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1.11.11.11.1 BoneBoneBoneBone    

Bone owes its origin close to half a billion years ago. Bone arose as a primitive mineralized 

tissue of the exoskeleton of the oldest vertebrate-predecessor organisms to the threat of 

invertebrate predation, leading to a major evolutionary leap (1, 2). However, having a rigid 

armor entails some restrictions, such as limited movement and locomotion. Relocation of 

the bony skeleton from the outside to the inside of animal bodies overcame these 

restrictions and triggered the development of a strong muscular system, enabling them to 

populate new habitats (3, 4). The use of calcium phosphate instead of calcium carbonate 

as mineralization strategy also proved to be a major adaptive advantage. Blocks built of 

calcium hydroxyapatite are more stable and apatite saturation can be regulated 

enzymatically. The origin of a phosphate-based endoskeleton is of great importance 

considering both the necessity of a continually remodeled skeleton and the pH changes 

that take place due to the high metabolic activity of the vertebrates. Without these major 

adaptative changes the evolution of the higher vertebrates could never have taken place 

(3, 5).  

Bone is, therefore, a dynamic mineralized connective tissue. It exerts important functions 

in the body, such as locomotion, protection to vulnerable organs, regulation of calcium 

and phosphatehomeostasis, and sheltering of bone marrow (6, 7). Bone cells make up 10% 

of the total bone volume, while the other 90% is composed of the extracellular matrix 

(ECM), consisting of: mineral matrix, organic matrix, lipids and water (8). To preserve the 

mechanical strength of the bone and the homeostasis of calcium and phosphate, bone is 

being continuously remodeled due to the coordinated actions of bone cells. A human 

body consists in 270 bones at birth and by adulthood some bones have fused together 

decreasing the number of bones in the human skeleton to 206 (9). Therefore, contrary to 

the traditional view, bone is not a passive lifeless scaffold but a dynamic living tissue.  

The osseous tissues in mammals are formed via two different processes during 

embryogenesis. In the early stages of embryonic development, cartilage and fibrous tissue 

are the main components that form embryo’s skeleton. Around the seventh week, 

osteogenesis and therefore, bone development, starts. Bone could be considered then a 

replacement tissue, which means that cartilage is utilized as a precursor for bone 

formation. This process of bone formation is called endochondral ossification and it is the 

principal process responsible for forming much of the mammalian skeleton. It is essential 

for the formation of long bones such as the femur or tibia and parts of the axial skeleton 

that are weight-bearing, like the vertebrae (10). The other process for bone formation is 

intramembranous ossification, in which the bone tissue is directly synthesized by 

mesenchymal stem cells (MSCs) without the involvement of an intermediate cartilage (11). 

Intramembranous ossification is the process that leads to the formation of flat bones, the 

ones forming parts of the skull, clavicle and mandible among others. Both modes of bone 
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formation begin during fetal development and continue remodeling the skeleton until 

adulthood (12). 

1.1.11.1.11.1.11.1.1 Bone cellsBone cellsBone cellsBone cells    

There are two types of bone cells: the bone-forming cells and the bone resorbing cells. 

The bone-forming cells, osteoblasts, arise from MSCs committed to the osteoprogenitor 

lineage, and develop into osteocytes. The bone resorbing cells, osteoclasts, are derived 

from monocyte/macrophage cells of the hematopoietic lineage (Figure 1.1) (13). 

Osteoblasts are responsible of synthetizing and secreting the organic bone matrix. When 

osteoprogenitor cells become preosteoblasts, they continue to proliferate and produce 

some of the bone matrix proteins, such as collagen and fibronectin (14). The 

preosteoblasts differentiate then into mature osteoblasts with increasing levels of alkaline 

phosphatase activity (ALP), a key enzyme that provides high concentrations of phosphate 

ions and is responsible of the mineralization of the ECM. At last, matrix mineralization 

occurs and mature osteoblasts get their characteristic cuboidal shape (15). At this stage, 

mature osteoblasts can remain quiescent bone lining cells (BLCs), become osteocytes, or 

undergo apoptosis (Figure 1.1).  

 

Figure Figure Figure Figure 1111....1111.... OstOstOstOsteoblast differentiation.eoblast differentiation.eoblast differentiation.eoblast differentiation.    MSC differentiation into osteoblasts is achieved by a complex 

differentiation program that involves a coordinated interaction between growth factors, hormones 

and ECM-related proteins among others. When osteoblasts become trapped in the matrix that they 

secrete, they become osteocytes. Osteocytes are involved in bone maintenance, while bone lining cells 

cover the bone surface, providing nutritional support to osteocytes and regulating the movement of 

fluids, calcium and phosphate in and out the bone.     

Bone lining cells are quiescent mature osteoblasts extended over non-remodeling bone 

surfaces (16). Although BLCs together with osteocytes are the largest proportion of cells in 

mineralized bone, they are poorly understood. However, there is evidence showing that 

BLCs work as a biological membrane to prevent the direct interaction between osteoclast, 

tissue fluids and bone. BLCs are also known to be essential bone remodeling, by coupling 
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bone resorption and bone formation (17, 18). Osteocytes are extremely long-lived 

mechanosensing cells and are the most abundant cell type in the bone. They are able to 

survive for decades, residing in lacunae and embedded in the mineralized bone matrix 

(14). Numerous dendritic cellular processes connect osteocytes to each other and to the 

vasculature facilitating the intercellular transport of signaling molecules, oxygen and 

nutrients (6, 13). Osteoclasts are giant multinucleated cells responsible for bone 

degradation, and therefore, they are pivotal players in bone remodeling (Figure 1.2). As 

bone-resorptive cells, osteoclasts attach to the bone surface and delimit the area to 

degrade. Then, they solubilize it via acidification and proteases secretion (7). 

 

Figure Figure Figure Figure 1111....2222.... Osteoclast differentiation. Osteoclast differentiation. Osteoclast differentiation. Osteoclast differentiation. Osteoclasts are multinucleated cells derived from 

hematopoietic stem cells (HSCs). Monocyte-macrophage precursor cells differentiate into tissue-

specific macrophages with fused polykaryons, which are mature osteoclasts. Different factors such as 

RANKL and M-CSF-1 drive osteoclast precursors towards osteoclastogenesis and activation of mature 

osteoclasts. Osteoclasts are capable of resorbing mineralized bone and are essential in bone 

remodeling.        

1.1.21.1.21.1.21.1.2 Bone remodeling during fracture repairBone remodeling during fracture repairBone remodeling during fracture repairBone remodeling during fracture repair    

Fracture repair progresses through consecutive well-orchestrated processes. There are two 

types of fracture healing: primary and secondary. Primary healing rarely occurs; it is 

characterized by a minimal fracture gap and requires rigid fixation which suppresses the 

formation of a callus (19). In this type of bone fracture, bone can heal directly through the 

process of normal bone remodeling by which osteoclasts remove the mineralized bone 

followed by the formation of bone matrix through the osteoblasts. Secondary fracture 

healing is the most common method of bone healing and it usually involves a combination 
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of both intramembranous and endochondral ossification (20). The main phases that occur 

during secondary fracture healing are: the inflammatory, renewal and remodeling phase.  

Inflammatory phaseInflammatory phaseInflammatory phaseInflammatory phase    

When bone fractures, the surrounding tissues and the local vasculature are also disrupted 

and the blood is usually clotted resulting in a hematoma. Platelets are then activated, 

coagulation reactions take place, resulting in the formation of an insoluble network of 

fibrin and trapped platelets. Platelet-derived factors and signaling molecules are 

meanwhile released. It is during this phase when the influx of inflammatory cells such as 

neutrophils or macrophages occurs, while the fibrin network acts then as a provisional 

matrix (21). Macrophages secrete a multitude of pro-inflammatory cytokines, chemokines 

and growth factors to recruit MSCs, fibroblasts and endothelial cells to the injury site (22). 

Thus, while macrophages clear the provisional matrix and the necrotic tissues, recruited 

fibroblasts and endothelial cells support vascular ingrowth and MSCs proliferate and 

differentiate into osteoprogenitor cells (Figure 1.3). These events necessitate ongoing 

communication between cells of the monocyte-macrophage-osteoclast lineage, MSCs 

and endothelial progenitor cells. Therefore, the initial acute inflammatory response and 

re-vascularization are considered pivotal phases for successful bone repair (22).  

Renewal phaseRenewal phaseRenewal phaseRenewal phase    

Fractures normally heal by the combination of both intramembranous and endochondral 

ossification. At the margin areas of the injured site, where better blood supply and 

mechanical stability can be found, stem cells proliferate and differentiate into osteoblasts 

and the formation of mineralized osteoid takes place, creating a reparative callus that will 

enhance mechanical stability of the site (23). At the same time, in the mechanically 

unstable regions with low oxygen tension, endochondral bone formation starts, bridging 

the fractured gap. This process ends in the formation of the primary spongiosa consisting 

of both cartilage and woven bone (24). Woven bone is formed when osteoblasts produce 

osteoid –unmineralized bone matrix–, it is mechanically weak and it is characterized by a 

random organization of the collagen fibers of the matrix. Eventually, immature woven 

bone connects the two fracture ends, and the remodeling process begins. This phase starts 

within the first days and lasts for several weeks (Figure 1.3) (25).  

Remodeling phaseRemodeling phaseRemodeling phaseRemodeling phase    

This phase consists in the replacement of the immature woven bone by lamellar bone, 

which is mechanically stronger and composed of sublayers of aligned mineralized 

collagen fibrils. The final events represent the normal remodeling activity of bone, in which 

osteogenic and osteoclastic processes happen together (Figure 1.3). This process can take 

several months to complete, but ultimately the process restores the normal form and 

integrity of the bone completing the process of fracture healing (20). 
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Figure Figure Figure Figure 1111....3333. Secondary fracture healing.. Secondary fracture healing.. Secondary fracture healing.. Secondary fracture healing.    The main metabolic processes during fracture repair are 

divided in three major biological phases: inflammatory, renewal and remodeling phase. The primary 

cell types that are found at each stage are either denoted or match with the cell types shown in Figures 

1.1 and 1.2. The figure shows the approximate time-frame of each stage and the prevalence of the cell 

types found in each stage are also denoted. Figure adapted from Einhorn et al. (26).  

1.21.21.21.2 Bone graftingBone graftingBone graftingBone grafting    

The treatment of bone defects continues to be very challenging in orthopaedic practice. 

More than two million bone grafting procedures are performed annually worldwide (27). 

The main causes are traumatic events such as car accidents and extremity injuries in wars 

or civil conflicts, and the treatment of pathologies like infections and cancer ablation (28). 

The use of grafts to treat bone defects is practically as old as humanity itself and it is not a 

coincidence that from the Greek mythology to the Old Testament references to bone 

transplants are regularly found (29). Bone grafts are commonly used to treat skeletal 

fractures, replace and regenerate lost bone or treat delayed unions, among others, as 

demonstrated by the huge amount of bone grafting procedures performed every year. In 

fact, after blood transfusion, the second most frequent tissue transplantation carried out 

around the globe is bone grafting (27). 

 Bone grafts and bone substitutes must be histocompatible and their regenerative capacity 

is measured in terms of their osteoconductive, osteoinductive and osteogenic potential. A 
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bone graft or bone graft substitute has osteoconductive properties if it provides the 

support needed for the bone tissue regeneration such as vascularization or bone 

apposition. The osteoinductive potential of a bone graft is defined as its capability to 

recruit osteoprogenitor cells to stimulate their differentiation towards chondrocytes and 

osteoblasts to form bone. A bone graft is osteogenic if it houses growth factors and bone-

forming cells involved in the synthesis of new bone (30).  

1.2.11.2.11.2.11.2.1 Bone grafts: allografts and autograftsBone grafts: allografts and autograftsBone grafts: allografts and autograftsBone grafts: allografts and autografts    

The modern age of bone grafting dates back to 1668, when Job van Meekeren, a Dutch 

surgeon, reported the usage of the first heterologous graft in which a section of dog 

cranium was successfully implanted to repair the skull of an injured soldier (31). In the late 

1800s, the first human allograft, where bone is harvested from a donor and transplanted to 

the patient, was performed by the Scottish surgeon William Macewen, who reconstructed 

the humerus of a child by a graft obtained from the tibia of another child with rickets (32). 

Since then, numerous reports have been published about the matter, leading ultimately to 

the use of autologous bone for grafting, where bone is harvested from an anatomic site 

and transplanted to another site in the same patient. By the middle of the 1900s, the 

clinical application of autografts was widely recognized (33). Autografts are inherently 

histocompatible, and nowadays they are still considered the gold standard due to their 

osteoconductive, osteoinductive and osteogenic healing potential. Autografts are typically 

obtained from non-essential parts of bones such as the iliac crest, but they can also be 

obtained from many others as the femur, ribs, tibia or radius. Autografts have an excellent 

success rate (the overall major complication rate related to their use oscillates between 6-

9% (34, 35)). Nevertheless, there are many disadvantages associated with their use such as 

donor site morbidity, limited supply and substantial costs (36). To date allografts from 

cadavers or living donors are used as an alternative, especially in circumstances where 

large volumes of bone are required. However, they carry the risk of immune rejection and, 

although the probability is minimal, the risk for disease transmission is present. Allografts’ 

major benefit over autografts is the elimination of donor site morbidity, but they lack the 

osteogenic and osteoinductive capacity of autografts and their osteoconductive properties 

might be affected by the preservation and sterilization techniques used (37).  

1.2.21.2.21.2.21.2.2 Bone graft substitutesBone graft substitutesBone graft substitutesBone graft substitutes    

The use of bone graft substitutes has been refined by humankind throughout history. It can 

be said that the first generation of bone graft substitutes was mainly focused on matching 

the physical properties of the repaired tissue, such as mechanical strength. Therefore, 

since the Neolithic era, where a frontal defect of a tribal chief was repaired with a hammer-

applied gold plate, to the present, metals have been used to repair bone defects (38). The 

evolution of bone grafts substitutes can be defined by three different technological 
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generations (Figure 1.4). The first generation of bone graft substitutes involved the so called 

inert materials of industrial use, which translated during the twentieth century in the use of 

titanium, stainless steel, ceramics such as zirconia, and synthetic polymers, like silicone or 

polymethylmethacrylate (39). A major drawback of the usage of these materials is the 

growth of fibrous tissue on the surface of the biomaterial and the risk of a persisting 

inflammatory response, which might lead to the graft encapsulation and aseptic loosening. 

Meanwhile, World War I and World War II gave rise to many unfortunate events but led to 

great medical advances in the field of bone repair. Bone banks were established to be able 

to treat bone defects more rapidly; however, they were limited by the storage capacity and 

the interrupted power supply, which was necessary to cryopreserve allogenic bone grafts 

(40). Bone research drove then the discovery of demineralized bone matrix (DBM). 

Although DBM did not offer mechanical support, it was suitable for filling defects, 

contained osteogenic factors, and revascularised quickly (41). From 1980s onwards, the 

second generation of bone graft substitutes appeared with the development of bioactive 

interfaces to coat the previously established substitutes, improving the ability of the grafts 

to integrate with the surrounding tissue. Many bone graft substitutes were made 

biodegradable to match their degradation rate with the bone formation process, and 

different biomolecules and polymers were conjugated to trigger bone repair. Some of the 

most used materials were bioactive ceramics such as hydroxyapatite or β-tricalcium 

phosphate and biomaterials or coated metals (39, 42). Common used polymers were 

hyaluronic acid, chitosan or polyglycolide, among others (43). Third generation of bone 

graft substitutes aims to get closer to the autograft features and, to do so, tries to induce 

the cellular and molecular responses needed for successful bone repair using second 

generation bone graft substitutes and relying on the notion of tissue engineering (TE) (39). 

In this line, using controlled-release systems to deliver drugs or factors from a scaffold can 

accelerate the local regenerative process while avoiding potential undesired systemic 

effects. Factors must meet a minimum threshold to be effective but, due to their short half-

lives, it is challenging to achieve a reparative response at the site of injury for an extended 

period of time without causing unwanted side effects due to the use of supraphysiological 

doses (44). A good example of this problem is illustrated below, in section 3.1.2. through 

the use and limitations of one of the most osteogenic proteins discovered so far, bone 

morphogenetic protein-2 (BMP-2). Consequently, different types of materials are being 

employed to deliver factors in a controlled manner, without negatively affecting the 

patient or the physical-chemical properties of the scaffold. Among those materials, 

hydrogels made from natural polymers, porous materials and the combination of both are 

being currently investigated as controlled release systems (45). In summary, it is during the 

last 100 years when greater progress has been made in the art of repairing bone. Bone graft 

substitutes are made from a wide range of materials and, although they have been widely 

used, their limitations prompted the search for other alternatives.  
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Figure Figure Figure Figure 1111.4. Biomaterials evolution in the field of bone grafting..4. Biomaterials evolution in the field of bone grafting..4. Biomaterials evolution in the field of bone grafting..4. Biomaterials evolution in the field of bone grafting.    Main goals and features of each 

biomaterials generation are cited at the upper boxes, while some examples of the most representative 

materials used in each generation are mentioned at the bottom boxes.    

Injectable BiomaterialsInjectable BiomaterialsInjectable BiomaterialsInjectable Biomaterials    

Injectable materials are particularly attractive systems for bone regeneration due to their 

minimally invasive nature and their structural similarity to the ECM. Injectable hydrogels 

can fill irregular defects, which is especially useful in the maxillofacial region, and can be 

fabricated from both natural and synthetic materials (46). However, synthetic materials are 

not very biocompatible and lack biological activity compared to natural biomaterials (47). 

The most used natural injectable biomaterials in bone repair are listed in Table 1.1. Besides, 

a number of studies have been recently published about the use of in situ forming 

hydrogels (48-50). Bone has a highly organized and complicated structure. The three-

dimensional architecture of the in situ gelling hydrogels provides an appropriate 

microenvironment for growth factor incorporation, and the recruitment and differentiation 

of the cells involved in bone repair (47). 
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Table Table Table Table 1111....1111. Natural injectable biomaterials used in bone repair.. Natural injectable biomaterials used in bone repair.. Natural injectable biomaterials used in bone repair.. Natural injectable biomaterials used in bone repair.    

TYPE OF INJECTABLE BIOMATERIAL REFERENCES 

Chitosan-based injectable hydrogels (51-53) 

Collagen-based injectable hydrogels (54-58) 

Hyaluronic acid-based (48, 59, 60) 

Fibrin-based (61-63) 

Alginate-based  (64-67) 

Heparin-based  (61, 68, 69) 

Elastin-based  (70-72) 

1.31.31.31.3 Bone tissue engineeringBone tissue engineeringBone tissue engineeringBone tissue engineering    

Several studies have estimated that 5-10% of all fractures are associated with impaired 

healing, resulting in delayed union or nonunion (73), and TE represents a promising 

approach that would likely eliminate many of the pitfalls of current treatments in the 

future. In the TE research field the principles of engineering and life sciences are combined 

to create functional substitutes to restore, maintain or improve the tissue functions (74). 

Bone TE is based on the idea of mimicking as much as possible the natural process of bone 

repair. To this end, bone-forming cells and biomolecules are incorporated into a scaffold 

to trigger bone regeneration. In the last 25 years, bone TE has gained notoriety and 

different approaches have been investigated. Many studies have shown over the years that 

the presence of cells generally benefits tissue regeneration (75, 76); however, the clinical 

implementation of this concept may still be limited by numerous problems surrounding 

the costly stages of cell harvesting and preparation under Good Manufacturing Practice 

(GMP) conditions associated with cell therapy based approaches (75). Therefore, cell-free 

engineered constructs immediately available to a wider population should be created. 

Overcoming the need for the addition of cells to scaffolds is a critical challenge in the field 

of TE. Ideally, endogenous cells would serve as a target and they would be recruited and 

guided to regenerate the damaged tissue. To this end, a huge variety of biomolecules and 

chemical agents that induce and instruct bone defect repair by the cells of the patient are 

being investigated.  

1.3.11.3.11.3.11.3.1 Growth factor delivery for bone tissue engineeringGrowth factor delivery for bone tissue engineeringGrowth factor delivery for bone tissue engineeringGrowth factor delivery for bone tissue engineering    

Growth factors are soluble-secreted signalling polypeptides that regulate a broad 

spectrum of cellular responses. These responses can result in a very wide range of actions 

such as chemotaxis, cell growth, or differentiation, and can be guided to a specific subset 

of cells (77). The use of growth factors has increased drastically in the field of bone TE. 

Bone morphogenetic proteins (BMPs), especially BMP-2, have been the most used 

proteins in bone repair due to their great potential for bone regeneration.  
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Bone Morphogenetic proBone Morphogenetic proBone Morphogenetic proBone Morphogenetic proteins teins teins teins     

In 1965, Marshall Urist demonstrated that DBM implanted intramuscularly in a rat resulted 

in bone formation, which himself called the bone induction principle (78). Later, Urist 

identified the protein responsible of this osteoinductive phenomenon, naming it bone 

morphogenetic protein. However, it was in the 1980s when isolation of the first BMP 

occurred and, subsequently, bone morphogenetic proteins 2 and 4 were cloned (79, 80). 

Currently, more than 20 BMPs have been identified and they constitute the largest 

subgroup of the transforming growth factor beta (TGF-β) superfamily. BMPs have been 

implicated in a variety of functions, although they are specially known as the most 

important growth factors in bone formation (81). The research of BMPs significantly 

expanded over the years and their use in different animal models and clinical studies 

demonstrated their therapeutic potential in bone repair, leading to the Food and Drug 

Administration (FDA) approval of BMP-2 for use in human surgery (82). BMP-2 FDA-

approved usage is limited to a specific carrier –an absorbable collagen sponge– and to 

certain procedures such as spinal fusion, orthopaedic trauma and oral-maxillofacial 

treatments, although the clinical off-label use of BMP-2 is overwhelming (83-85).  

The need of alternative proteinsThe need of alternative proteinsThe need of alternative proteinsThe need of alternative proteins    

Despite widespread BMP-2 use, complications such as soft tissue swelling, ectopic bone 

formation, inflammation and an increased risk of cancer have been reported over the past 

years (86, 87). Several large-scale studies have confirmed that the clinical use of BMP-2 is 

relatively often associated with adverse events like inflammatory complications, increased 

osteolysis or life-threatening cervical spine swelling. Because of all the reported clinical 

side effects associated with BMP-2-based treatments, the FDA was forced to issue a 

warning of the potential complications related to its use (88). Several of these 

complications might be related to how the protein is delivered in the clinical setting. 

Currently, a collagen sponge soaked with BMP-2 with a burst release is used as the protein 

carrier, with half of the loaded BMP-2 being released within two days (89). Consequently, 

supraphysiological doses of the protein are needed to exert its function, resulting in the 

above-mentioned undesired effects. In order to avoid those complications, new 

therapeutic concepts are being investigated, including the spatiotemporal dosing of BMP-

2 through controlled-release systems and the use of alternative growth factors that are also 

able to induce the signaling cascades needed for bone repair. Regarding to the latter 

point, some factors involved in osteogenic, angiogenic and inflammatory processes have 

been investigated (90) and used in bone TE both single or combined with BMP-2 (91). 

Among them, angiogenic and chemotactic factors such as platelet-derived growth factor 

(PDGF) and endothelial growth factor (VEGF) have been widely tested for the treatment of 

bone defects (92-95). However, when used alone, their effect on bone repair was not as 

substantial as BMP-2’s effect (92, 96). Consequently, to improve bone formation while 
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avoiding the side effects observed when using BMP-2 alone, the delivery of multiple 

growth factors with synergistic effects is being extensively investigated (90, 97).  

1.41.41.41.4 Aims and outline of this thesisAims and outline of this thesisAims and outline of this thesisAims and outline of this thesis    

Bone possesses the intrinsic capacity for regeneration as part of the repair process in 

response to injury. However, in many cases of post-traumatic skeletal conditions fracture 

healing is impaired and there is a need for bone grafting. Unfortunately, no satisfactory 

solutions for bone grafts are currently available due to the limited effectiveness of 

treatment options. Conventionally, bone defect reconstruction is performed by the use of 

either autografts or allografts. Autografts are considered the gold standard; however, their 

use can lead to complications such as donor-site morbidity, pain, and infection. The 

alternative, allografts, lack the osteogenic and osteoinductive capacity of autografts and 

hold the risk of carrying infectious agents or immune rejection. Because of the urgent need 

to overcome the limitations associated with conventional treatments, bone TE has offered 

a promising approach to regenerate bone. However, combining bone-forming growth 

factors with a scaffold to mimic the bone microenvironment and supporting the formation 

of new bone is not an easy challenge. Due to their minimally invasive application and the 

possibility of repairing irregular defects, injectable biomaterials have attracted attention for 

bone regeneration. These materials also offer the possibility of being chemically modified 

what, added to their remarkable flexibility, allow them to be used for a wide range of 

applications. Therefore, the research described in this thesis is performed to identify and 

evaluate the therapeutic potential of novel injectable biomaterials and promising proteins 

for bone regeneration.  

Currently, supraphysiological doses of bone-forming proteins are needed to successfully 

heal bone. The major reason for this is the burst-release of the protein from the 

biomaterial. In Chapter 2Chapter 2Chapter 2Chapter 2, we develop three different in situ gelling formulations: two 

alginate based-formulations and one hyaluronan-based. The in vitro release of BMP-2-one 

of the most studied bone-forming proteins- from these formulations is analyzed as well as 

bone formation in vivo after their use. From this study, one of the alginate-based 

formulations is selected for further investigation. Consequently, the aim of Chapter 3Chapter 3Chapter 3Chapter 3 is to 

assess time and dose dependent ectopic bone formation with this injectable slow-release 

formulation and investigate the kinetics of retention of BMP-2 when loaded in the 

formulation. The bone regeneration of this system loaded with BMP-2 is investigated in a 

rat calvarial defect model.  

In Chapter 4Chapter 4Chapter 4Chapter 4, because of the need to eliminate the risks of BMP-2 use in vivo, the ability of 

three factors to enhance essential processes for bone defect repair is studied in vitro and 

compared to BMP-2. These factors, which are described as bone-forming proteins in the 

literature, are Nel-like molecule type 1 (Nell-1), high mobility group box 1 (HMGB1), and 

connective tissue growth factor (CTGF, also called CCN2). Specifically, we investigate 
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whether these proteins are able to attract osteoprogenitor and endothelial cells from 

human origin and promote their differentiation.    ChapteChapteChapteChapter 5r 5r 5r 5 focusses on another 

osteogenic protein, follistatin (FST), and its use in bone TE. For that, the effect of two 

different FST variants with significantly different cell-surface binding in vitro and 

orthotopically is studied. Bone repair is investigated using the previously developed 

alginate-based delivery system formulation loaded with the FST variants in a rat calvarial 

defect. This thesis ends with a general discussion, conclusion and future perspectives of 

the work presented (Chapter 6Chapter 6Chapter 6Chapter 6), followed by a summary in English and Dutch (Chapter 7Chapter 7Chapter 7Chapter 7). 
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2.12.12.12.1 AbstractAbstractAbstractAbstract    

New solutions for large bone defect repair are needed. Here, in situ gelling slow-release 

systems for bone induction are assessed. Collagen-I based Recombinant Peptide (RCP) 

microspheres (MS) are produced and used as a carrier for bone morphogenetic protein-2 

(BMP-2). The RCP-MSs are dispersed in three hydrogels: high mannuronate (SLM) alginate, 

high guluronate (SLG) alginate, and thermoresponsive hyaluronan derivative (HApN). 

HApN+RCP-MS forms a gel structure at 32 ºC or above, while SLM+RCP-MS and SLG+RCP-

MS respond to shear stress displaying thixotropic behavior. Alginate formulations show 

sustained release of BMP-2, while there is minimal release from HApN. These formulations 

are injected subcutaneously in rats. SLM+RCP-MS and SLG+RCP-MS loaded with BMP-2 

induce ectopic bone formation as revealed by X-ray tomography and histology, whereas 

HApN+RCP-MS do not. Vascularization occurs within all the formulations studied and is 

significantly higher in SLG+MS and HApN+RCP-MS than in SLM+RCP-MS. Inflammation 

(based on macrophage subset staining) decreases over time in both alginate groups, but 

increases in the HApN+RCP-MS condition. It is shown that a balance between 

inflammatory cell infiltration, BMP-2 release, and vascularization, achieved in the 

SLG+RCP-MS alginate condition, is optimal for the induction of de novo bone formation. 
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2.22.22.22.2 IntroductionIntroductionIntroductionIntroduction    

Bone is a tissue with high self-regeneration capacity. However, in cases of trauma or 

certain diseases bone does not heal properly and therefore surgical intervention using 

autografts or allografts is necessary. Currently, autografts are the gold standard; however, 

they are associated with donor site morbidity, increased pain, high cost, and long patient 

recovery time. The alternative is to use allografts, but they carry the risk of immunogenicity, 

infectious agents, and lack the osteoinductive capacity of autografts (39). To overcome 

these limitations there has been a vast effort to develop new biomaterials to aid large bone 

defect repair. Among these materials, natural biomaterials have been widely studied due 

to their advantages, such as biodegradability, biocompatibility and the ability to interact 

with the extracellular matrix and cells (98). Injectable formulations are preferred over 

implants for the treatment of defects that do not require operational fixation since the 

application is easier and the patient will not suffer from surgery and consequently, achieve 

a faster recovery. Moreover, in the case of irregular bone defects, injectable scaffolds 

might be advantageous because they can adapt to the defect shape better (99). Alginate, 

hyaluronic acid (HA) and collagen derived materials have been investigated as scaffolds, 

particles and in situ gelling hydrogels (100).  

Materials can be combined with bone-forming proteins such as bone morphogenetic 

protein-2 (BMP-2) to stimulate bone formation. BMP-2 is considered to be one of the most 

powerful osteoinductive factors and is the only bone morphogenetic protein (loaded in a 

collagen sponge) approved and currently used as a bone graft substitute (86, 101). 

However, large doses of BMP-2 are needed to produce a significant osteogenic effect 

(102). The major reason for this is the burst-release of the protein from the collagen 

sponge. Half of the BMP-2 was released in the first two days in vivo in a rabbit ulna 

osteotomy model (103). This often results in undesired ectopic bone formation, soft tissue 

swelling and bone resorption (104). Therefore, a biomaterial that can provide a slower 

protein release may perform better in clinics, eliminating adverse effects. There are several 

challenges for developing a suitable protein carrier material (105). It should promote the 

recruitment of skeletal and endothelial progenitor cells and trigger their differentiation to 

mature osteoblasts and endothelial cells with a minimum amount of loaded protein.  

