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1. Introduction

Since the pioneering work of Akerlof (1970) and Wilson (1979, 1980), adverse selection is
regarded as one of the main sources of market failure. In afew recent articles Janssen and
Roy (1999a, 1999b) and Janssen and Karamychev (2000) have considered the adverse
selection problem in a dynamic perspective. They ask the question whether the market
mechanism, by changing prices over time, provide adequate incentives for sellers of
different qualities to sort themselves over time. This question is relevant in markets where
goods have a use value that extends over some time periods and where high quality goods
have a higher use value than low quality goods. They show in a variety of settings that
there exist dynamic competitive equilibria where al goods are traded after a finite number
of periods. The main idea behind this result is that given a sequence of prices high quality
sellers have more incentives to wait (and enjoy a higher use value before selling) than low
quality sellers do. Once certain (low) qualities are sold, only relatively high qualities
remain in the market. Risk-neutral consumers can predict that sellers of different qualities
will sort themselves into different time periods and, hence, they are willing to pay higher
prices in later periods. The equilibria are thus such that higher qualities are sold in later
periods at higher prices.

In these dynamic models, two exogenous factors account for the decision of an
individual seller with a given quality to sdll in a certain time period: the rate of time
preferences (discount factor) and the rate at which goods depreciate. Given the complexity
of the models, it is, however, very difficult (if not impossible) to evaluate the role of each
of these factors in determining the dynamic equilibrium path. The discount factor plays a
role, but because of the discreteness of the time intervals it is difficult to analyze whether
the qualitative properties of equilibria are affected by changes in the discount factor.
Physical depreciation of the goods, on the other hand, is assumed to be absent in the
models considered by Janssen and Roy (1999a, b) and Janssen and Karamychev (2000). In
this paper we analyze the role of both factors in a continuous time version of the model.
As the continuous time version is easier to analyze we are, at the same time, able to
generalize the demand side of the model considerably by allowing consumers not to be
risk-neutral.

We consider a competitive market for an imperfectly durable good where potential
sellers are privately informed about the quality of the goods they own. Each moment in

time a constant flow of sellers with an identical but arbitrary distribution of quality enters
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the market. All buyers areidentical, have unit demand and for any given quality, a buyer’s
willingness to pay exceeds the reservation price of a seller for that quality. As buyers do
not know the quality, their willingness to pay equals the expected valuation of goods
traded at a certain time. The flow of such buyers into the market is larger than the flow of
sellers so that, in equilibrium, prices are equal to the expected buyers valuation. Once
traded, goods are not re-sold in the same market.*

A first result says that only the relative depreciation rate, defined as the ratio of the
physical depreciation rate and the interest rate, determines the qualitative properties of the
equilibrium path. In particular, changes in the interest rate and the absolute physical
depreciation rate that do not affect the relative depreciation rate do not affect the nature of
equilibriain any way. The interest rate itself only determines the speed of evolution along
an equilibrium path and in particular, higher interest rates implies a higher volume of trade
at each moment asit is easier to separate goods of different quality.

Next, we analyze the role of the relative depreciation rate. We first consider the
limit case where goods are perfectly durable so that the relative depreciation rate equals to
zero for any positive value of the interest rate. The main result here says that there exist an
infinite number of equilibria where every potential seller entering the market trades within
afinite time after entering the market. When the quality distribution is such that there are
relatively few sellers around the static equilibrium quality such equilibria only exist when
we alow price to be a discontinuous function of time before all goods are sold. We then
consider the case where goods are imperfectly durable and depreciate over time. A first
observation is that with depreciation the infinitely repeated version of a static equilibrium
outcome is not an equilibrium anymore in our dynamic model. Apart from this
observation we have three types of results. A first result is that if the depreciation rate is
small enough, i.e., if goods are "almost perfectly durable", the qualitative properties of the
dynamic equilibria without physical depreciation hold true. A second result is that if the
depreciation rate is relatively large, all equilibria result in no trade of new goods after a
finite point in time. Finally, at intermediate levels of the depreciation rate, stationary
equilibria, different from the static equilibria, may then emerge where low quality "new"

goods and depreciated goods that originally were of high quality are traded at the same

! For example, in car markets, it is publicly observable how many owners a car has had up to particular point
intime. Hence, second hand markets may be distinguished from third-hand markets, and so on.
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time. A full characterization of the uniform case is given for different values of the
depreciation rate.

The paper is organized as follows. Section 2 sets out the model and the equilibrium
concept. Section 3 shows that only the relative depreciation rate has an effect on the
gualitative properties of equilibria. Sections 4 and 5 discuss the role of the physica
depreciation rate by analyzing the case of perfectly durable goods and imperfectly durable
goods, respectively. Section 6 concludes. Proofs are contained in the Appendix.

2. The Model

Consider aWalrasian market for a good whose quality, denoted by 6, depreciates over time

with arate 0 [0, ). Time, denoted by t, is continuous and t [ 0,0 ). For every time
moment t a constant flow of sellers | enters the market. Let t, be the entry time of seller i
and let 8 be the quality he is endowed with at the time of entry. This implies that the
quality owned by a seller i at time t is a function 8(t)=6 e°“). We assume that 4
varies between @ and 6, where 0<§ <6 <. The set of al sellers, therefore, is
| ={i} ={4.t)} . We denote by () the Lebesgue measure of sellers in the flow | who
own a good of quality less than or equal to 4. We assume that /1(6) is strictly increasing,

absolutely continuous with respect to the Lebesgue measure and constant over time.

Each seller i knows the quality € of the good he is endowed with and derives flow
utility from ownership of the good until he sellsit. Therefore, the seller’s reservation price
is the present discounted value of the flow of gross utility and we normalize this to be
equal to 8. Thisimplies that the gross utility flow is (r + )@ (t), where r is the interest

rate:

6 = fe‘f(t't')(r +3)6 (t)dt.

On the demand side there is an inflow of new buyers at every time moment, which is
larger in size than /u(a_). All buyers are identical and have unit demand and quasi-linear

preferences. A buyer's valuation of quality 6 is v(@), where v(6)>6 and v >0. Thus,

under full information, first, there are always gains from trade and, second, higher quality

goods are valued more than lower qualities. Having bought a good of quality 6 at time



t>t against price p(t), a buyer derives utility u(v(8)-p), where u'>0, and we
normalize u(0)=0.
All buyers know the ex ante quality distribution /1(6) but do not know the quality of

the good offered by a particular seller. Goods that are once bought are not re-sold in the
same market. Buyers and sellers discount the future at the common interest rate r and
maximize their expected utility.

