certain quality distribution to be offered for

sale.  This determines their subjective willingness to pay for the average good at time t,

which will be denoted by ( )tπ .

A dynamic equilibrium is an equilibrium where all players rationally maximize their

objectives, expectations are fulfilled and the market always clears.

Definition 1.  A dynamic equilibrium is described in terms of a path of prices ( )tp , buyers’

willingness to pay ( )tπ  and a set of selling decision { } I∈= iiτ  such that:

a) Sellers maximize: ( )( )tpTii ∈τ  for all Ii ∈ , i.e., every seller i chooses time iτ  to trade

optimally.

b) Buyers maximize and market clear: If ( ) 0>tJµ  then ( ) ( )ttp π= , i.e., if there is a

strictly positive flow of goods offered for sale at time t, then each buyer gets zero net

expected utility so that he is indifferent between buying and not buying and market

clears.  If ( ) 0=tJµ  then ( ) ( )ttp π≥ , i.e., if there are (almost) no goods for sale at

time t then each buyer can get at most zero net expected utility.  Hence, it is optimal

for him not to buy at that time as well.

c) Expectations are fulfilled when trade occurs: If ( ) 0>tJµ  then ( ) ( )tJt t ,ππ ≡ .
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d) Expectations are reasonable even if no trade occurs: If trade stops at time t̂  and

the lowest quality left in the market is θ̂  then for all tt ˆ>  until the trade starts again:

( ) ( )( )min
ˆe θπ δttvt −−≥ , where { }θθθ ˆ,minmin = .

Given the set-up described above, conditions (a)-(c) are quite standard.  Condition (d)

is introduced for the formal reason that the buyers’ willingness to pay is not defined when

no trade occurs.  The condition says that even if the flow of goods offered for sale is zero,

buyers should believe that the lowest quality offered is larger than the apriori lowest

possible quality at that time.  This condition assures that autarky, i.e., no trade at any time,

cannot be sustained in an equilibrium of the dynamic model.

3. Equilibrium Dynamics and The Role of The Interest Rate

The model to be solved includes three exogenous functions ( )θµ , ( )θv  and ( )mu , and, in

addition, two exogenous scalar parameters, r and .  Obviously, all of them could affect the

model’s outcome and our aim is to understand the way they do.  In this section we first

describe the system of differential equations determining the dynamic equilibrium path.

We then show that the interest rate r and the physical depreciation rate  only effect the set

of dynamic equilibria of the model through their effect on the relative depreciation rate r
δ .

We start our analysis by arguing that if a good of certain quality sells at time t, then all

goods with lower qualities at that time that have entered the market before (and are still in

the market) will also sell at that time.  Given any ( )tp  a seller i by selling at time t earns a

net discounted surplus ( ) ( )( )i
ttrt itp θδ −−− − ee .  Maximizing this expression yields the first

order conditions:

a) ( ) ii t=θτ , if ( ) ( ) ( ) ( )iii trptrtp ≤++ θδ� , or

b) ( )( ) ( ) ( ) ( )( )iii rptrp θτθδθτ =++� , if ( ) ( ) ( ) ( )iii trptrtp >++ θδ� .

The second order condition is simply ( ) ( ) ( ) ( )trprp iθδδττ ++< ���  if ( ) ii t>θτ .  Implicitly,

we have assumed that ( )tp  is twice differentiable.  As we will see, the solution we obtain

is such that this assumption is satisfied.

At first we will look for equilibria that satisfy the second order condition for all iθ .

This implies that for any given iθ  the optimal selling time ( )iθτ , if it exists, is unique.  We
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will see that there are equilibria such that high quality sellers will never sell.  If this is the

case then the first order conditions are never satisfied for them and the optimal selling time

does not exist.  Then, the first order condition (a) says that a seller should sell immediately

upon entering the market, i.e., at time it , if the benefit of using a good rather than selling at

time it , i.e., the use value of the good ( ) ( )��
L

+  plus capital gain ( )itp� , is smaller than

the opportunity cost of owing the good at the entry time, which is ( )itrp .  If, on the other

hand, the benefit is larger than the cost, then the seller should wait and use the good

himself until the moment they are equal to each other and sell at that time, condition (b).

It is clear now that if a seller of quality iθ  sells at time t then all sellers with qualities

from the range [ iθθ , ], who are in the market at time t, also prefer to sell at that time t.

This allows us to define for any t a marginal seller ( )tθ  as the seller of the highest quality

at that time:

( ) { } ( ) ( )( )tptrpJit rti
i

�−=∈= +δθθ 1sup ,

or

( ) ( ) ( ) ( )trtrptp θδ+−=� . (1)

Differentiating (1) yields:

( ) ( ) ( ) ( )( )δθθδθδδθδθδδ ++−=+−−+−=+−− ������� rrprrprrprp ,

which implies that the second order condition requires 0>+δθθ�  and, therefore,

( ) 0e >tt θδ  to be an increasing function.

Now we are able to derive the main equation that must be satisfied along the

equilibrium path.  Let us consider an infinitely short time interval ( )dttt +, .  All qualities

that entered before and at time t from the interval [ ( )tθθ , ] have already been traded and all

qualities from ( ( ) θθ ,t ] are still in the market.  Expected utility at time dtt +  from buying

goods of quality from the range [ ( )tθθ , ] is

( ) ( )( ) ( )( )
∫ −⋅

W

��������	�� .

In addition to these, “new” goods, some “old” goods will be also traded.  Those are goods

that were in the market, which quality was higher than ( )tθ  at time t, and which quality

becomes smaller than ( ) ( )���� �+  at time dtt + .  We have to calculate the expected utility

of buying these goods.
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Let us consider an infinitely short quality range ( ) ( )( )��� +�  at time t.  All the

goods of quality from the interval ( ) ( )( )( )��� +���  that entered at time τ−t  will fall

in that range after depreciation.  The measure of such goods is ( )( ) ( )� �� −+  or,

in first-order term, ( )�� ��⋅ .  Integrating out the corresponding density ( )θδτδτ ee f

over ( )t,0∈τ  yields the following density of goods of quality just above ( )tθ  at time t:

( ) ( ) ( ) ( ) ( )
δθ

θµθµθθ
δθ

τθ
δ

δτδτδτδτ −== ∫∫
t

tt
dfdf

e
ee

1
ee

00
.

The expected utility from buying these goods is

( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )

∫
+

−

−−
dttt

dttt

t

dxtpxvu
θθ

δθθ

δ

δθ
θµθµ

&

e
.

Taking the first order term yields

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )tt
t

tt
tptvudt

t

δθθ
δθ

θµθµθ
δ

+−−⋅ �e
.