Recombinant collagen-like peptide (RCP) material and its use for tissue engineering have 

been investigated by several studies, showing an optimum pore size and porosity 

for osteoconduction and high cell viability (58, 106, 107). RCP does not only facilitate the 

cell attachment by its arginylglycylaspartic acid (RGD) rich peptide sequence (106) but can 

also be expected to decrease the risk of immune reaction due to its animal free origin 

compared to other collagen-based products. In fact, RCP is produced under good 

manufacturing process conditions within the facilities of Fujifilm. The use of RGD rich 

microspheres comprised of RCP (RCP-MS) for the stimulation of cell attachment is very 
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important when using materials where cell attachment is suboptimal, such as alginates and 

HA. We have previously investigated the use of recombinant collagen-like peptide 

microspheres for slow release of BMP-2. In that study, we optimized the water uptake in 

the RCP-MS for BMP-2-loading. Particle size before and after swelling was also assessed by 

rheology, showing a similar storage and loss modulus, which indicated that the material 

was not degraded. Therefore, RCP-MS were intact for 2 weeks in cell culture medium and 

were only degraded when collagenase treatment was applied (58). In light of these results, 

here we aim to develop and test 3 in situ gelling formulations, based on alginate and 

hyaluronic acid to retain BMP-2 releasing microspheres, resulting in slow localized growth 

factor release. 

In a search for an injectable hydrogel system to deliver BMP-2 carrying RCP-MS, we have 

investigated two potential systems: one system that could be crosslinked and form a 

network in the presence of ions, and another system that could change conformation with 

a temperature switch. These two systems were alginate and poly(N-isopropylacrylamide) 

(PNIPAM) modified hyaluronic acid (HApN) respectively, both widely used in bone tissue 

engineering. 

Alginate is a polysaccharide composed of β-D-mannuronic acid (M-block) and α-L-

guluronic acid (G-block) monomers. Several studies have demonstrated the potential of 

this hydrogel for bone tissue engineering (66). Mineralization of alginate has also been 

characterized by Raman spectroscopy (108). Alginate in situ gelling formulations have been 

developed in combination with particles and in vitro experiments showed the potential of 

the formulations for drug delivery (109). Previously, alginate hydrogel with gelatin 

microspheres loaded with BMP-2 was used to study osteogenesis in vivo. However, the 

formulations could not induce bone formation probably due to fast degradation of 

material; and only after addition of biphasic calcium phosphate granules, was the bone 

formation achieved (110). There are various types of alginate and it is known that the 

composition (guluronic acid/mannuronic acid ratio), and molecular weight among others 

are critical factors affecting the physical properties of the resultant hydrogels, such as the 

degradation behavior (111); however, although it is known that the ratio effect of these two 

monomers play some role in biocompatibility –alginate with higher guluronate content 

produced gels has been shown to be less biocompatible– (112), its effect on bone 

regeneration remains unknown. Therefore, among different types of alginates we have 

chosen two sterile lyophilized alginates with high mannuronate and high guluronate 

content (SLM-20 and SLG-20) that have lower molecular weight (MW: 75000 - 220000 

g/mol) and lower viscosity than other commercial alginates (i.e. SLM-100 and SLG-100) 

based on the idea that injectable formulations can be obtained easier with lower viscosity 

alginates. In situ gelling formulations of alginates were developed via calcium 

complexation. HA is another linear polysaccharide consisting of repeating units of D-

glucuronic acid and N-acetyl-D-glucosamine and is an abundant glycosaminoglycan in 
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extracellular matrices. Therefore, injectable HA hydrogels have been used for bone 

regeneration in the presence of BMP-2 (113, 114). However, to induce subcutaneous bone 

formation with HA, a very high dose of BMP-2 (150 µg/mL) is normally used (59, 114). 

Surprisingly, even when high doses of BMP-2 are supplied, HA has failed to induce bone 

formation (114). To optimize the performance of gels, those are often functionalized to 

engineer better delivery systems and that is also the case of HA and its derivations. 

Investigators have recently shown that HA gels functionalized with fibronectin formed 

more ectopic bone than its nonfunctionalized counterpart (115). However, functionalizing 

HA did not always induce more bone formation. For example, heparin functionalization of 

HA led to less ectopic bone formation than its nonfunctionalized counterpart formation 

when implanted intramuscularly (116). Another study examined the suitability of acrylated 

hyaluronic acid for tissue regeneration, concluding that it is as a potential carrier of cells 

and growth factors (117). These studies showed that HA and alginates have potential for use 

in bone regeneration. However, choosing the right formulations of engineered materials 

with a right dose of BMP-2 is challenging. Additionally, a huge demand in bone 

regeneration field is the development of in situ gelling materials that enable slow protein 

release, support cell attachment, vascularization and thus induction of bone formation. In 

this study, we have used poly(N-isopropylacrylamide) functionalized hyaluronic acid 

(HApN) that shows thermoresponsive gelling behavior.  

We aimed to develop in situ gelling formulations with natural polymers (alginate or HA) to 

retain the RCP-MS which would provide slow BMP-2 release and increase cell attachment. 

We also wanted to assess how the hydrogel matrices influence the in vitro release of BMP-

2 from the microspheres and the bone induction in vivo. For that purpose, we have 

developed three different hydrogel-microsphere systems: two different thixotropic 

alginate formulations and a thermoresponsive (gelling above 32 °C) HApN. The three 

distinct formulations are different in terms of chemical composition, crosslinking and 

physical/mechanical properties. Here we aimed to assess them in terms of their ability to 

support bone formation acting as a growth factor slow-release system. Thus, the function 

of these gels is to be injectable, in situ gelling, provide a sustained release of BMP-2 and 

ultimately induce de novo bone formation. The mechanical properties of these gels and 

BMP-2 release characteristics in vitro were evaluated. The bone formation ability of these 

materials was studied in an ectopic bone formation model in vivo. The volume and 

morphology of the ectopic bone, vascularization, cellular infiltration and inflammation 

were evaluated.  
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2.32.32.32.3 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

2.3.12.3.12.3.12.3.1 Materials Materials Materials Materials     

Human collagen type I based recombinant peptide (RCP) is a product of Fujifilm 

commercially available as Cellnest. It is produced in a fermentation process by genetically 

modified yeast Pichia pastoris as described elsewhere (106, 118). RCP is composed of 571 

amino acids; it has an isoelectric point (pI) of 10.02 and a molecular weight of 51.2 kDa. 

BMP-2 was produced as described previously (119) and it was kindly provided by Dr. 

Joachim Nickel (Fraunhofer IGB, Germany). Pronova SLM20 (G/M Ratio: ≤ 1, sterile 

alginate, viscosity: 20-99 mPa*s, MW: 75-150 kDa,) and Pronova SLG20 (G/M Ratio: ≥ 1.5, 

sterile alginate, viscosity: 20-99 mPa*s, MW: 75-150 kDa) were ordered from Novamatrix 

(Sandvika, Norway). Thermoresponsive HApN (MW: 1.68 MDa) consisting of HA grafted 

with PNIPAM was prepared as described in D’Este et al. (120). 

Hexamethylene diisocyanate (HMDIC), corn oil, sodium chloride, calcium carbonate 

(CaCO3), and glucono delta-lactone (GDL) were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Ethanol, acetone, and hydrochloric acid were purchased from Millipore 

(Billerica, MA, USA). ELISA development kit and reagents for BMP-2 determination were 

ordered from Peprotech (Rocky Hill, NJ, USA). Dulbecco’s Modified Eagle’s Medium 

(DMEM), fetal bovine serum (FBS), phosphate-buffered saline (PBS), and penicillin-

streptomycin (P/S) were ordered from Thermofisher Scientific (Waltham, MA, USA). 

2.3.22.3.22.3.22.3.2 RCP microsphere preparationRCP microsphere preparationRCP microsphere preparationRCP microsphere preparation    

The types of RCP-MS used in this study were selected based on a previous study in which 

the adsorption of BMP-2 to the RCP-was described (58), as well as the effect of BMP-2 

concentration, RCP-MS size, porosity, and crosslinking of the RCP-MS on BMP-2 release. 

Based on this study, HMDIC crosslinked RCP-MS with a range of diameter 50-75 µm were 

selected as a promising candidate in terms of slow-release of BMP-2. 

RCP-MS were produced by emulsification using calcium carbonate (CaCO3). Briefly, a 20% 

aqueous RCP solution was prepared and mixed with CaCO3 fine powder (with a size of <1 

µm) in a 1:1 (w/w) ratio of RCP to CaCO3. This suspension was emulsified in corn oil at 50 

°C. After cooling, the emulsified microspheres were precipitated and washed three times 

with acetone, and subsequently dried overnight at 60 °C. The microspheres were sieved 

to 50-75 µm size (Retsch GmbH, Germany). Particles were then crosslinked by HMDIC by 

mixing 1 g of spheres and 1 mL of HMDIC in 100 mL ethanol for 1 day while stirring. Excess 

crosslinker was removed by washing several times with ethanol after which the particles 

were dried at 60 °C. The particles used for the alginate and HApN formulations were 

prepared in identical way except that, for the HApN formulation, CaCO3 was removed 

after the crosslinking step. For the alginate formulations the CaCO3 was left in as the Ca2+ 
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also serves to crosslink the alginate into a hydrogel. For the HApN formulation CaCO3 was 

removed by suspension of RCP-MS in 0.23 M hydrochloric acid for 30 min, followed by 

repeated washing with water until a neutral pH was achieved, and the RCP-MS were dried 

at 60 °C. Complete removal of the calcium was confirmed by energy dispersive X-ray 

(EDX) mapping (Figure S2.1). The morphology of CaCO3 containing and CaCO3 free 

microspheres was analyzed by scanning electron microscope (SEM) (Jeol JSM-6335F Field 

Emission Scanning Electron Microscope) (Figure S2.2). CaCO3 crystals clearly can be 

observed on the surface of the CaCO3 comprising microspheres (Figure S2.1). Particles 

were gamma sterilized at 25 kGray (Synergy Health, The Netherlands) prior to use in vitro 

and in vivo. 

2.3.32.3.32.3.32.3.3 PrepaPrepaPrepaPreparation of the hydrogel formulationsration of the hydrogel formulationsration of the hydrogel formulationsration of the hydrogel formulations    

To prepare the formulations with SLM20 and SLG20 alginates, alginates were dissolved in 

0.9% sterile sodium chloride to create 2% w/v solution. 68 mg of calcium comprising 

microspheres were incubated overnight at 4 °C with 170 µL of 122.5 µg/mL BMP-2. The 

following day, the swollen particles were mixed with 1014 µL of SLM or SLG solution. 

Alginates have the ability to form soft hydrogels in the presence of calcium ions; however, 

although the calcium carbonate released by the microspheres was enough to crosslink the 

alginate SLM, it was not enough to crosslink alginate SLG. Table 2.1 shows the composition 

of the formulations. Calcium ions released in the SLM formulation were below the 

detection limit of the colorimetric assay. In the final SLG formulation, more calcium ions 

(3.18 μM) were released. Therefore, in order to crosslink alginate SLG, GDL, was used. GDL 

has been combined with alginate extensively to obtain an injectable gel with optimal 

mechanical properties (121-123). GDL is normally used as an acidifier and it was added to 

alginate SLG formulation in order to release more calcium ions from the CaCO3 upon 

gradual hydrolysis of GDL to gluconic acid and therefore increase the mechanical 

properties of SLG formulation. Briefly, to the SLG formulation, 106 µL of 0.06 M freshly-

prepared GDL solution was added and mixed immediately. GDL was used to dissolve 

minute amounts of CaCO3 so that alginate can be crosslinked and increase the mechanical 

properties of the formulation. In parallel, 106 µL of 0.9% sodium chloride was added to the 

SLM formulation for which it was not necessary to add GDL as shown by rheology. The 

formulations were immediately thoroughly mixed and incubated overnight at 4 °C to 

equilibrate. One day later, prepared formulations were mixed again prior to injection in 

vivo or to use for in vitro experiments. For both in vivo and in vitro experiments 200 µL of 

the prepared formulations were used. The final amount of BMP-2 was 3.3 µg in each 200 

µL hydrogel+RCP-MS formulation (Table 2.1). Solubilized Ca2+ ion as shown in µM and % in 

Table 2.1 was detected by calcium colorimetric assay following the manufacturer’s 

instructions (Sigma-Aldrich). 
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The following formulations were used for in vitro and in vivo experiments. First, a 15% w/w 

solution of HApN was prepared in PBS. On the same day, 170 µL BMP-2 at 122.5 µg/mL 

concentration was added to 34 mg of RCP-MS (without CaCO3) and particles were 

incubated at 4 °C overnight. The next day, 850 µL HApN (15% w/w) and 270 µL PBS were 

added to the swollen particles and the formulation was mixed with a 1 mL syringe and 19 G 

needle. The composition of the final formulations is shown in Table 2.1. In order to keep 

the amount of RCP the same in all different formulations, half of the microspheres were 

used in HApN condition compared to SLM+RCP-MS or SLG+RCP-MS formulations that 

contained 50% CaCO3 and 50% RCP in the microspheres. The prepared formulations were 

mixed and incubated overnight at 4 °C to equilibrate. All formulations were prepared 

under sterile conditions. Biomineralization of the hydrogels formulations was not studied, 

since interactions between RCP-MS and hydrogels were not expected to change the 

mineralization properties of the formulation (107, 108). 

2.3.42.3.42.3.42.3.4 CharacteriCharacteriCharacteriCharacterization of the formulationszation of the formulationszation of the formulationszation of the formulations        

The mechanical properties of prepared hydrogels containing BMP-2 loaded microspheres 

were measured by a rheometer (Anton Paar MCR301, Austria). A 20 mm diameter parallel 

plate measuring system was used. After sample addition to the plate, silicon oil was 

applied to the edges to prevent evaporation. All measurements were performed with a 

normal force of 0.1 N. As a precharacterization, the storage (or elastic) modulus (G’) and 

loss (or viscous) modulus (G’’) were measured at different strains to determine the linear 

viscoelastic region. To determine the linear viscoelastic region in alginate formulations 

(shown in Table S2.1) four different formulations were prepared. SLG alginate (1.5%, w/v); 

SLG alginate (1.5%, w/v) with microspheres (8%, w/v); SLG alginate (1.5%, w/v) with 

microspheres (8%, w/v) and GDL (5 mM); and SLG alginate with CaCO3 (4%, w/v) and GDL 

(5 mM) were prepared. After precharacterization, thermosensitive HApN+RCP-MS 

formulation was measured at 2% strain, at 1 Hz while heating from 15 °C to 40 °C followed 

by cooling from 40 °C to 15 °C. 

Alginate formulations were measured by a two-step repeating cycle. At the first step of the 

cycle, storage and loss moduli were measured at 1% strain, at 1 Hz, at 37 °C. At the second 

step, 500% strain, 1 Hz frequency, 37 °C temperature was applied. The cycle repeated four 

times to characterize thixotropic behavior. During the measurements, perturbations due 

to collisions and cantings of the particles were not observed. 

The morphology of the formulations was investigated by using SEM. To prepare the 

samples prior to analysis, RCP-MS loaded hydrogels were immersed into liquid nitrogen 

and freeze-dried at −50 °C. The cross-section of the formulations was sputter-coated with 

gold before loading onto the microscope. 
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2.3.52.3.52.3.52.3.5 Release of BMPRelease of BMPRelease of BMPRelease of BMP----2 from hydrogel formulations2 from hydrogel formulations2 from hydrogel formulations2 from hydrogel formulations    

The formulations containing hydrogels and BMP-2 loaded microspheres were prepared as 

described above. 200 µL of hydrogel formulations was added to 24 well plate inserts with 

0.4 µm pore size. 1 mL DMEM with 10% FBS and 1% P/S per well was added to the reservoir 

plate. The plates were incubated at 37 °C under constant agitation at 300 rpm. When 

removed from the incubator, the plates were put on a hot plate at 37 °C to prevent the gel-

sol transition of HApN hydrogels. At each time point 1 mL medium was collected and 

changed with fresh medium. The collected release media were analyzed by rhBMP-2 

ELISA development kit (Peprotech) according to manufacturer’s protocol. As a positive 

control, 200 µL of 16.5 µg/mL BMP-2 solution was added to the inserts and 1 mL medium 

was added to bottom wells of the transwell plate. At each time point 1 mL medium was 

collected and changed with fresh medium. The cumulative amount of BMP-2 that passed 

through the membrane to the bottom of the well after 14 days was quantified. This control 

was included in order to study the effect of protein sticking to the plate and membrane, as 

well as its degradation over time. At the end of the experiment (Day 14), 2.3 µg ± 0.1 µg 

(mean ± SD, n = 3) cumulative release was detected from the positive control which was 3.3 

µg BMP-2 initially added to the inserts of the transwells.  

2.3.62.3.62.3.62.3.6 Conditions for animal experimentConditions for animal experimentConditions for animal experimentConditions for animal experiment    

All animal experiments were performed with prior approval of the ethics committee for 

laboratory animal use (protocol #EMC 116-15-01). To have a statistically relevant group size, 

we performed a power analysis with an alpha of 0.05 and power = 80%. Based on similar 

works performed in an ectopic model using comparable cell-free systems (124-126), we 

expected a difference in bone formation of approximately 25 mm3 and an SD of ± 15 mm3. 

Therefore, 34 male Sprague Dawley (SD) rats at 12 weeks old were used in this study to 

evaluate bone formation. The animals were randomly assigned and housed in pairs in a 

specific pathogen-free environment and allowed to adapt to the conditions of the animal 

house for 7 days before starting the study. The animals were maintained at 20-26 °C on    a 

12 h dark/light cycle with ad libitum access to standard rat chow and water. To evaluate the 

effect of BMP-2 loaded in the different formulations, RCP-MS with a constant 

concentration of rhBMP-2 (3 µg per injection) and incorporated in SLG, SLM or HApN 

hydrogels were subcutaneously injected (total volume 200 µL per injection) in the dorsum 

of the animals. As controls, SLM+RCP-MS, SLG+RCP-MS and HApN+RCP-MS were 

implanted without BMP-2 addition. n = 6 replicates were used for each condition and each 

animal received six randomly assigned injections. All injections were performed using a 19 

gauge needle on animals under isoflurane inhalation. At 1, 4 and 10 weeks after 

implantation, animals were euthanized with CO2 and the specimens were harvested for 

further analysis. To reduce the number of animals used in this study, controls were 

harvested at 1 and 10 weeks after implantation.  
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2.3.72.3.72.3.72.3.7 µµµµCT analysisCT analysisCT analysisCT analysis    

When animals were euthanized at 4 and 10 weeks following transplantation, retrieved 

implants were immediately scanned at a resolution of 9 µm, using a SkyScan 1172 system 

(Bruker, Belgium). The following settings were used: X-ray power and tube current were 40 

kV and 0.25 mA, respectively. Exposure time was 5.9 s and an average of three pictures was 

taken at each angle (0.9°) to generate final images. These images were further 

reconstructed by SkyScan NRecon software (Bruker) using a range of 0-0.1 on the 

histogram scale, 20% beam-hardening correction and ring artefact reduction with a value 

of 5. For image processing SkyScan CTAnalyser software (Bruker) was used. Threshold 

levels of 120 (lower) and 255 (higher) were set to extract the amount of mineral volume 

from the tissue volume (BV/TV).    

2.3.82.3.82.3.82.3.8 HistologyHistologyHistologyHistology    

For histological examination, specimens were fixed in 4% formalin solution for 48 h and 

decalcified with 10% w/v EDTA for 2-4 weeks. Implants were dehydrated and embedded 

in paraffin. Sections of 6 µm thickness were prepared using a microtome and mounted on 

subbed glass slides (StarFrost, Knittel Glass, Germany). Three selected cross-sections from 

each implant, with a minimum distance of 120 µm apart were deparaffinized and rinsed 

with distilled water to be stained with hematoxylin and eosin (H&E). The sections were 

imaged by NanoZoomer-XR (Hamamatsu, Japan). A square grid (400-800 µm) overlay was 

used to quantify newly formed blood vessels, which were identified based on the 

presence of erythrocytes within a tubular-like structure. The number of blood vessels was 

counted within the implants in a blinded fashion by two examiners and averaged. 

Ster of differentiation 68 (CD68) marker was used to distinguish cells of the macrophage 

lineage, inducible nitric oxide synthetase (iNOS) and cluster of differentiation 206 

(CD206) markers were used for detection of M1 and M2 macrophage subsets. For 

detection of CD68, iNOS and CD206 positive cells, sections were deparaffinized and 

washed. In the case of CD68 and CD206, antigen retrieval was performed using a citrate 

buffer (10 mM, pH 6.0) at 90 ºC for 20 min. For iNOS, 10 mM Tris, pH 9.0, 1 mM EDTA 

Solution, 0.05% v/v Tween 20 buffer was used. To avoid nonspecific binding, slides were 

preincubated 30 min with 10% v/v normal goat serum (NGS) (Southern Biotech, USA) in 

PBS/1%BSA w/v and 2% w/v milk powder to block nonspecific binding followed by 1 h 

incubation with either primary CD68 antibody (Acris, Germany) diluted to 0.5 µg/mL, 

primary CD206 antibody (Abcam, UK) diluted to 2.5 µg/mL or primary iNOS antibody 

(Abcam) diluted to 2 µg/mL. CD68 stained samples were then incubated for 30 min with 

biotinylated secondary goat anti-mouse antibody diluted 1:100 in PBS + 1% w/v BSA + 5% 

v/v rat serum (Jackson, PA, USA). For CD206 and iNOS staining, secondary biotin labeled 

goat antirabbit antibody (Biogenex, UK) diluted 1:50 in PBS+ 1% w/v BSA + 5% v/v rat serum 

was used. Finally, slides were incubated with label streptavidin-AP (Biogenex) diluted at 
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1:100, rinsed with 0.2 M Tris-HCl pH 8,5 and stained with substrate. Substrate consisted in 

0.1 mg/mL New Fuchsin (Sigma-Aldrich), 0.3 mg/mL naphtol AS-MX phosphate (Sigma-

Aldrich), 0.0025% w/v NaNO2 (Sigma-Aldrich), 3% v/v di-methylformamide (Sigma-

Aldrich) and 0.25 mg/mL levamisole (Sigma-Aldrich) dissolved in 0.2 M Tris-HCl (pH 8.5). 

Slides were counterstained with haematoxylin (Sigma-Aldrich) and analyzed using 

confocal microscope. Mouse IgG1 antibody (Dako Cytomation, Denmark) and rabbit IgG1 

(Dako Cytomation) were used as negative controls. 

Type II collagen occurs exclusively in cartilage, therefore, to investigate the presence of 

cartilaginous tissue within the formulations, collagen II staining was performed on the 

samples as previously described (127). 

After Nanozoomer-XR imaging Hamamatsu Photonics, all the retrieved implants were 

ranked for CD68, iNOS and CD206-positive cells in terms of both staining intensity and 

number of cells stained by two observers who scored all stainings and were blinded with 

regard to treatment. The results obtained by the two observers were averaged and rated 

on ordinal scale (lowest number = no/minor to highest number = moderate/heavy).  

2.3.92.3.92.3.92.3.9 Statistical analysisStatistical analysisStatistical analysisStatistical analysis    

To investigate whether there were differences in the number of blood vessels and CD68, 

iNOS and CD206 positive cells between conditions, a Kruskal-Wallis test was applied and 

Dunn’s post-hoc was used for analysis. µCT quantitative data and BMP-2 release data were 

analyzed using one-way analysis of variance and Bonferroni’s post-hoc multiple 

comparison test was applied to the obtained results. A value of p < 0.05 was considered to 

be statistically significant.  

Quantitative data are presented as bars, indicating the mean ± SD, while qualitative data 

are presented as box plots, indicating median, and the interquartile distance with the 

whiskers showing the largest and smallest values. 

2.42.42.42.4 ResultsResultsResultsResults    

2.4.12.4.12.4.12.4.1 RCP microsphereRCP microsphereRCP microsphereRCP microsphere----alginalginalginalginate ate ate ate in situin situin situin situ    gelling hydrogels have sheargelling hydrogels have sheargelling hydrogels have sheargelling hydrogels have shear----thinning thinning thinning thinning 

behavior behavior behavior behavior     

Strain-dependent oscillatory rheology of RCP microsphere-alginate hydrogels showed an 

extremely broad linear viscoelastic region in addition to network rupture at high strains for 

the alginates containing 8% microspheres (Table 2.1 and Figure S2.3). The SLG alginate with 

microspheres (SLG + 8% microspheres) broke at 150% strain whereas the formulation 

containing GDL (which allowed release of Ca2+ ions to enable the crosslinking of the 

alginate) (SLG + 8% microspheres + GDL) was not broken at the maximum strain measured, 

167% (Table S2.1). This demonstrates that addition of GDL to the formulation, releasing 3.18 
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µM Ca2+ ions (Table 2.1), improved the mechanical properties of the SLG gel as a result of 

the release of Ca2+ ions that allowed alginate crosslinking. The viscoelastic region was 

much smaller for the control consisting of alginate, CaCO3 particles (1 µm) and GDL. This 

formulation was broken at 40% strain showing the reinforcing effect of the microspheres in 

the formulation. GDL was not required for the crosslinking of the SLM alginate. 

Table Table Table Table 2222....1111. . . . Composition of the formulations used for the in vitro BMPComposition of the formulations used for the in vitro BMPComposition of the formulations used for the in vitro BMPComposition of the formulations used for the in vitro BMP----2 release study and for the 2 release study and for the 2 release study and for the 2 release study and for the 

in vivo experiment.in vivo experiment.in vivo experiment.in vivo experiment.    

Formula
tion 

Conc. of 
alginate 

(%) 

Conc. 
of 

HApN 
(%) 

RCP-MS 
with 

CaCO3 
(mg/mL) 

RCP-MS 
without 
CaCO3 

(mg/mL) 

CaCO3 
(mg/mL) 

RCP 
(mg/mL) 

GDL 
(mg/mL) 

Ca 
solubilized 

(µM) 

Ca 
solubilized 

(%) 

Amount 
of BMP2 
(µg/mL) 

SLM 
with 

RCP-MS 
1.5 - 54 - 27 27 - - - 16.1 

SLG 
with 

RCP-MS 
1.5 - 54 - 27 27 5 3.18 0.93 16.1 

HApN 
with 

RCP-MS 
- 10 - 27 - 27 - - - 16.1 

 

Interestingly, the optimized formulations of SLM+MS and SLG+MS were thixotropic. When 

500% strain was applied, a decrease in both loss and storage moduli was observed and the 

hydrogel structure was broken showing the shear-thinning effect (Figure 2.1A). When the 

stress was removed, the hydrogel recovered almost instantaneously indicating that the gel 

can be formed in situ directly after injection in vivo. This cycle can be repeated several 

times without loss of function. Both of the alginates were injectable due to this shear-

thinning behavior. The formed hydrogels had storage (elastic) moduli between 1-2 kPa for 

both alginate gel formulations.  

The surface morphologies of the freeze-dried formulations were examined by SEM. 

Polymer scaffolds for tissue engineering must be highly porous to permit the infiltration of 

a large number of cells and their differentiation in situ. Dry average diameter of RCP-MS 

was ~ 70 µm and the formulations studied –alginate SLM, alginate SLG and HApN– formed 

an interconnected pore network with the RCP-MS homogenously distributed throughout 

it (Figure 2.1C). Table 2.1 indicates the composition of the formulations used. The aim was 

to find the optimal formulation with the minimum of fabrication steps with our desired 

characteristics that would lead to maximum bone formation in vivo. 

2.4.22.4.22.4.22.4.2 HApNHApNHApNHApN----microsphere formulation have thermoresponsive behaviormicrosphere formulation have thermoresponsive behaviormicrosphere formulation have thermoresponsive behaviormicrosphere formulation have thermoresponsive behavior    

HApN hydrogel grafted with PNIPAM has an intrinsic property of thermo-inducible gel 

formation as shown earlier by D’Este et al. (120). In combination with microspheres the 

thermoresponsive behavior was retained, which can be seen by the mechanical 
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characterization of the hydrogel at increasing and decreasing temperatures between 15 °C 

and 40 °C (Figure 2.1B). In the cooling phase, there was a change from the gel state to the 

liquid state whereas in the heating phase, liquid to gel transition occurs. Both the storage 

modulus and loss modulus of the formed gel increased to 5 kPa at 37 °C. 

 

Figure Figure Figure Figure 2222....1111. . . . Mechanical properties of the SLMMechanical properties of the SLMMechanical properties of the SLMMechanical properties of the SLM++++RCPRCPRCPRCP----MS, SLGMS, SLGMS, SLGMS, SLG++++RCPRCPRCPRCP----MS and HApNMS and HApNMS and HApNMS and HApN++++RCPRCPRCPRCP----MS MS MS MS 

formulations. formulations. formulations. formulations. Schemes illustrate the network of hydrogel with microspheres; gray: RCP-MS with 

CaCO3, blue: SLM and SLG alginate, black: calcium ions, red: HApN and green: RCP-MS without 

CaCO3. Thixotropic behavior of the alginate hydrogel formulations containing SLM or SLG alginate 

and calcium comprising RCP-MS is shown by rheology. GDL was added to the SLG alginate 

formulation to keep the rheological properties of both types of alginate formulations similar. In both 

formulations, gel is disrupted under shear stress and hydrogels recuperate when stress is removed 

within 30 s. B. The thermo-responsiveness of the HApN hydrogel with microspheres is shown by 

rheology. Gel is formed when suspension is heated to 40 °C and the viscous liquid state forms when 

the gel is cooled to 15 °C. C. SEM images of the SLM+RCP-MS, SLG+RCP-MS and HApN+RCP-MS 

formulations (scale bar is 100 µm). The square grid shows one of the areas of the HApN formulation 

in which RCP-MS fully embedded in the hydrogel are observed. Arrows indicate RCP-MS.    
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2.4.32.4.32.4.32.4.3 BMPBMPBMPBMP----2 release from HApN2 release from HApN2 release from HApN2 release from HApN----MS hydrogel was lower MS hydrogel was lower MS hydrogel was lower MS hydrogel was lower than alginatethan alginatethan alginatethan alginate----MS MS MS MS 

hydrogelshydrogelshydrogelshydrogels    

Apart from the injectability of the hydrogel, the ability of the hydrogels to provide 

sustained-BMP-2 release is important for bone formation. We have showed earlier that 

there is a specific interaction between BMP-2 and RCP (58). Here, the release of BMP-2 

from the hydrogels+RCP-MS formulations was studied and compared to hydrogel or RCP-

MS only conditions. Both alginate hydrogels with RCP-MS released BMP-2 slower than 

alginate without RCP-MS, showing the synergistic effect of microspheres and hydrogels to 

control the release (Figure 2.2A). During the time-course study of two weeks, ~ 10% of 

BMP-2 (202 ± 42 ng; mean ± SD) was released from SLG+RCP-MS formulation and only ~ 

2% (46 ± 23 ng; mean ± SD) was released from SLM+RCP-MS formulation. The numbers 

indicated that the majority of BMP-2 was retained in the alginate-RCP-MS formulations. 