Before proceeding, we introduce some additional notation. Let r[(I ',t) be the price

that makes a buyer indifferent between buying a good from a seller i that belongs to a
certain subset 1'001 a time t and not buying a al. It follows that

ﬁm,t_qu(v(e"’(t't')é?i)—n(l’,t))d,u:O. Adverse selection implies that =(I,7)<¢ , i.e., the

willingness to pay for the average quality in the population is lower than the reservation
price of the seller of the best quality. Thus, the static Akerlof-Wilson version of the model

has a largest equilibrium quality, which we denote by 6,, satisfying 7({i|g < 64.0)= 6.
The measure of sellers in the set 1" is denoted as w(1')=pufiji01}) such that
u(6)=plfifinfe.6l.t =t) forall t.

To simplify our anaysis we introduce the following regularity assumptions.

Throughout this paper, we assume that these assumptions hold.

Assumption 1. The measure function (@) is differentiable on [6,6 ] with strictly

positive and Lipschitz-continuous density function f(0)=/(6), i.e, f(6)=¢, >0 and

11(0)-1(6)<M,|6' 6| for some &,, M, andforal &,60[0,0].

Assumption 2. The buyers valuation function V(9) is continuously differentiable on

[6,6 ] and there exists &, > 0 such that for all 6: v(8)-6>¢, and V() >¢, .

Assumption 3. The buyers utility function u(m) is continuously differentiable on

[2(6)-»(#) »(¢)-0] and there exist M, > &, >0 suchthat M, >u'(m)> &, and u(0)=0.

Given an evolution of market prices p(t), t0[0,), each seller i chooses whether or

not to sell and if he decides to sdll, the selling time. If he chooses not to sell his gross



surplus is equal to & and, therefore, his net surplus equals to zero. If, on the other hand,

he decidesto sell at time t > t; his gross surplus becomes

J:/ (r+0)0.(r)e ) dr + 77 p(r) =0, + e""("’f)(p(z) — el 0)
and, therefore, his net discounted surplusis equal to

s(t)=e"(p(t)-e?g).

The set of time momentsin which it isoptimal to sell for asdller i isgiven by

T(p(t) = argtzr:ﬁaX{s t)st)=g.

If p(t)-e?t)g <0 forall t=t then T.(p(t))=0. Each potential seller i chooses atime
7, 0T whentosdll. Let T={r}  beasetof dl selling decisions. Thisimplies that there
is a flow of goods being offered for sale. We will denote this flow by J, and it follows
that J, ={ilz, =1 .

At any time moment t buyers expect a certain quality distribution to be offered for
sale. This determines their subjective willingness to pay for the average good at time t,
which will be denoted by 7(t).

A dynamic equilibrium is an equilibrium where all players rationally maximize their

objectives, expectations are fulfilled and the market always clears.

Definition 1. A dynamic equilibrium is described in terms of a path of prices p(t), buyers’

willingnessto pay 71(t) and aset of selling decision = ={r} ., suchthat:

i0l

a Sdlersmaximize: 7, OT,(p(t)) foralidl ,i.e., every seller i choosestime 7, to trade
optimally.

b) Buyers maximize and market clear: If x(J,)>0 then p(t)=rdt), i.e, if thereisa
strictly positive flow of goods offered for sale at time t, then each buyer gets zero net
expected utility so that he is indifferent between buying and not buying and market
clears. If p(J3,)=0 then p(t)=nlt), i.e, if there are (amost) no goods for sale at
time t then each buyer can get at most zero net expected utility. Hence, it is optimal

for him not to buy at that time as well.

c) Expectationsarefulfilled when trade occurs: If 1(J,)>0 then 7{t)=r{J,,t).



d) Expectations are reasonable even if no trade occurs: If trade stops at time £ and
the lowest quality left in the market is 6 then for al t>{ until the trade starts again:
mft)= v(e'(t'f)‘s Hmm), where 8 . =mi n{Q,é}.

Given the set-up described above, conditions (a)-(c) are quite standard. Condition (d)
is introduced for the formal reason that the buyers willingness to pay is not defined when
no trade occurs. The condition says that even if the flow of goods offered for sale is zero,
buyers should believe that the lowest quality offered is larger than the apriori lowest
possible quality at that time. This condition assures that autarky, i.e., no trade at any time,

cannot be sustained in an equilibrium of the dynamic model.

3. Equilibrium Dynamics and The Role of The Interest Rate

The model to be solved includes three exogenous functions 1(8), v(8) and u(m), and, in
addition, two exogenous scalar parameters, r and 6. Obvioudly, all of them could affect the
model’s outcome and our aim is to understand the way they do. In this section we first
describe the system of differential equations determining the dynamic equilibrium path.
We then show that the interest rate r and the physical depreciation rate ¢ only effect the set
of dynamic equilibria of the model through their effect on the relative depreciation rate <.
We start our analysis by arguing that if agood of certain quality sells at timet, then all
goods with lower qualities at that time that have entered the market before (and are still in

the market) will also sell at that time. Given any p(t) aselleri by selling at timet earns a
net discounted surplus e (p(t)-e**)g ). Maximizing this expression yields the first

order conditions:

a) T(gi):ti’ if p(ti)+(r+5)0i(t)srp(ti)'Or

b)  p(r(@))+(r+2)g(t)=rp(r(g)), if p(t)+(r+3)a(t)>rolt).

The second order condition is simply p(r)<rp(r)+a(r +0)8(t) if 7(6)>t,. Implicitly,
we have assumed that p(t) is twice differentiable. Aswe will see, the solution we obtain

is such that this assumption is satisfied.
At first we will look for equilibria that satisfy the second order condition for all &, .

Thisimplies that for any given 8 the optimal selling time T(@i), if it exists, isunique. We



will see that there are equilibria such that high quality sellers will never sell. If thisisthe
case then the first order conditions are never satisfied for them and the optimal selling time
does not exist. Then, the first order condition (a) says that a seller should sell immediately
upon entering the market, i.e., at time t,, if the benefit of using a good rather than selling at

time t,, i.e., the use value of the good (r+4).(s) plus capital gain p(t ), is smaller than
the opportunity cost of owing the good at the entry time, which is rp(ti). If, on the other
hand, the benefit is larger than the cost, then the seller should wait and use the good
himself until the moment they are equal to each other and sell at that time, condition (b).

Itisclear now that if a seller of quality 8 sellsat timet then all sellers with qualities
from the range [ 6,6, ], who are in the market at time t, also prefer to sell at that time t.

