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A probabilistic analysis is presented of the Next Fit Decreasing bin packing heuristic, in which bins are ope~,-d to 
accommodate the items in order of decreasing size. 
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i. Introduction 

Given a list of n items of size a i . . . . .  a .  (0 ~ a i 
1), the famous bin packing problem is to find 

the smallest number of bins in which these items 
can be packed, subject to the constraint that the 
total size of "the items assigned to any bin cannot 
exceed 1. This problem is well known to be NP- 
hard, and the analysis of simple approximation 
methods for its solution represents a permanent 
challenge (s,,:e, e,g., Coffman et al. [2]). 

The Next Fit Decreasing (NFD)  heuristic is a 
good example of such a method. The items on the 
list are first reindexed so that 

a I >/a2 >/ . . .  t-- a,,. (1) 

They are then assigned to bins in this order; a 
new bin is opened whenever there is not enough 
room left in the one most recently o ~ n e d  to 
accomodate the current item. The number of bins 
opened according to this rule can be shown to 

exceed the minimum number possible by slightly 
less than 70 percent in the worst case (Baker and 
Coffman [1D. 

We are interested, however, in a probabilistic 
analysis of this heuristic, carried out under the 
assumption that a I . . . . .  a,, are drawn indepen- 
dently from a uniform distribution on [0, 1]. It is 
well known that the optimal solution value OPT(n)  
satisfies 

~( O P T ( ,  ~) 
lim n /2  = 1. (2) 

n - - a  OO 

For the N F D  heuristic, it will be shown below 
that 

E ( N F D ( n ) )  (or z ) 
lim n /2  - 2 -g- - 1 ffi 1.289 . . . .  (3) 

n"- t"  ~ 

so that the expec :~  deviation from optimality is 
slightly less than 30 percent. This result and some 
powerful generalizations turn out to have been 
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derived independently .- bat in a more com- 
plicated fashion - in Hofri and Kamhi [5]. 

In Section 2 of this note, we provide a short 
proof of (3). We shown in Section 3 that the 
probability that NFD(n) differs from its expected 
value by more than an amount tn decreases ex- 
ponentially fast. In Section 4, we establish a central 
limit theorem for this random variable. 

2. The expected solution value 

To analyse the expected solution value 
E(NFD(n)), we approximate the performance of 
the NFD heuristic by that of the Sliced NFD 
heuristic wita parameter r (SNFD,), in which first 
items larger than 1/r are packed according to the 
NFD heuristic, the last opened bin is completed 
to c~,ntain at most r -  1 items and any remaining 
item.,; are packed in groups of size r. Obviously, 
for any realization of the item sizes, SNFD~(n) 
NFD(n) and tim,...~SNFD,(n~, = NFD(n) 

Let ki be the number of i~¢ms whose size falls 
in the interval (1/(i  + 1), 1 :i] (i = 1, 2 . . . .  ), and 
let K~ ffi ki + ki+ 1 + ... Then, clearly, 

k 2 k,_ t K, 
SNFD,(n) ~ .  k I +-~- + ... + r--L-- T + - - r  + r, (4) 

where the last term is induced to allow for round- 
ing errors. Since E(k~) = n/(i(i  + 1)) and E(K r) ffi 
n/r, the expected value of the right hand side of 
(4) is equal to 

r - I  1 n 

" Ei_, i2(i+ l) ÷ ~ + r  

. 
=n - - +  + +, ' ,  (5) 

and hence, from choosing r appropriately as a 
function of n, 

E(NFD(n))  ( ~ 2 )  
limsup - n/2 "' < 2  --~--1 . (6) 

#'l " ~  OO 

On the other hand, if the items are packed by the 
NFD rule and bins containing items from more 
than one interval (1/(i  + 1), 1/i] as well as bins 
comaining items smaller than 1/r are ignored, 
then we have that 

NFD(n)  >~ ( k ~ - 1 ) +  (-k~ - 1) 

+ ... + ( ~ / c ' - t -  1), (7) 

so that, for any fixed r, 

E(NFD(n)) r " - -  1 

lira inf ~ 2 ~ 1 2 - - ,  ~ 2+ (8) 
. - .  ~ n/2 ~- 1 r 

The fight hand side of (8) is monotonically in- 
creasing in r and converges to 2(~t2/6 - 1). Hence, 
in combination with (6), we conclude that 

E(NFD(n))n/2 ( ~r2 ) - 6 "  lim...~ = 2 - 1 . (9] 

3. Deviations from the expected value 

In this section, we study the deviation probabil 
ity, 

Pr{ I N F D ( n ) -  E(NFD(n))l  ~ ,U }. (101 

It is, of course, bounded (from above) by 

Pr { NFD( n ) - E(NFD( ~ )) ~ nt } 

+Pr{NFD(n) -E(NFD(n) )<  - n t } .  (11) 

The first probability in (11) is bounded by (cf. (4)) 

'l'r-i~i :" K, _E(NFD(n ) )~n t  I (12) Pr ~ + ~ + r 
1 r 

the second one is bounded by (of. (7)) 

,_~ 5 -  - ( r -  1) - F . ( N F D ( n ) )  ~ - n t  . 