These results suggest that a similar slow-degradation of the RCP-MS will also occur in vivo 

as observed by the gradual shrinkage and breakdown of the microspheres over time. 

In the HApN formulation, RCP-MS without CaCO3 addition were used. Although the RCP-

MS without calcium are more porous compared to the ones with calcium carbonate, and 

therefore, have a larger surface area (Figure S2.1), no differences in BMP-2 release were 

observed when compared HApN and HApN+RCP-MS. The release from the HApN+MS 

and from HApN hydrogel only was limited (Figure 2.2B) and the total release was less than 

0.2% (3.7 ± 0.4 ng and 4.2 ± 0.2 ng), a fraction of the 3.3 µg loaded into the gels. To confirm 

that the unreleased BMP-2 was still inside the hydrogel after 2 weeks, ten times diluted 

samples were loaded on an SDS-PAGE gel (Figure S2.4). We could detect a band of BMP-2 

after 2 weeks of release, which confirmed that HApN hydrogel was preventing BMP-2 

release.  
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Figure Figure Figure Figure 2222....2222.... In vitro BMPIn vitro BMPIn vitro BMPIn vitro BMP----2 release from the A2 release from the A2 release from the A2 release from the A))))    SLM alginate, SLG alginate formulations and SLM alginate, SLG alginate formulations and SLM alginate, SLG alginate formulations and SLM alginate, SLG alginate formulations and 

collagencollagencollagencollagen----I based recombinant peptide microspheres (RCPI based recombinant peptide microspheres (RCPI based recombinant peptide microspheres (RCPI based recombinant peptide microspheres (RCP----MS) containing CaCOMS) containing CaCOMS) containing CaCOMS) containing CaCO3333    and Band Band Band B))))    from from from from 

hyaluronic acidhyaluronic acidhyaluronic acidhyaluronic acid----pN (HApN) formulations and RCPpN (HApN) formulations and RCPpN (HApN) formulations and RCPpN (HApN) formulations and RCP----MS withouMS withouMS withouMS without CaCOt CaCOt CaCOt CaCO3333. . . . The cumulative release of 

BMP-2 in DMEM with 10% FBS and 1% P/S detected by ELISA is demonstrated over time. BMP-2 

release from (A) SLM alginate only (SLM), SLG alginate only (SLG), microspheres containing CaCO3 

(MS), SLG alginate with microspheres (SLG+MS), SLM alginate with microspheres (SLM+MS); (B) only 

microspheres without CaCO3 (MS), thermoresponsive hyaluronan derivative with microspheres 

(HApN+MS) and thermoresponsive hyaluronan derivative (HApN) are compared. Statistical 

difference at 14 days of cumulative release analyzed by one-way ANOVA, *p < 0.05, *** p < 0.001.    

 

2.4.42.4.42.4.42.4.4 Injectable BMPInjectable BMPInjectable BMPInjectable BMP----2 loaded hydrogel formulations induced ectopic bone 2 loaded hydrogel formulations induced ectopic bone 2 loaded hydrogel formulations induced ectopic bone 2 loaded hydrogel formulations induced ectopic bone 

formation formation formation formation     

BMP-2 loaded in RCP-MS were injected subcutaneously after encapsulation in the three 

hydrogel formulations tested; alginate SLM+RCP-MS, alginate SLG+RCP-MS, and thermo-

responsive HApN+RCP-MS. Identical formulations without addition of BMP-2 were used as 

controls. 1 week postinjection, histology revealed noticeable differences in terms of 
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composite integrity between formulations (Figure 2.3A). In the alginate formulations, both 

the microspheres and the alginate layer were mostly intact, with some cellular infiltration 

in the fissures that appeared in the gel. However, in the HApN+RCP-MS formulation, much 

of the hydrogel had disappeared, many of the microspheres were being degraded, and 

numerous cells could be observed within the implants (Figure 2.3A). After 4 weeks, bone 

formation was observed in one third of the alginate harvested formulations (Figure 2.3A).  

Bone formation was analyzed by µCT. No mineralization was observed 1 week after 

implantation. A similar amount of calcified tissue in all three hydrogel formulations tested 

was observed at 4 weeks postimplantation (Figure 2.3B-C). Interestingly, in the alginate 

formulations cartilaginous regions were found at that time point, suggesting that 

endochondral ossification process was occurring near by the RCP+RCP-MS (Figure S2.5). At 

10 weeks, µCT confirmed the greatest amount of bone formation when alginate SLG was 

used as a carrier, showing a more than 3-fold increase compared to the 4 weeks scan 

(mean ± SD, from 4.4 ± 5.4 mm3 mineral volume at 4 weeks to 22.3 ± 11 mm3 at 10 weeks). 

When alginate SLM+RCP-MS or thermo-responsive HApN+RCP-MS were used, the 

amount of calcified tissue found within the implants did not change significantly over time 

(Figure 2.3B). Moreover, the alginate SLG+RCP-MS formulation significantly increased the 

amount of mineral volume formed at 10 weeks compared to alginate SLM (22.3 ± 11 mm3 

vs. 4.24 ± 3 mm3) (Figure 2.3B). As we expected, when alginate formulations were 

implanted without BMP-2, mineral tissue was barely found (Figure 2.3C). Interestingly, the 

thermo-responsive HApN+RCP-MS formulation showed calcified tissue on µCT, even 

without the addition of BMP-2 (Figure 2.3C), but histological analysis did not show bone 

formation and the formulation structure was almost degraded with or without BMP-2 

addition at the end of the experiment (Figure 2.3A).  
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FigureFigureFigureFigure    2222....3333. . . . Alginate hydrogel formulations loaded with BMPAlginate hydrogel formulations loaded with BMPAlginate hydrogel formulations loaded with BMPAlginate hydrogel formulations loaded with BMP----2 induced ectopic bone formation. 2 induced ectopic bone formation. 2 induced ectopic bone formation. 2 induced ectopic bone formation. 

A. H&E sections at 1, 4 and 10 weeks after implantation showing the alginate scaffolds (alg), 

microspheres (indicated by yellow arrows), formed bone (B), and fibrous tissue (FT). Controls (empty 

gels) are shown at 10 weeks. Images are shown at high magnification (scale bar is 400 µm). B. 

Comparison of the mineral volume obtained in the different formulations with the addition of BMP-2 

at 4 and 10 weeks-period. The bars represent the mean ± SD (* p < 0.05). C. Reconstructed µCT images 

10 weeks after subcutaneous injection of alginate SLM+ RCP-MS, alginate SLM+ RCP-MS and HA+ 

RCP-MS with and without BMP-2. Alginate SLM (SLM), alginate SLG (SLG), thermoresponsive 

hyaluronan derivative (HApN), Collagen-I based Recombinant Peptide microspheres (RCP-MS).    
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2.4.52.4.52.4.52.4.5 Inflammatory cell infiltration decreased over time in alginate in Inflammatory cell infiltration decreased over time in alginate in Inflammatory cell infiltration decreased over time in alginate in Inflammatory cell infiltration decreased over time in alginate in 

comparison to hyaluronan formulations comparison to hyaluronan formulations comparison to hyaluronan formulations comparison to hyaluronan formulations     

To investigate the role of inflammation in the bone formation process, we used CD68 as a 

general marker to identify cells of the macrophage lineage. We observed a significant time 

dependent decrease in staining in the alginate SLG (median ± 95% CI, 39 ± 8.3 at 1 week vs. 

7 ± 7.5 at 10 weeks, p < 0.05) (Figure 2.4A,B). In the alginate SLM+RCP-MS formulation 

CD68-positive staining was less pronounced than in SLG+RCP-MS at week 1, increased at 

week 4 and then significantly dropped again at week 10 (mean ± 95% CI, 14 ± 3.9 at 1 week 

and 33.5 ± 7.3 vs. 10 ± 11 for 4 and 10 week rank, respectively). In the HApN+RCP-MS 

formulation, macrophage recruitment was slower than in alginate SLG+RCP-MS 

formulation and had the highest CD68-positive staining at 10 weeks (median ± 95% CI, 

from 23.5 ± 6.3 at week 1 to 48.5 ± 5.5 at the end of the experiment, p < 0.01) (Figure 

2.4A,B). Furthermore, when we compared the formulations to each other at 1, 4 and 10 

weeks postimplantation, the SLG+RCP-MS formulation showed more pronounced 

infiltration of CD68-positive cells at 1 week than SLM+RCP-MS (39 ± 8.3 vs. 14 ± 3.9, p < 

0.01) and CD68-positive staining at 10 weeks in the HApN+RCP-MS formulation was 

significantly higher than in both, alginate SLM+RCP-MS and alginate SLG+RCP-MS (10 ± 11 

for SLM+RCP-MS, 7 ± 7.5 for SLG+RCP-MS vs 48.5 ± 5.5 for HApN+RCP-MS, p < 0.05).  

To further investigate whether the different formulations promoted the activation of 

distinct macrophage phenotypes, proinflammatory (M1) and anti-inflammatory (M2) 

macrophage subsets were identified. To achieve this, iNOS and CD206 markers were 

used. iNOS, was used as marker for M1 macrophages. The HApN+RCP-MS formulation had 

significantly more iNOS-positive staining compared to the alginate SLG+RCP-MS 

formulation at 10 weeks (median ± 95% CI, 41.25 ± 9.6 vs. 7 ± 8.8, p < 0.05) (Figure 2.4C).  

CD206-positive staining to identify M2 macrophages did not show any difference 

between formulations at week 1. At 4 weeks, CD206-positive staining was significantly 

higher in SLM+RCP-MS than in HApN+RCP-MS formulations (28.2 ± 4 vs. 10.5 ± 4.2). At 

week 10 no significant differences were found between them (Figure 2.4D). 
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Figure Figure Figure Figure 2222....4444. . . . CD68, iNOS and CD206 positive staining differed between hydrogel formulations.CD68, iNOS and CD206 positive staining differed between hydrogel formulations.CD68, iNOS and CD206 positive staining differed between hydrogel formulations.CD68, iNOS and CD206 positive staining differed between hydrogel formulations.    

A. Two blind observers ranked the implants according to the CD68 positive staining found in the 

formulations at 1, 4 and 10 weeks. B. CD68 staining of a representative sample of each implant 

formulation at 1 and 10 weeks (scale bar is 400 µm). The square grid shows the selected magnified 

area for each formulation. CD68-positive cells are indicated by black arrows (scale bar is 100 µm). C. 

Ranked implants by two blind observers according to the iNOS positive staining found in the 

formulations at 1, 4, and 10 weeks. D. Ranked implants by two blind observers according to the 

CD206 positive staining found in the formulations at 1, 4 and 10 weeks. The line in the middle of the 

box is plotted at the median. The box extends from the 25th to 75th percentiles and the whiskers are 

drawn down to the 5th percentile and up to the 95th, (* p < 0.05, ** p < 0.01). Alginate SLM (SLM), 

alginate SLG (SLG), thermoresponsive hyaluronan derivative (HApN), Collagen-I based Recombinant 

Peptide microspheres (RCP-MS).    
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2.4.62.4.62.4.62.4.6 Injectable Injectable Injectable Injectable formulations loaded with BMPformulations loaded with BMPformulations loaded with BMPformulations loaded with BMP----2 promoted blood vessel 2 promoted blood vessel 2 promoted blood vessel 2 promoted blood vessel 

ingrowth ingrowth ingrowth ingrowth     

Vascularization is a prerequisite for ossification. In all three formulations blood vessel 

density increased over time (Figure 2.5A). Interestingly the quantity of blood vessels found 

within the implants differed markedly between formulations, showing more than 5-fold 

more vessels in the HApN+RCP-MS formulation –mean ± SD; 395 ± 82 counted at 10 

weeks– compared to the SLM+RCP-MS –with 144 ± 79 at 10 week (p < 0.001)– (Figure 

2.5A,B). In addition, in SLG+RCP-MS and HApN+RCP-MS the quantity of blood vessels was 

significantly higher at 10 weeks than at 1 week (mean ± SD; 144 ± 79 vs. 13 ± 16 in alginate 

SLG+RCP-MS, and 395 ± 82 vs. 38 ± 27 in HApN+RCP-MS) (Figure 2.5A). Without BMP-2 no 

significant increase in the number of blood vessels were observed between 1 and 10 weeks 

in any of the formulations (data not shown).  
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Figure Figure Figure Figure 2222....5555. . . . Alginate SLG and hyaluronic acid loaded with BMPAlginate SLG and hyaluronic acid loaded with BMPAlginate SLG and hyaluronic acid loaded with BMPAlginate SLG and hyaluronic acid loaded with BMP----2 significantly promoted blood 2 significantly promoted blood 2 significantly promoted blood 2 significantly promoted blood 

vessel ingrowth. vessel ingrowth. vessel ingrowth. vessel ingrowth. A. Representative pictures of each implant formulation at 10 weeks (scale bar is 800 

µm). The square grid shows the selected magnified area for each formulation (scale bar is 200 µm). 

B. In each section, blood vessels were counted. The graphs show the absolute number of blood vessels 

counted per formulation at 1, 4, and 10 weeks. The line in the middle of the box is plotted at the 

median. The box extends from the 25th to 75th percentiles and the whiskers are drawn down to the 5th 

percentile and up to the 95th, (* p < 0.05, ** p < 0.01, *** p < 0.001). Alginate SLM (SLM), alginate 

SLG (SLG), thermoresponsive hyaluronan derivative (HApN), Collagen-I based Recombinant Peptide 

microspheres (RCP-MS).    

2.52.52.52.5 DiscussionDiscussionDiscussionDiscussion    

In this study, we have developed three different sustained-release formulations with 

different physical and chemical properties to be used in bone tissue engineering. We have 

tested in situ gelling HApN formulation with thermo-responsive behavior and two alginate 

formulations with shear-thinning behavior as potential systems for the induction of de novo 

bone formation. We have found differences in the BMP-2 release pattern when loaded in 

HApN versus alginate hydrogels. Also, a further decrease in release rate was observed 

when BMP-2 was absorbed to RCP-MS and then combined with alginate hydrogels. 

Furthermore, we have shown that the slow-release gel-microsphere system comprised of 

SLG alginate supported the essential processes needed for bone formation, such as 

inflammatory cell infiltration, vascularization and osteogenesis in vivo and was superior to 

the SLM alginate and HApN formulations. Through analysis of the phenotype of the 

infiltrating cells and kinetics of blood vessel invasion we shed some light on the possible 

reasons for the differences observed between formulations.  

Injectable matrices have been the subject of much research in the fields of drug delivery 

and tissue engineering due to the minimally invasive nature with which they can be 

delivered (99). We selected alginate and HApN formulations as carriers of RCP-MS for two 

reasons. First, they are both natural-origin polymers that are commonly used for bone 

regeneration; second, they can form in situ gelling systems. The in situ hydrogel forming 

ability of PNIPAM functionalized HA and alginate has already been shown (120, 128). 

However, the formulations with microspheres are novel and were developed specifically 

for this study. One advantage of the system with alginate is that it can form a reversible 

hydrogel (thixotropic) which has not been observed in other in situ gelling alginates (129). 

This reversible behavior of the gel makes handling much easier since the hydrogel can be 

prepared in advance and stored prior to application. Another advantage of both types of 

alginate formulations used in this study was the gelation time, which was so quick that the 

formed gel stayed in the injection site. In addition, the relatively slow degradation time of 

the alginates matched the time required for bone formation. The alginates showed some 

signs of initial degradation on histology by the first week, but after 10 weeks hydrogel was 
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still present, which kept the microspheres and protein at the site, supported the formation 

of new bone and delayed the release of BMP-2.  

It is still controversial what the ideal BMP-2 release kinetics are to successfully form bone. 

Some studies have shown BMP2-mediated bone formation was not influenced by the 

release timing, while others demonstrated that in ectopic sites sustained-release 

significantly enhanced bone formation compared to burst release (110, 130). BMP-2 is 

chemoattractant to osteoprogenitor cells (131) and it is generally accepted that the delivery 

vehicle should maintain BMP-2 concentration within the therapeutic frame for enough 

time to allow recruitment and differentiation of osteoprogenitor cells. Therefore, the type 

of hydrogel chosen is important. In our study, the diffusion of BMP-2 seems to be faster in 

the SLM alginate than in the SLG hydrogel. However, when loaded in the microspheres the 

opposite happens, being faster the release in the SLG formulation. The slightly acidic 

environment initially created with GDL, might have solubilized BMP-2 more and led to 

more release. Previous publications have also shown that using microsphere/hydrogel 

combinations slows down protein release compared to the use of only hydrogels (64, 132-

134). Our results are in agreement with those studies as we have observed 20% more BMP-

2 retention when SLG and SLM were combined with RCP-MS. We have previously shown 

that the RCP-MS can only be degraded by collagenase treatment due to the highly 

crosslinked network and that when particles are fully degraded, BMP-2 could be released 

from the RCP-MS (58). Collagenase is crucial for the remodeling of collagenous 

extracellular matrices, including bone tissues and it is expressed by both osteoblasts and 

osteoclasts (135-137). These findings suggest that the collagenase expressed by the 

infiltrating cells might be an important factor for bone formation. In our study, it might 

have been also relevant for in vivo BMP-2 release from the RCP-MS and may have been a 

determining factor in the differences in bone formation observed between formulations. 

SLG+RCP-MS lead to more BMP-2 release than SLM+RCP-MS resulting in more bone 

formation. When HApN was used as a hydrogel, with or without the addition of RCP-MS, 

most of it was retained and no bone formation was observed. These data suggest a smaller 

pore size of HApN hydrogel due to higher molecular weight and initial dry content or a 

strong interaction between thermoresponsive HApN hydrogel and BMP-2 resulting in the 

retention of the protein. This has been observed previously for HA. In one study, HA-

based powder gel composite showed slow release of less than 20% of the total amount of 

rhBMP-2 (138). Most likely this lack of release prevented the attraction of the necessary 

cells at the early stages and by the time it had been released the material was too 

degraded to modulate the release rate or structurally support bone formation. Whether 

this affinity for BMP-2 is specific to PNIPAM functionalized HA or is a more general 

phenomenon requires further investigation. It is important to mention that in alginate 

formulations CaCO3 was added to crosslink the hydrogels and therefore, calcium ions 

could still be present during the experiment. It has been widely demonstrated that the 

addition of calcium ions enhances the osteogenic capacity of osteoprogenitor cells and 
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the overall bone formation and, consequently, might have a positive effect in the outcome 

observed when alginate formulations were used in this study. However, it is unlikely that 

the significant difference in terms of bone formation between the different slow-release 

systems tested is only due to the presence of calcium ions, but to their physical properties 

such as stiffness or degradation rate.  

The mechanical properties of the alginates showed that the storage (elastic) moduli are in 

the range of elastic moduli of endothelial tissue and stromal tissue (139). However, the 

elastic modulus of HApN with microspheres is higher than that of alginates and 

comparable to elastic modulus of a smooth muscle (139). These mechanical properties 

indicate that the gels can retain the microspheres in situ, fill a defect and provide initial 

support during the formation of bone. The mechanical properties of these thixotropic 

alginate hydrogels (1-2 kPa) are similar to non-in situ gelling alginates (140). According to 

Banerjee et al., gels with very high elastic moduli are undesirable and thixotropic gels with 

moderate elastic moduli (which were what we used in this study) should be suitable for 

bone regeneration (141). With regard to HA, 50% crosslinked HA had an elastic modulus of 

30 Pa (142), which is far lower than the PNIPAM functionalized hydrogel presented in this 

study (5 kPa). After bone fracture, following the initial inflammation a callus forms. The 

mechanical properties of fracture callus have been measured and found to depend on 

multiple tissue types: the range of the indentation moduli was 0.61-1.27 MPa (median = 

0.99 MPa) for granulation tissue, 1.39-4.42 MPa (median = 2.89 MPa) for chondroid tissue 

and 26.92-1010.00 MPa (median = 132.00 MPa) for woven bone (143). We therefore 

concluded that an elastic modulus in the range of 1-10 MPa is suitable for supporting the 

regenerative tissue. Given the mechanical properties of these hydrogels, it could be 

feasible to apply them directly to repair non-load bearing bone defects. For fractures or 

defects in the load bearing bones, the application would still require some other kind of 

mechanical stabilization, be that a traditional cast, internal fixation, or combination with 

other stronger biomaterials. 

HA is a commonly used material for cartilage regeneration. Eglin et al. found that 

thermoresponsive HApN can be used to support hMSCs for the treatment of degenerated 

intervertebral disc and therefore HA hydrogels were developed as a bone-cartilage 

interface (144). Injectable HA has been shown to be successful in a rabbit osteochondral 

defect model (48). Interestingly, one study suggested that HA might impede bone 

formation by inhibiting osteoblast differentiation (145). Maus et al. used combinations of 

commercially available injectable HA with and without 200 µg BMP-2 in a sheep femoral 

defect. However, none of the conditions resulted in significant bone formation (114). 

Bakhta et al. used hyaluronan-based hydrogels loaded with 5 µg BMP-2 ectopically and 

observed significant bone formation within the formulations and a mineral volume of 4.4 ± 

0.5 mm3 after 8 weeks (60). However, prior to our study, in situ gelling HA had never been 

used in combination with particles to enhance cell adhesion and to promote bone tissue 
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formation. We used microspheres rich in RGD motifs as BMP-2 carrier and failed to show 

bone formation after 10 weeks. Unlike Bakhta et al., who implanted the formulations 

intramuscularly, which is more conducive to supporting de novo bone formation, we 

injected our formulation subcutaneously and this might account for the discrepancy 

observed. 

How to modulate inflammation has become a hot topic in bone repair in the past decade 

(146-149). Several groups have studied both the influence of different biomaterials upon 

macrophage polarization in vitro (150-154) and the positive dose-dependent relationship 

between the dosage of BMP-2 and the inflammatory volume (87, 155-158). Most in vivo 

bone formation studies have investigated the inflammatory response involved by using a 

single marker to identify monocyte-macrophage-osteoclast cells such as TRAP or have 

relied on generic histology (e.g. H&E) to assess inflammation (87, 155, 159, 160). In our 

study, we used CD68, iNOS and CD206 as markers to identify macrophage presence and 

to indicate their phenotype within our tested formulations. The BMP-2 dose used in this 

study was low, to prevent potential side-effects associated with higher doses (such as 

inflammation), to allow us to better investigate the effects of the materials. We observed a 

late CD68+ cell infiltration in the HApN+RCP-MS formulations, which increased over time. 

It has been reported that macrophages can specifically recognize HA through receptors 

such as CD44 or the hyaluronan receptor for endocytosis, HARE (161) and that the HA-

CD44 interaction is involved in multiple cellular functions such as inflammation (162). This 

might explain the high levels of inflammatory cell infiltrate observed at the later time points 

in the HApN+MS group. In contrast, in alginate formulations, CD68+ staining was lower at 

10 weeks than at 1 week, and bone formation was successfully achieved. It is known that 

alginates from wound dressings interact with wound macrophages (163) and alginate-

collagen formulations have been shown to locally integrate with host tissue in an 

abdominal wall defect model (164). Several studies have shown that the mannuronic acid 

residues of soluble alginate are cytokine-stimulating to monocytes (165). In our study, at 4 

weeks, there was more CD206+ staining in the alginate formulations, especially in the 

alginate SLM, than in the HApN+MS formulation. These data suggest a possible 

polarization of the monocytes toward the anti-inflammatory/tissue remodeling M2 

phenotype. Moreover, there were significantly more iNOS+ cells in the HApN+RCP-MS 

formulation than in the alginate formulations at 10 weeks, which is more indicative of a 

proinflammatory situation. Taken together the results suggest that within alginate 

formulations there was an initial inflammatory phase that resolved over time, leading to 

bone formation. In contrast, in the HApN+RCP-MS formulation the presence of 

proinflammatory cells increased over time and there were with significantly fewer anti-

inflammatory CD206 positive cells. This likely also negatively influenced the bone 

formation process in the HApN+RCP-MS gels.  
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Vascularization is another critical factor for successful bone formation. It has been 

demonstrated that HA-based scaffolds promote angiogenesis when used in a wide variety 

of applications, such as abdominal wall defect repair, brain injury or heart disease models 

(166-168). Moreover, Cui et al. demonstrated the ability of HA-RGD scaffolds to support 

angiogenesis in the cortex of the brain (169). Similarly, alginate-based beads loaded with 

VEGF had been used subcutaneously for bone tissue engineering, promoting angiogenesis 

(170). Furthermore, a study in which alginate and alginate-RGD hydrogel were injected 

into the infarct area of rats showed that both increased arteriole density but that the 

greatest angiogenic response was in the alginate-RGD hydrogel condition (171). Our 

findings agree with the results obtained in previous studies and we have demonstrated 

that both thermoresponsive HA and alginate enriched with RGD MS are able to promote 

vasculature formation ectopically when loaded with BMP-2. It is, however, clear that in this 

case more does not necessarily mean better: although significantly more vessels were 

present in the HA implants than in the alginates, this did not lead to the formation of any 

bony tissue.  

2.62.62.62.6 ConclusionsConclusionsConclusionsConclusions    

In situ gelling hydrogels encapsulating BMP-2 loaded RCP-MS represent an injectable 

slow-release protein delivery system. Alginate formulations effectively promoted bone 

formation in an ectopic model. While there was successful infiltration of cells into all three 

formulations, differences between materials were observed in the macrophage phenotype 

and invasion kinetics. Also, while there was ample vascularization in all three materials 

there were clear differences in the total number of blood vessels with the higher number 

present in the HA formulation not increasing the success of de novo bone formation. Thus, 

alginate SLG combined with RCP-MS and loaded with low dose BMP-2 displayed optimal 

protein release rate, cellular invasion, material degradation rate and vascularization 

kinetics to support bone formation. This study presents a novel cell-free injectable slow-

release system that has potential as a void-filling material for the induction of new bone 

formation.  
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2.72.72.72.7 Supplemental informationSupplemental informationSupplemental informationSupplemental information    

    

Table S Table S Table S Table S 2222....1111    Table showing the strain % at which the structure breaks, as shown by the amplitude Table showing the strain % at which the structure breaks, as shown by the amplitude Table showing the strain % at which the structure breaks, as shown by the amplitude Table showing the strain % at which the structure breaks, as shown by the amplitude 

sweeping test analyzed by rheology.sweeping test analyzed by rheology.sweeping test analyzed by rheology.sweeping test analyzed by rheology.    

Type of structure 
Strain % at which 

the structure breaks 

Alginate only 12 

Alginate (SLG-20) + 8% RCP-MS 150 

Alginate (SLG-20) + 8% RCP-MS + GDL >167 

Alginate + CaCO3 (1 µm size) + GDL 40 

    

    

Figure SFigure SFigure SFigure S2222....1111. . . . Scanning electron microscopy (left) and energyScanning electron microscopy (left) and energyScanning electron microscopy (left) and energyScanning electron microscopy (left) and energy----dispersive Xdispersive Xdispersive Xdispersive X----ray spectroscopy ray spectroscopy ray spectroscopy ray spectroscopy 

(right) mapping of(right) mapping of(right) mapping of(right) mapping of    RCPRCPRCPRCP----MSMSMSMS    after (upper lane) and before CaCOafter (upper lane) and before CaCOafter (upper lane) and before CaCOafter (upper lane) and before CaCO3333    removal (lower lane).removal (lower lane).removal (lower lane).removal (lower lane).    
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Figure SFigure SFigure SFigure S2222....2222. . . . Morphology of RCPMorphology of RCPMorphology of RCPMorphology of RCP----MS shown by scanning electron microscopy (SEM). MS shown by scanning electron microscopy (SEM). MS shown by scanning electron microscopy (SEM). MS shown by scanning electron microscopy (SEM). The CaCO3 

crystals are visible on the microspheres on the left as flaky structures.    

 

 

Figure SFigure SFigure SFigure S2222....3333. . . . StrainStrainStrainStrain----dependent oscillatory rheology of in situ gelling alginate hydrogels and of dependent oscillatory rheology of in situ gelling alginate hydrogels and of dependent oscillatory rheology of in situ gelling alginate hydrogels and of dependent oscillatory rheology of in situ gelling alginate hydrogels and of 

the negative controls consisting of an alginate hydrogel, crosslinked the negative controls consisting of an alginate hydrogel, crosslinked the negative controls consisting of an alginate hydrogel, crosslinked the negative controls consisting of an alginate hydrogel, crosslinked at higher calcium at higher calcium at higher calcium at higher calcium 

concentration, concentration, concentration, concentration, and an alginate hydrogel containing CaCOand an alginate hydrogel containing CaCOand an alginate hydrogel containing CaCOand an alginate hydrogel containing CaCO3333    particles.particles.particles.particles.    
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Figure SFigure SFigure SFigure S2222....4444.... SDSSDSSDSSDS----PAGE of BMPPAGE of BMPPAGE of BMPPAGE of BMP----2 protein. 2 protein. 2 protein. 2 protein. Bands are shown inside blue rectangles.    Lanes from left 

to right are: control BMP-2 solution at 15 µg/mL; marker; empty lane; HApN hydrogel after release 

diluted 10 times before loading; empty lane, HApN hydrogel loaded with BMP-2 (before release) 

diluted 10 times before loading; marker. The density of BMP-2 band after release is more intense than 

before release. This might be related to the higher interaction between BMP-2 and HApN initially.    