This allows us to define for any t a marginal seller 6(t) as the seller of the highest quality
at that time:

o(t)=suplg i 09} =

s (rp(t) - p(t)),
or
plt) =rp(t)-(r +a)e(t). (1)
Differentiating (1) yields:
b-rp-3(r+3)8=rp—(r +3)8-rp-3(r +05)8=—(r +5)6+6),
which implies that the second order condition requires 8+J6>0 and, therefore,
e (t)> 0 to be an increasing function.

Now we are able to derive the main equation that must be satisfied along the
equilibrium path. Let us consider an infinitely short time interval (t,t +dt). All qualities

that entered before and at time t from the interval [ 8,6(t)] have already been traded and all
qualities from (8(t),0] are still in the market. Expected utility at time t+dt from buying

goods of quality from therange [ 8,6(t)] is

()
dt q; u(y (x) -p (Z))f(x) dx .
In addition to these, “new” goods, some “old” goods will be also traded. Those are goods

that were in the market, which quality was higher than 6(t) at time t, and which quality

becomes smaller than 6(¢)+6(¢)d attime t +dt . We have to calculate the expected utility
of buying these goods.



Let us consider an infinitely short quality range (0(7),6(s)+46) a timet. All the
goods of quality from theinterval (7 0(s),e” (0(r)+ 40)) that entered at time t -7 will fall
in that range after depreciation. The measure of such goods is /u(e” (0 + dﬁ))— /u(e” 0) or,
in first-order term, 40 [@” (e"’ 6). Integrating out the corresponding density e f(e‘” 9)
over 711(0,t) yields the following density of goods of quality just above 8(t) at timet:

ﬁeér f (eér e)dr :%I; f(ear H)d(e"f H)ZW-

The expected utility from buying these goodsis

o(t)+6(t)dt u(V(X) : p(t))w dx.

8(t)-06(t)dt

Taking the first order term yields

atuuia()- pl) 48" OO0 5. o).

36(t)
Hence, the unconditional expected utility from buyingagood at time t +dt is
a e Joxul(alt) - plt) 48 9(;2(;)”(9“» (60)+ Je(t))g,

which must be zero for all dt. Hence,

6O o) )2 D=0 i )<

0

or

- F(6,p) _
9‘59%@(9)—@(/4(& 6)- 1(6)) 4

where F(8, p)= J’e

f u(v(x)- p)f (x)dx isthe expected disutility of buying goods of quality
from the range [ 8,0 ] against the price p in the corresponding static Akerlof model. F is
differentiable in both arguments and strictly increasing in p function. By definition,
F(65,65) = 0. Together with (1) we have finally obtained the following system

Dp =rp-(r+9)8
F 9 p

P i) ?

which describes the evolution of price and margina quality along an equilibrium path.

If we rescale time by the parameter r as ¢ = rt, then the system becomes



e 2
S .
L it
0 ﬁ(v(e)—p)gu r eﬁﬂ(e)ﬁ :

One may easily note that the interest rate r and the physical depreciation rate ¢ can

influence the solution only through the ratio ¢, which we will cal the "relative

depreciation rate". Thisisour first result.

Proposition 1. For any given level of 2, the interest rate r and the physical depreciation

rate 0 only determine the speed of the evolution along an equilibrium path. The set of

dynamic equilibriaonly dependson <.

Having established the way interest rate influences dynamic equilibriain what follows
we take r =1 without loss of generality assuming that now ¢ is a relative rate of

depreciation.

4. Dynamic Equilibriafor Perfectly Durable Goods

We start investigating equilibrium properties for the case of perfectly durable goods. In
view of the fact that d =0 is asingular point of (2) we have to take a limit of its second
equation when o — 0 todothis. As
& n)_ & &

et 6)-ule) | oetii(e0)

6-0 o6 6-0 2]
uniformly for al finitet, system (2) could be written as

Jp=p-6

,___ _Flep) . @3)

£ Ehe)-p)

As ?>O we define a function 7,(9) as F(z,(¢),0)=0, which is just a buyers
p

willingness to pay for a good of quality from the range [ 8,8 ] in the static model. Then,

=tf (0)

we define «(¢)as
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alf)= dﬁ"'(e):—Hg:gH - ”(”(6)_77.3'(‘9))f(6) >0.
(¢) 40 H%H,(M(ﬂ»zo Iﬁﬂ’(p(x)—ﬁx(ﬁ)) () 0 (4)

0

Hence, 77,(0) is strictly increasing function.

Figure 1 shows the vector field of the system for some fixed t >0, which is given by

dp _p_, f(6)uv8)-p)p-0)
do 6 F (8, p) '

g e ]_A_\es >9

Figurel.

As p<v(8) no dynamic path that is a solution to system (3) can be above the line
p= V(H). On the other hand, for any solution to be a dynamic equilibrium it must satisfy

p=48, i.e, the surplus of the marginal seller may not be negative. For al intermediate
values of prices where 8< p<v(8), £>O. Finally, if F(p,8)=0 then =0, p>0
and tangents at such points are vertical for any t >0.

Multiplicity

We will show that there exists a neighborhood U such that for any 8,0U system (3) with
initials 8(0)=6, and p(0)= p, = 775(6,) has a solution (6(t,8,), p(t.8,)), like the solution
denoted by the dotted linein Figure 1, with p= 6. What we will prove then in Proposition

11



2 is that for al §,0U there exists a T(6,)>0 such that all equilibrium conditions are
fulfilled, price and marginal quality increase over the time interval (0,T(6,)) and either
0(T,6,)=6 or 6(T,08,)=p(T,8,)>6. In both cases 8(T,8,) is the largest quality that
can be traded in that equilibrium and we can extend (6(t,8,), p(t,6,)) in a periodic way,
namely by defining p(t+T)=p(t) and 8(t +T)=6(t), in this way we obtain a dynamic

equilibrium where all goods from the range [ 8, é] are traded, where 6 = B(T).

Proposition 2. For o =0 there exists an infinite number of dynamic equilibriatrading all

goods from a certain range[Q,é], where éD(ag,a_].

Proposition 2 implies that the repetition of the static equilibrium is the only stationary

equilibrium. If we choose any arbitrary 6, <6, the dynamic path will be such that

eventually more than the static equilibrium amount of goods will be sold.

Equilibria Trading All Goods

So far, we have shown that for all distributions we can trade more than the static
equilibrium quality if we alow for trade to take place over time. In this section we extend

this result by showing that all goods can be traded if we relax the assumption about
continuity of p(t).
In the following Proposition 3 we show that there exists an infinite number of cyclical

dynamic equilibriawhere all goods are traded at time T,2T,3T,...