Hence, the unconditional expected utility from buying a good at time dtt +  is

( ) ( )( ) ( )
( )

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )













+−−+−⋅ ∫ tt
t

tt
tptvudxxftpxvudt

tt

δθθ
δθ

θµθµθ
δθ

θ

�e
,

which must be zero for all dt.  Hence,

( ) ( )( ) ( )
( )

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( ) 0=+−−+−∫ ��
�

��
����	��������	

WW

��
,

or

( )
( )( ) ( ) ( )( ) 




 −
−−

= 1
e

,

θµθµθ
θδθθ δtpvu

pF� ,

where ( ) ( )( ) ( )∫ −−≡
θ

θ
θ dxxfpxvupF ,  is the expected disutility of buying goods of quality

from the range [ θθ , ] against the price p in the corresponding static Akerlof model.  F is

differentiable in both arguments and strictly increasing in p function.  By definition,

( ) 0, =SSF θθ .  Together with (1) we have finally obtained the following system

( )
( )

( )( ) ( ) ( )( )











−

−−
=

+−=

1
e

,

θµθµθ
θδθθ

θδ

δtpvu

pF
rrpp

�

�

, (2)

which describes the evolution of price and marginal quality along an equilibrium path.

If we rescale time by the parameter r as rt=ψ , then the system becomes
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( )

( )( ) ( )



































−











−





−

=






 +−=

1

e

,

1

θµθµθ

θθδ
ψ
θ

θδ
ψ

ψδ
rpvu

pF

rd

d

r
p

d

dp

.

One may easily note that the interest rate r and the physical depreciation rate  can

influence the solution only through the ratio r
δ , which we will call the "relative

depreciation rate".  This is our first result.

Proposition 1.  For any given level of r
δ , the interest rate r and the physical depreciation

rate  only determine the speed of the evolution along an equilibrium path.  The set of

dynamic equilibria only depends on r
δ .

Having established the way interest rate influences dynamic equilibria in what follows

we take 1=r  without loss of generality assuming that now  is a relative rate of

depreciation.

4. Dynamic Equilibria for Perfectly Durable Goods

We start investigating equilibrium properties for the case of perfectly durable goods.  In

view of the fact that 0=δ  is a singular point of (2) we have to take a limit of its second

equation when 0→δ  to do this.  As

( ) ( ) ( ) ( )θ
θ

θθ
δθ

θµθµ δδ

δ

δ

δ
tf

tf ttt

==−
→→

ee
lim

e
lim

00

uniformly for all finite t, system (2) could be written as

( )
( ) ( )( )





−
=

−=

pvutf

pF
pp

θθ
θθ

θ
,�

�

. (3)

As 0>
∂
∂
�



 we define a function ( )θπS  as ( )( ) 0=�
6


 , which is just a buyers’

willingness to pay for a good of quality from the range [ θθ , ] in the static model.  Then,

we define ( )� as
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( ) ( )
( )( )

( ) ( )( ) ( )
( ) ( )( ) ( )

0
0

>
−′

−=









−=≡

∫=∂
∂
∂
∂

6

6

)S
)

)
6

������	

��	
�

�
�

6�

. (4)

Hence, ( )θπS  is strictly increasing function.

Figure 1 shows the vector field of the system for some fixed 0>t , which is given by

( ) ( )( )( )
( )pF

ppvuf
t

p

d

dp

,θ
θθθ

θθ
−−== �

�
.

As ( )θvp <  no dynamic path that is a solution to system (3) can be above the line

( )θvp = .  On the other hand, for any solution to be a dynamic equilibrium it must satisfy

θ≥p , i.e., the surplus of the marginal seller may not be negative.  For all intermediate

values of prices where ( )θθ vp << , 0>
θd

dp
.  Finally, if ( ) 0, =θpF  then 0=θ� , 0>p�

and tangents at such points are vertical for any 0>t .

Multiplicity

We will show that there exists a neighborhood U such that for any U∈0θ  system (3) with

initials ( )  0 0θθ =  and ( ) ( )000 θπSpp ==  has a solution ( ) ( )( )00 ,,, θθθ tpt , like the solution

denoted by the dotted line in Figure 1, with θ≥p .  What we will prove then in Proposition

Figure 1.

p

θ=p

θθ

θv

( )θvp =

( )θπSp =

Sθ
U
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2 is that for all U∈0θ  there exists a ( ) 00 >θT  such that all equilibrium conditions are

fulfilled, price and marginal quality increase over the time interval ( )( )0,0 θT  and either

( )� =0�  or ( ) ( ) STpT θθθθ >= 00 ,, .  In both cases ( )0,θθ T  is the largest quality that

can be traded in that equilibrium and we can extend ( ) ( )( )00 ,,, θθθ tpt  in a periodic way,

namely by defining ( ) ( )tpTtp =+  and ( ) ( )tTt θθ =+ , in this way we obtain a dynamic

equilibrium where all goods from the range [ θθ ˆ, ] are traded, where ( )Tθθ =ˆ .

Proposition 2.  For 0=δ  there exists an infinite number of dynamic equilibria trading all

goods from a certain range [ θθ ˆ, ], where ∈θ̂ (
6
� ].

Proposition 2 implies that the repetition of the static equilibrium is the only stationary

equilibrium.  If we choose any arbitrary Sθθ <0 , the dynamic path will be such that

eventually more than the static equilibrium amount of goods will be sold.

Equilibria Trading All Goods

So far, we have shown that for all distributions we can trade more than the static

equilibrium quality if we allow for trade to take place over time.  In this section we extend

this result by showing that all goods can be traded if we relax the assumption about

continuity of ( )tp .

In the following Proposition 3 we show that there exists an infinite number of cyclical

dynamic equilibria where all goods are traded at time �,3,2, TTT

Proposition 3.  For 0=δ  there exists an infinite number of dynamic equilibria ( ) ( )( )tpt ,θ

such that for some T:

a) ( ) ( )tpTtp =+  and ( ) ( )tTt θθ =+ ;

b) ( )� = ;

c) ( )tθ  and ( )tp  are strictly increasing functions for all ( )Tt ,0∈  except (at most) at a

finite number of points ( ){ } .
N

N� 1=  where both functions are discontinuous.

Figure 2 represents a typical equilibrium path ( )tθ .  Within each cycle n, where

∈� ( ( )�

� 1+� ], the path is piecewise continuous, i.e., ( )tθ  is a solution of (3) for every
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subcycle ∈t ( ( ) ( )1, −kk tt ], Kk ,,2,1 �= , where K is a finite number defined in the proof of

Proposition 3.  The equilibrium construction is such that all sellers of quality Sθ  earn the

same discounted surplus by selling at ( )ktt = , 1,,1,0 −= Kk � .  Hence, they are indifferent

between selling at each of these moments.