 

Figure SFigure SFigure SFigure S2222....5555. . . . Endochondral ossification was observed within alginate formulations since 4 weekEndochondral ossification was observed within alginate formulations since 4 weekEndochondral ossification was observed within alginate formulations since 4 weekEndochondral ossification was observed within alginate formulations since 4 week----

period to the end of the experiment. period to the end of the experiment. period to the end of the experiment. period to the end of the experiment. Representative picture of alginate SLM+RCP-MS formulation 

loaded with BMP-2 and stained by H&E at 4 weeks after implantation. The magnification shows 

collagen II positive cells within the central region of the implant. 
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3.13.13.13.1 AbstractAbstractAbstractAbstract    

The aim of the current study was to reduce the clinically used supraphysiological dose of 

bone morphogenetic protein-2 (BMP-2) (usually 1.5 mg/mL), which carries the risk of 

adverse events, by using a more effective release system. A slow-release system, based on 

an injectable hydrogel composed of BMP-2-loaded recombinant collagen-based 

microspheres and alginate, was previously developed. Time- and dose-dependent 

subcutaneous ectopic bone formation within this system and bone regeneration capacity 

in a calvarial defect model were investigated. BMP-2 doses of 10 µg, 3 µg and 1 µg per 

implant (50 µg/mL, 15 µg/mL and 5 µg/mL, respectively) successfully induced ectopic 

bone formation subcutaneously in rats in a time- and dose-dependent manner, as shown 

by micro-computed tomography (µCT) and histology. In addition, the spatiotemporal 

control of BMP-2 retention was shown for 4 weeks in vivo by imaging of fluorescently-

labelled BMP-2. In the subcritical calvarial defect model, µCT revealed a higher bone 

volume for the 2 µg of BMP-2 per implant condition (50 µg/mL) as compared to the lower 

dose used (0.2 µg per implant, 5 µg/mL). Complete defect bridging was obtained with 50 

µg/mL BMP-2 after 8 weeks. The BMP-2 concentration of 5 µg/mL was not sufficient to 

heal a calvarial defect faster than the empty defect or biomaterial control without BMP-2. 

Overall, this injectable BMP-2 delivery system showed promising results with 50 µg/mL 

BMP-2 in both the ectopic and calvarial rat defect models, underling the potential of this 

composite hydrogel for bone regeneration therapies. 
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3.23.23.23.2 IntroducIntroducIntroducIntroductiontiontiontion    

Autologous bone is widely used in bone grafting surgery. However, its limited availability 

and the discomfort related to the harvesting procedure have diverted the field to seek for 

alternative methods involving biomaterials (39). Bone morphogenetic proteins (BMP-2 and 

BMP-7), being successful in inducing bone formation, are already translated to clinics (101). 

BMP-2 absorbed on collagen sponge is approved by the United States Food and Drug 

Administration for spinal fusion, tibial nonunions and oral-maxillofacial reconstructions 

(172, 173). However, adverse events observed in clinics have limited the use of BMP-2, 

especially for off-label applications (104, 156, 174, 175). These adverse events, mainly 

inflammation (87) and swelling (176), are associated with the supraphysiological dose of 

BMP-2 loaded onto the collagen sponge (88), in combination with the strong burst 

release. Half of the loaded BMP-2 is released from the collagen sponge in the first two days 

in vivo (103). Possibly these adverse events can be mitigated by using an appropriate 

release system comprising lower BMP-2 dose (105, 177). Such a system might broaden the 

potential use of BMP-2 in orthopaedic and maxillofacial surgery applications. 

The dose or concentration of BMP-2 is very important for bone formation (178-180). Since 

no naturally bone-forming cells are present within the intradermal environment, 

subcutaneous ectopic bone can only be formed by injecting bone-forming cells or an 

osteoinductive protein, such as BMP-2, that can recruit progenitor cells (181). The 

concentration or dose of BMP-2 required to induce ectopic bone formation depends on 

the type of carrier material used. For example, using 5 µg of BMP-2, 32% bone formation is 

achieved using a 9 mm3 β-tricalcium phosphate scaffold, whereas hydroxyapatite, with the 

same amount of BMP-2, only yields 3% bone formation in a rat ectopic model (182). 5 µg of 

rhBMP-2, implanted with a 6 mm in diameter collagen sponge, are required to induce a 

small intramuscular bone formation in mice, with a maximum volume of 5 mm3 (183). 10 

mg of silk fibroin particles, loaded with 5 µg of BMP-2, induce the formation of a small 

volume (2 mm3) of ectopic bone after 4 weeks in rats (184). A low dose of BMP-2 (less than 

1 µg), delivered on a collagen sponge or with brushite calcium-phosphate particles, does 

not form any bone in the palatal submucosa of rats (185), confirming the presence of a 

threshold dose. This threshold depends on the type of material and application site and is 

associated with the release kinetics/degradation time of the material and subsequent 

cellular infiltration rate (178). An in situ gelling sustained-BMP-2-release system, which 

induces ectopic bone formation, is available (186). This hydrogel system is based on BMP-

2-loaded microspheres, composed of a recombinant peptide based on the sequence of 

collagen I (RCP), embedded in a high guluronate-type-alginate. The use of RCP allows for a 

reproducible production, without risks of disease transmission, which can be associated to 

purified collagen materials. More importantly, RCP has excellent cell attachment 

properties (106) and a specific affinity to bind BMP-2 (58), which makes it appealing as a 

controlled release system. The main advantages of the developed system are its 
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thixotropic behaviour, resulting in easy handling and injectability, good BMP-2 release 

profile and good performance in vivo in terms of cellular infiltration, degradation and bone 

formation (186). The aim of the current study was to investigate time- and dose-dependent 

bone formation using this BMP-2-releasing hydrogel in an ectopic bone formation model 

and, in addition, to test the bone regeneration capacity of two selected doses of BMP-2 in 

an orthotopic model. Formulations containing 4 different doses of BMP-2 (10 µg, 3 µg, 1 µg 

and 0.3 µg per implant; 50 µg/mL, 15 µg/mL, 5 µg/mL and 1.5 µg/mL, respectively) and an 

empty control were injected subcutaneously into the dorsum of immune-competent rats. 

Ectopic bone formation was followed over a time course of 10 weeks by micro-computed 

tomography (µCT), with histology at the endpoint of 10 weeks. To study the 

spatiotemporal release of BMP-2 in vivo, formulations containing 3 different doses of 

fluorescently-labelled BMP-2 were injected subcutaneously into rats and monitored over a 

time course of 10 weeks by in vivo fluorescence imaging. Finally, two doses of BMP-2 (50 

µg/mL and 5 µg/mL) were further investigated in a calvarial defect model. For this 

purpose, 40 µL of the composite hydrogel formulation, containing 2 µg and 0.2 µg of BMP-

2, were injected in 5 mm subcritical calvarial defects in immune competent rats and bone 

formation was studied by µCT longitudinal imaging for 10 weeks. 

3.33.33.33.3 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

3.3.13.3.13.3.13.3.1 Materials Materials Materials Materials     

RCP is a product of Fujifilm, which is commercially available as Cellnest™. RCP is produced 

by the genetically modified yeast Pichia pastoris in a fermentation process previously 

described (58, 106, 118, 187). RCP is a 571 amino acids protein, having an isoelectric point 

(pI) of 10.02 and a molecular weight of 51.2 kDa. The recombinant human bone 

morphogenetic protein-2 (rhBMP-2, amino acids 283 to 396 plus an N-terminal Met-Ala) 

was expressed in Escherichia coli, isolated from inclusion bodies, renatured and purified, as 

previously described (119). Lyophilized BMP-2 was dissolved in distilled water and the 

concentration was determined by UV/Vis spectroscopy. Freshly dissolved BMP-2 was 

used for the experiments. For the fluorescence measurements, rhBMP-2 was fluorescently-

labelled using DyLight™ 800 (ThermoFisher Scientific). For the labelling, dissolved BMP-2 

solution was adjusted to pH 4.5 by addition of a 2 M sodium acetate solution (pH 4.5). 

Subsequently, DyLight™ 800 NHS Ester, dissolved in dimethyl sulphoxide (DMSO), was 

added in a 5-fold molar excess and the mixture was incubated for 4 h at 4 °C while 

shaking. After incubation, the protein was separated from non-coupled dye by anionic 

exchange chromatography using a HiTrap® SP HP column (GE Healthcare). Since the 

protein could not be eluted even at 2 M sodium chloride salt concentration, it was 

recovered using an aqueous 6 M guanidinium hydrochloride solution. Subsequently, the 

protein was dialyzed to 1 mM hydrochloric acid and finally to distilled water. 
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PRONOVA™ SLG20 (sterile alginate, where over 60% of the monomer units are 

guluronate) was ordered from NovaMatrix (Sandvika, Norway). The properties of the 

SLG20 alginate are assessed by the producer: viscosity (mPa × s): 20-99; approximate 

molecular weight (kDa): 75-150; guluronate/mannuronate (G/M) ratio: ≥ 1.5; endotoxins 

(EU/g): ≤ 100; total viable count [colony forming unit (cfu)/g]: sterile 

(www.novamatrix.biz). Hexamethylene diisocyanate (HMDIC), corn oil, sodium chloride, 

calcium carbonate (CaCO3) and glucono delta lactone (GDL) were purchased from Sigma-

Aldrich. Ethanol, acetone and hydrochloric acid were purchased from Millipore. The ELISA 

development kit and reagents for BMP-2 quantification were ordered from Peprotech 

(Rocky Hill, NJ, USA). Dulbecco’s modified Eagle’s medium (DMEM), foetal bovine serum 

(FBS) and penicillin-streptomycin (P/S) were ordered from ThermoFisher Scientific. 

3.3.23.3.23.3.23.3.2 RCP microsphere preparationRCP microsphere preparationRCP microsphere preparationRCP microsphere preparation    

RCP-calcium carbonate composite microspheres were produced by emulsification, as 

described previously (58). Briefly, a 20% aqueous RCP solution was prepared and mixed 

with CaCO3 fine powder (with a size of < 1 µm) in a 1:1 (w/w) ratio. This suspension was 

emulsified in corn oil at 50 °C, while stirring the emulsion at 800 rpm for 20 min. After 

cooling down the emulsion, the emulsified microspheres were washed three times with 

acetone. After overnight drying at 60 °C, microspheres were sieved to 50-72 µm size using 

sieves from Retsch GmbH (Haan, Germany). Subsequently, particles were crosslinked by 

hexamethylene diisocyanate (HMDIC) by mixing and stirring of 1 g of spheres and 1 mL of 

HMDIC in 100 mL ethanol for 1 d. Non-reacted crosslinker was removed by washing 

several times with ethanol. CaCO3 was left in the particles since Ca2+ ions are used to 

crosslink alginate in the final hydrogel formulation. Particles were then γ-sterilized at 25 kG 

(Synergy Health, Etten Leur, the Netherlands). The release of BMP-2 from RCP 

microspheres is described by Mumcuoglu et al. (58). 

3.3.33.3.33.3.33.3.3 Preparation of the RCP microspherePreparation of the RCP microspherePreparation of the RCP microspherePreparation of the RCP microsphere----alginate hydrogel formulationsalginate hydrogel formulationsalginate hydrogel formulationsalginate hydrogel formulations    

SLG-20 alginate was dissolved in 0.9% sterile sodium chloride to create a 2% w/v solution. 

68 mg of sterile microspheres were incubated with 170 µL of BMP-2- containing solution at 

4 °C overnight. Initial BMP-2 concentrations used were 379.4 µg/mL, 113.8 µg/ mL, 37.9 

µg/mL and 11.4 µg/mL, to yield final BMP-2 concentrations in the hydrogel formulation of 

50 µg/mL, 15 µg/mL, 5 µg/mL and 1.5 µg/mL, respectively. Next day, when all BMP-2-

containing liquid was absorbed, 1014 µL of the 2% w/v SLG20 solution were added and the 

swollen microspheres were resuspended. Then, 106 µL of 0.06 M fresh GDL solution were 

added and mixed immediately. GDL was used to dissolve minute amounts of CaCO3, 

thereby crosslinking alginate and increasing the mechanical property of the formulation. 

The formulations were thoroughly mixed, passed through a 19 G needle immediately after 
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addition of all components and stored overnight at 4 °C to equilibrate. Next day, the 

prepared formulations were mixed again prior to use. 

3.3.43.3.43.3.43.3.4 In vitro In vitro In vitro In vitro release of BMPrelease of BMPrelease of BMPrelease of BMP----2 from hydrogel formulations2 from hydrogel formulations2 from hydrogel formulations2 from hydrogel formulations    

Hydrogel formulations were prepared as described above, containing either fluorescently-

labelled or wild-type BMP-2. Since these experiments had the objective to study only 

BMP-2 release, the biological activity of these proteins was not tested. 200 µL of each 

hydrogel were added to each well of a 24-well plate, inserts with a 0.4 µm pore size. 1 mL 

of DMEM supplemented with 10% FBS and 1% P/S per well was added to the reservoir 

plate. The plates were incubated at 37 °C under constant agitation at 300 rpm. At each 

time point, all medium (1 mL) was collected from the reservoir plate and changed with 

fresh medium (1 mL). Positive controls were 10 µg, 3 µg or 1 µg of wild type or fluorescently-

labelled BMP-2 in 1 mL DMEM. At every time point, 100 µL of these positive controls were 

sampled. The collected release media and control samples were analyzed using the 

rhBMP-2 ELISA development kit, according to manufacturer’s protocol. To calculate the 

fraction released at each time point, the concentrations detected in the release medium of 

the hydrogel samples were normalized to the concentrations of the positive controls, to 

correct for loss by adsorbance to the tube and/or degradation of the protein. 

3.3.53.3.53.3.53.3.5 Study design and ethicsStudy design and ethicsStudy design and ethicsStudy design and ethics    

All animal experiments were performed with prior approval of the Erasmus Medical 

Centre ethics committee for laboratory animal use (project number: AVD101002015114 

and protocol numbers: EMC 15-114-03 and EMC 15-114-04). 10-week-old male Sprague 

Dawley (SD) rats (Charles River) were used. The animals were randomly assigned and 

housed in pairs in specific-pathogen-free conditions and allowed to adapt to the 

conditions of the animal house for 7 d before implantation. The animals were maintained 

at 22 ± 5 °C on a 12 h dark/light cycle with access to standard rat chow and water ad 

libitum. 10 weeks after implantation, animals were euthanized with CO2 and the specimens 

were harvested for µCT analysis and histology. 

3.3.63.3.63.3.63.3.6 Subcutaneous injection of Subcutaneous injection of Subcutaneous injection of Subcutaneous injection of in situ in situ in situ in situ gelling formulations to study ectopic gelling formulations to study ectopic gelling formulations to study ectopic gelling formulations to study ectopic 

bone formationbone formationbone formationbone formation    

To evaluate the effect of different doses of BMP-2 on ectopic bone formation, the hydrogel 

compositions were subcutaneously injected (total volume: 200 µL per injection) into the 

dorsum of the rats (20 rats in total). Each animal received 4 or 5 randomly assigned 

injections. All injections were performed on animals under isoflurane inhalation. To study 

the BMP-2-dose effect on bone formation, 4 different BMP-2 concentrations were used 

(50, 15, 5 and 1.5 µg/mL), resulting in total doses of 10 µg, 3 µg, 1 µg and 0.3 µg BMP-2 per 

implant (n = 8 per group), respectively. As a control, alginate with microspheres, but 
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without BMP-2 was injected (n = 6). To investigate the spatiotemporal distribution of BMP-

2 in the implanted material in vivo, 200 µL of hydrogel containing fluorescently-labelled 

BMP-2 were injected at different doses: 10 µg, 3 µg and 1 µg (n = 6). Longitudinal imaging 

was performed by µCT and in vivo imaging instruments (IVIS) biweekly until the end of the 

experiment (10 weeks). 

3.3.73.3.73.3.73.3.7 Calvarial defect model to study bonCalvarial defect model to study bonCalvarial defect model to study bonCalvarial defect model to study bone regeneration with e regeneration with e regeneration with e regeneration with in situ in situ in situ in situ gelling gelling gelling gelling 

formulationsformulationsformulationsformulations    

To evaluate the effect of two hydrogel formulations with a selected dose of BMP-2 on 

orthotopic bone formation, two defects of 5 mm in diameter were created in the rat 

calvaria (18 rats in total). Prior to the surgery, animals received intraperitoneal injections of 

0.05 mg/kg buprenorphine (Temgesic®; Indivior, Slough, UK) and 5 mL/kg sterile normal 

saline to account for fluid loss. Surgeries were performed under 2.5% isoflurane 

anaesthesia. The animal skulls were shaved and disinfected with ethanol swabs. Then, an 

incision was made through the skin of the calvarium and the periosteum and full-thickness 

flaps were reflected. The defect was irrigated along the sagittal midline of the skull with 0.1 

mL of 1% xylocaine with 1:200,000 epinephrine (AstraZeneca). Under copious sterile 

saline irrigation, two 5 mm in diameter bone defects were drilled in each animal using a 

micro trephine drill (Fine Science Tools, Heidelberg, Germany) and any visible debris or 

bone chips were removed. Then, 40 µL of hydrogel formulation with BMP-2 or, as a 

control, without BMP-2 were injected into the defect. As sham control, empty defects 

were used (5 rats, 10 defects). As a biomaterial control, alginate with microspheres were 

injected into the defects (5 rats, 10 defects). Alginate with microspheres loaded with 50 

µg/mL BMP-2 (3 rats, 3 defects) was used to study healing with a high BMP-2 dose; alginate 

with microspheres loaded with 5 µg/mL (5 rats, 10 defects) was used to study healing with 

a low BMP-2 dose. The animal number of the 50 µg/mL BMP-2 cohort was kept small 

because it was expected to induce bone formation, based on the results of a previous 

ectopic bone formation study shown in Chapter 2 (186). After implantation, the 

periosteum and the skin above the defects were repositioned and sutured with polylactic 

acid sutures (Vycril 4.0, Ethicon, Johnson & Johnson, São José dos Campos, Brazil). During 

the next 3 d, all animals received three postoperative doses of buprenorphine for 

analgesia every 10 h. Longitudinal imaging was performed biweekly by µCT until week 10. 

10 weeks after implantation, animals were euthanized with CO2 and the specimens were 

harvested for µCT analysis and histology. 

3.3.83.3.83.3.83.3.8 µCT imagingµCT imagingµCT imagingµCT imaging    

µCT (Quantum FX, PerkinElmer) was used to image animals 1, 2, 4, 6, 8 and 10 weeks after 

injection and the implants retrieved at week 10. To image the ectopic bone in vivo, the 

following parameters were used: field of view, 73 mm; voltage, 90 kV; current, 160 µA; 
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scan time, 120 s; resolution, 148 µm. To image the retrieved ectopic bone field of view of 

20 mm, scan time of 120 s and resolution of 40 µm were used. To image the calvarial 

defects, a 30 mm field of view, scan time of 3 min and resolution of 59 µm were used. The 

trabecular and cortical bone mineral density (BMD) were determined based on the 

calibration scanning, using two phantoms with known density (0.25 g/cm3 and 0.75 g/cm3; 

Bruker µCT) measured under identical conditions. For image processing, Analyze software 

version 11.0 was used (Mayoclinic, Rochester, MN, USA). Threshold levels were set to 0.11 

g/cm3, 400 Hounsfield units. 

3.3.93.3.93.3.93.3.9 Fluorescence imaging Fluorescence imaging Fluorescence imaging Fluorescence imaging in vivoin vivoin vivoin vivo    

An IVIS Imaging System 200 (PerkinElmer) was used to image fluorescent BMP in the 

animals immediately after the injection, 3 d and 1, 2, 4, 6, 8 and 10 weeks after injection. 

The following imaging parameters were used: exposure time, 20 s; excitation, 745 nm; 

emission, 820 nm and 840 nm. For the image analysis, the region of interest for each 

implant was selected as a circle with an area of 3.0 ± 0.1 cm2 and the total radiant efficiency 

[(p/s)/(µW/cm2)] was calculated by the Living Image® software (PerkinElmer). A region of 

interest of 3 cm2 was selected since this was the magnitude of the area where the signal 

was detected directly after injection. 

3.3.103.3.103.3.103.3.10 HistologyHistologyHistologyHistology    

For histological analysis of the subcutaneous ectopic bone formation, specimens were 

fixed in 4% formalin solution for 48 h and decalcified with 10% ethylenediaminetetraacetic 

acid (EDTA) for 2-4 weeks. Implants were dehydrated in graded ethanol solution from 70% 

to 100% and embedded in paraffin. 6 µm-thick sections were prepared using a Leica 

microtome and mounted on subbed glass slides (ThermoFisher Scientific). Three cross-

sections, at least 200 µm apart from each other, were collected from each implant. The 

sections were deparaffinized and rinsed with distilled water to be stained with 

haematoxylin and eosin (H&E). For calvaria samples, 10 weeks after implantation, the 

relevant part of the skull was removed and fixed in neutral buffered 4% formalin solution 

for 3 d, dehydrated in graded ethanol solution from 70% to 100% and embedded in 

methyl methacrylate resin. 10 µm-thick sections were generated along the long axis of the 

cylindrical samples on a saw microtome system (Leica 4 SP1600). Samples were stained 

with von Kossa and Goldner’s trichrome stainings, as previously described (188, 189). The 

sections were imaged by NanoZoomer-XR (Hamamatsu, Japan). 

3.3.113.3.113.3.113.3.11 Statistical analysisStatistical analysisStatistical analysisStatistical analysis    

The quantitative µCT data of retrieved ectopic bone were analyzed using one-way analysis 

of variance (ANOVA) and a Bonferroni post-hoc multiple comparison test. In vivo calvaria 

µCT data were analyzed using two-way analysis of variance (ANOVA) and a Bonferroni 
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post-hoc multiple comparison test. A value of p < 0.05 was considered statistically 

significant. Linear regression analysis of µCT data was performed by GraphPad, to analyze 

the time-dependent bone formation 

3.43.43.43.4 ResultsResultsResultsResults    

3.4.13.4.13.4.13.4.1 BMPBMPBMPBMP----2 was retained for at least 4 weeks 2 was retained for at least 4 weeks 2 was retained for at least 4 weeks 2 was retained for at least 4 weeks in vivoin vivoin vivoin vivo    

To monitor the retention of BMP-2 in vivo, composite hydrogels (alginate with RCP 

microspheres), with three different doses of fluorescently-labelled BMP-2, were used. First, 

it was confirmed in vitro that the release of fluorescently-tagged (fluo) BMP-2 from the 

hydrogels was similar to wild type BMP-2 (Figure 3.1). The difference between the release 

of the two proteins was less than 10%, showing that labelled protein could be used to 

study retention of BMP-2 in vivo. Then, the fluorescence signal (shown as radiance 

efficiency) of the 3 doses injected subcutaneously was followed in vivo by fluorescence 

imaging. The fluorescence signal generated by the three different BMP-2 doses decreased 

until week 4 (Figure 3.2). After 4 weeks, all fluorescence curves levelled off. Interestingly, 

the fluorescence values did not drop to the background value, indicating the presence of 

some remaining BMP-2 in the hydrogels. The curves corresponding to the different doses 

were not significantly different due to high variation among the animals (Figure 3.2). 

Figure Figure Figure Figure 3333....1111. In vitro release of fluorescently. In vitro release of fluorescently. In vitro release of fluorescently. In vitro release of fluorescently----labelled labelled labelled labelled (fluo) (fluo) (fluo) (fluo) and nonand nonand nonand non----labelled BMPlabelled BMPlabelled BMPlabelled BMP----2 from the RCP 2 from the RCP 2 from the RCP 2 from the RCP 

microspheres with alginate hydrogel, showing no major difference between labelled and nonmicrospheres with alginate hydrogel, showing no major difference between labelled and nonmicrospheres with alginate hydrogel, showing no major difference between labelled and nonmicrospheres with alginate hydrogel, showing no major difference between labelled and non----

labelled BMPlabelled BMPlabelled BMPlabelled BMP----2 r2 r2 r2 release in vitro in DMEM with 10% FBS and 1elease in vitro in DMEM with 10% FBS and 1elease in vitro in DMEM with 10% FBS and 1elease in vitro in DMEM with 10% FBS and 1% P/S.% P/S.% P/S.% P/S.    
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Figure Figure Figure Figure 3333....2222....    A. BMP-2 was retained in the RCP microspheres with alginate hydrogels in vivo for at least 

4 weeks. The total radiance efficiency of the fluorescence signal was shown for three different doses of 

fluorescent BMP-2 (10 µg, 3 µg and 1 µg) containing RCP microspheres with alginate that were 

injected subcutaneously in SD rats (n = 6 injections). B. Representative image of in vivo fluorescence 

imaging.    

3.4.23.4.23.4.23.4.2 Microspheres with alginate hydrogel induced BMPMicrospheres with alginate hydrogel induced BMPMicrospheres with alginate hydrogel induced BMPMicrospheres with alginate hydrogel induced BMP----2 dose2 dose2 dose2 dose----dependent dependent dependent dependent 

ectopic bone formationectopic bone formationectopic bone formationectopic bone formation    

    The effect of the BMP-2 dose on subcutaneous ectopic bone formation was investigated 

over a period of 10 weeks using 4 different BMP-2 doses (representative µCT images are 

shown in Figure 3.3A). At the 10-week endpoint, the bone volume formation resulted to be 

dose-dependent (Figure 3.3B). The highest dose of 10 µg (50 µg/mL) induced the largest 

volume of ectopic bone formation, while the lowest doses of 0.3 µg (1.5 µg/mL) and 0 µg 

of BMP-2 failed to form bone. The composite hydrogel containing 1 µg of BMP-2 (5 µg/mL) 

formed just a minute bone volume, indicating that this dose was the threshold of ectopic 

bone induction in rats for this composite hydrogel. The bone mineral density of the 

formed bone did not differ significantly (Figure 3.3C): 0.5 g/cm3 for 3 µg and 10 µg of BMP-

2 and 0.35 g/cm3 for 1 µg of BMP-2. For comparison, tibiae were extracted and imaged 

using the same instrumental settings. The cortical and trabecular bone of the tibiae had a 

density between 1.2-2.0 g/cm3 and 0.15-0.5 g/cm3, respectively, showing that ectopic 

bone formed subcutaneously had a density in the range of trabecular bone. 
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Figure Figure Figure Figure 3333....3333. . . . Ectopic bone formation at 10 weeks was BMPEctopic bone formation at 10 weeks was BMPEctopic bone formation at 10 weeks was BMPEctopic bone formation at 10 weeks was BMP----2 dose2 dose2 dose2 dose----dependent.dependent.dependent.dependent.    A. Representative 

images of µCT of implants retrieved at 10 weeks. B. Volume of ectopic bone in mm3. C. Bone mineral 

density after thresholding to 0.11 g/cm3, 400 Hounsfield units. (A, B, C) Five different doses of BMP-2 

(10 µg, 3 µg, 1 µg, 0.3 µg and 0 µg) containing RCP microspheres with alginate (200 µL) were 

injected subcutaneously in SD rats (n = 8 injections). Data are shown as mean ± SD, one-way ANOVA 

was performed to compare treatment groups. ** p < 0.05, *** p < 0.001.    

3.4.33.4.33.4.33.4.3 Microspheres with alginate hydrogel containing different doses Microspheres with alginate hydrogel containing different doses Microspheres with alginate hydrogel containing different doses Microspheres with alginate hydrogel containing different doses of of of of 

BMPBMPBMPBMP----2 showed different kinetics of bone formation2 showed different kinetics of bone formation2 showed different kinetics of bone formation2 showed different kinetics of bone formation    

Longitudinal µCT imaging of rats for 10 weeks revealed a dose-dependent rate of ectopic 

bone formation (Figure 3.4A,B). The volume of ectopic bone in the 10 µg of BMP-2 group 

increased linearly between week 1 and week 8, with a rate of 16.9 ± 0.8 mm3/ week (r2 = 

0.99), after which a plateau was reached. A 10-week endpoint was decided based on the 

longitudinal µCT imaging data. Ectopic bone volume did not increase between 8 and 10 

weeks for the highest dose; therefore, the experiment was ended at 10 weeks. In the 3 µg 

of BMP-2 group, a two-phase linear trend was observed. Between 2 and 6 weeks, a linear 

increase in bone volume, with a rate of 10.2 ± 0.5 mm3/ week (r2 = 0.99), was observed, 

while a slower linear trend was detected between 6 and 10 weeks, with a rate of 3.4 ± 0.4 

mm3/week (r2 = 0.99). Although the amount of ectopic bone formed by 1 µg of BMP-2 was 

very small, with a volume of only 3.0 ± 5.5 mm3 (mean ± SD) at week 10, the bone volume 

linearly increased between 1 week and 10 weeks (rate = 0.36 ± 0.1 mm3/ week, r2 = 0.96).  

A 
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Figure Figure Figure Figure 3333....4444. . . . Ectopic bone volume and density increase over the time course ofEctopic bone volume and density increase over the time course ofEctopic bone volume and density increase over the time course ofEctopic bone volume and density increase over the time course of    10 weeks was 10 weeks was 10 weeks was 10 weeks was 

BMPBMPBMPBMP----2 dose2 dose2 dose2 dose----dependent. dependent. dependent. dependent. A. Representative µCT images of bone formed by 10 µg of BMP-2 

administration over 10 weeks. B. Volume of ectopic bone in mm3 after thresholding. C. Mineral 

density of bone in g/cm3 after thresholding. Threshold was set to 0.035 g/cm3 to discriminate 

mineralized tissue from soft tissue. (A, B, C) Five different doses of BMP-2- (10 µg, 3 µg, 1 µg, 0.3 µg 

and 0 µg) containing RCP microspheres with alginate were injected subcutaneously in SD rats (n = 8 

injections). Data are shown as mean ± SD. Since 0.3 µg and 0 µg BMP-2 did not form any bone, they 

are not represented in this figure. 

 

Significant mineralization could be observed after 2 weeks (Figure 3.4C). A linear increase 

in bone density was seen with 10 µg of BMP-2 between 2 and 10 weeks, with a rate of 

0.025 ± 0.002 g/cm3 per week (r2 = 0.98). In contrast to the bone volume, the mineral 

density did not reach a plateau at 10 weeks, suggesting that mineralization could continue 

for longer than 10 weeks. Similarly, 3 µg of BMP-2 showed a linear increase in bone density 

between 2 and 10 weeks, with a rate of 0.019 ± 0.002 g/cm3 (r2 = 0.96). The 1 µg-BMP-2-

comprising hydrogel clearly mineralized slower than the other two doses, with a rate of 

only 0.005 ± 0.001 g/cm3 (r2 = 0.97). 