Proposition 3. For § =0 there exists an infinite number of dynamic equilibria (6(t), p(t))

such that for some T:

a p(t+T)=plt) and Ot +T)=6(t);

b) 6(r)=0;

¢ O(t) and p(t) are strictly increasing functions for al t[(0,T) except (at most) at a

finite number of points {t(k‘)}::1 where both functions are discontinuous.

Figure 2 represents a typical equilibrium path B(t). Within each cycle n, where

(O(#T,(n +2)T7], the path is piecewise continuous, i.e., 8(t) is a solution of (3) for every

12
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Figure 2.
subcycle tO(t%) t* ], k=12,...,K , where K is a finite number defined in the proof of
Proposition 3. The equilibrium construction is such that all sellers of quality 5 earn the

same discounted surplus by selling at t = t® k=01,...,K -1. Hence, they are indifferent
between selling at each of these moments.

The discontinuities described in Figure 2 are used to build up enough time and high
quality goods to allow the expected quality to improve enough to trade all goods. One may
wonder whether these discontinuities are required for all distributions of quality. Next, we
will show that for certain distributions we can construct infinitely many equilibrium paths

with 8(t) and p(t) being continuous and strictly increasing over the whole cycle (0,T). In
the proof of Proposition 2 we have defined a=a(6,). We will show that this parameter a
plays a crucial role in analyzing when continuous price equilibria exist. First, it must be
that 0<a<1. To thisend, consider the surplus of the marginal seller in the static model,
denoted by s, asafunction of 6: s'(6)= p(6)-6 = m,(6)- 6, and, then

ds (KY)(H.S‘)
do

=aq-1.

Suppose then that a>1. Thiswould imply that s°/(8)>0 in some right neighborhood of
6. But this contradicts the assumption that &5 is the highest static equilibrium quality.

Hence, generically, a<1. Lastly, a(9)>0 under assumptions 1, 2 and 3. The case where
a =1 isanon-generic case.

It turns out that the value L2 determines the qualitative behavior of (6, ) in the
neighborhood of (¢,,6,). Functions %{r) and §(t) that are the solutions of the
corresponding linearized system behave quite differently depending on whether £2 is
smaller or larger than 1, i.e., whether a is larger or smaller than 1. Figure 3 shows the

13
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Figure 3.
solution (%, §) as a parametric function §(X) with the parameter t, for two different values
of a, a=0.1 and a=0.6. One can see that in the former case §(X) oscillates around the
origin so that the second order condition (6 >0) is not satisfied. In case a=0.6 X(t) and
y(t) are increasing functions so that in the neighborhood of the static equilibrium quality,

prices and marginal qualities are increasing functions as well.

Proposition 4 constructs for quality distributions with a>21 equilibria trading all

goods where price and marginal quality are continuousin every cycle.

Proposition 4. For 6 =0 and a>+ there exists an infinite number of cyclical dynamic
equilibria (6(t), p(t)) such that:
a p(t+T)=p(t) and 6(t+T)=6(t);
b) o(r)=0;
¢) 6(t) and p(t) are strictly increasing and continuous functions on (0,T).
The result obtained in Proposition 4 says that in case a>3 we can choose 6,

sufficiently close to 85 such that we do not need to build more than one subcycle in order

to build up enough time and high quality goods to alow the expected quality to improve
enough to trade all goods. Basically, the condition a>4 says that in a neighborhood of

14



6 there is a sufficient mass of goods so that at the moment when the marginal quality

becomes larger then 65, the marginal seller is able to make a positive surplus.

5. Dynamic Equilibria for Imperfectly Durable Goods

Now we turn back to analyze system (2) for the case where the good under consideration is
not durable, i.e., 0 >0. We start our analysis by considering two extreme cases, when ¢ is
very large and when ¢ is close to zero. Then we will consider intermediate values of . As
the expressions to be discussed are relatively difficult to interpret we use the linear model,

where »(0)=2»6, «(»)=m and £(6)=1, for illustration purposes. In the linear model

1<v<2and x(0)=0-0.
High Relative Depreciation Rate

Suppose first that 5 > max (#) =4 . Wewill show that in this case, we get back atype of

traditional "Akerlof-result": after some moment in time no new goods that come to the
market will be traded. The argument can be sketched as follows. In any continuous
equilibrium  path (6(t), p(t)  price  decreases  over  time  as
p=p—-(@1+5)9<»(0)-(1+05)s <0. Thispricedynamicsleads to the following: either at a
certain moment /' price (/') becomes smaller than ('), i.e., the marginal seller earns a
negative surplus »(/')-6(s) and the path (8(t), p(t)) cannot be a dynamic equilibrium, or
price (/') becomes equal to »(¢). In the latter case the marginal quality at that moment
6(;') must be equal to ¢, in other words, only the lowest quality ¢ is traded at that time
and there is no uncertainty about quality. Indeed, if it had been 0(/') > ¢, then some higher
quality goods would have been traded and the price must have been higher than »(0).

From that moment on the price p(t) will always be strictly smaller than »(¢), hence,
the marginal quality 8(t) will always be strictly smaller than 8. Therefore, the second
dynamic equation of (2) is not valid any more. This equation should be replaced by a
simple dependence » =»(¢) as 6 <¢ foral s>/ and the only quality that will be traded

at time t is 6(7), hence the price must be equal to »(¢). The first equation of (2) is still

valid and we get the following system
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= p (L4 o)
@ =(0) ’
which can be rewritten as
v(0)-(1+5)0
0N ©

Whatever solution with initials 8(t') =8 the above equation hasit is clear that 0 <¢ for all

0 =

+>/",1.e, nonew goodsthat just entered the market will be traded.

One may wonder what happens if we allow 0(;) to be discontinuous. It turns out that
the results remain the same if we require that trade takes place at every moment in time.
Indeed, suppose that at a certain time moment / the marginal quality is discontinuous.
Then, the price at that time must be either continuous, hence the first equation of (2) is
valid, or the price has a strictly negative increment. In the latter case the first equation of
(2) will be working just after time / and, again, =p»—-(1+4)0<»(0)-(1+4)0<O.
Therefore, in both cases the above analysis leads to no new goods trading after a certain
time. The reason why price may not have a positive increment at /' isthat in this case al
the sellers who sell just before / would wait the instant price increase and there would be

no trade just before /. The above argument is summarized in the following proposition.