The discontinuities described in Figure 2 are used to build up enough time and high

quality goods to allow the expected quality to improve enough to trade all goods.  One may

wonder whether these discontinuities are required for all distributions of quality.  Next, we

will show that for certain distributions we can construct infinitely many equilibrium paths

with ( )tθ  and ( )tp  being continuous and strictly increasing over the whole cycle ( )T,0 .  In

the proof of Proposition 2 we have defined ( )Saa θ= .  We will show that this parameter a

plays a crucial role in analyzing when continuous price equilibria exist.  First, it must be

that 10 << a .  To this end, consider the surplus of the marginal seller in the static model,

denoted by ( )Ss , as a function of : ( )( ) ( ) ( ) θθπθθθ −=−≡ S
S ps , and, then

( )( )
1−= �

�
��

6

6

.

Suppose then that 1>a .  This would imply that ( )( ) 0>θSs  in some right neighborhood of

Sθ .  But this contradicts the assumption that Sθ  is the highest static equilibrium quality.

Hence, generically, 1<a .  Lastly, ( ) 0>θa  under assumptions 1, 2 and 3.  The case where

1=a  is a non-generic case.

It turns out that the value a
a−1  determines the qualitative behavior of ( )��  in the

neighborhood of ( )
66

� .  Functions ( )��̂  and ( )tŷ  that are the solutions of the

corresponding linearized system behave quite differently depending on whether a
a−1  is

smaller or larger than 1, i.e., whether a is larger or smaller than 2
1 .  Figure 3 shows the

Figure 2.

t

( )tθ

Sθ

θ

T( )0t( )1t( )2t( )3t ( )3tT +( )40 t= ( )2tT +
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solution ( )yx ˆ,ˆ  as a parametric function ( )xy ˆˆ  with the parameter t, for two different values

of a, 1.0=a  and 6.0=a .  One can see that in the former case ( )xy ˆˆ  oscillates around the

origin so that the second order condition ( 0>θ� ) is not satisfied.  In case 6.0=a  ( )tx̂  and

( )tŷ  are increasing functions so that in the neighborhood of the static equilibrium quality,

prices and marginal qualities are increasing functions as well.

Proposition 4 constructs for quality distributions with 2
1>a  equilibria trading all

goods where price and marginal quality are continuous in every cycle.

Proposition 4.  For 0=δ  and 2
1>a  there exists an infinite number of cyclical dynamic

equilibria ( ) ( )( )tpt ,θ  such that:

a) ( ) ( )tpTtp =+  and ( ) ( )tTt θθ =+ ;

b) ( )� = ;

c) ( )tθ  and ( )tp  are strictly increasing and continuous functions on ( )T,0 .

The result obtained in Proposition 4 says that in case 2
1>a  we can choose 0θ

sufficiently close to Sθ  such that we do not need to build more than one subcycle in order

to build up enough time and high quality goods to allow the expected quality to improve

enough to trade all goods.  Basically, the condition 2
1>a  says that in a neighborhood of

Figure 3.
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1

1,2
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Sθ  there is a sufficient mass of goods so that at the moment when the marginal quality

becomes larger then Sθ , the marginal seller is able to make a positive surplus.

5. Dynamic Equilibria for Imperfectly Durable Goods

Now we turn back to analyze system (2) for the case where the good under consideration is

not durable, i.e., 0>δ .  We start our analysis by considering two extreme cases, when  is

very large and when  is close to zero.  Then we will consider intermediate values of .  As

the expressions to be discussed are relatively difficult to interpret we use the linear model,

where ( ) �� = , ( ) ��	 =  and ( ) 1=� , for illustration purposes.  In the linear model

21 << v  and ( ) −= .

High Relative Depreciation Rate

Suppose first that ( )( )Y ≡> −��� .  We will show that in this case, we get back a type of

traditional "Akerlof-result": after some moment in time no new goods that come to the

market will be traded.  The argument can be sketched as follows.  In any continuous

equilibrium path ( ) ( )( )tpt ,θ  price decreases over time as

( ) ( ) ( ) 011 <+−≤+−= ���� .  This price dynamics leads to the following: either at a

certain moment � ′  price ( )�� ′  becomes smaller than ( )� ′ , i.e., the marginal seller earns a

negative surplus ( ) ( )��� ′−′  and the path ( ) ( )( )tpt ,θ  cannot be a dynamic equilibrium, or

price ( )�� ′  becomes equal to ( )� .  In the latter case the marginal quality at that moment

( )� ′  must be equal to , in other words, only the lowest quality  is traded at that time

and there is no uncertainty about quality.  Indeed, if it had been ( )� >′ , then some higher

quality goods would have been traded and the price must have been higher than ( )� .

From that moment on the price ( )tp  will always be strictly smaller than ( )� , hence,

the marginal quality ( )tθ  will always be strictly smaller than θ .  Therefore, the second

dynamic equation of (2) is not valid any more.  This equation should be replaced by a

simple dependence ( )�� =  as ≤  for all �� ′>  and the only quality that will be traded

at time t is ( )� , hence the price must be equal to ( )� .  The first equation of (2) is still

valid and we get the following system
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( )
( )




=
+−=

��

�� 1�
,

which can be rewritten as

( ) ( )
( )�

�
′

+−= 1� . (5)

Whatever solution with initials ( ) θθ =′t  the above equation has it is clear that <  for all

�� ′> , i.e., no new goods that just entered the market will be traded.

One may wonder what happens if we allow ( )�  to be discontinuous.  It turns out that

the results remain the same if we require that trade takes place at every moment in time.

Indeed, suppose that at a certain time moment � ′  the marginal quality is discontinuous.

Then, the price at that time must be either continuous, hence the first equation of (2) is

valid, or the price has a strictly negative increment.  In the latter case the first equation of

(2) will be working just after time � ′  and, again, ( ) ( ) ( ) 011 <+−≤+−= ���� .

Therefore, in both cases the above analysis leads to no new goods trading after a certain

time.  The reason why price may not have a positive increment at � ′  is that in this case all

the sellers who sell just before � ′  would wait the instant price increase and there would be

no trade just before � ′ .  The above argument is summarized in the following proposition.

Proposition 5.  If >  then there is no trade of new goods after a certain time moment

along any dynamic equilibrium path where trade takes place at every moment.

For the linear model the expression for  simplifies to 1−= �  and equation (5)

takes the form 
( )θδθ
v

v 1−−−=� .  The solution in this case exponentially converges to

zero, which implies that the marginal quality traded becomes almost worthless.  Hence,

when time passes, almost no gains from trade are realized as in the pure adverse selection

result in the static model analyzed by Akerlof (1970).