3.4.43.4.43.4.43.4.4 Ectopic bone formationEctopic bone formationEctopic bone formationEctopic bone formation    was confirmed by histologywas confirmed by histologywas confirmed by histologywas confirmed by histology    

The morphology of ectopic bone induced by five different doses of BMP-2 (10 µg, 3 µg, 1 

µg, 0.3 µg and 0 µg) containing hydrogel was evaluated by histology at week 10. Bone 

tissue could be identified for the 10 µg, 3 µg and 1 µg of BMP-2-comprising hydrogels and 

no bone was found for the two lowest doses of 0.3 µg and 0 µg. The largest area of ectopic 

bone was found in the 10 µg samples (Figure 3.5), thereby confirming the µCT data (Figure 

3.3). Interestingly, for all BMP-2 doses, remnants of microspheres and gels could be 

observed, indicating that the implants were not yet fully degraded after 10 weeks. This 

A 
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result was in line with the long-term retention of BMP-2, as observed by fluorescence 

imaging. Bone formation was not only observed at the periphery of the hydrogel, but also 

in some samples within the hydrogel construct. Microspheres were also observed within 

the hydrogel construct. Some of the microspheres were intact, some were infiltrated with 

cells. The microspheres which were infiltrated changed the spherical morphology 

probably as a sign of degradation. Small ossicles were detected around some 

microspheres. Also, around the implants, a layer of fibrous tissue was observed, which is a 

typical foreign body response upon implantation (190).  

 

 

    

Figure Figure Figure Figure 3333....5555....    Bone formation was confirmed byBone formation was confirmed byBone formation was confirmed byBone formation was confirmed by    histologyhistologyhistologyhistology. . . . H&E staining for A, 10 µg; C, 3 µg; D, 1 

µg, while no bone was observed for E, 0.3 µg, and F, 0 µg of BMP-2-containing RCP microsphere with 

alginate gels. B. A closer representation of the 10 µg of BMP-2 sample showing bony tissue around 

microspheres. RCP microspheres (MS), alginate hydrogel (Alg.), bone formation (B) and fibrous tissue 

(FT) are indicated. Scale bar is 250 µm for A, C, D, E, F and 100 µm for B. Scale bars of the insert 

images are 2.5 mm and red boxes indicate the area of high magnification. 
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Figure Figure Figure Figure 3333....6666. . . . A. Representative µCT images of calvaria (superior view) at week 10 after surgery and 

implantation. B. Bone volume showing the regeneration of calvarial defects over 10 weeks. The bone 

volume of 50 µg/mL BMP-2-containing biomaterial was significantly higher at all time points as 

compared to 5 µg/mL BMP-2, biomaterial and empty defect groups (** p < 0.01 or *** p < 0.001). C. 

Bone density showing the regeneration of calvaria over 10 weeks. Bone density induced by 50 µg/mL 

BMP-2 was lower than that of 5 µg/mL BMP-2 group at week 2 (* p < 0.05). At week 8 and 10, density 

of induced bone tissue was higher in 50 µg/mL BMP-2 than 5 µg/mL BMP-2 group (* p < 0.05). 

Treatment groups were empty control (n = 10), biomaterial only (n = 10), 5 µg/mL BMP-2-containing 

biomaterial (n = 10) and 50 µg/mL BMP-2-containing biomaterial (n = 3). Data are shown as mean ± 

SD, two-way ANOVA was performed to compare treatment groups.    

3.4.53.4.53.4.53.4.5 Microspheres with alginate hydrogel containing 50 µg/mL BMPMicrospheres with alginate hydrogel containing 50 µg/mL BMPMicrospheres with alginate hydrogel containing 50 µg/mL BMPMicrospheres with alginate hydrogel containing 50 µg/mL BMP----2 2 2 2 

induced bone formation in a rat calvarial defect modelinduced bone formation in a rat calvarial defect modelinduced bone formation in a rat calvarial defect modelinduced bone formation in a rat calvarial defect model    

The regeneration capacity of the composite hydrogels loaded with BMP-2 was tested in a 

subcritical-sized calvarial defect model. Biomaterial only, 5 µg/mL or 50 µg/mL BMP-2-

loaded biomaterials were injected into a 5 mm calvarial defect and empty defect was used 

as a control (Figure 3.6A). The bone volume with 50 µg/mL BMP-2 was significantly larger 

than in all other groups (Figure 3.6B), showing the regenerative capacity of this 

concentration of BMP-2 in the composite hydrogel formulation. The low concentration (5 

µg/mL) did not form any additional bone as compared to the biomaterial only or empty 

defect (sham) control. Interestingly, the bone volume of the empty defect was slightly 

higher at week 2 as compared to the biomaterial only, albeit the difference was not 

statistically significant. At the end of the experiment, biomaterial and empty defect groups 

produced similar bone volumes. The bone mineral density gradually increased over time 

(Figure 3.6C). At week 2, 50 µg/mL BMP-2 had a lower density when compared to 5 µg/mL 
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BMP-2. This effect reversed later at week 8 and 10, when 50 µg/ mL BMP-2 induced higher 

density as compared to 5 µg/mL-BMP-2-treated group. von Kossa staining and Goldner’s 

trichrome staining on the calvaria confirmed the regeneration of the bone defect (Figure 

3.7). Empty defect, biomaterial control or low concentration (5 µg/mL) did not bridge the 

bone defect at week 10. The 50 µg/mL BMP-2 concentration was effective in bridging the 5 

mm calvarial defect. 

 

 

 

Figure Figure Figure Figure 3333....7777.... The first two rows show von Kossa staining, the lower row Goldner’s trichrome staining of 

the calvarial defect samples. From left to right: 50 µg/mL BMP-2, 5 µg/mL BMP-2, biomaterial 

control and empty defect. Bone healing and bridging of the defect was confirmed for the 50 µg/mL 

BMP-2 group. Red boxes indicate the area of the defect. Scale bars of the first row are 2.5 mm, second 

and third row are 250 µm. B: bone; CT: connective tissue. 

3.53.53.53.5 DiscussionDiscussionDiscussionDiscussion    

This study aimed at investigating the use of a slow-release system to lower the effective 

BMP-2 dose, the effect on ectopic bone formation of the BMP-2 dose delivered by an in 

situ gelling hydrogel formulation and the bone repair capacity of two selected doses of 

BMP-2. The composite hydrogel provided sustained release of BMP-2 for 4 weeks, as 

shown in vivo by fluorescence imaging. Ectopic bone was formed for three different doses 

of BMP-2 (50, 15 and 5 µg/mL in a 200 µL implant) in a dose- and time-dependent manner, 

with the highest BMP-2 dose showing the fastest bone growth and highest bone volume at 

10 weeks. The bone-forming dose of 50 µg/mL (2 µg per implant in a 5 mm defect) was 

confirmed to be also effective in a subcritical calvarial bone defect model. 

The BMP-2 delivery system used was selected based on a previous study where a hydrogel 

composed of SLG alginate and BMP-2-loaded RCP-microspheres provide superior ectopic 

bone formation as compared to other hydrogel formulations as shown in Chapter 2 (186). 
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The advantages of this delivery system are the easy handling (due to its thixotropic 

behaviour), the sustained-BMP-2-release profile and the presence of cell attachment sites 

(due to the RCP microspheres). Differently from other injectable hydrogel systems, e.g. the 

hydrogel developed by Seo et al. (191), the used system contains RCP microspheres that 

have excellent cell attachment properties (106) and a specific affinity to bind BMP-2 (58). 

In the current study, it was shown that in situ gelling hydrogel composite with a 

concentration of 50 µg/mL BMP-2 (2 µg per implant in a 5 mm defect) successfully 

regenerated bone. In other preclinical studies with BMP-2 carriers, the BMP-2 dose 

needed to heal a critical sized defect is generally higher; in a rat calvarial model similar to 

the one used in the current study, complete healing of the defects is achieved with 

poly(lactic-co-glycolic acid) (PLGA) membranes adsorbed with 5 mg/mL of BMP-2 (192). 

Young et al. using a 8 mm rat calvarial model and 0.5 µg and 1 µg of BMP-2 per implant 

delivered with gelatin particles, show an incomplete bone bridging (193). Partial healing of 

8 mm rat calvarial defects of approximately 20% and 60% is observed with a composite 

comprising segmented polyurethane, poly(lactic-co-glycolic acid) and β-tricalcium 

phosphate loaded with 1.6 µg and 6.5 µg of rhBMP-2, respectively (194). Besides, other 

BMP-2 carriers induce lower ectopic bone volumes. For example, silk fibroin (2 mm3) (184) 

and collagen sponge (5 mm3) (183) form a max of 5 mm3 of ectopic bone using 5 µg of 

BMP-2, which is lower than the 41 mm3 induced with 3 µg (15 µg/mL) of BMP-2, as done in 

the current ectopic model. In a composite gelatin microsphere, biphasic calcium 

phosphate hydrogel system, 13 mm3 of ectopic bone are achieved with 100 µg/mL BMP-2 

(110). Considering these earlier studies, the current study showed that the in situ gelling 

formulation of the RCP microspheres with alginate is a promising BMP-2 delivery system 

that might reduce the required effective dose of BMP-2 and, thus, potentially mitigate the 

adverse effects of BMP-2. 

Besides the required threshold or effective dose of BMP-2, the hydrogel matrix –to which 

the characteristics of the biomaterial, such as release, integrity, degradation and cell 

infiltration, should be aligned– also affects the bone formation process. Factors such as 

speed of bone formation, amount and location of the formed bone are important to 

consider. The natural fracture healing process requires around 4 weeks in rodents (26), 

and it can take up to 3-4 months in humans (195). In the used ectopic model, the kinetics of 

bone formation was shown to be linear for the 10 µg of BMP-2 group, between week 1 and 

8, while the main release of BMP-2 was observed in the first 4 weeks, both processes 

matching the time frame of natural bone healing processes (20). Interestingly, after 4 

weeks, a small portion of BMP-2 was retained inside the hydrogel, probably due to the 

strong interaction between BMP-2 and the RCP microspheres (58). This portion of BMP-2 

will only be released upon further degradation of the material and could probably 

contribute to the bone volume increase after 4 weeks. The main determinant of BMP-2 

release in vivo is the specific interaction and the degradation of the particles. The RCP 
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amino acid sequence will most probably be a main contributor to the release profile, 

although it is not possible to exclude that polarity and ionic strength will also affect the 

release profile of proteins by changing the interaction with the matrix. With 10 µg of BMP-

2, ectopic bone volume reached a plateau at week 8. This suggested that bone formation 

could be confined to the hydrogel area. Therefore, this hydrogel formulation might 

eliminate the risk of excessive surrounding soft tissue calcification, which is a major 

concern in currently used BMP-2-based therapies (88). 

The ectopic model results indicated that hydrogels containing 3 µg and 10 µg of BMP-2 

were not only forming bone at the periphery of the implants, but in the entire implants. 

Qualitative analysis of 3D µCT images revealed that the bone formation started at different 

locations throughout the implant around week 2. These results corroborated previous 

findings ((186)), Chapter 2), according to which the hydrogel allows bone-forming cells to 

infiltrate the gel at early time points. 

Interestingly, hydrogels without or with a very low dose of BMP-2 seemed to slightly, 

though not significantly, impede bone formation in the calvarial defect model at the early 

time points when compared to the empty control. After 10 weeks, bone formation in 

defects filled with biomaterial, without or with a low dose of BMP-2, was not different from 

the empty defect control. It is possible that the empty defect induced higher initial 

inflammation and faster infiltration of inflammatory cells as compared to the RCP 

microspheres with alginate and, therefore, the healing process started earlier. The safety of 

the separate components of this system are verified by Novamatrix and Fujifilm. On their 

website (www.novamatrix.biz), toxicology studies of alginate are reported. The 

biocompatibility of RCP is confirmed in a previous study by Parvizi et al. (196). Hystological 

analysis of the samples at week 10 showed infiltrated cells in the defect area for both 

defects filled with biomaterials and empty control. These cells were mainly macrophages. 

A hydrogel-dependent cellular response of different hydrogels in ectopic bone formation 

is already shown (186). For the SLG alginate gel selected for this study, the number of 

inflammatory cells is initially high and decrease at later time points (186). Alginate is known 

for poor cell attachment (197, 198). Possibly, alginate slightly delays cell infiltration as 

compared to natural bone healing environment where there is a fibrin clot hosting the 

infiltrated cells. These effects could be object of a future study. However, as differences 

did not reach statistical significance and the endpoint healing for both groups was similar, 

an inhibitory effect of the hydrogel matrix on the overall bone healing is not expected. 

Overall, the benefit of having a slow-release system outweighs this minor effect, since the 

BMP condition healed much better than the control. 
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3.63.63.63.6 ConcluConcluConcluConclusionssionssionssions    

The injectable slow BMP-2 release delivery system resulted in a time- and dose- 

dependent bone formation in an ectopic and orthotopic model. This delivery system, 

composed of alginate and RCP microspheres, provided sustained release of BMP-2, 

favoured cell attachment and induced bone formation at a relatively low dose of BMP-2, 

making it promising for bone regeneration therapies. 
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4.14.14.14.1 AbstractAbstractAbstractAbstract    

Currently, autografts still represent the gold standard treatment for the repair of large bone 

defects. However, these are associated with donor-site morbidity and increased pain, cost, 

and recovery time. The ideal therapy would use biomaterials combined with bone growth 

factors to induce and instruct bone defect repair without the need to harvest patient tissue. 

In this line, bone morphogenetic proteins (BMPs) have been the most extensively used 

agents for clinical bone repair, but at supraphysiological doses that are not without risk. 

Because of the need to eliminate the risks of BMP-2 use in vivo, we assessed the ability of 

three putative osteogenic factors, nel- like molecule type 1 (Nell-1), high mobility group 

box 1 (HMGB1), and CCN2, to enhance the essential processes for bone defect repair in 

vitro and compared them to BMP-2. Although it has been reported that Nell-1, HMGB1, 

and CCN2 play a role in bone formation, less is known about the contribution of these 

proteins to the different events involved, such as cell migration, osteogenesis, and 

vasculogenesis. In this study, we investigated the effects of different doses of Nell-1, 

HMGB, CCN2, and BMP-2 on these three processes as a model for the recruitment and 

differentiation of resident cells in the in vivo bone defect repair situation, using cells of 

human origin. Our data demonstrated that Nell-1, HMGB1, and CCN2 significantly induced 

mesenchymal stem cell migration (from 1.58-fold increase compared to control), but BMP-

2 did not. Interestingly, only BMP-2 increased osteogenesis in marrow stromal cells, 

whereas it inhibited osteogenesis in preosteoblasts. Moreover, the four proteins studied 

promoted significantly endothelial cell migration, reaching a maximum of 2.4-fold increase 

compared to control, and induced formation of tube-like structures. Nell-1, HMGB1, and 

CCN2 had these effects at relatively low doses compared to BMP-2. This work indicates 

that Nell-1, HMGB1, and CCN2 might enhance bone defect healing via the recruitment of 

endogenous cells and induction of vascularization and act via different processes than 

BMP-2. 
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4.24.24.24.2 IntroductionIntroductionIntroductionIntroduction    

Currently, bone grafting is used to replace missing bone and to repair bone fractures, with 

2.2 million transplantations per year (199). Autografts represent the gold standard due to 

their histocompatibility and capacity to become vascularized and fully integrated with the 

surrounding bone. Although autografts have an excellent success rate, the harvesting of 

autologous bone is associated with an 8.6% rate of major and 20.6% minor complications 

(200). Therefore, different approaches are being taken to overcome these limitations. The 

ideal regenerative medicine approach would involve an off-the-shelf product that can 

recruit a patient’s own cells and stimulate them to differentiate into mature osteoblasts 

while at the same time inducing tissue vascularization. One such approach is growth 

factor-based therapy. This involves the use of molecules that are essential for tissue 

formation combined with biomaterials (201). 

Bone morphogenetic protein-2 (BMP-2) and BMP-7 are the most studied bone-forming 

proteins. Moreover, currently BMP-2 is the only BMP approved as a bone graft substitute 

(86). However, despite the therapeutic potential of BMP-2 in bone repair, large doses (up 

to 40 mg) are needed to produce a significant osteogenic effect (202), and this can result in 

undesired ectopic bone formation, soft tissue swelling, bone resorption, and tumor 

growth enhancement through angiogenesis stimulation (87, 203, 204).  

Accordingly, alternative proteins are being assessed for their osteogenic induction 

capacity. Three of such proteins are nel-like molecule type 1 (Nell-1), connective tissue 

growth factor (CCN2), and high mobility group box 1 (HMGB1). Bone regeneration is a 

complex process that involves a series of well-orchestrated biological events. At the 

cellular level, migration, proliferation, angiogenesis, osteogenic differentiation, and 

subsequent mineralization are essential processes to enable bone formation and repair to 

occur (205). To optimize in vivo bone defect repair using biologicals, more knowledge of 

the effect of these factors on the different processes is necessary. 

Nell-1 is a secretory protein and its overexpression induces altered bone formation and it is 

considered an essential factor for human craniosynostosis (206). It has been shown to 

promote bone formation on mice in vivo (207, 208), and in a comparison study, Nell1-

based bone grafts were comparable to BMP2-based grafts in rat spinal fusion (209). Recent 

studies performed on osteoporotic mice and sheep have shown that Nell-1 could 

potentially be used as a therapy for osteoporotic bone loss (210, 211). Furthermore, Nell-1 

has been shown to increase osteogenic differentiation in vitro (212). However, whether 

Nell-1 is able to recruit osteoprogenitor cells is not known yet. Moreover, several genes 

affected by Nell-1 appear to promote angiogenesis at early stages of bone regeneration 

(213) but whether it is able to promote endothelial cell (EC) recruitment and differentiation 

is still unknown. 
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CCN2 has been used mostly in rats and has been shown to promote bone and cartilage 

regeneration (214, 215). It is one of the six CCN matricellular proteins characterized by their 

conserved modular structure (216) and interacts with integrins, enhancing cellular 

processes such as adhesion, extracellular matrix (ECM) synthesis, cytoskeleton 

reorganization, and survival (217-219). In vitro studies have shown that overexpressing cells 

with CCN2 promote mesenchymal cell proliferation, migration, and aggregation (220, 221). 

In addition, it has been shown that CCN2 expression was increased in mesenchymal stem 

cells (MSCs) and osteoblasts during formation of new bone, suggesting its role in bone 

development (216), but its effect when added to either human osteoprogenitor cells or 

osteoblasts has not been investigated yet. Furthermore, CCN2 is a necessary mediator for 

the production of vascular basement membranes (222), however, its effect on 

angiogenesis remains unclear (223-226). 

HMGB1, unlike Nell-1 and CCN2, has never been used as growth factor-based therapy, but 

knowledge about the potency of this factor in the different processes involved in bone 

repair makes it an attractive candidate. HMGB1 is a chromatin protein mainly known due 

to its role as an alarmin (227, 228). Consequently, many studies showed that HMGB1 is a 

potent proinflammatory cytokine secreted by monocytes and macrophages able to 

regulate migration of mesongioblasts, smooth muscle cells, or myoblasts among others 

(229-232). Recently, it has been shown that HMGB1 has an osteo-modulatory action (233), 

being chemotactic to MSCs (234) as well as osteoblasts and osteoclasts during 

endochondral ossification (227, 235). Although HMGB1 is known to be able to upregulate 

osteogenic markers when added to MSC culture in vitro (236), its direct effect on 

osteoprogenitor and preosteoblast mineralization has not been studied. In addition, 

various studies have identified it as a putative proangiogenic factor and its overexpression 

is related with an increased ability to develop blood vessels (230, 237, 238).  

Nell-1, HMGB1, and CCN2 are indicated to play a role in bone formation. However, their 

effect on major cell types and specific processes involved in bone formation is barely 

studied, and they were never directly compared. The main goal of this study is to compare 

side by side Nell-1, HMGB1, and CCN2 to BMP-2 and assess whether they are able to 

induce cell migration, osteogenic differentiation, and neovascularization, indispensable 

processes needed for bone formation. This was performed using cells from human origin: 

two types of osteoprogenitors (human MSCs and fetal osteoblasts) and human umbilical 

vein endothelial cells (HUVECs). 

4.34.34.34.3 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

4.3.14.3.14.3.14.3.1 Cell cultureCell cultureCell cultureCell culture    

Human MSCs were obtained from leftover material from iliac crest biopsies of four donors 

(age 9-12 years; three males and one female) undergoing cleft palate reconstruction 
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surgery (Erasmus MC Ethics Committee number MEC-2014-106) with implicit consent. 

Cells were seeded at a density of 50,000 cells/cm2 in α-MEM (Gibco, BRL), supplemented 

with 10% fetal calf serum (FCS), 1 ng/mL fibroblast growth factor (FGF2), 25 µg/mL ascorbic 

acid-2-phosphate, 1.5 µg/mL fungizone, and 50 µg/mL gentamicin. After 24 h, 

nonadherent cells were washed out and adherent cells were expanded in the 

abovementioned medium. The medium was renewed twice per week until MSCs neared 

confluency. Then, cells were used for migration or osteogenic differentiation assays. 

Simian virus-immortalized human fetal osteoblast (SV-HFO) cells (239) were expanded 

and cultured as previously described (240).  

HUVECs (Lonza) were cultured at a density of 5,000 cells/cm2 in endothelial growth 

medium (EGM-2 with SingleQuots; Lonza). Medium was renewed every 2-3 days. When 

cells neared confluency, they were used for migration or tube formation assays. 

4.3.24.3.24.3.24.3.2 Migration assayMigration assayMigration assayMigration assay    

MSC and HUVEC migration was assessed using modified Boyden chambers (polyethylene 

terephthalate cell culture inserts, pore size: 8 µm in diameter, Millipore-Merck). Briefly, to 

analyze MSC migration, α-MEM containing Nell-1 (0.07-3.5 nM [10-500 ng/mL], R&D 

Systems), CCN2 (0.89-8.9 nM [10-100 ng/mL]; Abnova), HMGB1 (0.4-4 nM [10-100 

ng/mL]; R&D Systems), and BMP-2 (0.38-38 nM [10-1000 ng/mL]; kindly provided by Dr. 

Joachim Nickel, Fraunhofer IGB) was added to the lower chamber of a 24-well plate. 

Platelet-derived growth factor-AB (PDGF-AB) (20 ng/mL) or 10% FCS was used as positive 

controls. 6 × 103 MSCs suspended in a volume of 200 µl α-MEM were added into the 

upper chamber. The plates were incubated at 37 °C for 17 h. To test the chemotactic effect 

of Nell-1 (10-500 ng/mL), CCN2 (10-100 ng/mL), HMGB1 (10-100 ng/mL), and BMP-2 (10-

1000 ng/mL) on HUVECs, the endothelial cell basal medium (EBM-2, Lonza) containing 

Nell-1, CCN2, HMGB1, or BMP-2 was added in the lower chamber. EGM-2 was used as 

positive control. 5 × 104 HUVECs were added into the upper chamber. The plates were 

incubated at 37 °C for 10 h. In both cases, the membrane was then washed and the cells 

remaining on the upper surface of the chambers were mechanically removed with a 

cotton swab. Those that had migrated to the lower surface were fixed with 4% formalin, 

stained with 4’,6-diamidino-2-phenylindole (DAPI) (100 ng/mL) in the dark for 5 min, and 

imaged using fluorescence microscopy (Zeiss Axiovert 200 M Fluorescence Imaging) in 

five random fields for each membrane and counted using ImageJ software. 

4.3.34.3.34.3.34.3.3 Osteogenic differentiationOsteogenic differentiationOsteogenic differentiationOsteogenic differentiation    

Osteogenic differentiation assays were performed on MSCs and SV-HFOs. 3,000 cells/cm2 

(MSCs) or 9,000 cells/cm2 (SV-HFOs) were seeded with α-MEM in a 12-well plate. For 

MSCs, after 24 h, the medium was replaced with the complete osteogenic medium: 

DMEM high glucose (Gibco) with 10% FCS, 1.5 µg/mL fungizone, 50 µg/mL gentamicin, 1 
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ng/mL FGF2, 25 µg/mL ascorbic acid-2-phosphate, 10 mM β-glycerophosphate, and 0.1 

µM dexamethasone. For SV-HFOs, the osteogenic differentiation medium consisted of 

phenol red-free α-MEM (Gibco), pH 7.5, supplemented with 20 mM HEPES (Sigma), 

streptavidin/penicillin, 1.8 mM CaCl2·2H2O (Sigma), 2% heat-inactivated charcoal-treated 

FCS, 0.1 µM dexamethasone, and 10 mM β-glycerophosphate. During each medium 

refreshment, medium was supplemented with proteins of interest: Nell-1 (10-500 ng/mL), 

CCN2 (10-100 ng/mL), HMGB1 (10-100 ng/mL), and BMP-2 (10-1000 ng/mL). Osteogenic 

differentiation was carried out until onset of mineralization, monitored by measuring 

calcium concentration in the culture supernatant. Cells were scraped from the culture dish 

in phosphate-buffered saline (PBS)/0.1% Triton X-100. Cell lysates were sonicated on ice 

before analysis. 

4.3.44.3.44.3.44.3.4 DNA and protein measurementsDNA and protein measurementsDNA and protein measurementsDNA and protein measurements    

For DNA measurement, cell lysates were incubated for 30 min at 37 °C with 100 µL heparin 

(8 IU/mL in PBS) and 50 µL RNAse A (50 µg/mL in PBS) solution. Ethidium bromide 

solution (25 µg/mL) was added and DNA content was measured on the Wallac 1420 

Victor2 (PerkinElmer Life and Analytical Science) plate reader using an excitation filter of 

340 nm and emission filter of 590 nm. For standards, calf thymus DNA (Sigma) was used. 

Protein was measured in cell lysates with BCA protein assay (Pierce™ BCA protein assay; 

Thermo Scientific) according to the manufacturer’s instructions. 

4.3.54.3.54.3.54.3.5 Alkaline phosphatase activityAlkaline phosphatase activityAlkaline phosphatase activityAlkaline phosphatase activity    

Alkaline phosphatase (ALP) activity was performed as described previously (241) by 

determining the release of paranitrophenol from paranitrophenyl phosphate (pNPP) in cell 

lysates. pNPP (20 mM) was added to each sample at 37 °C. After exactly 10 min, the 

reaction was stopped by adding 0.06 M NaOH. Absorption was measured on the Wallac 

1420 Victor2 plate reader at 405 nm. For standards, ALP (10 U/mL) from bovine kidney 

(Sigma) was used. 

4.3.64.3.64.3.64.3.6 MineralizationMineralizationMineralizationMineralization    

To quantify the calcium content, cell lysates were incubated 48 h in 0.24 M HCl at 4 °C. 

For analysis of calcium concentration in the culture medium, supernatant was collected 

from day 9 onward. In both cases, the calcium content was colorimetrically determined 

after addition of 1 M ethanolamine buffer (pH 10.6), 19.8 mM 8-hydroxyquinoline, and 

0.35 mM O-cresolphthalein complexone, at 595 nm on the Wallac 1420 Victor2. 

For von Kossa staining, cell cultures were fixed for 15 min in 4% formaldehyde, stained by 

5% silver nitrate solution (Sigma; 85228) for 30 min under a 60 W light, and imaged using 

an inverted microscope (Olympus CKX41). 
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4.3.74.3.74.3.74.3.7 HUVEC tube formation assayHUVEC tube formation assayHUVEC tube formation assayHUVEC tube formation assay    

Growth factor-reduced Matrigel (Corning) was added to a 96-well plate and incubated at 

37 °C for 1 h. HUVECs were resuspended in EBM-2 supplemented with Nell-1, CCN2, 

HMGB1, or BMP-2. EGM-2 complete medium was used as positive and EBM-2 as negative 

control. Fifteen thousand cells were seeded on top of the Matrigel, incubated at 37 °C, and 

imaged after 4, 6, and 24 h using an inverted microscope. Three independent experiments 

in triplicate were performed. The results were analyzed using ImageJ software. 

4.3.84.3.84.3.84.3.8 StatisStatisStatisStatistical analysistical analysistical analysistical analysis    

Data were analyzed with IBM Statistics 21 (SPSS). A linear mixed model was applied; the 

different conditions (different doses of the proteins studied) were considered a fixed 

parameter and the donors (experiments) as a random factor. A descriptive analysis was 

performed to assess the normal distribution of the data. When multiple comparisons were 

analyzed, the Bonferroni test was performed. p < 0.05 was considered statistically 

significant. 

4.44.44.44.4 ResultsResultsResultsResults    

4.4.14.4.14.4.14.4.1 NellNellNellNell----1111, CCN2, and HMGB1 stimulated MSC , CCN2, and HMGB1 stimulated MSC , CCN2, and HMGB1 stimulated MSC , CCN2, and HMGB1 stimulated MSC migration, whereas BMPmigration, whereas BMPmigration, whereas BMPmigration, whereas BMP----2 2 2 2 

did notdid notdid notdid not    

To determine whether the proteins could recruit progenitor cells to the site of injury, we 

assessed their effects on migration of MSCs. The positive control PDGF-AB was 

chemoattractant showing a 4.6-fold increase compared to negative control (data not 

shown). Nell-1, CCN2, HMGB1, but not BMP-2, were capable of inducing MSC migration 

(Figure 4.1). Nell-1 increased migration 2-, 2.3-, and 2.79-fold compared to control in a 

dose-dependent manner, although only statistically significant (p < 0.05) with the highest 

dose. CCN2 significantly increased migration at the lowest and medium dose (2.75- and 

2.48-fold, respectively), while the highest dose had no effect compared to control. In 

contrast, HMGB1 was chemotactic at the highest dose tested, 100 ng/mL, with more than 

5-fold increase compared to control. Although there was a trend toward a stimulation of 

migration of BMP-2 on MSCs (1.3-1.6-fold increase), this effect was not significant. 
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Figure Figure Figure Figure 4444....1111. . . . NellNellNellNell----1111, CCN2, and HMGB1 stimulated MSC migration. , CCN2, and HMGB1 stimulated MSC migration. , CCN2, and HMGB1 stimulated MSC migration. , CCN2, and HMGB1 stimulated MSC migration. Average migration of MSCs 

exposed to several doses of each factor relative to the negative control (n = 4 donors in duplicate). The 

bars represent the mean ± SD.    