Proposition 5. If§ >4 then there is no trade of new goods after a certain time moment

along any dynamic equilibrium path where trade takes place at every moment.

For the linear model the expression for 5 simplifies to 6 =» -1 and equation (5)
5-(v-1)
v

takes the form 6=- 6. The solution in this case exponentially converges to

zero, which implies that the marginal quality traded becomes almost worthless. Hence,
when time passes, amost no gains from trade are realized as in the pure adverse selection
result in the static model analyzed by Akerlof (1970).

Low Relative Depreciation Rate

For the case of arelatively small value of 6, we rewrite system (2) as

_s9=__ Fle.p)  _
T 7 T e B
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where £,00(01). Then,

Fe.p) _ Flep) H_ &8
u(v(6)- plf (e 6)  u(v(6)- p)f (e)ﬁ "t a E
where
K4 :f(eglt'j/0)_f(0)D(_M,f’M/‘)

(9(651,”_1)

foral 6 <6 -, and £ 0(01). Hence, system (2) can be written as
Ep =p-6-96
- Fle.p) _JEJ AF (6. p) _9%
=7 ule)- ) (@) °Fiv(e)- )t ()

where A is bounded for al #<6 -<. Hence, any solution of (2), being written as

(6(2,6,,6), p(2,6,,6)), uniformly converges to the solution (8(t,8,), p(t.8,)) of (3) for all
6, and all t such that 6(z,6,) <6 — = when & converges to zero. Now, let us define 7(¢) as

0(7().6,,6)=0 <. Itfollowsthat [ir%é(z, 0,,6)=+oo for r27(c). Hence, O’ >7 such

that 0(T‘5 ,60,5): 6 . We can state this result as the following proposition.

Proposition 6. If a>1, then there existsa 4 >0 such that for all 4 0[0,4 ) there exist an

infinite number of cyclical dynamic equilibria (8(t,d), p(t,d)) such that for some T° >0:

a plt+T?)=plt) and 6t +T°)=6(t);

b o(r)=a;

) 6(t,5) and p(t, ) are continuous functions on t0(0,T°).

Let us consider an example, where =10, § =20, f(8)=e**? ,(g)=1.20,
%(777) =m and d =0.01. Figure 4 showsthat all goods are sold in finite time. Proposition
6 generalizes this example and argues that we can extend the conclusion of Proposition 4
to the case where ¢ is small enough.

Although the result obtained in Proposition 6 is proved for the case a>3 only, we
think that it is valid for any value of a. As for O0<a<$ without depreciation the
equilibrium path is piece-wise continuous the proof would be much more technical without

adding new insights.
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Figure 4: An example with a unique unstable steady-state (6 =10, 6 = 20,
f(6)=€"1?9, y(9)=126, u(m)=m, 6=0.01).

I ntermediate Range of Relative Depreciation Rate

Having established dynamic equilibrium properties for two extreme cases, when the good
isamost perfectly durable or when it depreciates quickly, we will analyze the properties of

the equilibrium path at intermediate values of the relative depreciation rate. Having
initially been time-dependent the system becomes autonomous for large t when e’ =46 ,
which is guaranteed by the second order condition 8+06>0, and, therefore,

/zz(ﬁ eé/) = p(ﬁ_) . We consider the corresponding autonomous system:

p=rp-(r+0)0
- F

- 50 @p
ﬁg JHHJ(V(H)-D)(/J@)-#(H)) 1%

We will show that there exists a steady state (HD, pD) , Not necessarily unique, such that

(6)

(6(t). p(t) = (6", p°) is a solution of system (6) for al t=1InZ when 6t)e* 2.

Indeed, solving for 8(t)= p(t)=0 yields:

(0, @ 0)0) =0 (0) - @+ 0ol (0) )
Suppose that 6 <"~ =5 <5 . As F(6,(L+0)8)=0<u(v(6)-(1+0)e)((6)- u(6)) and,
on the other hand, F(@,(1+6)8)>0=u(v()-(1+05)8)u(6)- (7)), there exists at least

one point 0”0 (Q, E) that solves (7). Hence, thereis at least one steady state.
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For the linear model (0, p)=(0 - 0)(» % +(0 + 0)) and system (7) simplifiesto

O p=@+0o)

Ho-0)(w+ o) =200 +0)= 6o -l oo -0)
Having been considered as a function of 6 the left-hand side of the second equation is a
quadratic function decreasing at # where it equals to zero and increases at # where it is
positive. Then, the right-hand side is a quadratic function as well, which has zeros at 0 and
6 and is positive between them. Hence, the system has two solutions, the first one
between 0 and ¢, which is not feasible, and the second, which is being searched for,

between ¢ and 6 . So, for the linear model the steady state is unique.

The natural question about the local stability of the singular point ( 7, pD) for the

general model can be resolved by taking a linear analysis of (6) in the neighborhood of
O O
6" p

v

. The corresponding linear systemiis:

—y- (1+ 5) )

e o )y e - b))
vl - o ) o)~ o Jule)- ule

where p=p +y and 6 =0" +x. (67, p") isstableif

e /i 7)oM) Nule)- e vie)<o,

DJJ:IDD@_DQ
1

which can be stated as J > (V(e )_(1+5 ) The latter inequality cannot be
uivig’)-(a+o)g pie' )

solved at the current level of generality. For the linear model, the inequality ssimplifies to
v—1
v+1

o> =4,

For the general model we can show by means of examples the richness of qualitatively
new phenomena that may emerge along possible equilibrium paths. The examples are
presented in Figure 4 and Figure 5, where a cross denotes a steady state. Figure 4 shows a
case Where a steady state exists, but is unstable. An equilibrium path is depicted where all
goods are eventually traded, even new goods of relatively high quality. Figure 5 sows that
a stable steady state can be either below the static equilibrium as in the left graph, or above
it as in the right graph. Unlike the static equilibrium in these stationary equilibria all
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Figure 5a. Figure 5b.
6=10, =20, f(9)=€e1?, ,(9)=1.20, 6=10,6=30, f(6)=e°%9, ,(9)=1.20,
u(n)=m, 6=01, 6" =11.82 and g, ~13.01 ulm)=m,5=01, 6 =17.32 ad 6, ~14.94

qualities are eventualy traded in the market. However, owners of qualities 8 >0 first

wait until their good has depreciated to 8" before selling.

Figure 6 finally shows an example of unstable steady state with a periodic cycle. Here
Jis"dightly" below ¢°. Then ( 5, pD) is not stable but there exists a cycle, i.e., a*“closed
loop” or a periodical solution of the corresponding autonomous system. In the long run
price aswell as marginal quality fluctuate with an asymptotically constant period.