Low Relative Depreciation Rate

For the case of a relatively small value of , we rewrite system (2) as

( )
( )( ) ( ) ( )

( )
( )( ) ( )










−
−

=−
−−

=

−−=

δθ
θθ

θδθ

δθ
θµθµθ

θθ

δθθ

δξδ tt tfpvu

pF

pvu

pF
pp

1e

,

e

,�

�

,
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where ( )101 �∈ .  Then,

( )
( )( ) ( )

( )
( )( ) ( ) ( ) 





−

−
=

− θ
ξθδ

θθ
θ

θθ
θ

ξδ

δξξ

δξ t

t

t f

tg

tfpvu

pF

tfpvu

pF

e

e
1

,

e

, 21

1
,

where

( ) ( )
( ) ( )IIW

W

��
��

� �
�

� −∈
−
−=

11

1

for all −< , and ( )102 �∈ .  Hence, system (2) can be written as

( )
( )( ) ( )

( )
( )( ) ( )










 −
−

−
−

=

−−=

θ
θθ

θδ
θθ

θθ

δθθ

tfpvu

pAF

tfpvu

pF
pp

,,�

�

,

where A is bounded for all −< .  Hence, any solution of (2), being written as

( ) ( )( )��� ����� 00 , uniformly converges to the solution ( ) ( )( )00 ,,, θθθ tpt  of (3) for all

0  and all t such that ( )� −<0�  when  converges to zero.  Now, let us define ( )��  as

( )( )� −=���
0 .  It follows that ( ) +∞=

→
� ����� 0

0

�  for ( )�� �≥ .  Hence, �� �>∃  such

that ( )� =�� 0 .  We can state this result as the following proposition.

Proposition 6.  If 2
1>a , then there exists a 0>  such that for all ∈ [ �0 ) there exist an

infinite number of cyclical dynamic equilibria ( ) ( )( )δδθ ,,, tpt  such that for some 0>δT :

a) ( ) ( )tpTtp =+ δ  and ( ) ( )tTt θθ δ =+ ;

b) ( )� = ;

c) ( )δθ ,t  and ( )δ,tp  are continuous functions on ( )δTt ,0∈ .

Let us consider an example, where 10=θ , 20= , ( ) ( )θθθ −= 1.0ef , ( )� 21	= ,

( ) ��	 =  and 01.0=δ .  Figure 4 shows that all goods are sold in finite time.  Proposition

6 generalizes this example and argues that we can extend the conclusion of Proposition 4

to the case where  is small enough.

Although the result obtained in Proposition 6 is proved for the case 2
1>a  only, we

think that it is valid for any value of a.  As for 2
10 ≤< a  without depreciation the

equilibrium path is piece-wise continuous the proof would be much more technical without

adding new insights.
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Intermediate Range of Relative Depreciation Rate

Having established dynamic equilibrium properties for two extreme cases, when the good

is almost perfectly durable or when it depreciates quickly, we will analyze the properties of

the equilibrium path at intermediate values of the relative depreciation rate. Having

initially been time-dependent the system becomes autonomous for large t when W ≥� ,

which is guaranteed by the second order condition 0>+δθθ� , and, therefore,

( ) ( )W =� .  We consider the corresponding autonomous system:

( )
( )

( )( ) ( ) ( )( )











−

−−
=

+−=

1
,

θµθµθ
θδθθ

θδ

pvu

pF

rrpp

�

�

. (6)

We will show that there exists a steady state ( )∗∗ p,θ , not necessarily unique, such that

( ) ( )( ) ( )∗∗= ptpt ,, θθ  is a solution of system (6) for all ∗≥
θ
θ

δ ln1t  when ( ) θθ δ ≥tt e .

Indeed, solving for ( ) ( ) 0== tpt ��θ  yields:

( )
( )( ) ( ) ( )( ) ( ) ( )( )




−+−=+
+=
���

�

11

1

�
. (7)

Suppose that ( )Y ≤≡< − .  As ( )( ) ( ) ( )( ) ( ) ( )( )θµθµθδθθδθ −+−<=+ 101, vuF  and,

on the other hand, ( )( ) ( ) ( )( ) ( ) ( )( )θµθµθδθθδθ −+−=>+ 101, vuF , there exists at least

one point ( )�∈∗  that solves (7).  Hence, there is at least one steady state.

Figure 4: An example with a unique unstable steady-state ( 10=θ , 20=θ ,

( ) ( )θθθ −= 1.0ef , ( )� 21�= , ( ) mmu = , 01.0=δ ).
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For the linear model ( ) ( ) ( )( )���� +−−= 2
1�  and system (7) simplifies to

( )
( ) ( ) ( )( ) ( )( )( )




−+−=+−+−
+=

��

�

11

1

2
1

.

Having been considered as a function of  the left-hand side of the second equation is a

quadratic function decreasing at  where it equals to zero and increases at  where it is

positive.  Then, the right-hand side is a quadratic function as well, which has zeros at 0 and

 and is positive between them.  Hence, the system has two solutions, the first one

between 0 and , which is not feasible, and the second, which is being searched for,

between  and .  So, for the linear model the steady state is unique.

The natural question about the local stability of the singular point ( )∗∗ p,θ  for the

general model can be resolved by taking a linear analysis of (6) in the neighborhood of

( )∗∗ p,θ .  The corresponding linear system is:

( )

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ){

( )( ) ( ) ( )( ) ( ) ( )( )






















 −−′+−′+

+′−−′−×
−−

=

+−=

∫ ****

****
***

*

*

1

θµθµθ

θθµθµθ
θµθµθ

δθ
δ

θ

θ
pvudxxfpxvuy

vpvux
pvu

x

xyy

�

�

,

where ��� += 
  and �+= 
 .  ( )∗∗ p,θ  is stable if

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) 01 ****
***

*

<′−−′
−−

−+ θθµθµθ
θµθµθ

δθ
vpvu

pvu
,

which can be stated as 
( ) ( )( )

( ) ( )( ) ( ) ****

**

1

1

θθθδθ
θδθδ
vvu

vu
′+−′

+−> .  The latter inequality cannot be

solved at the current level of generality.  For the linear model, the inequality simplifies to




�
� ≡

+
−>

1

1
.