 

4.4.24.4.24.4.24.4.2 NellNellNellNell----1111, CCN2, HMGB1, and, CCN2, HMGB1, and, CCN2, HMGB1, and, CCN2, HMGB1, and    BMPBMPBMPBMP----2 proteins stimulated EC migration2 proteins stimulated EC migration2 proteins stimulated EC migration2 proteins stimulated EC migration    

We explored the role of Nell-1, CCN2, HMGB1, and BMP-2 on HUVEC recruitment. The 

positive control (EGM-2 complete medium) showed a 3.2-fold increase in migration 

compared to negative control (EBM-2). Interestingly, similar to MSCs, Nell-1 and CCN2 

stimulated HUVECs to migrate. Specifically, Nell-1 increased migration in a dose- 

dependent manner, showing more than 2-fold increase with the highest dose, while CCN2 

had a greater effect at the lowest dose (more than 2-fold increase compared to control) 

(Figure 4.2). Although HMGB1 showed less pronounced effect on HUVEC than MSC 

migration, it had a significant effect on migration in all the tested doses, showing a 2-fold 

increase compared to the control. It is noteworthy that, in contrast to the other three 

proteins that had similar effects on both cell types with regard to dose, BMP-2 showed 

different effects, demonstrating a significantly higher EC migration at the lowest and 

medium dose supplied with more than 1.5-fold increase compared to control (Figure 4.2). 
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Figure Figure Figure Figure 4444....2222. Nell. Nell. Nell. Nell----1, CCN2, HMGB1, and BMP1, CCN2, HMGB1, and BMP1, CCN2, HMGB1, and BMP1, CCN2, HMGB1, and BMP----2 stimulated EC migration.2 stimulated EC migration.2 stimulated EC migration.2 stimulated EC migration. Average migration of 

HUVECs exposed to several doses of each factor relative to the negative control (n = 3 independent 

experiments in duplicate). The bars represent the mean ± SD. 

 

4.4.34.4.34.4.34.4.3 BMPBMPBMPBMP----2 enhanced MSC osteogenic differentiation; 2 enhanced MSC osteogenic differentiation; 2 enhanced MSC osteogenic differentiation; 2 enhanced MSC osteogenic differentiation; NellNellNellNell----1111, CCN2, and , CCN2, and , CCN2, and , CCN2, and 

HMGB1 had no effectHMGB1 had no effectHMGB1 had no effectHMGB1 had no effect    

Osteogenic differentiation of MSCs was assessed by calcium deposition. Supplementation 

with Nell-1, CCN2 or HMGB1 did not cause any increase or decrease in mineralization. 

However, when BMP-2 was added, we observed a dose-dependent stimulatory effect, 

with a significant increase in nodule formation at the highest dose provided (Figure 4.3A). 

The results were corroborated quantitatively by measuring the calcium content in the cell 

lysates, showing that addition of BMP-2 at the highest dose provided (1000 ng/mL) had an 

almost 2-fold increase in mineralization compared to the standard osteogenic 

differentiation media (Figure 4.3B). 
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Figure Figure Figure Figure 4444....3333. . . . Effect of Effect of Effect of Effect of NellNellNellNell----1111, CCN2, HMGB1, and BMP, CCN2, HMGB1, and BMP, CCN2, HMGB1, and BMP, CCN2, HMGB1, and BMP----2 on the MSC mineralization. 2 on the MSC mineralization. 2 on the MSC mineralization. 2 on the MSC mineralization. Human 

MSCs were induced to mineralize in the absence or continuous presence of Nell-1, CCN2, HMGB1, or 

BMP-2. A. Von Kossa staining of nodule formation at the onset of mineralization. Pictures were taken 

at 4× magnification. B. Quantification of calcium deposition (nmol/cm2) in the ECM at the onset of 

mineralization relative to control (osteogenic differentiation medium). n = 3 donors in triplicate. The 

bars represent the mean ± SD. 

 

4.4.44.4.44.4.44.4.4 BMPBMPBMPBMP----2 inhibited preosteoblast differentiation and mineralization; 2 inhibited preosteoblast differentiation and mineralization; 2 inhibited preosteoblast differentiation and mineralization; 2 inhibited preosteoblast differentiation and mineralization; NellNellNellNell----

1111, CCN2, and HMGB1 had no effect, CCN2, and HMGB1 had no effect, CCN2, and HMGB1 had no effect, CCN2, and HMGB1 had no effect    

The addition of Nell-1, CCN2, and HMGB1 did not increase mineralization or ALP activity at 

either of the time points studied (Figure 4.4A). Interestingly, and in contrast to the effect 

observed with MSCs, the addition of BMP-2 to the preosteoblast culture had a direct 

inhibitory effect on differentiation and mineralization. The decrease in ALP activity became 

significant at day 16. In addition, a reduction in the ECM calcium content at the lowest 

dose provided was detected (Figure 4.4A,B). However, when the highest dose was 

provided (1 µg/mL), the inhibitory effect was no longer observed and the mineralization 

reached control levels. 

4444    



Chapter 4 

82 

 

 

    

    



Nell-1, HMGB1, and CCN2 enhance key processes for bone formation 

83 

 

Figure Figure Figure Figure 4444....4444. Effect of Nell. Effect of Nell. Effect of Nell. Effect of Nell----1, CCN2, HMGB1, and BMP1, CCN2, HMGB1, and BMP1, CCN2, HMGB1, and BMP1, CCN2, HMGB1, and BMP----2 on the osteoblast differentiation 2 on the osteoblast differentiation 2 on the osteoblast differentiation 2 on the osteoblast differentiation 

measured by ALP activity and mineralization. measured by ALP activity and mineralization. measured by ALP activity and mineralization. measured by ALP activity and mineralization. A. ALP activity (mU/cm2) during SV-HFO culture in 

osteogenic differentiation medium (control) and after continuous addition of the tested proteins at 

day 9 (gray bars) and 16 (black bars) of culture. Results are shown relative to day 9 control. B. 

Quantification of calcium deposition (nmol/cm2) in the ECM at day 16. Values are expressed as fold 

change compared to osteogenic medium without additional proteins. Results are shown relative to 

control in both graphs (n = 3 experiments performed in triplicate). The bars show the mean ± SD. ALP, 

alkaline phosphatase. 

 

4.4.54.4.54.4.54.4.5 NellNellNellNell----1111, CCN2, HMGB1, and BMP, CCN2, HMGB1, and BMP, CCN2, HMGB1, and BMP, CCN2, HMGB1, and BMP----2 stimulated neovascularization2 stimulated neovascularization2 stimulated neovascularization2 stimulated neovascularization    

We have determined the capability of the factors to promote formation of tubular-like 

structures by ECs in vitro. There was a significant improvement in tube formation at the 

medium dose of Nell-1 added (100 ng/mL). Furthermore, CCN2 and HMGB1 were able to 

enhance tube formation at the lowest doses supplied. BMP-2 also enhanced tube 

formation in a dose-dependent manner, resulting in a significant effect on tube formation 

when the highest dose was added (Figure 4.5). 
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Figure Figure Figure Figure 4444....5555. . . . Effect of Effect of Effect of Effect of NellNellNellNell----1111    CCN2, HMGB1, and BMPCCN2, HMGB1, and BMPCCN2, HMGB1, and BMPCCN2, HMGB1, and BMP----2 HUVEC on tube formation on Matrigel. 2 HUVEC on tube formation on Matrigel. 2 HUVEC on tube formation on Matrigel. 2 HUVEC on tube formation on Matrigel. 

A. Representative picture of tube-like structures formed by HUVEC after 6 h of treatment with vehicle 

control, 10 ng/mL HMGB1, 50 ng/mL HMGB1, and 100 ng/mL HMGB1. Pictures were taken with 1.5× 

magnification. B. Quantification of tube formation, and total number of nodes analyzed. The bars 

show the mean ± SD.    

 



Nell-1, HMGB1, and CCN2 enhance key processes for bone formation 

85 

 

4.54.54.54.5 DiscussionDiscussionDiscussionDiscussion    

We directly compared four proteins that are acknowledged for their apparent ability to 

stimulate osteogenesis in vitro or in vivo (216, 227, 242, 243). This is the first study to directly 

compare these proteins for their ability to induce recruitment, osteogenic differentiation, 

and neovascularization using human cells. Our results demonstrate the ability of Nell-1, 

CCN2, and HMGB1 to attract both MSCs and ECs even at low doses compared to BMP-2. 

Since new blood vessel formation is crucial for bone development, we assessed 

neovascularization in an in vitro model, demonstrating that all four tested proteins were 

able to stimulate formation of tube-like structures. Interestingly, in contrast to BMP-2, Nell-

1, CCN2, and HMGB1 did not significantly increase the osteogenic differentiation capacity 

of MSCs above that induced by dexamethasone. Also of note, we observed that BMP-2 

negatively impacted preosteoblast mineralization, whereas the others had no effect. 

4.5.14.5.14.5.14.5.1 Effects on cell migrationEffects on cell migrationEffects on cell migrationEffects on cell migration    

It is generally thought that BMPs are mediators of osteoprogenitor cell recruitment. 

However, it had been published that BMP-2 had no effect in the recruitment of MSCs, 

neither in the cultured MSCs nor in the marrow ablation tissues (244). In our study, we did 

not see any increase in MSC migration by BMP-2 either. The BMP-2 chemotactic effect 

seems to vary between EC subtypes; studies performed with ECs showed that BMP-2 was 

not able to stimulate human aortic EC migration (203), but it stimulated HUVEC migration 

(245). Our data confirmed that BMP-2 is able to stimulate migration of HUVEC when doses 

between 10 and 100 ng/mL are supplied. 

Where BMP-2 had no effect on MSC migration and less than doubled the migration of 

HUVEC, we observed up to a 3-fold increase in MSC and HUVEC migration when HMGB1, 

CCN2, or Nell-1 was added to the culture. HMGB1, as a signal of tissue damage, is known 

to be capable of inducing migration in many different cell types, including inflammatory 

cells (232, 246, 247). Fewer articles exist investigating the effects of HMGB1 on osteogenic 

cells, but those that do indicate it to be important in cell recruitment. Meng et al. 

demonstrated that HMGB1 promotes MSC migration up to 2.5-fold compared to control 

(234). Our results confirm these findings, showing that HMGB1 has a highly significant 

chemotactic effect on MSCs above doses of 50 ng/mL. To date, there is very little reported 

about HMGB1’s chemotaxis on primary ECs. Low doses of HMGB1 are able to promote 

endothelial progenitor cell migration using transwells coated with fibronectin or 

fibrinogen (248). Bauer et al. have performed a wound healing migration assay and have 

shown that 1 µg/mL of HMGB1 is able to induce migration of HUVEC (249). We show that 

HMGB1 is highly chemoattractant to HUVECs, and even a hundred times lower 

concentration than 1 µg/mL is sufficient to induce more than a 2-fold increase compared 

to control. In addition, from 10 to 100 ng/mL, we observed a similar chemoattractant 

effect, suggesting a low dose is sufficient to stimulate EC migration. CCN2 has been shown 
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to promote migration of human MSCs and human dermal microvascular ECs when 

transfected with pCCN2 (220, 221). Nonetheless, the effect of the addition of the protein 

CCN2 to MSCs or ECs had not been studied before. We demonstrated that the addition of 

low dose (10 ng/mL = 0.89 nM) of CCN2 to the media is sufficient to obtain a significant 

migratory response from MSCs and HUVECs, reaching more than a 4-fold increase 

compared to the control. The fact that CCN2 showed an inverse dose response is 

potentially interesting for endogenous cell recruitment through slow-release systems. 

Nell-1 has been shown to inhibit renal carcinoma cell migration and adhesion (250). 

However, we did not find published data about the effect of Nell-1 on MSC and EC 

migration. We demonstrated in this study its ability to promote migration of both cell 

types. In fact, it was able to promote EC migration at lower doses than BMP-2 (BMP-2, 100 

ng/mL = 3.8 nM; Nell-1, 100 ng/mL = 0.7 nM) and MSC migration when BMP-2 did not. 

4.5.24.5.24.5.24.5.2 Effects on osteogenesisEffects on osteogenesisEffects on osteogenesisEffects on osteogenesis    

BMP-2 is the best known osteogenic factor. Next to the capacity to induce bone formation 

in vivo, the capacity of BMP-2 to induce osteogenic differentiation of MSCs in vitro has 

already been tested (251, 252). Our data confirm this as we observed an almost 2-fold 

increase when 1 µg/mL of BMP-2 was added to the culture. However, little is known about 

its effect on osteoblasts. In this study, we observed an inhibition of mineralization when 

BMP-2 was added to osteoblast cultures in a concentration range of 10−100 ng/mL. 

Interestingly, we did not observe that inhibitory effect when the highest dose was added (1 

µg/mL). This could be due to the fact that SV-HFOs express activin (253) which may 

interfere with BMP-2 or simply because BMP-2 is not an essential stimulus when the cells 

are already committed to the osteogenic pathway. Many studies indicated HMGB1’s role 

in the induction of endochondral ossification in vivo and that it may act as a bone 

resorption signal (227). However, HMGB1 has not been used as a therapeutic agent for 

bone regeneration and whether it has any effect on either osteoprogenitor or osteoblast 

differentiation and mineralization is barely studied. We did not observe any effect on 

osteogenic differentiation when HMGB1 was added to the MSC or preosteoblast culture 

media. Although it has been shown that CCN2 expression is increased in MSCs and 

osteoblasts during bone formation (216), the effect of the addition of the protein CCN2 to 

MSCs or to osteoblasts had not been examined previously. Our study demonstrates that 

while it promotes migration of osteoprogenitor cells, CCN2 is not able to increase 

osteogenesis in contrast to a published study by Safadi et al. (254), who used rat primary 

osteoblasts and showed an increase on calcium deposition when 100 ng/mL of CCN2 was 

added to the culture beginning at day 11. We cannot exclude that the differences in 

experimental setup, including addition of dexamethasone and single dosing of CCN2, 

might explain the results. 
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With regard to Nell-1, most of the osteogenic differentiation studies have been performed 

with either human osteosarcoma cell lines or murine osteoblast-like cells (255-257). These 

studies have shown that, when transfected with Nell-1, these cells increase late osteogenic 

differentiation markers and ECM mineralization. Recently, Pang et al. have identified a 

functional transcript of Nell-1 able to induce osteogenic differentiation of a murine MSC 

line (258). However, no information on human MSCs or osteoblasts was available. We 

observed an osteogenic trend when Nell-1 was added at low doses to preosteoblasts, 

although with high variability between cultures. Even then, comparison on a molar basis 

suggests that Nell-1 could have an osteogenic inducing effect even at low doses, in contrast 

to BMP-2 that exhibited the reverse effect. Although we did not observe a significant effect 

of Nell-1 on osteogenic differentiation, a synergistic effect of Nell-1 and BMP-2 has been 

shown on osteogenesis in vitro (259). Moreover, Nell-1 can suppress BMP2-induced 

inflammation and enhance BMP2-induced bone formation in vivo (260-262). Therefore, 

Nell-1 is a potentially interesting candidate to be used alone or with BMP-2. Nell-1 and 

BMP-2 might stimulate different stages of osteogenic differentiation; where Nell-1 

stimulates osteoprogenitor cell migration and could enhance preosteoblast 

differentiation, BMP-2 might promote differentiation of skeletal stem cells. 

4.5.34.5.34.5.34.5.3 Effects on vascularizationEffects on vascularizationEffects on vascularizationEffects on vascularization    

BMP-2 had been shown to stimulate angiogenesis in developing tumors (203, 263). In 

bone tissue engineering, however, BMP-2 is frequently used in combination with 

angiogenic factors as vascular endothelial growth factor (VEGF) or angiopoietin 1 (94, 264, 

265), suggesting that BMP-2 does not optimally induce vascularization. In this study, we 

demonstrated the ability of BMP-2 to induce the formation of tube-like structures at a dose 

of 1 µg/mL, a relatively much higher dose than required for CCN2, HMGB1, or Nell-1. 

HMGB1 is known to have diverse roles in angiogenesis during disease and tissue repair 

(238) and it has been suggested to induce angiogenesis through a VEGF-dependent 

mechanism (266). HMGB1 was shown to induce tube formation by microvascular ECs at 

doses ranging from 0.1 to 1 µg/mL (267, 268). In this study, we show that much lower doses 

of HMGB1 are sufficient to recruit ECs and to promote tube formation. CCN2 has been 

shown to act as a proangiogenic factor, coordinating vasculature formation during skeletal 

development (217, 269) and also as an antiangiogenic agent inhibiting VEGF-induced 

angiogenesis (225), suggesting that CCN2 regulates angiogenesis through direct and 

indirect mechanisms (270). We show that CCN2 has proangiogenic properties when it is 

added directly to ECs, even at much lower doses than those required for BMP-2 to induce 

a similar effect. Therefore, CCN2 might also be an interesting factor to be combined in 

future studies with a powerful osteoinductive growth factor, due to its chemotactic and 

angiogenic features. Although some studies have shown that Nell-1 induces VEGF 

expression in human pericytes and perivascular stem cells (208, 271), to our knowledge, 

there are no previous publications investigating the effects of Nell-1 on vascularization of 
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ECs. We demonstrate that the addition of Nell-1 positively affects EC migration within a 

tight dose range, producing a significant increase at 100 ng/mL, a larger dose than needed 

with either HMGB1 or CCN2, but still 10 times lower than that needed with BMP-2. 

4.64.64.64.6 ConclusionsConclusionsConclusionsConclusions    

To accelerate and optimize bone remodeling, using more than one type of growth factor 

involved in bone formation could be preferable to reduce possible side effects due to high 

doses used when single-factor therapies are applied. In addition, several studies have 

shown that not only the dose but also the timing of release of the proteins from the carrier 

used for bone formation greatly modifies the outcome (90). Based on the promising 

properties of Nell-1, HMGB1, CCN2, and BMP-2 with regard to their promotion of bone 

formation-related processes, in vivo analyses using dual release systems should be 

performed to assess their potency for bone defect repair. 
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5.15.15.15.1 AbstractAbstractAbstractAbstract    

The use of biomaterials and signaling molecules to induce bone formation is a promising 

approach in the field of bone tissue engineering. Follistatin (FST) is a glycoprotein able to 

bind irreversibly to activin A, a protein that has been reported to inhibit bone formation. 

We investigated the effect of FST in critical processes for bone repair, such as cell 

recruitment, osteogenesis and vascularization, and ultimately its use for bone tissue 

engineering. In vitro, FST promoted mesenchymal stem cell (MSC) and endothelial cell 

(EC) migration as well as essential steps in the formation and expansion of the vasculature 

such as EC tube-formation and sprouting. FST did not enhance osteogenic differentiation 

of MSCs, but increased committed osteoblast mineralization. In vivo, FST was loaded in an 

in situ gelling formulation made by alginate and recombinant collagen-based peptide 

microspheres and implanted in a rat calvarial defect model. Two FST variants (FST288 and 

FST315) with major differences in their affinity to cell-surface proteoglycans, which may 

influence their effect upon in vivo bone repair, were tested. In vitro, most of the loaded 

FST315 was released over 4 weeks, contrary to FST288, which was mostly retained in the 

biomaterial. However, none of the FST variants improved in vivo bone healing compared 

to control. These results demonstrate that FST enhances crucial processes needed for 

bone repair. Further studies need to investigate the optimal FST carrier for bone 

regeneration. 
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5.25.25.25.2 IntroductionIntroductionIntroductionIntroduction    

Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms 

incorporating bone-forming factors offer a potential alternative to bone-grafts. 

Furthermore, injectable systems are a promising option since they can potentially deliver 

growth factors in a less invasive manner and conform to complex shapes, which is 

especially important within the craniofacial complex (99). Therefore, choosing the right 

material and growth factor(s) is critical to induce the key events needed for bone 

formation. In previous work (Chapter 2), we have developed an in situ gelling formulation 

made by alginate and Recombinant Collagen-based Peptide (RCP) microspheres (MS) that 

were able to considerably slow down the release of bone morphogenetic protein-2 (BMP-

2) and support bone formation (272). However, despite the therapeutic potential of BMP-2 

in bone repair, it is not free of complications such as ectopic bone formation, respiratory 

failure, inflammation, pseudarthrosis and cancer (104).  

The transforming growth factor beta (TGF-β) family comprises more than 30 signaling 

proteins that are essential developmental factors stimulating diverse cellular differentiation 

and growth responses (273). Among them, bone morphogenetic proteins (BMPs) and the 

activin/inhibin subfamily members such as BMP-2 or activins have been shown to be 

fundamental in the regulation of bone organogenesis (274, 275). Particularly, activin A is 

one of the most abundant TGF-β family member proteins found in bone (276). 

Consequently, bone contains high concentrations of BMPs and activins as well as their 

antagonists such as noggin or follistatin (FST), which block signaling and are essential 

regulators of endogenous bone repair. Their importance is such that Matzuk et al. 

demonstrated that FST-deficient mice were growth-retarded and among others showed 

skeletal defects, dying within hours of birth (277). The effect of FST on bone repair and the 

major target it antagonizes, activin A, is not clear. It has been previously reported that 

activin A stimulates osteoclast formation (278, 279), and that the administration of soluble 

activin receptors enhances bone formation and bone mineral density in both mice and 

monkeys (276, 280, 281).  

In bone, FST is mainly expressed by osteoblasts, but also to a lesser extent by osteocytes in 

both developing mouse mandible and in the callus of repairing bone (282). Its role in 

osteogenic differentiation is controversial, both a positive and a negative effect upon 

osteoblasts during osteogenic differentiation have been reported (283, 284). In vivo, 

several studies have used FST-overexpressing mice to assess its effect upon muscle healing 

and bone morphology, concluding that FST improved muscle healing after injury, but its 

overexpression leads to a decreased quality of the skeleton (285, 286). Kawao et al. have 

demonstrated that in response to hypergravity, FST acts as a circulating molecule 

regulating muscle and bone metabolism and the interaction between them (287). Taken 

together, these data suggest that FST administration, as the major antagonist of activin A, is 

5555    



Chapter 5 

92 

 

involved in bone formation and may have a significant therapeutic potential to trigger 

bone regeneration.  

The role of FST in some of the other essential processes needed for bone repair such as 

cell recruitment or vascularization is suggested but remains unclear. FST has been 

associated with angiogenin, a key protein implicated in activation of endothelial cells and 

stimulation of new blood vessel growth (288). Nonetheless, whether FST promotes 

angiogenesis is uncertain. Some studies have shown that FST induces tumor-associated 

angiogenesis (289, 290), but FST was also found to inhibit it (291). 

FST is a structurally complex monomeric glycoprotein widely distributed throughout adult 

tissues (292). The FST gene consists of six exons with an alternative splicing site that 

generates two major forms and, after further proteolysis and glycosylation, results in two 

different variants of the protein. FST288, which consists of 288 amino acids and FST315, 

which consists of 315 amino acids (293). The FST315 variant includes an acidic C-terminal 

tail domain encoded by exon 6, whereas the FST288 protein ends after exon 5 due to a 

stop codon inserted as a result of alternative splicing. Importantly, although both FST 

variants contain a heparin-binding sequence, which affords an ability to bind to cell 

surface proteoglycans on many cells, the C-terminal domain in FST315 seems to neutralize 

the basic residues of the heparin binding sequence (294). Thus, FST315 can only bind to 

proteoglycans after binding to activin, which causes a conformational change that exposes 

the heparin-binding motif (295). Therefore, in general FST315 exhibits weak cell-surface 

binding capability and is considered the circulating form of the protein, while FST288 is 

the tissue-bound variant due to its ability to bind to heparan-sulfate proteoglycans (292, 

296). The structural differences between both FST variants may have an impact on their 

properties and ultimately their regulatory role. In fact, several groups have studied the 

pharmacokinetic/pharmacodynamic (PK/PD) relationships and their effect in muscle 

regeneration (297, 298) but unfortunately, most of the published studies did not specify 

which FST variant was used (283, 284, 286, 287, 299). 

No receptor for FST has been found but it is known to bind almost irreversibly to activin A, 

neutralizing its function (300, 301). Both variants of FST inhibit activin A function, although 

it has been shown that the affinity of FST288 for activin A is higher than that of FST315 (302). 

Also, FST is able to interact with other members of the TGF-β superfamily neutralizing or 

regulating their functions such as activin B, myostatin and BMPs. With 10-fold lower affinity 

than for activin A, FST can also bind to BMP-4, 6 and 7 (303-305). As bone metabolism is 

regulated mostly by BMPs and activin A, FST seems to play a pivotal role in bone 

physiology.  

This study has been performed to investigate the use of FST for bone tissue engineering. In 

vitro, we have investigated whether FST is able to attract osteoprogenitor and endothelial 

cells from human origin and promote their differentiation. We then assessed the effect of 
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FST in bone regeneration in a rat calvarial defect model and loaded two different doses of 

both variants of FST –FST315 and FST288– in our previously developed controlled-delivery 

system of RCP encapsulated in an injectable alginate hydrogel (272). 

5.35.35.35.3 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

5.3.15.3.15.3.15.3.1     Cell culture Cell culture Cell culture Cell culture     

Human MSCs were obtained from leftover material from iliac crest biopsies of four 

juvenile donors (age 9-12 years) undergoing cleft palate reconstruction surgery with 

implicit consent (Erasmus MC medical ethical committee number MEC-2014-106) and 

expanded as previously described (131). Then, cells at passage 4 were used either for 

migration or osteogenic differentiation assays.  

Primary microvascular endothelial cells (MVECs) were isolated from the foreskin of three 

juvenile donors (age 9 mos-4 yrs) as previously described (306) after their guardians had 

provided full informed consent (University of Wurzburg ethical board vote 182/10). Then, 

cells were cultured as monolayers in endothelial cell growth medium MV (ECGM; 

PromoCell). Cells were passaged at 70-80% confluence and were used between passages 

3 and 5 for sprouting assays.  

Human umbilical vein endothelial cells (HUVECs) (Lonza, Walkersville, MD, USA) were 

cultured at a density of 5,000 cells/cm2 in endothelial growth medium (EGM-2 with 

SingleQuots (Lonza)). Nonadherent cells were removed by replacing the medium after 2-3 

days. When cells neared confluency they were used between passages 9 and 12 either for 

migration or tube formation assays. 

Calvarial-derived Simian Virus-immortalized Human Fetal Osteoblast (SV-HFO) cells (239) 

were expanded and cultured as published previously (307). Briefly, cells were seeded in 

phenol-red free α-Minimal Essential Medium (α-MEM Gibco, BRL, Paisley, UK), pH 7.5, 

supplemented with 20 mM HEPES (Sigma, St. Louis, MI), penicillin/streptomycin, 1.8 mM 

CaCl2·2H2O (Sigma) and 2% heat-inactivated charcoal-treated fetal calf serum (FCS). All cell 

cultures were performed in 5% CO2 at 37 °C in a humidified atmosphere. 

5.3.25.3.25.3.25.3.2 Migration Migration Migration Migration assayassayassayassay    

The effect of FST upon MSC and HUVEC migration was assessed using modified Boyden 

chambers (polyethylene terephthalate cell culture inserts, pore size: 8 µm in diameter, 

Millipore-Merck, NL). The human recombinant FST variants used in this study were made 

via CHO-S cell expression using the FST’s native leader sequences, followed by affinity 

protein chromatography using Hi-trap heparin (GE Healthcare Life Science), and desalted 

to a 50 mM KPO4 buffer (165 mM sucrose, 0.01% Tween-20, pH 7.4). SDS-PAGE showed a 

protein purity higher than 95%. 
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To analyze MSC migration, α-MEM (Gibco)) containing FST315 (0.8-5 nM (28-175 ng/mL)) 

was added to the lower chamber of a 24-well plate. The doses selected were based in a 

previous publication, in which 100 and 500 ng/ml of FST were used, showing that these 

range of doses was able to enhance osteoblast osteogenic differentiation (284), and in 

previous non-published studies carried out in our department in which lower FST doses 

were tested. α-MEM containing PDGF-AB (20 ng/mL) was used as positive control. The 

controls used to investigate MSC migration were also used as controls in another 

publication (131). 6 × 103 MSCs suspended in a volume of 200 µl α-MEM were added to the 

upper chamber. Cell migration was followed at 5% CO2 and 37 °C in a humidified 

atmosphere for 17 h.  

To test HUVEC migration, endothelial cell basal medium (EBM-2, Lonza) containing FST 

was added to the lower chamber. 5 × 104 HUVECs were added into the upper chamber of 

the transwells and incubated at 5% CO2 and 37 °C in a humidified atmosphere for 10 h. 

EGM-2 medium was used as positive control. The membrane was then washed and the 

cells were fixed with 4% formalin and stained with 4',6-diamidino-2-phenylindole (DAPI) 

(100 ng/mL) in the dark for 5 min. Cells remaining on the upper surface of the membrane 

were mechanically removed with a cotton swab and those which that had migrated to the 

lower surface were imaged using fluorescence microscopy (Zeiss Axiovert 200M 

Fluorescence Imaging, Sliedrecht, NL) in five random fields for each membrane and 

counted using ImageJ software. 

5.3.35.3.35.3.35.3.3 HUVEC HUVEC HUVEC HUVEC Tube formation assayTube formation assayTube formation assayTube formation assay    

Growth factor-reduced matrigel (Corning, USA) was added to a 96-wells plate and 

incubated at 37 °C for 1 hour. HUVECs were trypsinized and resuspended in EBM medium 

supplemented with FST315 2-fold concentrated to achieve 28 ng/mL, 70 ng/mL and 175 

ng/mL as final concentrations. EGM-2 complete medium was used as positive control and 

EBM-2 medium as negative control. 15,000 cells were seeded on top of the matrigel and 

incubated at 37 °C in the presence of 5% CO2 in a humidified atmosphere. Tube formation 

was imaged after 4, 6 and 24 hours of incubation. The results were analyzed using ImageJ 

software. 

5.3.45.3.45.3.45.3.4 3D3D3D3D----culture spheroid assayculture spheroid assayculture spheroid assayculture spheroid assay    

To generate the spheroids, 250,000 MVECS were suspended in 40 mL of Vasculife® 

complete medium (Lifeline, Germany) with 10 mL of methyl cellulose (MethocelTM (Dow, 

USA)), seeded in nonadherent round-bottom 96-well plates (100 µL/well) and incubated 

overnight at 37 °C and 5% CO2 in a humidified atmosphere. The following day spheroids 

(500 cells approx. per spheroid) were harvested, transferred to a 50 mL tube and 

centrifuged (3 min, 500 g). Supernatant was removed and the pellet was covered with 5 mL 

of MethocelTM. Immediately prior to use, collagen preparation was made by 3.3 mL 
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pepsin-extracted type I collagen (Rat tail collagen High Concentration, Type 1, BD 

Biosciences, USA) solubilized in 1.7 mL 0.1% acetic acid and 0.5 mL Medium 199 (10x) 

(Sigma). 0.5 mL of NaOH 0.2 N was used to reach a neutral pH. Collagen preparation was 

mixed with the spheroid-containing methocel solution and seeded in 24-well plates (1 

mL/well). Plates were placed into an incubator to let the collagen gel polymerize for 30 

min. Then, collagen gels were overlaid with 200 µL medium containing FST315 10-fold 

concentrated to achieve a final concentration of 28 ng/mL. VEGF at 27.5 ng/mL was used 

as positive control and basal medium as negative control. After 24 h of culture, cell 

invasion was visualized using a ZEISS Axiovert 25 microscope at 10x magnification.  