The three cases discussed above are summarized for the smple case of the linear
model in Figure 7, where the system (2) takes the form

p—(r+ 5)

p
ol 6-6)(p-3(6+6))
E@ 360 (9 p(e b 1%

13,2 4

13

12,8 4

12,6 4

12,4 4

12,2 T T T
10,5 11 115 12 12,5

Figure6.
6=10,60=20, f(8)=e? 4(9)=1.20, #(%)=m and 5=0.09
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No trade of new goods

UnStab|e Stea:iy state Stable Stewy state after some tl me in any
equilibrium
Infinite number of equilibria
b
® ! >
0 0 v-1 v-1 0
v+1
Figure7.

The figure shows the different possible equilibrium paths for different values of the
relative depreciation rate. There are four relevant regions. First, for al ¢ larger than v-1
trade of new goods stops after some time. Second, if & smaller than v-1 bus still larger

than X1 there exists a steady state, which attracts the evolution path, and in the long run

v+l

price as well as marginal quality are constant. Third, for all 6 smaller than -1 the steady

v+l

state is not stable but, and this is the fourth region, if J is smal enough than there are

infinite number of dynamic equilibria where marginal quality increases up to the highest

quality 6.

6. Conclusions

In this paper, we have studied the role the interest rate and the physical depreciation rate
play in dynamic competitive equilibria under adverse selection. Without physical
depreciation, the infinite repetition of the static (Akerlof) equilibrium is one of the
equilibria in the dynamic model. There are, however, infinitely many other equilibria
where all goods are sold within finite time after entering the market. These results change
when physical depreciation is taken into account. When the depreciation rate is small,
repetition of the static equilibrium stops being a dynamic equilibrium, but there are still
infinitely many other equilibria where all goods are sold. When the depreciation rate is
relatively high, all equilibria exhibit no trade of new goods after some finite moment in
time. At intermediate values of the depreciation rate, new stationary equilibria may
emerge where all goods are eventually traded. In this type of equilibrium, owners of high
quality goods sell only after the good has depreciated enough. All these results are
independent of the value of the interest rate.
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Appendix.
Proof of Proposition 2

Under assumptions 1, 2 and 3 for any t, >0 and (6,, p,) such that v(6,)# p, system (3)
with initid conditions 6(t,)=6, and p(t,)=p, has a unique solution

(6(t.6,, py.t, ). P(t.6,, Port,)), Which is continuous w.r.t. 6, and p,. Considering 6 asa

functionof 6, pandt,i.e, §=0(6, p,t)= - (9;: ((3(5))_ o) allows us to write:
- Fe.p) __ F(6(0) p(0))
im0l 2 D= (ghle) ) TlG@hital) - 0

Hence, system (3) has a solution even for t, =0, but not necessarily unique. The
uniqueness is guaranteed by the fact that t©(6, p,t)#6 +const. Finally, that solution is

differentizbleat t =0 aslongas | ino1(t@(9, pt))=0,i.e, p,=7,(0,), and wewill denoteit

as (0(z,6,) p(2,6,))=(6(z,6,7,(6,).0), p(z, 605, 7,(6,).0).  Indefiniteness of 6(0,8,) is

resolved by continuity:

- e L Fe,p) _ 1 __F(6,p)
Ol06)=1imélt6)=lm o a0 TaneE ) ¢

= 1(8)ull6,)- p,JE(0.6,) + pl0.6)* (u{x) - p.) (o

Hence, 6(0,6,)= 54 #(0.6,), where a(6,) is defined in (4) and, therefore,

B—H —p°-2a )>a(8,) = nséz

MO0, 6, 0dé
Thisimpliesthat for small t >0 p(t,8,)> 7(6(t,6,)) aslongas p, = 75(6,) -

0

g,>
Now we define 6, as 6, =inf{|060(¢',6,): 7,(6)> 6} and U as U =(g,,6 )such
that for all 6,00 11,(6,)>6,.

Finally, we will show that there exists a neighborhood U OU such that for any
solution (6(t,6,), p(t,68,)) of (3), where 8,0U , there exists atime T(6,)> 0 such that for
al to(oT) p>6 and (p(T)—H(T))(?—H(T)):O, i.e., either all goods are sold or the
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margina surplus is zero at time T. If this were not the case then there would have been

limp=1im@ =¢" asp and 6 are increasing and bounded: 6<8, p<v(6?)sv(§). But then

F(6, p)
tf (6)u(v(6) - p)

_1@ F(e.6) +£(t)%

“tof(e)ulv(e)-9)

the equation 6 =

for large t becomes

where lime(t) = 0, and, therefore,

t o0

() F(e.0)

Int St
2tne)-a)

for sufficiently larget. Hence, !im@(t):oo unless F(6',0')=0,i.e, 8 =6,.

In order to rule out the possibility that 8 =6, (and, hence, that 6(t,8,) and plt,6,)

convergeto 8’ < 8) we rewrite system (3) asfollows

Ep:(p_QS)_(H_HS) '
- 6-6,) 0-6)
ROTI—

where « =a(¢,) and [B(6, p)| < uniformly in a certain neighborhood U OU of 6.
Thus, for all 8,0U the solution (6(t,8,), p(t,8,)) can be written as

E6('['00) =65+ (65 - 00);(('[)"' 0(05 _90)
Ep(’[,@o) =65+ (65 - 80)9(t)+ 0(05 _90)’

where (X(t), 9(t)) solves the corresponding linearized system

@ - ;(_yx- ax) A

with initids x(0)=-1, y(0)=-a. Defining k(t)=%Y alows us to rewrite (A.1) as
k=-(1-k-k=X). As @<, p<B and p>7ng(6) for all tO(0,0) then x<0, y<O0
and y>ax. Hence, kO(0,a) and k<-%2<0 for sufficiently large t. Therefore,

limk(t) = —e, which contradicts k0(0,a).

Hence, for any 8,0U [T (6,)> 0 such that either 8(T,8,)=6 or 6(T,8,)= p(T.4,).

In both cases we extend (6,p) in a periodic way, namely p(t+T)=p(t) and
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A(t+T)=6(t). In order to show that 8(T)>6, when 8(T)= p(T)<8@ let us consider two

cases.

a)

b)

6(T)=65. This contradicts with the uniqueness of the solution with initials
6(T)=6,. Indeed, we aways have a static solution 6(t,6;)= p(t,6s)=65 and we
have found another, namely (6(t,8,), p(t.6,)), such that 6(T,8,) = p(T,8,) = 6s.