For the general model we can show by means of examples the richness of qualitatively

new phenomena that may emerge along possible equilibrium paths.  The examples are

presented in Figure 4 and Figure 5, where a cross denotes a steady state.  Figure 4 shows a

case where a steady state exists, but is unstable.  An equilibrium path is depicted where all

goods are eventually traded, even new goods of relatively high quality.  Figure 5 sows that

a stable steady state can be either below the static equilibrium as in the left graph, or above

it as in the right graph.  Unlike the static equilibrium in these stationary equilibria all
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qualities are eventually traded in the market.  However, owners of qualities *θθ >i  first

wait until their good has depreciated to *θ  before selling.

Figure 6 finally shows an example of unstable steady state with a periodic cycle.  Here

 is "slightly" below 
 .  Then ( )∗∗ p,θ  is not stable but there exists a cycle, i.e., a “closed

loop” or a periodical solution of the corresponding autonomous system.  In the long run

price as well as marginal quality fluctuate with an asymptotically constant period.

The three cases discussed above are summarized for the simple case of the linear

model in Figure 7, where the system (2) takes the form

( )
( ) ( )( )

( )( )











−

−−
+−−

=

+−=

1
1e

2

θθ
θθθθδθθ

θδ

δt

v

pv

p
rpp

�

�

.

Figure 6.

10=θ , 20=θ , ( ) ( )θθθ −−= ef , ( )� 21�= , ( ) ��� =  and 09.0=δ
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Figure 5a.

10=θ , 20=θ , ( ) ( )θθθ −−= ef , ( )� 21�= ,

( ) ��� = , 1.0=δ , 82.11* ≈θ  and 01.13≈Sθ

Figure 5b.

10=θ , 30=θ , ( ) ( )θθθ −−= 01.0ef , ( )� 21�= ,

( ) ��� = , 1.0=δ , 32.17* ≈θ  and 94.14≈Sθ
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The figure shows the different possible equilibrium paths for different values of the

relative depreciation rate.  There are four relevant regions.  First, for all  larger than 1−v

trade of new goods stops after some time.  Second, if  smaller than 1−v  bus still larger

than 1
1

+
−

v
v  there exists a steady state, which attracts the evolution path, and in the long run

price as well as marginal quality are constant.  Third, for all  smaller than 1
1

+
−

v
v  the steady

state is not stable but, and this is the fourth region, if  is small enough than there are

infinite number of dynamic equilibria where marginal quality increases up to the highest

quality θ .

6. Conclusions

In this paper, we have studied the role the interest rate and the physical depreciation rate

play in dynamic competitive equilibria under adverse selection.  Without physical

depreciation, the infinite repetition of the static (Akerlof) equilibrium is one of the

equilibria in the dynamic model.  There are, however, infinitely many other equilibria

where all goods are sold within finite time after entering the market.  These results change

when physical depreciation is taken into account.  When the depreciation rate is small,

repetition of the static equilibrium stops being a dynamic equilibrium, but there are still

infinitely many other equilibria where all goods are sold.  When the depreciation rate is

relatively high, all equilibria exhibit no trade of new goods after some finite moment in

time.  At intermediate values of the depreciation rate, new stationary equilibria may

emerge where all goods are eventually traded.  In this type of equilibrium, owners of high

quality goods sell only after the good has depreciated enough.  All these results are

independent of the value of the interest rate.

Figure 7.

Stable steady state
No trade of new goods
after some time in any

equilibrium

0 1−v
1
1

+
−

v

v

Infinite number of equilibria

Unstable steady state
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Appendix.

Proof of Proposition 2

Under assumptions 1, 2 and 3 for any 00 >t  and ( )00 , pθ  such that ( ) 00 pv ≠θ  system (3)

with initial conditions ( ) 00 θθ =t  and ( ) 00 ptp =  has a unique solution

( ) ( )( )000000 ,,,,,,, tptptpt θθθ , which is continuous w.r.t. 0θ  and 0p .  Considering θ�  as a

function of , p and t, i.e., ( ) ( )
( ) ( )( )pvutf

pF
tp

−
≡Θ=

θθ
θθθ ,

,,� , allows us to write:

( )( ) ( )
( ) ( )( )

( ) ( )( )
( )( ) ( )( ) ( )( ) ∞<

−
=

−
=Θ

→→ 000

0,0,
lim,,lim

00 pvuf

pF

pvuf

pF
tpt

tt θθ
θ

θθ
θθ .

Hence, system (3) has a solution even for 00 =t , but not necessarily unique.  The

uniqueness is guaranteed by the fact that ( ) consttpt +≡/Θ θθ ,, .  Finally, that solution is

differentiable at 0=t  as long as ( )( ) 0,,lim
0

=Θ
→

tpt
t

θ , i.e., ( )00 6
� = , and we will denote it

as ( ) ( )( ) ( )( ) ( )( )( )00 000000 ����������
66

������ ≡ .  Indefiniteness of ( )0,0 θθ�  is

resolved by continuity:

( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

( )
t

pF

pvufpvutf

pF
t

ttt

,
lim

1,
lim,lim,0

0
000

0
0

0
0

θ
θθθθ

θθθθθ
→→→ −

=
−

== �� .

Taking the latter limit explicitly yields:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) .,0,0

,0,,0,,lim
,

lim

0

000000

000000
00

∫ −′+−−=

=
∂
∂+

∂
∂==

→→

θ

θ
θθθθθ

θθθθθ
θ

θθ

dxxfpxvuppvuf

pp
p

F
p

F
pF

dt

d

t

pF
tt

��

��

Hence, ( ) ( ) ( )02
1

0 00
0

�� �
D

�� = , where ( )0	  is defined in (4) and, therefore,

( ) ( )
0

00
0

0

0

2
==






=>==







t

S

t d

d
aa

p

d

dp

θ
πθθ

θθ �
�

.

This implies that for small 0>t  ( ) ( )( )00 ,, θθπθ ttp S>  as long as ( ) 0000 >−= θθπSp� .

Now we define 0θ  as ( ) ( ){ }θθπθθθθθ >′∈∀′= SS :,inf0  and Û  as ( )SU θθ ,ˆ
0=  such

that for all Û0 ∈θ  ( ) 00 θθπ >S .

Finally, we will show that there exists a neighborhood UU ˆ⊂  such that for any

solution ( ) ( )( )00 ,,, θθθ tpt  of (3), where U∈0θ , there exists a time ( ) 00 >θT  such that for

all ( )Tt ,0∈  θ>p  and ( ) ( )( ) ( )( ) 0=−− TTTp θθθ , i.e., either all goods are sold or the
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marginal surplus is zero at time T.  If this were not the case then there would have been

θθ ′==
∞→∞→ tt

p limlim  as p and  are increasing and bounded: θθ < , ( ) ( )θθ vvp ≤< .  But then

the equation 
( )

( ) ( )( )pvutf

pF

−
=

θθ
θθ ,�  for large t becomes

( )
( ) ( )( ) ( )




 +
′−′′

′′
= t

vuf

F

t
ε

θθθ
θθθ ,1� ,

where ( ) 0lim =
∞→

t
t

ε , and, therefore,

( ) ( )
( ) ( )( ) constt

vuf

F
t +

′−′′
′′

> ln
2

,

θθθ
θθθ

for sufficiently large t.  Hence, ( ) ∞=
∞→

t
t

θlim  unless ( ) 0, =′′ θθF , i.e., Sθθ =′ .