5.3.55.3.55.3.55.3.5 Osteogenic differentiationOsteogenic differentiationOsteogenic differentiationOsteogenic differentiation    

Osteogenic differentiation assays were performed on MSCs and SV-HFOs. 3,000 cells/cm2 

(MSCs) or 9,000 cells/cm2 (SV-HFOs) were seeded in α-MEM in 12-well plates. For MSCs, 

the medium was replaced after 24 h with complete osteogenic medium; DMEM High 

Glucose (Gibco) with 10% FCS, 1.5 µg/mL fungizone, 50 µg/mL gentamicin, 25 µg/mL 

ascorbic acid-2-phosphate, 10 mM β-glycerophosphate and 0.1 µM dexamethasone. For 

SV-HFOs, medium was replaced after 48 h with osteogenic differentiation medium 

consisting of phenol-red free α-MEM (Gibco) supplemented with 20 mM HEPES (Sigma, 

MO, USA), streptomycin/penicillin, 1.8 mM CaCl2·2H2O (Sigma), 2% heat-inactivated 

charcoal-treated FCS, 0.1 µM dexamethasone and 10 mM β-glycerophosphate. To both 

cultures FST315 (28 ng/mL, 70 ng/mL and 175 ng/mL) was added during each medium 

refreshment. The experiment was carried out until onset of mineralization, monitored by 

measuring calcium concentration in the culture supernatant. For biochemical analyses, 

medium was collected and cells were scraped from the culture dish in PBS containing 0.1% 

Triton X-100. Supernatants were stored at -80 °C. Cell lysates were thawed and sonicated 

on ice in a sonifier cell disruptor (Soniprep 150, MSE, London, UK) or in a water-bath 

sonifier (Ultrasonic Cleaner CD-4800, Norville, UK) before analysis.  

Alkaline phosphatase (ALP) activity and protein measurementAlkaline phosphatase (ALP) activity and protein measurementAlkaline phosphatase (ALP) activity and protein measurementAlkaline phosphatase (ALP) activity and protein measurement 

ALP activity was performed as described previously (241). Briefly, it was assayed by 

determining the release of paranitrophenol from paranitrophenylphosphate (pNPP) in the 

SV-HFO cell lysates as previously described (131). Absorption was measured on the Wallac 

1420 Victor2 plate reader at 405 nm. For standards, ALP (10 U/mL) from bovine kidney 

(Sigma) was used. 

Protein was measured in cell lysates using the BCA protein assay (Pierce™ BCA Protein 

assay, Thermo Scientific, Rockford, IL) according to manufacturer’s instructions. 
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MineralizationMineralizationMineralizationMineralization    

To quantify the calcium content, cell lysates were incubated for 48 h in 0.24 M HCl at 4 °C. 

For analysis of calcium concentration in the culture medium, supernatant was collected 

and measured directly from day 9 onwards. In both cases, calcium content was 

colorimetrically determined after addition of 1 M ethanolamine buffer (pH 10.6), 19.8 mM 

8-hydroxyquinoline and 0.35 mM 0-cresolphtalein complexone, at 595 nm on the Wallac 

1420 Victor2. Besides, to assess that calcium deposition was, in fact, observed due to the 

osteogenic differentiation of the cultured cells and not just due to a mere calcium 

precipitation, MSCs and SVHFOs were also cultured in osteogenic medium but in the 

absence of dexamethasone. The results showed that, without the addition of 

dexamethasone, calcium deposition was not detectable (Figure S5.1). 

For von Kossa staining, cell cultures were fixed for 15 minutes in 4% formaldehyde. After 

fixation, cells were washed five times with distilled water. Subsequently, calcium was 

stained by 5% (w/v) silver nitrate solution (Sigma, 85228) for 30 minutes under a 60 W 

light. Next, the culture plate was rinsed with distilled water and dehydrated with ascending 

concentrations of ethanol (70%, 96% and 100%). Subsequently, ethanol was removed, and 

cell culture plates were air-dried and imaged using inverted microscope (Olympus CKX41, 

Zoeterwoude, NL).  

Quantification of Quantification of Quantification of Quantification of FSTFSTFSTFST    and activin Aand activin Aand activin Aand activin A    

Quantification of both human FST and human activin was measured using the follistatin 

DuoSet ELISA kit and the activin A Duoset ELISA kit (R&D Systems). Briefly, 48-72 h after 

replacement, conditioned medium was collected until onset of mineralization and stored 

at −80 °C. The ELISAs were performed according to the manufacturer’s protocol. 

5.3.65.3.65.3.65.3.6 Preparation of the hydrogel formulation for protein release and Preparation of the hydrogel formulation for protein release and Preparation of the hydrogel formulation for protein release and Preparation of the hydrogel formulation for protein release and in vivoin vivoin vivoin vivo    

studiesstudiesstudiesstudies    

RCP-MS with an average size of 50 µm were produced by emulsification using calcium 

carbonate (CaCO3) as described previously (58). Pronova SLG20 (sterile alginate where 

over 60% of the monomer units are guluronate) was ordered from Novamatrix (Sandvika, 

Norway) and was dissolved in 0.9% sterile sodium chloride to create 2% w/v solution. 

34 mg of calcium containing microspheres were incubated overnight at 4 °C with FST315, 

FST288 or BMP-2. The recombinant human BMP-2 (rhBMP-2, amino acids 283 to 396 plus 

an N-terminal Met-Ala) was expressed in Escherichia coli, isolated from inclusion bodies, 

renatured and purified, as previously described (119), and it was kindly provided by Dr. 

Joachim Nickel (Fraunhofer IGB, Germany). For release assays, 85 µL of FST288 or FST315 at 

a concentration of 112.5 µg/mL was added to the MS to achieve a final concentration of 

1.48 µg in the final formulation. For in vivo studies, FST288 and FST315 at 152 µg/mL and 15.2 
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µg/mL were added overnight to the MS to achieve a concentration of 20 and 2 µg/mL. 85 

µL of 380 µg/mL BMP-2 were added to the MS, resulting in a concentration of 50 µg/mL 

within the final formulation. After overnight incubation, on top of swollen particles, 507 µL 

of SLG was added. Then, the mixture was supplemented with 53 µL of 0.06 M fresh 

glucono delta lactone (GDL) solution (Sigma). GDL was used to dissolve the CaCO3 so that 

alginate could be crosslinked and increase the mechanical property of the formulation. 

The prepared formulation was incubated overnight at 4 °C to equilibrate. Next day, the 

formulation was mixed again prior to in vitro and in vivo studies.  

Release of FST315 and FST288 from Release of FST315 and FST288 from Release of FST315 and FST288 from Release of FST315 and FST288 from the hydrogel formulationthe hydrogel formulationthe hydrogel formulationthe hydrogel formulation    

The formulations were prepared as described above; 100 µL from the hydrogel with 1.48 

µg of either one of the both variants of FST was added to each well of 24-well plate inserts 

with 0.4 µm pore size. 1 mL DMEM with 10% FBS and 1% Penicillin/Streptomycin per well 

was added to reservoir plate. The plates were incubated at 37 °C under constant agitation 

at 300 rpm. At each time point the medium was collected and replaced with fresh 

medium. The collected release media was analyzed by duoset FST ELISA kit (R&D) 

according to manufacturer’s protocol. As positive control, 100 µL of 1.48 µg/mL FST288 

and FST315 solution were added to the inserts without hydrogel constructs and 1 mL 

medium was added to bottom wells of the transwell plate. At each time point 1 mL 

medium was collected and changed with fresh medium.  

5.3.75.3.75.3.75.3.7 In vivoIn vivoIn vivoIn vivo    study study study study     

All animal experiments were performed with prior approval of the ethics committee for 

laboratory animal use (protocol #EMC 116-15-04). 

26 Sprague Dawley (SD) male rats (Envigo, NL) at 12 weeks old were used in this study to 

evaluate bone formation. The animals were randomly assigned and housed in pairs in a 

specific pathogen-free environment and allowed to adapt to the conditions of the animal 

house for 7 days before starting the study. The animals were maintained at 20-26 °C on a 

12 h dark/light cycle with ad libitum access to standard rat chow and water. To evaluate the 

effect of FST288, FST315 and BMP-2, the proteins were loaded in the alginate formulation. 

40 µL of the protein loaded-composite was injected in the defect. Two different 

concentrations of FST315 and FST288 were loaded in the defects, 800 ng (n = 9 defects) 

and 80 ng (n = 9 defects). BMP-2 was used as positive control and the concentration 

loaded per defect was 2 µg (n = 3 defects). As negative control, biomaterials without FST 

were implanted (n = 10 defects). Each animal received two implants in bilateral defects. 

Animals were euthanized with CO2 and the specimens were harvested for further analysis 

10 weeks after implantation. The biomaterial only control used in this experiment was also 

used as control in Chapter 3 (272) to reduce the number of experimental animals.  
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Surgical procedure and fluorochrome labellingSurgical procedure and fluorochrome labellingSurgical procedure and fluorochrome labellingSurgical procedure and fluorochrome labelling    

The rat calvarial defect was performed as previously described (308). After general 

anesthesia using 2.5% isoflurane, the animals received intraperitoneal injections of 0.05 

mg/kg of buprenorphine (Temgesic®, Indivior, UK) for perioperative analgesia and 5 

mL/kg sterile normal saline to account for fluid losses. The animal skulls were shaved and 

disinfected with ethanol swabs. Then, an incision was made through the skin of the 

calvarium and periosteum, and full-thickness flaps were reflected. The defect was irrigated 

with 0.1 mL of 1% xylocaine with 1:200,000 epinephrine (AstraZeneca, NL) along the 

sagittal midline of the skull. Under copious sterile saline irrigation, two 5 mm-diameter 

bone defects were prepared with a trephine bur (Fine Science Tools, Germany) in each 

animal and any debris or bone chips were removed. The defects were treated with the 

biomaterial loaded with FST, BMP-2 or the biomaterial alone as described above. Then the 

periosteum and the skin over it were repositioned and sutured with polylactic acid sutures 

(Vycril 4.0, Ethicon, Johnson Prod., São José dos Campos, Brazil). All animals received 

three postoperative doses of buprenorphine for analgesia every 10 h during the next days. 

4 weeks postoperative, rats were subcutaneously injected with 25 mg/kg of Calcein 

(Sigma) in a 2% sodium bicarbonate solution. Fluorochrome label was analyzed using a 

light/fluorescence microscope with a filter block (Zeiss Axiovert 200M Fluorescence 

Imaging, Sliedrecht, NL). 

µµµµCT analysisCT analysisCT analysisCT analysis    

Quantum FX µCT (Perkin Elmer, Waltham, MA, USA) was used to image animals biweekly 

until the end of the experiment. To image the bone formation in vivo the following 

parameters were used; Field of view: 30 mm, Voltage: 90 kV, Current: 160 µA, Scan Time: 

3 min. To image the implants after retrieval, a field of view of 20 mm and a scan time of 4.5 

min were used. Mineral volume and bone mineral density (BMD) were measured on basis 

of calibration scanning, using two phantoms with known density (0.25 g/cm3 and 0.75 

g/cm3; Bruker µCT) under identical conditions. For image processing, analysis software 

was used (Mayoclinic, Rochester, MN, USA), threshold levels were set to 0.12 g/cm3. 

Histological evaluationHistological evaluationHistological evaluationHistological evaluation    

10 weeks after implantation, the relevant part of the skull was removed and fixed in neutral 

buffered 4% formalin solution for 3 days, dehydrated in graded ethanol solution from 70% 

to 100%, and finally embedded in methyl methacrylate resin. Sections of 10 µm were 

generated along the long axis of the cylindrical samples on a saw Microtome system (Leica 

4 SP1600, Germany). Samples were stained with von Kossa and Goldner’s trichrome as 

previously described (131, 189). 
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5.3.85.3.85.3.85.3.8 Statistical analysis Statistical analysis Statistical analysis Statistical analysis     

Data were analyzed with IBM Statistics 21 (SPSS) and GraphPad software (GraphPad, San 

Diego, USA). Migration, osteogenesis and angiogenesis were analyzed using a linear mixed 

model; the different conditions (different doses of the proteins studied) were considered a 

fixed parameter and the donors (experiments) as a random factor. Ex vivo data were also 

analyzed using a linear mixed model. Data are presented indicating the mean ± SD and a 

value of p < 0.05 was considered to be statistically significant.  

FST release data were analyzed using a Student’s T-test, while in vivo µCT data were 

analyzed using two-way analysis of variance. If the overall differences were significant, 

differences between groups were analyzed by Bonferroni post-hoc test. Data are presented 

indicating the mean ± SEM. 

5.45.45.45.4 RRRResultsesultsesultsesults    

5.4.15.4.15.4.15.4.1 FFFFSTSTSTST    attracts both MSC and HUVEC cells attracts both MSC and HUVEC cells attracts both MSC and HUVEC cells attracts both MSC and HUVEC cells in vitroin vitroin vitroin vitro    

To determine if FST could recruit osteoprogenitor cells and ECs to the site of injury, we 

assessed its ability to attract MSCs and HUVECs. FST significantly stimulated MSC migration 

compared to plain medium control at all doses tested; 1.68-fold, 1.857-fold and 1.581-fold 

increase, respectively (p = 0.009, p = 0.001, p = 0.002) (Figure 5.1A). Migration of HUVECs 

towards FST-containing medium was less pronounced but reached significance at the 

medium dose (1.28-fold increase of migration compared to control, p = 0.036) (Figure 

5.1B). 

 

 

Figure Figure Figure Figure 5555....1111. . . . Effect of Effect of Effect of Effect of FSTFSTFSTFST    upon MSC and HUVEC in a migration assay.upon MSC and HUVEC in a migration assay.upon MSC and HUVEC in a migration assay.upon MSC and HUVEC in a migration assay.    A. Average migration of 

MSCs exposed to several doses of FST315 relative to the negative control (n = 4 donors in duplicate). B. 

Average migration of HUVECs exposed to several doses of FST315 relative to the negative control (n = 

3 independent experiments in duplicate). The bars represent the mean ± SD. 
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5.4.25.4.25.4.25.4.2 FSTFSTFSTFST    promotes neovascularization and angiogenesis promotes neovascularization and angiogenesis promotes neovascularization and angiogenesis promotes neovascularization and angiogenesis in vitroin vitroin vitroin vitro    

Formation and expansion of the vasculature within the newly formed tissue are the crucial 

steps in neovascularization, and therefore, in bone repair. Several in vitro assays were 

performed to mimic the different steps of the vascularization process. To determine the 

capability of FST to promote vasculogenesis in vitro, HUVECs were seeded on matrigel 

coated plates in the absence or presence of FST. FST significantly triggered the formation of 

tube-like structures in an inverse dose-dependent manner, showing 1.6-fold increase 

when the lowest dose was supplied compared to the basal medium (p = 0.014) (Figure 

5.2A). As positive control, EC were also treated with EGM-2 complete medium. EGM-2 

medium stimulated formation of tube-like structures 1.7 times more than the basal 

medium (data not shown).  

To assess whether 28 ng/mL of FST is also able to induce sprouting angiogenesis, 

spheroid-sprouting assays were done using MVECs. The spheroid serves as starting point 

for the growth of capillary-like sprouts. FST stimulated the formation of endothelial cell 

sprouts from the spheroids, showing more than 2-fold increase in the number of sprouts 

compared to control (Figure 5.2B) and with a similar potency to VEGF (data not shown). In 

summary, these data indicate that FST is able to stimulate the distinct mechanisms involved 

in the formation of the vascular network.  

 

 

Figure Figure Figure Figure 5555....2222. . . . Effect of Effect of Effect of Effect of FSTFSTFSTFST    on neovascularization. on neovascularization. on neovascularization. on neovascularization. A. Effect of FST315 on vasculogenesis. Total number 

of nodes was quantified (n = 3 experiments in triplicate). Next to the graph, representative pictures of 

tube-like structures are shown after 6 h incubation in the presence and absence of FST (scale bar: 

1000 µm). B. Effect of FST315 on angiogenesis. MVEC spheroids were embedded in collagen and 

incubated for 24 h. The total number of sprouts per spheroid w/o the addition of FST at 28 ng/mL 

dose are plotted in the graph (n = 10 individual spheroids per experimental group). Next to the graph, 

representative pictures of cell spheroids in the presence and absence of FST are shown after 24 h 

incubation (scale bar: 400 µm). The bars show the mean ± SD. 
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5.4.35.4.35.4.35.4.3 FFFFSTSTSTST    does not stimulate MSC osteogenic mineralization, but stimulates does not stimulate MSC osteogenic mineralization, but stimulates does not stimulate MSC osteogenic mineralization, but stimulates does not stimulate MSC osteogenic mineralization, but stimulates 

committed osteoblast mineralization committed osteoblast mineralization committed osteoblast mineralization committed osteoblast mineralization     

The osteogenic properties of FST were studied in MSCs stimulated towards the 

osteoblastic lineage as well as in fetal calvarial-derived committed preosteoblasts (SV-

HFO). The addition of FST did not affect mineralization of MSCs, as shown by quantitative 

measurement of calcium deposition and von Kossa mineral staining (Figure 5.3A). 

Interestingly, adding FST to the preosteoblast culture had a direct positive effect on the 

mineralization process at any of the tested doses, showing a minimum of 2-fold increase 

compared to the control (osteogenic differentiation medium)( Figure 5.3B). 

Additional experiments also indicated a positive effect of FST on committed osteoblast 

differentiation, as shown via activity of the enzyme alkaline phosphatase. Alkaline 

phosphatase (ALP) is expressed during osteoblastic differentiation and plays a key role in 

bone mineralization (309). When the lowest dose of FST was applied to the pre-osteoblast 

culture, a small but significant increase in ALP activity was observed before mineralization 

started (day 9). At day 16, FST enhanced ALP activity in all concentrations tested (Figure 

5.3B).  
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Figure Figure Figure Figure 5555....3333.... Effect of Effect of Effect of Effect of FSTFSTFSTFST    on osteogenic differentiation. on osteogenic differentiation. on osteogenic differentiation. on osteogenic differentiation. Human MSCs and osteoblasts were induced 

to mineralize in the absence or continuous presence of FST315. A. Quantification of calcium 

deposition (nmol/cm2) in the MSC extracellular matrix at the onset of mineralization relative to 

control (osteogenic differentiation medium) (n = 4 donors performed in triplicate). Donor 

dependently, mineralization started between 18-22 days of culture. Representative pictures of the Von 

Kossa staining at the onset of mineralization (scale bar: 500 µm). B. Left graph: alkaline phosphatase 

(ALP) activity (mU/cm2) during SV-HFO culture with and without continuous FST treatment at day 9 

(grey bars) and 16 (black bars) of culture. Results are shown relative to day 9 control. Right graph: 

Quantification of calcium deposition (nmol/cm2) in the SV-HFO extracellular matrix at day 16 relative 

to control (n = 3 experiments performed in triplicate). The bars show the mean ± SD. 
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5.4.45.4.45.4.45.4.4 FFFFSTSTSTST    production changes during osteogenic differentiationproduction changes during osteogenic differentiationproduction changes during osteogenic differentiationproduction changes during osteogenic differentiation    

To regulate cellular processes, such as extracellular matrix mineralization, two FST 

molecules encircle activin, neutralizing its receptor binding sites (310). We measured the 

levels of FST and activin produced during the different phases of osteogenic differentiation 

in MSC and SV-HFO cultures by ELISA. FST was produced in high quantities by MSCs at the 

onset of mineralization (day 16) and its release significantly decreased during full 

mineralization (Figure 5.4A). Activin production levels did not significantly differ during 

MSC culture, but remained low (at least 15 times lower than the FST levels at the same time 

points) (Figure 5.4B). Unlike MSCs, SV-HFOs are already osteogenic-committed cells and 

therefore, mineralization occurs earlier than in MSCs. In SV-HFOs, the production of FST 

decreased from day 9 onwards during osteogenic differentiation (Figure 5.4C), a similar 

pattern to what was observed in MSCs, though earlier in culture. Activin levels were 

undetectable in SV-HFO cultures 

    

Figure Figure Figure Figure 5555....4444.... Production of Production of Production of Production of FSTFSTFSTFST    and activin A by MSCs and osteoblasts. and activin A by MSCs and osteoblasts. and activin A by MSCs and osteoblasts. and activin A by MSCs and osteoblasts. FST (graph A) and activin A 

(graph B) levels were measured in supernatant of MSC and SV-HFO that were induced to mineralize 

until onset of mineralization. Production was corrected for cell lysate protein content. The bars show 

the mean ± SD. ** p<0.01 and *** p<0.001.    

 

5.4.55.4.55.4.55.4.5 FST288 release is lower than FST315 release FST288 release is lower than FST315 release FST288 release is lower than FST315 release FST288 release is lower than FST315 release from the alginatefrom the alginatefrom the alginatefrom the alginate----MS MS MS MS 

hydrogel hydrogel hydrogel hydrogel     

It is generally believed that controlled-release systems are optimal for bone formation as 

they offer spatiotemporal control to mimic the native healing cascades. The previously 

developed alginate-MS hydrogel was shown to provide sustained protein release (272) 

(Chapter 2). We first evaluated the release profile of FST288 and FST315 from this 

formulation. After 4 weeks, the cumulative amount of FST315 and FST288 found in the 

medium was quantified. To correct for the effect of protein sticking to the plate and 

membrane, as well as its degradation over time, 1.48 µg/mL of FST288 and FST315 were 
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added to the upper part of the transwells without the hydrogel formulation. For FST288 

671.60 ± 220.6 ng (mean ± SEM) and for FST315 688.5 ± 78.2 ng (mean ± SEM) were 

detected, meaning that both FST variants have a similar degradation rate. There are 

important differences between both FST variants; unlike FST288, FST315 has a C-terminal 

tail containing several acidic residues, which decrease its heparin affinity. Most likely this 

difference might affect the release profile of the FST variants. In fact, when the release of 

both FST variants from the alginate-MS formulation was studied over four weeks, 

significant differences were observed between the release of FST315 and FST288. 555 ± 58 

ng of FST315 was released from the formulation, while only 169.4 ± 6.8 ng of FST288 was 

released during the same period. Therefore, the amount of FST315 exuded to the medium 

was three times more than the amount of FST288 (p < 0.001) (Figure 5.5). The numbers 

indicated that the majority of FST315 was released from the hydrogel formulation, contrary 

to FST288, which was mostly retained in it.  

 

Figure Figure Figure Figure 5555....5555.... In vitro release of FST288 compared to FST315. In vitro release of FST288 compared to FST315. In vitro release of FST288 compared to FST315. In vitro release of FST288 compared to FST315. The cumulative release of FST288 and 

FST315 from the alginate-MS formulation in DMEM with 1% P/S detected by ELISA is demonstrated 

over four weeks. Data are presented indicating the mean ± SEM. Statistical difference at 28 days of 

cumulative release analyzed by Student’s T-test, p < 0.001.    

 

5.4.65.4.65.4.65.4.6 FST315 and FST288 do FST315 and FST288 do FST315 and FST288 do FST315 and FST288 do not improve bone healing in calvarial defects, not improve bone healing in calvarial defects, not improve bone healing in calvarial defects, not improve bone healing in calvarial defects, 

but show a more homogeneous bone formation than controlsbut show a more homogeneous bone formation than controlsbut show a more homogeneous bone formation than controlsbut show a more homogeneous bone formation than controls    

Given the promising effects of FST on migration, osteogenesis and vascularization in vitro, 

we decided to investigate whether FST is able to promote bone repair and if there are 

differences between FST315 and FST288 to induce bone formation. To do so, both FST 

variants loaded in alginate-MS hydrogel were injected into 5 mm calvarial defects. In vivo 

longitudinal µCT-scans were performed biweekly to monitor the mineralized bone 

volume (BV) within the defects, and normalized to the BV observed in healthy SD male rats 

of the same age. At week 2, the positive control with BMP-2 loaded biomaterial exhibited 

the same amount of bone volume as the healthy animals, which translated into full defect 
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healing at the end of the experiment (Figure S5.1). Implantation of the biomaterial alone 

led to 66% bone volume compared to healthy animals at the end of the experiment 

(Figure 5.6A,B). 

 

 

Figure Figure Figure Figure 5555....6666. . . . In vivo In vivo In vivo In vivo µµµµCT analysis of rat skulls implanted with FST288 and FST315 over time. CT analysis of rat skulls implanted with FST288 and FST315 over time. CT analysis of rat skulls implanted with FST288 and FST315 over time. CT analysis of rat skulls implanted with FST288 and FST315 over time. A. 

Representative in vivo µCT images of the skulls at 2, 4, 6, 8 and 10 weeks after implantation (scale 

bar: 2 mm) of either biomaterial alone or loaded with FST288 or FST315. In the representative µCT 

images of both FST variants the right defect was loaded with 800 ng of FST and the left defect was 

loaded with 80 ng of FST. B. Graphical representations of in vivo µCT analysis. Bone volume was 

normalized to animals without surgical intervention. The effect of the formulation loaded with 

FST288 (left graph) and FST315 (right graph) was compared to the effect of the use of the biomaterial 

alone as control group. 

 

No major differences between FST-treated animals and the ones treated with only the 

biomaterial were observed during 10-weeks follow up. At week 2, 30% of the bone volume 

observed in healthy animals was already achieved in all the tested conditions. During the 

time course of the experiment, mild differences in terms of BV were observed between the 

FST variants. However, at week 10 the overall BV observed was similar in all conditions, 

varying between 65-71% of the defect area (Figure 5.6A,B). 

The retrieved implants were also scanned ex vivo, which allows longer scan times and finer 

resolution. Bone mineral density of the formed bone did not differ significantly between 

conditions (Figure 5.7A) and was comparable to the density found in the calvaria of healthy 

animals (0.77 ± 0.03 g/cm3, mean ± SD, n = 4 animals). The bone coverage of the defect 
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oscillated between 40-47% of the total defect area (Figure 5.7B), which is slightly lower 

than the coverage found in the in vivo longitudinal µCT-scans at 10 weeks. This difference is 

due to motion artifacts and the settings used in longitudinal µCT-scans on live animals. 

Either way, µCT-scans showed that bone formation not only occurred around the edge of 

the defect, but also in the central area. Interestingly, more areas with mineralization were 

observed in the FST conditions, but overall mineral density did not differ from the controls 

(Figure 5.7C). On histology, circular regions were observed in all the conditions. These 

regions have a similar size to the microspheres used (~ 50 µm) and in the FST conditions 

were surrounded by immature ECM, while in the controls were mostly surrounded by 

fibrous tissue (Figure 5.7C). This is more evident when analyzing the mineralization pattern 

by measuring calcein fluorochrome incorporation. In the controls, the label was mostly 

present on the outer periphery of the formed bone and hardly any signal was found in the 

inner side at 4 weeks. In the FST-treated samples the label was found in both periphery 

and inward area, indicating a broader and more homogeneous mineralization progression 

(Figure 5.7D). Besides, in the control samples alginate was still visible, whereas in the FST-

treated samples this was undetectable (Figure 5.7C, Figure S5.2). Histological analysis also 

showed blood vessels ingrowth in all the conditions tested (Figure 5.7C, Figure S5.2). 

 

Figure Figure Figure Figure 5555....7777.... Newly formed bone tissue at 10 weeks of healing. Newly formed bone tissue at 10 weeks of healing. Newly formed bone tissue at 10 weeks of healing. Newly formed bone tissue at 10 weeks of healing. A. Bone density observed by ex vivo 

µCT analysis in the different conditions after implant harvesting. B. Percentage of defect filling by 

newly formed mineralized tissue analyzed by ex vivo µCT. Mean is indicated as the line plotted in the 

middle of the graphs ± SD. C. Representative pictures of rat skulls implanted with the biomaterial w/o 

the addition of the FST variants at 10 weeks. Histological analysis includes von Kossa and Goldner´s 

trichrome staining. Von Kossa staining was used to distinguish mineralized tissue (black) (scale bar: 

2.5 mm), while Goldner's trichrome staining was used to determine bone histomorphometry. The 

square grid delimitates the selected magnified area for each image that is shown with Goldner´s 

trichrome staining (scale bars are 250 µm and 50 µm, respectively), showing erythrocytes 

(red/purple), nuclei (blue/ grey), alginate remains (alg), formed bone (B) and fibrous tissue (FT). 

Immature ECM is indicated by yellow arrows and regions where the microspheres have been likely 

degraded are indicated by black arrows. D. Representative fluorescence images of the central region 

of the explants showing calcein fluorochrome incorporation in the newly formed bone tissue at 10 

weeks postimplantation (scale bar: 500 µm) with or without the addition of the FST variants. 

Fluorescence images are combined with bright-field images of the same area. 
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5.55.55.55.5 DiscussionDiscussionDiscussionDiscussion    

This study investigated the use of FST for bone repair. We have found that FST was able to 

recruit and differentiate ECs, promote cell sprouting and the formation of tube-like 

structures in vitro. Furthermore, FST was also able to recruit osteoprogenitor cells and to 

enhance committed osteoblast differentiation and mineralization in vitro. However, when 

FST was loaded in our previously developed slow-release formulation ((272), Chapter 2) 

and implanted in a calvarial defect model, bone repair was not improved in 10 weeks’ 

time. 