6(T)<6,. Thisimpliesthat 77,(6(T))>6(T), which can never happen as for small t

71,(8(t)) < 8(t) and no solution may cross the curve p = 77,(6) from aboveat 8 <6,.

Hence, 6(T)> 6.

As we have obtained a discontinuous function p(t), we lost the sufficiency of the first

and second order conditions. So, we must check the optimality of the stipulated sellers

behavior directly.

Let us take a seller i with quality 8 and entry time t, O[nT,(n+1)T), where n is the

entry cycle’snumber. If 6 > 6(T) then he will never sell, which is clearly optimal for him.

If, on the other hand, 6, < 8(T) then there are two possibilities.

a)

b)

6 >0(t). In this case he maximizes his surplus by selling in the current cycle n at
time 7,(8), where 6(r,)=8,, and getting 5(r,)=s(r,), see Figure A.1 (), and it
follows that 7, >t.. Indeed, within a cycle the first and second order conditions still
work so thereis aunique optimal selling time 7. If he, however, had been waiting for
the next cycle (n+1) he would have chosen time 7/(9)=7 +T to sell, where
0(r)=6, and got s(r/)=s(r’). But p(r,)=p(r, +T)=p(r]) and the seller i will

certainly choose the earlier time ;.

6 <6'(ti). In this case let us first investigate the marginal surplus function

s(t)=e(p-0). Differentiating yields i =—<™" ¢ and, finally,

Although the above expression has been obtained only for 0[O, T] it holds for any

+>0. Toseethis, suppose /0(#T,(» +1)T]. It then follows that
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s(t) 4 caset) | s}

\Case a) \

\ S (Ti)
s(n’)»
o(r))
FigureA.l
ds — _onT ds _ — T o (t-nT) — _ -t
t)=-e"™ =(t-nT)=-e"e"" =-¢" for />0. (A.2)

dé dé
Hence, s(t) is a positive, decreasing and convex function on (nT,(n+1)T). These
properties allow us to validate the maximum principle across different continuous
segments of an equilibrium path.

Now let us define 7,(6) such that 7 O(#T,(»+2)T] and 6(r,)=8, in this case
I, <t , see Figure A.1(b). If selleri sellsimmediately after the entry, i.e., at time t,,
he gets

s(t)=e"(plt)-8)=e"(p(t)-6(t))+e" (6t)-8)=s{t)+e" (6()-6).
while if he waits until the next cycle (n+1) he will choosetime 7/(@)=17, +T to sell,

where 6(r) = 6,, and, therefore, his surplus becomes

s()=e" (p(r})-8) =" (p(r}) - 6(r})) = s(r}).
In order to show that s(t)>s(r) for al @<8(t) let us consider
AB)=5s(t)-s(r) asafunction of 8 and apply the mean-value theorem:

s(r))=slt, +T)+ (6(r) -6t +T)) & () =7 sft) + (6(t) - 6)e™

for some 7, O(r/,t +T). Then

8(6)=5ft)+ e (6(t)-6) e oft)- 6t -8)e " =

= 4t, )(1— e’ ) +(6(t)-8 )(e“' e )> 0.
Therefore, we have shown that for any 6,0U (6(t,6,), p(t.8,)) constitutes a dynamic

equilibrium trading all goods from the range [ 8,6, where 6 = 6(T) > 6. n
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In order to prove the following propositions we need the following lemma.

Lemma 1. For any numbers d,0[6,,0 ) and p,1(6,,v(6,)) there exists f >0, depending
on p, —6,, such that for all t, >{ system (3) has a unique solution with initials 8(t,) = 6,

and p(t,) = p,. Moreover, thereexistsafinitetime T >f suchthat 6(T)=¢ .

Proof. Under assumptions 1,2 and 3 for any t, system (3) has a unique solution passing
through (6,, p,), where 6,>6 and p,0(6,,v(6,)). All we need to show then is the

existence of Tif t, istaken to be sufficiently large. Wedeffinea'Emin{pO O,ZEJ and

ZEM_ (A.3)

£s6,6,a

As ¢ is afunction of p,-6, sois 7. Now let us consider the solution mentioned above

when t, >{ and supposethat p(t)-6(t)=a for somet=t,. Then

9 (0-0)=69 (p-0)= BB— 1§=05— -1H

dt dée
Using (3) yields

d(p-0) _ _g
dt

% f( (p 6) _ 1E> QE &€ (V(g) —_p)a _1E>
>9§£f 0+£ )a _15:95&%(&_9
Hs,v F6s,v\8
5 9% £rbued 1E> GE Erfued -1%: 0.
ZFIHS,VIBH ZFIHS,VIBH

Thus p(t)-6(t)>a >0 forall t=t,. Now it becomes clear (see proof of Proposition

2) that for some T we must have 6(T)=6. n

Proof of Proposition 3
We first define functions (6(t), p(t)) for all /0[0,7,] and some t, such that the condition
of Lemma 1 is satisfied, i.e., 7,>7(a), where a = p(t,)-6(t,), and 6(t,)=65. Then we

show that (8(t), p(t)) actually is an equilibrium path. Lastly, Lemma 1 says that all goods

aretraded by acertaintime T.
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We have already shown in proof of Proposition 2 that for any 6, 0U and p, = 775(6,)
system (3) has a solution (6(t,8,), p(t.8,)) and 6(T)>6, for some T. As 6(t,6,)>0, it
follows that for al p0[6,,0(T)] there exists an inverse t(8,6,) such that
0(t(B.6,).6,) = B. Function t(5,8,) is continuously differentiable on 3 0[6,,6(T)] and
continuous w.r.t. 8,. Hence, p(t(B.6,).6,) is continuous w.r.t. 8, as well. We define
r(6,) by 1(6,)=t(6:.6,), so that 6(r(6,),6,)=6; for al 6,0U. Note that
p(z(6,).6,) > 6(z(6,).6,) = 6s.