In order to rule out the possibility that Sθθ =′  (and, hence, that ( )0,θθ t  and ( )0,θtp

converge to θθ <′ ) we rewrite system (3) as follows

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )



























−
−′







−
−

+−−−=

−−−=

S

S

S

S
SS

SS

p
p

p
ap
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θ
θθ

θ
θ
θθ

θθθθ

θθθ
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1

B�

�

,

where ( )
6

		 =  and ( ) ∞<p,θB  uniformly in a certain neighborhood UU ˆ⊂  of Sθ .

Thus, for all U∈0θ  the solution ( ) ( )( )00 ,,, θθθ tpt  can be written as

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )




−+−+=
−+−+=

000

000

ˆ,

ˆ,

θθθθθθ
θθθθθθθ

SSS

SSS

otytp

otxt
,

where ( ) ( )( )tytx ˆ,ˆ  solves the corresponding linearized system

( )



−=
−=

axyx

xyy

at
1�

�
(A.1)

with initials ( ) 10 −=x , ( ) ay −=0 .  Defining ( ) ( )
( )tx
tytk =  allows us to rewrite (A.1) as

( )at
kakkk −−−−= 1� .  As Sθθ < , Sp θ<  and ( )θπSp >  for all ( )∞∈ ,0t  then 0<x , 0<y

and axy > .  Hence, ( )ak ,0∈  and 02
1 <−< −ak�  for sufficiently large t.  Therefore,

( ) −∞=
∞→

tk
t
lim , which contradicts ( )ak ,0∈ .

Hence, for any U∈0θ  ( ) 00 >∃ θT  such that either ( ) θθθ =0,T  or ( ) ( )00 ,, θθθ TpT = .

In both cases we extend ( )p,θ  in a periodic way, namely ( ) ( )tpTtp =+  and
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( ) ( )tTt θθ =+ .  In order to show that ( ) ST θθ >  when ( ) ( ) θθ <= TpT  let us consider two

cases.

a) ( ) ST θθ = .  This contradicts with the uniqueness of the solution with initials

( ) ST θθ = .  Indeed, we always have a static solution ( ) ( ) SSS tpt θθθθ == ,,  and we

have found another, namely ( ) ( )( )00 ,,, θθθ tpt , such that ( ) ( ) STpT θθθθ == 00 ,, .

b) ( ) ST θθ < .  This implies that ( )( ) ( )TTS θθπ > , which can never happen as for small t

( )( ) ( )ttS θθπ <  and no solution may cross the curve ( )θπSp =  from above at Sθθ < .

Hence, ( ) ST θθ > .

As we have obtained a discontinuous function ( )tp , we lost the sufficiency of the first

and second order conditions.  So, we must check the optimality of the stipulated sellers’

behavior directly.

Let us take a seller i with quality iθ  and entry time ( )[ )TnnTti 1, +∈ , where n is the

entry cycle’s number.  If ( )Ti θθ >  then he will never sell, which is clearly optimal for him.

If, on the other hand, ( )Ti θθ <  then there are two possibilities.

a) ( )ii tθθ > .  In this case he maximizes his surplus by selling in the current cycle n at

time ( )ii θτ , where ( ) ii θτθ = , and getting ( ) ( )iii ss ττ = , see Figure A.1 (a), and it

follows that ii t>τ .  Indeed, within a cycle the first and second order conditions still

work so there is a unique optimal selling time iτ . If he, however, had been waiting for

the next cycle ( )1+n  he would have chosen time ( ) Tiii +=′ τθτ  to sell, where

( ) ii θτθ =′ , and got ( ) ( )iii ss ττ ′=′ .  But ( ) ( ) ( )iii pTpp τττ ′=+=  and the seller i will

certainly choose the earlier time iτ .

b) ( )ii tθθ < .  In this case let us first investigate the marginal surplus function

( ) ( )θ−≡ − pts te .  Differentiating yields 
 W �� −−= �  and, finally,

ts

d

ds −−== e
θθ �
�

.

Although the above expression has been obtained only for ∈� [ ��0 ] it holds for any

0>� .  To see this, suppose ∈� ( ( )���� 1+� ].  It then follows that
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( ) ( ) ( ) tnTtnTnT nTt
d

ds
t

d

ds −−−−− −=−=−−= eeee
θθ

 for 0>� . (A.2)

Hence, ( )ts  is a positive, decreasing and convex function on ( )( )TnnT 1, + .  These

properties allow us to validate the maximum principle across different continuous

segments of an equilibrium path.

Now let us define ( )ii θτ  such that ∈
L

( ( )���� 1+� ] and ( ) ii θτθ = , in this case

ii t<τ , see Figure A.1(b).  If seller i sells immediately after the entry, i.e., at time it ,

he gets

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )ii
t

iii
t

ii
t

ii
t

ii ttstttptpts iiii θθθθθθ −+=−+−=−= −−−− eeee ,

while if he waits until the next cycle ( )1+n  he will choose time ( ) Tiii +=′ τθτ  to sell,

where ( ) ii θτθ =′ , and, therefore, his surplus becomes

( ) ( )( ) ( ) ( )( ) ( )iiiiiii spps ii ττθτθττ ττ ′=′−′=−′=′ −′− ee .

In order to show that ( ) ( )′> iiii sts τ  for all ( )ii tθθ <  let us consider

( ) ( ) ( )iiiii sts τθ ′−≡∆  as a function of iθ  and apply the mean-value theorem:

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) *

ee* i
iii

T
id

ds
iiii ttsTtTtss τ

θ θθτθτθτ −− −+=+−′++=′

for some ( )Ttiii +′∈ ,* ττ .  Then

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( )( ) .0eee1

eee
*

*

>−−+−=

=−−−−+=∆
−−−

−−−

ii

ii

t
ii

T
i

iii
T

ii
t

ii

tts

ttstts
τ

τ

θθ

θθθθθ

Therefore, we have shown that for any U∈0θ  ( ) ( )( )00 ,,, θθθ tpt  constitutes a dynamic

equilibrium trading all goods from the range [ θθ ˆ, ], where ( ) ST θθθ >=ˆ .

Figure A.1.