(13)  

Now, the Laplace-Stieltjes transform 
F-~exp(E~-~k~k, + X,Kr)) (X~ ~ 0, i = 1 . . . . .  r)  is 
well known to equal r-I (5-'-~. t exp(X~)/(i0. - 1)) + 
exp(hr)/r)". Hence, for every \ > 0, 
E(exp(k~.'~:ll(kJi) + Kd'r)))=(E~21 exp(X/i)/  
(i(i + 1)) + exp{2k/r)/r)'*. 

Using this Laplace-Stieltjes transform, one now 
easily verifies that, for every r, ~,~.~(ki/i) + K./r  
is distributed as ~ - t  Y/,, where the .~, are i.i.d. 
random variables with Pr{.l~r ffi 1/i} ffi 1/i(i-~ !) 
(i ffi 1 . . . . .  r -  1) and Pr{ yj, ffi I / r }  = 1/r. 

Similarly, one verifies that ~,~-_~(kJi) is dis- 
tributed as ]2~.lzj, with Pr{ zj, ~ffi 1/i } ffi 1/i(i + 1) 
( i - -1  . . . . .  r - 1 ) , P r { z j , = O } = l / r .  

Hence, (12) can be rewritten as 

(,t Pr yj,.- E(NFD(n)) >~ nt -  r , (14) 
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which, in combination with (7), is easily shown to 
be bounded by 

j - - 1  

05) 
Similarly, (13) is bounded by 

Pr ( z ~ , - E ( z j , ) ) < - ,  t - - ~  + 2 r - 1  . 

(16) 
Now, since both )~, and zj, are bounded by I, a 
famous result from Hoeffding [4] implies that (15) 
and (16) are bounded by e x p ( - 2 n ( t - I / r  2-  
2r/n)2). Taking r = [nl/3], we obtain the strong 
result that, for all t, 

Pr { I N F D (  n ) - E ( N F D ( n ) )  I ~ nt ) 

< 2 e x p ( - 2 n ( , -  A )  ) . (17) 

We refer to Rhee and Talagrand [7] for similar 
results obtained for other bin packing heuristics 
by quite different techniques. 

4. A central limit theorem 

In this final section, we shall prove that for 
every x, 

lim Pr{ NFD( n ) - n( "2/6 "- l ) I 

, £  - ~ ® e x p ( - ~ V 2 )  d:~,, 
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~.2 11.4 
~ ( 3 )  + -g- - ~ ffi 0.14118 . . . .  (19)  

"where ~" is the Riemann zeta function. One easily 
verifies that l im,_= var()~,) is also equal to (19). 

To prove this central limit theorem, we first 
observe that 

Pr{ N F D ( n )  - ' : (~r2/6 - 1) 
~ o ®  < x ! 

r - I  

E ( k J i ) - ( r -  1)--n(~r2/6 - 1) } 

(.,,- E(.,,)) 
= Pr  j "  l xooo 

~/n ear(z/ , )  < V/var(zj,) 

oo 

r - I  i - t  
+ + . (20) 

vln vat (z j , )  (var (z j , )  
t 

Takin 8 r = [n l /3 ] ,  we f ind that the right hand side 
of  the final inequality converges to x as n --~ oo. 
But then we can apply Theorem 7.1.2 in Chung [3] 
to conclude that (20) convergers to (1/2~-~)J~_~e 
exp(-y2/2)  dy as n --+ oo. 

The random variables .Yi, provide a lower bound 
on Pr{(NFD(n) - n(~2/6 - l ) ) / ~ o ®  < x } in an 
exactly similar fashion. Together, the lower and 
the upper bound yield the desired result (18). 

(18) It turns out that the above result can be used to 
compute lim,,_~. E((NFD(n)) t )  for any k > 0 .  
We also observe that the resul,s in this note can 
all be extended to a larger class of distribution 
functions F than the uniform one. E.g., the results 
in the last t~o sections arc es~ntially also valid if 
the item sizes are generated from a~y distribution 
whose density function f satisfies Jim x ,of(X)= c 
> O. These deta/ls are leR to the reader; essen- 
tially, one redefines .1~,. and zj, by letting Pr{ ~ ,  = 
1 / i }  = P r { z j ,  ffi l / i }  ffi F ( 1 / i )  - F ( l / i +  1) ( i f f i  
1 . . . . .  r -  1), P r { ~ , f f i l / r }  ~ P r { z f , = 0 }  = 
F(l/r), and uses the information on f to bound 
the latter right hand side. 

As a final note, we observe that our results are 
also valid for the Harmonic heuristics introduced 
in Lee and Lee [6]. They can be e,a~ly adapted to 

where 

o~ = iim var(zj,) 
r-.-* 00 

= lim E i3(i + 1) i2(i+ 1) 
r - - * ~  i = l  ~ i = 1  r,(1 , )  

= ' l im ~ i3 i2 ( i+1)  r--* oo i - - I  )2 
_ 1 

,_t i2(i + 1) 

~ 2  

~'(3)  - ( -~- -  
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show that the Rev i sed  H a r m o n i c  (RH)  heuristic 
in t roduced  in the same paper  satisfies 

E ( R H ( n ) )  _- 1.237. (21) 
l im n / 2  " "  

n " *  GO 

i.e., slightly bet ter  than N F D ,  but  still surprisingly 
poor  for the heuristic that  f rom a worst cede point  
~f view is the best on-l ine heurist ic current ly  
known.  
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