Now we will solve the linearized system (A.1). First, it can be rewritten as Kummer’s
equation (see Abramowitz and Stegun, 1972, pp. 504-515):

tx+(2-t)x-x(-=2)=0
with initids x(0)=-1, %(0)=%2. The unique solution is the negative to the so-called

Kummer’s function M (a,,a,,t), with a, =—%2 and a, =2. Turning back to (A.1) we get:

— 1-a = —a S r(n_l;aa) "
(t)=-Mm (—T,Z,t)—-“la 2 Ao

—_gd —1la = nzj_l_aw r(n_l;aa) n
(t)=—as (M T,z,t))_aEl 25 il E

where F J; e't*dt isthe Gamma-function, and

(A.4)

R ONEO

n- 1-a
to=)- - -2 <o)
Now we define  as X(w) =0 and it followsthat « >0 and §(w)>0. As
56('[’90) =65+ (95 B 90))?('[)*' 0(95 _90)
p(t.6,) = 65 + (65 = 6,)9(t) + 0(6s - 6,)°
the functions X(t) and y(t) describe the behavior of the solution (8(t,6,), p(t.8,)) in the

neighborhood of p=6=6; andit followsthat lim r(6,) = w and
_p(r(8,).6,)-65 _ .
H(IJI—I:QS 9(; - 20 - = y(w) .

Therefore, there exists a left neighborhood of the static equilibrium quality
U“’E(_O"’,HS)DU such that for all 6,0U“ 7(6,)>1w.
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Now we are ready to construct the pair of functions (A(t) p(t)). Let us take any
6 0U* and define 70 =7(Y), 69(t)=6(.6Y) and p?(t)= plt.6”) on to(0,7Y],
s9(t)=e(p(t)-69(t)). By construction we have 7% > 1 and s9(r%)>0.

Let us now consider the function p®(8,) = p(z(8,).6,) -85 — s(r") as a function of
g,. Itiscontinuous on [95”,951. Moreover,

p% (Hél)) = p(r (Bél) ) Hél)) -6, -5V (T (1)) =g, +e" sV (r (1)) -6, - sV (r (1)) >0,
and

o90,)= p(c(0,),0,) -0, = sO( D) =9, -0, - s0(:0)<0.
Therefore, 162 0(6Y,6,) depending on 7(6,) such tha p%(g?)=0, ie.,
p(r(6?).69)=s"().  Agan, we define 7@ =7(6?), 69(t)=6(t.61) and

p(t)= p(t,@éz)) on tD(O,T(Z)], sA(t)= s(t,@éz)) and, again, 7@ >1w.

Repeating this process, we get a sequence {r(k)} such that lim Zler(") ©. We

define K 21 to be the smallest number such that $* 7/ >f(p®(r®)-69(®)). Then,

we define t* as /A = zl\ ‘[(’/), so that t™) = 0, k) = T(K), (k-2 = 7<) 4 (k) peeey

jekH

and /% = ZK ) >7 . Finaly, we define an equilibrium path for t0(0,t] as follows:

Jo1
p(t.6,)= p(t-t*), 6(t.6,)=6M(t-t*) and, therefore, st.8,)=e"" s¥({t-t®) for
0(t®), ¢, For t>t0 we take the solution
(6lt,69(t@), Ot @)t@), plt, 69 @), pP(t@),@)) of (3) as an equilibrium path.

It can be easily seen that within every interval (t*),t4?] a sdller chooses the time to

trade optimally. In order to check that he behaves optimally even across those intervals
(subcycles) and across cycles, again, like in the proof of Proposition 2, we use (A.2) and
considering a seller i with quality 8 and entry time t O(nT +t®, nT +t*Y]. As the
arguments are quite similar to the ones given in the proof of Proposition 2 we skip the
details here.

Like in Proposition 2 any seller i optimally waits until the first moment after entry
when the marginal quality is larger than or equal to his own quality. Hence, the pair of

functions (6(t), p(t)) constructed above satisfies all equilibrium requirements. Then, it
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follows from Lemma 1 that 6(T)=6 for some T. The constructed equilibrium path is
entirely determined by choosing 631) which is an arbitrary point from U®. Therefore, we

have obtained infinitely many (continuum of) equilibria. [

Proof of Proposition 4

If a> 21, then each term (apart from the constant) in the Tailor expansion (A .4) is positive
as I'(l—l;;)>0 and its radius of convergence isinfinity. Hence, X and y are defined by
(A4 forall /0[0,0), lim §{t) = lim %(t) = lim Y(t) = lim X(t) = +e0, and

lim 2 = lim 2 = lim 2—— = lim 2— = lim 2 ZMHﬂ%+@ﬂ{Q¢%+w
X X

7o o0 ST fo 4o d ) TA4x o 4o JTax — °
at drat al / J ZﬂX

>0 foral t>0.

n+ﬂF@ 1-a)
Thisimpliesthat for a>2

jim tim PU8) =65 _ i i I +006:=6)) o 5(0)

t—+o0 6y - g Q(t,HO)—HS t—+oo -0 X(t)+0(9 9 ) to oo f((t)

=+00,

In other words, for any M >0 [X'(M) such that for dl t>t CU(t,M)=(62(t,M),6)

such  that m>M for dl g,0U°. We take a=1i¢,
6(t,6,) - s

s
M =1+ maxE'T max a(@)% and 1 =max M@, where 7(a) is

O 60166 5 ' E E,E, (|\/| 1)

fEu®v

as defined in (A.3), Lemma 1. For this 7 there exists a neighborhood U?(r,M ) such that

M>M for all @,00U®.
0(r,6,)-

We will show that (X" =7 such that p(t",6,)=6(t",6,)+a . Suppose to the contrary

that p(t,6,)<6(t,6,)+a foral t=7. Then it must be the case that P.E)=0s o
6(t,6,)-6s

al t>r, otherwise there would have been some t" >71 such that pg g =M and,

m.

therefore, for t =t
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6, 6-6,
R _ME
6-6.5 (p-mO) % 0. 7(0)+Elp-mE)) " -
H 6 -6 H

where £0(0,1) and F(6,7,(¢)) =0 by definition. Then, aswe have supposed 8 > p-a,

] . -
alzs) e e e +0 - p) -1)
i 0-0 %p-%(ﬁ) 2 Mg

iR R SR QR A QA ST ﬁ

dez) ¢ 3 eele-am-y) O
a ﬁ-ﬁsg(s-z:—"s;”s)fnnf g

S Me gfgugv gfgugv 0
6- G%ZM(M -a(o %9 H%ZM M ule %
)

for some 6'D(6‘Y,0_). But then p -6, >M(6 —-0,) for al t=71 that can be rewritten as

a>p-0>(M-1)(60-6,) and, further, as <2 +6;. Hence, on one hand,
limg <75 +65 <@, on the other hand, p=p-0>(M-2)(¢0-6,)>0 and lim p = +oo,

that is a contradiction with the assumption that that p<@+a foral t>1.

Hence, p(t",8,)26(t",6,)+a for some t" =7 2{(a) and Lemma 1 applies. n
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