( )ts

0θ θ̂( )itθ iθ

( )iis τ

( )iτθ ′

( )iis τ ′

( )iτθ ( )tθ

Case a)

( )iτθ

( )ts

0θ ( )tθθ̂( )itθiθ

( )ii ts

( )iτθ ′

( )iis τ ′

Case b)

( )its

( )*
iτθ
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In order to prove the following propositions we need the following lemma.

Lemma 1.  For any numbers ∈0 [
6
� ) and ( )( )000 , θθ vp ∈  there exists 0ˆ >t , depending

on 00 θ−p , such that for all tt ˆ
0 >  system (3) has a unique solution with initials ( ) 00 θθ =t

and ( ) 00 ptp = .  Moreover, there exists a finite time tT ˆ>  such that ( )� = .

Proof.  Under assumptions 1,2 and 3 for any 0t  system (3) has a unique solution passing

through ( )00 , pθ , where Sθθ ≥0  and ( )( )000 , θθ vp ∈ .  All we need to show then is the

existence of T if 0t  is taken to be sufficiently large.  We define { }vp εθα 2
1

00 ,min −≡  and

( )( )��
�

YXI

6
�ˆ 2≡ . (A.3)

As  is a function of 00 θ−p  so is �̂ .  Now let us consider the solution mentioned above

when tt ˆ
0 >  and suppose that ( ) ( ) αθ =− ttp  for some 0tt ≥ .  Then

( ) ( ) 




 −=





 −=−=− 11

θ
θ

θ
θθ

θ
θθ �

���� p

d

dp
p

d

d
p

dt

d
.

Using (3) yields

( ) ( ) ( )( )( )
( )

( )( )
( )( )

( )
( )( )

( )
( )( )

( )( ) ( )( ) .01
,2

ˆ1
,2

1
,

1
,

1
,

1
,

=





−>





−>

>
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−
=
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
−

−+
>

>





−

−
>




 −−−=−

θθ
αεεε

θ
θθ

αεεε
θ

θθ
ααεεε

θ
θθ

αεθεε
θ

θθ
αθεε

θ
θ

θθθθθ

vF
t

vF
t

vF
t

vF

p
t

vF

pv
t

pF

ppvuf
t

dt

pd

S

vuf

S

vuf

S

vuf

S

vuf

S

uf

��

��

��

Thus ( ) ( ) 0>>− αθ ttp  for all 0tt ≥ .  Now it becomes clear (see proof of Proposition

2) that for some T we must have ( ) θθ =T .

Proof of Proposition 3

We first define functions ( ) ( )( )tpt ,θ  for all ∈� [ 00 �� ] and some 0t  such that the condition

of Lemma 1 is satisfied, i.e., ( )�� ˆ>0 , where ( ) ( )00 ttp θα −= , and ( ) St θθ =0 .  Then we

show that ( ) ( )( )tpt ,θ  actually is an equilibrium path.  Lastly, Lemma 1 says that all goods

are traded by a certain time T.
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We have already shown in proof of Proposition 2 that for any U∈0θ  and ( )00 θπSp =

system (3) has a solution ( ) ( )( )00 ,,, θθθ tpt  and ( ) ST θθ >  for some T.  As ( ) 0, 0 >θθ t� , it

follows that for all ∈ [ ( )��0 ] there exists an inverse ( )0,θβt  such that

( )( ) βθθβθ =00 ,,t .  Function ( )0,θβt  is continuously differentiable on ∈ [ ( )��0 ] and

continuous w.r.t. 0θ .  Hence, ( )( )00 ,, θθβtp  is continuous w.r.t. 0θ  as well.  We define

( )0θτ  by ( ) ( )00 ,θθθτ St= , so that ( )( ) Sθθθτθ =00 ,  for all U∈0θ .  Note that

( )( ) ( )( ) Sp θθθτθθθτ => 0000 ,, .

Now we will solve the linearized system (A.1).  First, it can be rewritten as Kummer’s

equation (see Abramowitz and Stegun, 1972, pp. 504-515):

( ) ( ) 02 1 =−−−+ −
a

axxtxt ���

with initials ( ) 10 −=x , ( ) a
ax 2

10 −=� .  The unique solution is the negative to the so-called

Kummer’s function ( )taaM ,, 21 , with a
aa −−= 1

1  and 22 =a .  Turning back to (A.1) we get:

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )
( ) ( )
















−Γ

−Γ−+−=−−=

−Γ+
−Γ−+−=−−=

∑

∑
∞

=
−

−
−

∞

=
−

−
−

1
12

1
1

1
1

1
1

1!

1
1,2,ˆ

1!1!

1
1,2,ˆ

n

n

a
a

a
a

a
a

dt
d

n

n

a
a

a
a

a
a

t
n

n

a

a
attMaty

t
nn

n

a

a
tMtx

, (A.4)

where ( ) ∫
∞ −−=Γ
0

1e dttx xt  is the Gamma-function, and

( )
( ) ( )( ) ( )aaa

a
a

a
a

n
n 111

1

1

32
1

−××−−=
−Γ
−Γ

−

−

� .

Now we define  as ( ) 0ˆ =ωx  and it follows that 0>ω  and ( ) 0ˆ >ωy .  As

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )




−+−+=
−+−+=

000

000

ˆ,

ˆ,

θθθθθθ
θθθθθθθ

SSS

SSS

otytp

otxt
,

the functions ( )tx̂  and ( )tŷ  describe the behavior of the solution ( ) ( )( )00 ,,, θθθ tpt  in the

neighborhood of Sp θθ ==  and it follows that ( ) ωθτ
θθ

=
→ 0

0

lim
S

 and

( )( ) ( )ω
θθ

θθθτ
θθ

y
p

S

S

S

ˆ
,

lim
0

00

0

=
−

−
→

.

Therefore, there exists a left neighborhood of the static equilibrium quality

( ) UU S ∈≡ θθωω ,0  such that for all ωθ U∈0  ( ) ωθτ 2
1

0 > .



29

Now we are ready to construct the pair of functions ( ) ( )( )tpt ,θ .  Let us take any

( ) ωθ U∈1
0  and define ( ) ( )( )1

0
1 θττ ≡ , ( )( ) ( )( )1

0
1 ,θθθ tt ≡  and ( )( ) ( )( )1

0
1 ,θtptp ≡  on ∈t ( ( )1,0 τ ],

( )( ) ( )( ) ( )( )( )ttpts t 111 e θ−≡ − .  By construction we have ( ) ωτ 2
11 >  and ( ) ( )( ) 011 >τs .

Let us now consider the function ( )( ) ( )( ) ( ) ( )( )11
000

1 , τθθθτθρ sp S −−≡  as a function of

0θ .  It is continuous on [ ( )
Sθθ ,1

0 ].  Moreover,

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) 0e, 1111111
0

1
0

1
0

1 1

>−−+=−−= τθτθτθθθτθρ τ sssp SSS ,

and

( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) 011111 1

<−−=−−= 

�
666666

�� .

Therefore, ( ) ( )( )Sθθθ ,1
0

2
0 ∈∃  depending on ( )0θτ  such that ( ) ( )( ) 02

0
1 =θρ , i.e.,

( )( ) ( )( ) ( ) ( )( )112
0

2
0 , τθθτ sp = .  Again, we define ( ) ( )( )2

0
2 θττ ≡ , ( )( ) ( )( )2

0
2 ,θθθ tt ≡  and

( )( ) ( )( )2
0

2 ,θtptp ≡  on ( )( ]2,0 τ∈t , ( )( ) ( )( )2
0

2 ,θtsts ≡  and, again, ( ) ωτ 2
12 > .

Repeating this process, we get a sequence ( ){ }kτ  such that ( ) ∞=∑ =∞→

k

j

j

k 1
lim τ .  We

define 1≥K  to be the smallest number such that ( ) ( ) ( )( ) ( ) ( )( )( )1111

1
ˆ τθττ −>∑ =

pt
k

j

j .  Then,

we define ( )kt  as ( ) ( )∑ +=
= .

NM

MN�
1

, so that ( ) 0=Kt , ( ) ( )KKt τ=−1 , ( ) ( ) ( )12 −− += KKKt ττ ,…,

and ( ) ( ) ��
.

M

M ˆ>= ∑ =1

0 .  Finally, we define an equilibrium path for ∈t ( ( )0,0 t ] as follows:

( ) ( ) ( )( )kk ttptp −=0,θ , ( ) ( ) ( )( )kk ttt −=θθθ 0,  and, therefore, ( ) ( ) ( ) ( )( )kkt ttsts
k

−= −e, 0θ  for

∈t ( ( ) ( )1, −kk tt ].  For ( )0tt >  we take the solution

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )0010100101 ,,,,,,, ttpttpttptt θθθ  of (3) as an equilibrium path.

It can be easily seen that within every interval ( ( ) ( )1, −kk tt ] a seller chooses the time to

trade optimally.  In order to check that he behaves optimally even across those intervals

(subcycles) and across cycles, again, like in the proof of Proposition 2, we use (A.2) and

considering a seller i with quality iθ  and entry time ∈it ( ( ) ( )1, −++ kk tnTtnT ].  As the

arguments are quite similar to the ones given in the proof of Proposition 2 we skip the

details here.

Like in Proposition 2 any seller i optimally waits until the first moment after entry

when the marginal quality is larger than or equal to his own quality.  Hence, the pair of

functions ( ) ( )( )tpt ,θ  constructed above satisfies all equilibrium requirements.  Then, it
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follows from Lemma 1 that ( ) θθ =T  for some T.  The constructed equilibrium path is

entirely determined by choosing ( )1
0θ  which is an arbitrary point from ωU .  Therefore, we

have obtained infinitely many (continuum of) equilibria.

Proof of Proposition 4

If 2
1>a , then each term (apart from the constant) in the Tailor expansion (A.4) is positive

as ( ) 01 1 >−Γ −
a

a  and its radius of convergence is infinity.  Hence, x̂  and ŷ  are defined by

(A.4) for all ∈� [ ∞�0 ), ( ) ( ) ( ) ( ) +∞====
+∞→+∞→+∞→+∞→

txtytxty
tttt

�� ˆlimˆlimˆlimˆlim , and
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1

1

as ( ) ( )
( ) ( ) ( ) 0

1!1!2
1ˆ2ˆˆˆˆˆ

2
1

11

>
−Γ+−

−Γ
−=−>−>− ∑

∞

=
−

−−

n a
a

n
a

a

nn

tn
axayxyxay ������  for all 0>t .

This implies that for 2
1>a

( )
( )

( ) ( )
( ) ( )

( )
( ) +∞==

−+
−+=

−
−

+∞→→+∞→→+∞→ tx

ty

Otx

Oty

t

tp
t

S

S

t
S

S

t SS ˆ
ˆ

lim
ˆ
ˆ

limlim
,
,

limlim
0

0

0

0

00 θθ
θθ

θθθ
θθ

θθθθ
.

In other words, for any 0>M  ( )Mt′∃  such that for all tt ′>  ( ) ( )( )S
aa MtMtU θθ ,,, 0=∃

such that 
( )
( ) M
t

tp

S

S >
−
−

θθθ
θθ

0

0

,
,

 for all aU∈0θ .  We take vεα 2
1= ,

[ ] ( )








−
+=

∈
θ

θθ
α

θθθ
aM

SS
,

max,max1  and ( ) ( ) ( )
( )











−
′=

1

2
,,ˆmax

2

M

MM
Mtt

vuf

u

εεε
θµατ , where ( )�̂  is

as defined in (A.3), Lemma 1.  For this  there exists a neighborhood ( )MU a ,τ  such that

( )
( ) M

p

S

S >
−
−

θθτθ
θθτ

0

0

,
,

 for all aU∈0θ .

We will show that τ≥′′∃ t  such that ( ) ( ) αθθθ +′′≥′′ 00 ,, ttp .  Suppose to the contrary

that ( ) ( ) αθθθ +< 00 ,, ttp  for all τ≥t .  Then it must be the case that 
( )
( ) M
t

tp

S

S >
−
−

θθθ
θθ

0

0

,

,
 for

all τ>t , otherwise there would have been some τ>′′′t  such that 
( )
( ) M
t

tp

S

S =
−′′′
−′′′

θθθ
θθ

0

0

,
,

 and,

therefore, for tt ′′′= :
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( ) ( ) ( )( )( )
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where ( )1,0∈ξ  and ( )( ) 0=�
6

�  by definition.  Then, as we have supposed αθ −> p ,
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for some ( )
6
�∈′ .  But then ( )

66

� −>−  for all τ≥t  that can be rewritten as

( )( )SMp θθθα −−>−> 1  and, further, as SM θθ α +< −1 .  Hence, on one hand,

θθθ α <+≤ −∞→ SMt 1lim , on the other hand, ( )( ) 01 >−−>−=
6


���  and +∞=
∞→
�

W

��� ,

that is a contradiction with the assumption that that αθ +<p  for all τ≥t .

Hence, ( ) ( ) αθθθ +′′≥′′ 00 ,, ttp  for some ( )ατ tt ˆ≥≥′′  and Lemma 1 applies.