FST is known to be upregulated by migrating ECs (311); however, the chemokinetic effect of 

FST upon ECs was not studied yet. Our results have shown that FST is able to stimulate 

HUVEC migration when exogenously added to the culture. Furthermore, to assess its effect 

upon ECs differentiation, we have used two different in vitro models –3D spheroid-

sprouting assays and tube-formation assays– to investigate both angiogenesis and 

vasculogenesis as two of the pivotal processes of the vasculature formation. Interestingly, 

the formation of tube-like structures seemed to be inversely dose-dependent and FST was 

able to significantly promote both processes when 28 ng/mL (0.8 nM) was added to the 

culture in the absence of VEGF or any other co-stimulatory factor. In vitro studies have 

shown that both FST and activin are distinctly expressed during the different phases of 

angiogenesis by bovine aortic ECs (BAECs) and MVECs (311, 312). A few studies investigated 

the effect of activin (25-50 ng/mL) inducing vasculogenesis upon BAECs and sinusoidal ECs 

(SECs), showing a positive effect when combined with VEGF but contradictory results 

when used alone to enhance tubulogenesis (313, 314). Krneta et al. explored the effect of 

FST and activin in a sprouting angiogenesis assay, showing that FST at 120 ng/mL was able 

to promote EC sprouting almost at the same level as FGF, while activin addition at 50 

ng/mL did not enhance sprouting more than basal control (290). The combination of FGF 

and activin significantly decreased sprouting (290). In vivo, a few papers have shown that 

FST improved a neovascularization when used on skeletal muscle injury in mice (286) and 

promoted angiogenesis in the rabbit cornea, especially when combined with FGF (289). It 

would be interesting to further study this synergistic effect on bone repair. Although we 

did not specifically study the vascularization processes in our in vivo bone defect model, 

we have found blood vessels ingrowth in all the treated samples, suggesting that FST does 

not interfere with the natural cascade of events needed for the formation of the 

vasculature and consequently, it does not have an anti-vasculogenic effect.  

Whether FST could attract MSCs and induce bone formation was not studied before. In 

our in vitro study we have demonstrated that FST is able to recruit MSCs. Minor differences 

were observed between doses, meaning that probably a low dose of FST is enough to 

promote a chemotactic response upon MSCs. We also investigated the effect of FST upon 

MSCs and osteoblasts under osteogenic conditions. It is known that FST is highly 

expressed in developing bone tissues, mainly in osteoblasts (282); however, the effect of 
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FST on osteoblast mineralization was unclear due to conflicting results observed when 

supplied to mouse and human osteoblast cultures (283, 284). In our in vitro study, FST 

further enhanced osteogenic differentiation in committed osteoblasts and not in MSCs.  

The stimuli involved in MSC’s differentiation to osteoblastic cells may differ from those 

needed to convert preosteoblasts into mature osteoblasts. For example, it is well-known 

that TGF-β-Smad signalling is crucial in the early phases of osteogenic differentiation, 

however, it inhibits osteoblast maturation and mineralization (315). Consequently, different 

signal inputs are needed at different stages of the osteoblast differentiation pathway. Our 

findings suggest that FST’s osteogenic effect might be sensitive to which differentiation 

stage the osteoprogenitor cells are. Previous studies have shown that once FST is 

synthesized, it remains in the extracellular matrix, exerting an antifibrotic effect (316, 317). 

Indeed, based on previous studies in which have been shown that activin A suppresses 

osteoblast mineralization by changing the ECM composition and maturity (284, 318), and 

in our results, we might conclude that FST is not an osteogenic factor per se, but a factor 

that enhances the mineralization process through its involvement changing the ECM 

composition while it remains in it. We must remember that FST can only exert its function 

indirectly, by binding to other molecules and neutralizing their function. Its main 

antagonist is activin, but FST can also bind to BMPs, with much lower affinity (305). Abe et 

al. demonstrated in their study that administration of FST to rat mandibular osteoblasts did 

not cause significant changes in bone nodule number. BMP-2 facilitated the secretion of 

FST and this increase in FST interfered with BMP-2 action decreasing bone nodule 

formation (283). Eijken et al. showed in their study that, while FST prevented activin from 

binding to its receptor, it had no effect on basal or BMP2-induced signalling in human 

osteoblasts (SV-HFO) (284). Besides, there are several studies that investigated the effect of 

the addition of activin to osteogenic differentiation of human NHOst cells, showing that its 

addition strongly inhibited the mineralization process (276, 284). As no receptor has been 

found for FST, it is widely assumed that FST exerts its regulatory function via antagonizing 

other proteins with a pivotal role in bone physiology. FST is able to bind almost irreversibly 

to activin, and with lower affinity to other members of the TGF-β family such as bone 

morphogenetic proteins In our in vitro experiments, both MSCs and SVHFOs secreted high 

levels of FST but much lower levels of activin under osteogenic conditions. In fact, the 

secretion of FST was at least 15-fold higher than the secretion of activin at the same time-

points. This amount of FST is much greater than the 2:1 molar ratio needed to neutralize all 

the activin produced by the cells. The addition of FST to the culture media enhanced 

mineralization of SVHFOs, but not of MSCs. These findings suggest that FST, even when it is 

found in a much higher concentration than activin, has a positive effect on osteoblast 

mineralization but does not affect MSC mineralization. FST can antagonize BMP functions 

as well as those of the activins, and in view of the sharing of type II receptors between 

activins and BMPs, further studies should investigate the secretion of these proteins at the 

different phases of MSC’s osteogenic differentiation and the interplay between them.  
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To investigate the ability of FST to promote bone repair in an orthotopic model, FST was 

loaded within an in situ gelling alginate-based delivery system and implanted in a rat 

calvarial defect model. We hypothesized that FST, based on previous in vivo studies and on 

our in vitro results, may have a positive effect on bone formation. We have used two 

different FST variants (FST288 and FST315) to assess whether their structural variations –

which modulate their properties such as the ability to bind to the cell surface–, could lead 

to differences between variants in terms of bone repair. In fact, in vitro release from the 

biomaterial showed that during 4 weeks, only 25% of FST288 was released to the medium 

compared to 80% of FST315.  

Two different doses of FST288 and FST315 were loaded within the biomaterial to elucidate 

if there is a limiting concentration of FST that leads to bone repair enhancement and 

whether FST excess prevents bone repair. FST doses used (800 ng and 80 ng per implant) 

were based on both our in vitro studies and the literature. Serum levels of FST are found in 

the ng range in mice (319), and our results show that the lowest dose of FST used in the in 

vitro experiments (28 ng/mL) improved crucial processes involved in bone formation such 

as cell migration, osteogenesis and neovascularization. However, none of the variants 

improved bone formation compared to the biomaterial in 10 weeks’ time. Besides, during 

the degradation of the biomaterial the protein is released and the differences in FST 

concentrations of the separate defects may become minor. 

Timing of secretion of FST during bone repair seems crucial. When a demineralized matrix 

was subcutaneously implanted in rats, FST was highly expressed during the initial stages of 

osteogenesis but decreased along with differentiation (320). Injections of FST in the 

implants 10 days after implantation resulted in lower calcium content in the implants 

suggesting that the endochondral ossification process was retarded or inhibited (320). 

Nagamine et al. showed that neither FST nor activin were expressed in osteogenic cells at 

the periosteum or at the cortical bone in the intact femurs of the rat (321). Interestingly, in a 

fractured-femur FST was highly expressed during the first stages of bone healing in 

osteogenic cells, as well as in the ECM of the periosteum and proliferating chondrocytes, 

while activin A was almost undetectable in those regions. Furthermore, Activin A was 

detected especially around osteoclast-like cells on the surface of the newly-formed 

trabecular bone (321), which is in line with previous publications (282). Altogether 

indicates that the expression of FST during different phases of both intramembranous and 

endochondral ossification is important. However, the role of FST in bone repair has been 

investigated either using ectopic models or long bone fracture models (320, 321) in which 

the mechanisms of bone formation differ considerably from the events taking place in the 

development of the flat bones of the skull. It is difficult to compare in vitro and in vivo 

studies, but our in vitro experiments have shown that FST effects do not respond to a 

classical dose-response curve; MSC migration and mineralization may need different FST 

doses that may not fit with FST release timing and dosage from the biomaterial chosen in 
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this study. In fact, when the alginate formulation was implanted alone, residual alginate 

was still visible 10 weeks postimplantation, whereas in the FST-treated samples this 

phenomenon was not detected. In FST-treated samples mineralization occurred both on 

the outer and inner area of the defect, contrary to what was observed in the controls, 

where calcein was mostly incorporated on the outer periphery of the defect. An alginate-

based formulation was used as FST carrier to achieve FST´s slow release, but FST appears to 

be an early player in bone formation. As we have previously mentioned, our data and the 

literature suggest that FST exerts its function through the ECM, enhancing its 

mineralization. The slow-release alginate-based system may not be optimal for bone 

repair when loaded with FST and might influence the FST effect upon ECM mineralization 

due to a suboptimal FST release timing.  

Alginate has been widely used for bone tissue engineering due to its biocompatibility, easy 

handling and degradation properties (66). We have previously used RCP encapsulated in 

an injectable alginate hydrogel ectopically, and the formulation releasing BMP-2 

effectively promoted bone formation ((186), Chapter 2). However, when used in bone 

defect repair, alginate seemed to not only delay the protein release, but also cell and 

cytokine infiltration within the defects (272). Activin A has been identified as a pivotal 

molecule during the initial inflammatory response (295), which can be also provoked by 

surgical stress. Interestingly, FST increased in the circulation several hours after activin A 

and it is believed that the increase observed in FST levels was partly responsible for the 

clearance of activin A from the bloodstream (295). In our study, alginate, due to its 

chemostatic effect, could have prevented or delayed the cascade of events needed for 

bone repair such as the influx of inflammatory cells and growth factors, or the clearance of 

activin A from the injury site. Bleeding could also have affected the physical-chemical 

properties of the biomaterial. Certainly, it would be interesting to assess whether FST 

addition shows a positive effect in a bone defect when used in a different type of delivery 

system with a faster release. The affinity to bind cell surface receptors dictates the main 

biological action of FST. FST315 is considered to act more in an endocrine fashion whereas 

FST288 does it in an autocrine manner. In fact, FST315 has been used systemically as a 

therapeutic agent to treat skeletal muscle diseases; however, it exhibits rapid clearance 

kinetics. Consequently, newly engineered FST315 variants with improved pharmacokinetic 

properties have been developed, showing promising results in the treatment of several 

musculoskeletal injury models (297, 298). In our study we aimed to enhance in situ bone 

formation and in the view of our release studies and the greater affinity for cell surface 

proteoglycans of FST288, the use of this FST variant in a rapid release system is intriguing, 

and could prompt the assessment of new strategies in bone defect repair. 
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5.65.65.65.6 ConclusionsConclusionsConclusionsConclusions    

To our knowledge, this is the first study that instead of focusing in osteogenic 

differentiation to investigate FST possible role in bone formation, assesses the effect of FST 

upon chemotaxis and vasculogenesis as well due to their essential role in bone formation, 

and directly evaluates its possible influence in an orthotopic bone defect such as calvarial 

defect. FST plays an important role in bone metabolism, mostly acting as activin controller 

but also regulating the function of other members of the TGF-β family (296, 320). However, 

FST action spans so many different processes that its effect in particular cellular events 

involved in bone formation was unclear. In summary, this study has shown that FST is able 

to stimulate cell recruitment, vasculogenesis and osteogenesis; vital processes for a 

successful bone regeneration. Using the calvarial defect model we could not show a clear 

improvement in bone repair with FST –which can be due to several causes such as poor 

bone-forming capacity, underdosage and suboptimal release kinetics among others–, 

though we observed a more homogeneous mineralization. There is still a lack of 

knowledge about the role of FST in the acute phase reaction and the effect of its 

administration in the early phases of bone repair. Therefore, to move on further using 

growth factor-based therapies, mechanistic approaches should be taken in consideration 

to investigate how and in which extent FST, as well as its interaction with other proteins, 

such as activins and BMPs, regulates key processes in bone metabolism and repair. 

Besides, the optimal release kinetics of FST must be investigated in vivo to successfully 

translate its use into bone tissue engineering based therapies. 
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5.75.75.75.7 Supplemental informationSupplemental informationSupplemental informationSupplemental information    

 

 

Figure Figure Figure Figure S5.1S5.1S5.1S5.1. . . . Calcium deposition in MSC and SVCalcium deposition in MSC and SVCalcium deposition in MSC and SVCalcium deposition in MSC and SV----HFO culture HFO culture HFO culture HFO culture in the presence and absence of in the presence and absence of in the presence and absence of in the presence and absence of 

dexamethasonedexamethasonedexamethasonedexamethasone....    Human MSCs and osteoblasts were induced to mineralize using medium consisting 

in DMEM High Glucose with 10% FCS, 1.5 µg/mL fungizone, 50 µg/mL gentamicin, 25 µg/mL 

ascorbic acid-2-phosphate, and 10 mM β-glycerophosphate in the absence or continuous presence of 

dexamethasone. Quantification of calcium deposition (nmol/ cm2) in the MSC and SV-HFO 

extracellular matrix at day 21 and day 16 showed that calcium deposits were only detected in the 

presence of dexamethasone (n=1 donor performed in triplicate). The bars show the mean ± SD.    

 

 

Figure SFigure SFigure SFigure S5555....2222. . . . Bone regeneration in calvarial defects with 2 µg of BMPBone regeneration in calvarial defects with 2 µg of BMPBone regeneration in calvarial defects with 2 µg of BMPBone regeneration in calvarial defects with 2 µg of BMP----2 loaded in the 2 loaded in the 2 loaded in the 2 loaded in the 

formulation. formulation. formulation. formulation. A. µCT analysis indicated healed defects, bridged by mineralized bone tissue. B. 

Representative histological section stained with von Kossa. The square indicates the approximate area 

of the defect. Scale bars: 2.5 mm.    
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Figure SFigure SFigure SFigure S5555....3333. . . . Residual alginate was found in the bone defects 10 weeks postimResidual alginate was found in the bone defects 10 weeks postimResidual alginate was found in the bone defects 10 weeks postimResidual alginate was found in the bone defects 10 weeks postimplantation in the plantation in the plantation in the plantation in the 

controlcontrolcontrolcontrol----treated samples. treated samples. treated samples. treated samples. Samples were stained with Goldner´s trichrome (scale bars: 500 µm). The 

square grid delimitates a magnified area (scale bar: 250 µm) in which areas with alginate are found. 

The black arrows indicate regions where the microspheres might have been degraded and cell-

infiltration has occurred.     
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6.16.16.16.1 Discussion Discussion Discussion Discussion     

The human skeleton is an interesting organ with a remarkable ability to regenerate itself 

after injury. However, in cases where significant bone loss has occurred the conditions for 

spontaneous bone healing are not ideal. Therefore, the use of bone grafts is required to 

stimulate bone-healing (30). During the 1940s, bone grafting became an essential 

procedure. Back then, bone grafting was focused mainly in withstanding the mechanical 

loading applied by the patient while maintaining inertness (40). Currently, bone grafts are 

considered a dynamic substitute. The main goal of bone tissue engineering (TE) is to 

induce the essential cellular processes needed for successful bone repair by delivering 

bone-progenitor cells and/or bone-forming factors in the injury site. However, many risks 

and regulatory limitations are raised from the use of cells in TE, encouraging the use of cell-

free systems as off-the-shelf alternative (75). Growth factors are pivotal components for 

bone repair and remodeling. Therefore, their use to exploit the tissue’s healing potential is 

considered a promising therapeutic tool. Several factors involved in bone repair have 

been broadly investigated. Among them, bone morphogenetic proteins (BMPs), platelet-

derived growth factor (PDGF), fibroblast growth factor (FGF), vascular endothelial growth 

factor (VEGF), and transforming growth factor-β (TGF-β) are probably some of the most 

well studied growth factors (77, 322, 323). However, many parameters are decisive in the 

use of growth-factor therapy for bone repair; the dose, function and delivery kinetics of the 

growth factor(s) used or the mechanical stability, porosity and rate of degradation of the 

implanted scaffold are some of them (324, 325). The optimization and screening of all of 

the actors involved in an ideal tissue-engineered product (which is, at least, an expensive 

time-consuming process) is one of the main reasons why most of the studies do not 

translate to clinically relevant devices. To move from lab bench to clinic bedside in the 

treatment of bone defects using growth-factor therapies, it is necessary to assess the effect 

of promising bone-factors in bone repair through basic and preclinical research and to 

investigate their use when combined with the other TE intersecting components.  

6.1.16.1.16.1.16.1.1 Protein alternatives for bone tissue engineering: Are we looking for a Protein alternatives for bone tissue engineering: Are we looking for a Protein alternatives for bone tissue engineering: Are we looking for a Protein alternatives for bone tissue engineering: Are we looking for a 

needle in a haystack? needle in a haystack? needle in a haystack? needle in a haystack?     

The most used growth factors in bone TE are the BMPs. Among them, BMP-2 and BMP-7 

are the strongest osteoinductive proteins, which prompted in the commercialization of 

BMP-2 and the Food and Drug Administration (FDA) approval of BMP-7 under a 

Humanitarian Device Exemption (326). However, BMP-7 market approval did not succeed, 

and currently only BMP-2 is commercialized for certain bone repair procedures when 

loaded in an absorbable collagen sponge (86). Nevertheless, the clinical applications of 

BMP-2 as off-label drug, and the complications related to the supraphysiologial doses of 

the protein delivered locally —exceeding on average one million times the physiological 
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protein amount— made the use of BMP-2 controversial (327). Therefore, the search of 

alternative growth factors which also induce the signaling cascades needed for repair 

seems inevitable.  

In this thesis, we aimed to elucidate the role of a series of proteins such as Nell-1, HMGB1, 

CCN2 and FST on some of the key processes needed for bone formation (Chapter 4Chapter 4Chapter 4Chapter 4 and 

Chapter 5)Chapter 5)Chapter 5)Chapter 5). Most of the studies performed in vitro to evaluate potential putative bone-

forming factors focus mainly in their effect in osteogenic differentiation (328-331), which is 

not the only crucial process needed to eventually improve overall bone formation. 

Vascularization and the recruitment of progenitor cells to the injured site are also 

indispensable events in bone repair (20, 332). Accordingly, we have evaluated in vitro the 

role of Nell-1, HMGB1, CCN2 and FST in chemotaxis, vasculogenesis and osteogenic 

differentiation using primary human endothelial cells (ECs), human primary mesenchymal 

stem cells (MSCs) and fetal calvarial-derived committed preosteoblasts (SV-HFOs).  

We have chosen Nell-1, HMGB1, CCN2 and FST based on the literature since they are 

known to have a role in overall bone formation (211, 217, 227, 296). However, information 

about their effect upon some of the specific processes needed for bone repair was lacking, 

which might be a limiting factor for their translation into future clinical applications. For 

example, nothing was reported on the chemokinetic effect of Nell-1 or FST on MSCs and 

endothelial cells. On the other hand, although HMGB1 has been classified as a bone-active 

cytokine (227), it has been never used as a therapeutic agent in bone TE, and therefore its 

effect on osteogenic differentiation and mineralization has been barely studied. In fact, the 

effect of exogenous administration of HMGB1 in tissue regeneration was not investigated 

until very recently (333). Finally, CCN2 overexpression was already known to enhance MSC 

osteogenic differentiation (221); however, investigating the addition of the protein directly 

to the osteoprogenitor cell culture, might be relevant to approach cell-free systems in 

bone TE. We have compared these four proteins directly to BMP-2, demonstrating that 

Nell-1, CCN2, HMGB1 and FST significantly induced MSC migration while BMP-2 did not. 

In addition, all the proteins tested were able to induce human EC migration and 

vasculogenic differentiation at lower doses than BMP-2 when compared on a molar basis. 

Indeed, when combined, NellL-1 has shown to inhibit BMP-2-induced inflammation to 

treat a rat bone femoral defect (260). 

Seeking for growth factors that promote both angiogenesis and osteogenesis has gained 

interest. PDGF is one of these factors (334, 335) and its use has been translated to the 

clinics under FDA premarket approval (336). In this study, BMP-2 and FST were the only 

tested factors capable to also enhance osteogenic differentiation. BMP-2 increased the 

early production of the calcified matrix in MSCs as shown previously by several studies 

(251, 252), while inhibited it upon committed preosteoblasts (Chapter 4Chapter 4Chapter 4Chapter 4). On the contrary, 

FST had no effect in MSC osteogenic differentiation but further enhanced committed 

osteoblast differentiation and mineralization. FST was, therefore, the most promising of the 
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proteins investigated in this thesis in terms of enhancement of bone-related processes and 

we have further studied its effect in bone regeneration using rat calvarial defect model 

(Chapter 5Chapter 5Chapter 5Chapter 5). Nonetheless, when FST was loaded within an in situ gelling slow-release 

alginate formulation previously tested for BMP-2 bone formation (Chapter 2 Chapter 2 Chapter 2 Chapter 2 and ChapterChapterChapterChapter    

3333), bone repair was not improved, though a more homogeneous mineralization was 

observed, which highlights the need of tailoring the release kinetics of the protein to 

assure its efficacy in vivo.  

After the successes and pitfalls of BMPs usage it has been also demonstrated that there is 

no Philosopher's Stone for bone repair and that the combination of factors could be what 

mimics better the natural cascade of events needed for bone formation. In fact, the lack of 

functional vascular supply in tissue engineered construct is currently a major hurdle in 

bone TE (324, 337) and several approaches have been undertaken to coordinate the 

sequential cascade of events needed for bone formation. One of them is the delivery of 

more than one factor in the bone defect. This is usually performed by using dual delivery 

systems which are often based on the delivery of BMP-2 and another factor with significant 

chemotactic and/or angiogenic effect such as VEGF or SDF-1, among others (90, 265, 338, 

339). In this line, Nell-1, CCN2, HMGB1 and FST have proved to enhance bone-related 

processes and might be of special interest when considering reducing the side effects 

observed in single-factor therapies.  

6.1.26.1.26.1.26.1.2 In situIn situIn situIn situ    gelling hydrogels are the smart futurgelling hydrogels are the smart futurgelling hydrogels are the smart futurgelling hydrogels are the smart future, but are we there yete, but are we there yete, but are we there yete, but are we there yet? ? ? ?     

A growing number of hydrogels are being developed worldwide to repair bone defects. 

This is due to their minimally invasive administration procedures and their ability to fill 

irregular areas (340). Stimuli-sensitive hydrogels, which undergo gelation in situ in 

response to external stimuli such as temperature, pH, electrolytes, visible light (VL) or 

magnetic field are gaining interest    because of their injectability and improved mechanical 

properties (341-344). 

In this thesis, recombinant collagen peptide microspheres (RCP-MS) enriched with RGD 

sequences were loaded with BMP-2 and embedded in three different injectable 

hydrogels. Two different types of in situ gelling formulations were used, i.e. thixotropic 

alginate formulations, and a thermoresponsive hyaluronan derivative (HApN) hydrogel. All 

of the used formulations presented a reversible behavior, making the handling of the 

hydrogels much easier since they can be prepared and stored prior to usage. Thus, the 

gelation time of the formulations is quick enough (< 5 minutes) to keep the formed gel in 

place after injection and for the length of the carried studies. HApN hydrogel did not 

sustain ectopic bone formation; however, hyaluronan-based constructs were highly 

vascularized at the end of the study (Chapter 2Chapter 2Chapter 2Chapter 2). ECs have been successfully cultured on 

hyaluronic acid coated polymers and sprouting angiogenesis has been spatially guided in 

collagen gels modified with hyaluronic acid (345, 346). Thus, hyaluronic acid-based 
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hydrogels have been used previously as pre-vascularized scaffolds in regenerative 

medicine (347). Gellan gum-HA spongy-like hydrogels have induced neovascularization in 

a rat ischemic model (348) and in situ gelling HA-based hydrogel enhanced 

postmyocardial infarction vascularization. However, the gelation time of the hydrogel was 

15 min approximately (168), what may exceed the optimal time to treat some specific areas 

such as the craniofacial complex in which bone defects might not be well-confined and 

leakage of the ungelled liquid in the surrounding tissue should be avoid. The formation of 

a functional vasculature is one of the limiting factors for the success of tissue-engineered 

constructs. The use of this in situ gelling thermoresponsive hyaluronan-based system with 

embedded rich RGD collagen microspheres presented in this thesis might be interesting 

for restoring soft tissues milieu with in-growing vasculature.  

Alginate in situ gelling formulation successfully induced bone formation ectopically and in 

a calvarial bone defect model (Chapters 2 Chapters 2 Chapters 2 Chapters 2 and    3333). A major drawback of hydrogels usage is 

their lack of mechanical robustness    –hydrogels elastic moduli ranges from ~ kPa to MPa, 

whereas the moduli of native bone ranges between 7-30 GPa for cortical bone and 0.05-5 

GPa for cancellous bone (349)–. The mechanical properties of the thixotropic alginate 

hydrogels presented in this thesis are also in the kPa range and therefore are not able to 

withstand the mechanical loading of load-bearing bones defects (350). However, there are 

many situations in which their use is beneficial, especially acting as bone fillers in areas 

where the use of pre-fabricated materials would be inappropriate or treating non-load 

bearing bones, such as skull, forehead, orbital cavity, and zygoma among others. The use 

of in situ gelling hydrogels is also an interesting approach for bone augmentation in cases 

such as periodontitis, a common oral disease and one of the major causes of bone loss in 

orthodontics (351). 

To improve their mechanical competence, hydrogels are being complexed with ceramic-

based materials such as hydroxyapatite or calcium phosphates to enhance their 

mechanical properties and osteoconductivity while preserving their elasticity. A recent 

study conducted by Thorpe et al. (352) investigated the use of a thermally triggered 

injectable hydrogel loaded with hydroxyapatite nanoparticles, showing that the use of the 

formulation alone was enough to provide adequate mechanical support for continued 

animal activity following a femur defect. However, when translating it to large critically 

sized bone defects it is likely to be mechanically insufficient, mostly in early repair stages 

(352). Besides, different kinds of resorbable and non-resorbable injectable materials have 

been tested in load-bearing sites such as in situ hardening calcium phosphate-based 

cements or Cortoss®, a commercialized resin-based synthetic material (353, 354). 

Nonetheless, calcium phosphate-based cements usually lack 3D-porous structures, lose 

mechanical properties upon degradation and their brittle nature often make them 

suboptimal for load-bearing applications (355, 356). Cortoss®, for example, loses strength 

with time and lack of vascular invasion (357-359). In sum, there is an increasing interest for 
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developing hybrid scaffolds that combine the strength of the ceramic-based materials, and 

the biocompatibility and biodegradability of hydrogels. This opens the door to new 

directions for future studies, moving the field closer to develop functional load-bearing 

injectable materials.  

6.1.36.1.36.1.36.1.3 Do we need slow delivery of bone growth factors in bone repair? Do we need slow delivery of bone growth factors in bone repair? Do we need slow delivery of bone growth factors in bone repair? Do we need slow delivery of bone growth factors in bone repair?     

The fact that supraphysiological dosages of growth factors are needed to produce a 

significant healing effect in bone repair is one of the major challenges that need to be 

overcome in the growth factor-based therapies field to translate preclinical studies into 

clinical trials. It is generally accepted that one of the main causes is the insufficient 

spatiotemporal control of the currently used delivery systems, which could be solved with 

the application of controlled-release systems. In fact, several studies using BMP-2 soaked 

in a collagen sponge –same two components as the ones used in the commercially 

available INFUSE® Bone Graft Kit– demonstrated that 50 to 80% of the protein was 

released within the first days in vivo (89, 103). In this thesis, HMDIC crosslinked RCP-MS 

with a diameter range of 50-75 µm were selected as BMP-2 carriers since only 15% of the 

protein was released during the first day and 30% during the first two weeks (58). The 

release of BMP-2 was further reduced more than 2-fold when loaded in high guluronate 

(SLG) alginate and more than 5-fold when loaded in both thermoresponsive hyaluronic 

acid and high mannuronate (SLM) alginate formulations. Alginate SLG formulation was, as 

shown in Chapter 2Chapter 2Chapter 2Chapter 2, the most optimal promoting ectopic bone formation when loaded 

with BMP-2. Threshold dose and BMP2’s release kinetics from the alginate SLG formulation 

was further studied in an ectopic bone model    in    Chapter 3Chapter 3Chapter 3Chapter 3. Alginate SLG formulation 

presented absence of burst release and a prolonged retention of BMP-2. Protein signal was 

detected up to 4 weeks and the slow release of the protein resulted in a significant amount 

of bone volume at the end of the study. This carrier formulation loaded with BMP-2 led to 

a dose- and time-dependent ectopic bone formation. Previously, the role of BMP-2 in 

ectopic bone formation was reported using different biomaterials such as silk fibroin (184), 

collagen sponge (183) and biphasic calcium phosphate hydrogel systems (110); however, 

lower ectopic bone volumes were obtained in these studies, although larger doses of 

BMP-2 were used. BMP-2 binds to RCP with high affinity (58), and therefore, the use of 

alginate hydrogel with embedded RCP-MS brings a significant reduction in the necessary 

dose of BMP-2 to significantly promote ectopic bone formation compared to earlier 

studies.  

Alginate-based biomaterials have been used for a wide range of regenerative medicine 

applications (360), and in our study the suitability of the SLG formulation for growth factor-

based therapies and bone repair was further tested by implanting it in a rat calvarial defect 

either alone or loaded with BMP-2 (Chapter 3Chapter 3Chapter 3Chapter 3). Although the formulation alone and the 

empty control exhibited similar amount of bone volume at the endpoint, the formulation 
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seemed to impede bone healing at the early time points when compared to the empty 

defects (Chapter 3Chapter 3Chapter 3Chapter 3). The inflammatory phase is a critical period in fracture healing. During 

this phase, different types of cells are recruited and a vast array of inflammatory cytokines 

are released to initiate repair responses following injury (361). The alginate could have 

acted as a physical barrier; delaying the healing process until BMP-2 started to be released 

and RGD enriched RCP-MS were reachable for cell-adhesion and further cell infiltration. 

Nonetheless, BMP-2 loaded formulation could overcome this impediment and exhibited 

the same amount of bone volume as the healthy animals just two weeks after implantation, 

which translated into full defect healing at the end of the experiment.  

It is extremely difficult to establish a correlation from animals to humans due to different 

bone healing mechanisms. As previously discussed, in our ectopic bone model study, 

bone formation was achieved using one hundred times less protein amount than the 

lowest BMP-2 concentration used with INFUSE® Bone Graft Kit (362). However, when used 

in a calvarial defect model, the effective dose was roughly twenty times less than the 

currently dose used with INFUSE® Bone Graft Kit. Recently, Moser et al. reported an 

experiment in which different dosages of BMP-2 were loaded in both slow and rapid 

release systems ectopically and within bone defects. They concluded that slow delivery of 

BMP-2 was effective in sites with non-osteogenic activity (130). In another study, long and 

short term delivery of BMP-2 were compared, demonstrating that releasing the protein 

over 4 weeks resulted in significantly higher ectopic bone formation than releasing it 

within the first 3 days (363). Our results are in accordance with these findings. Bone-

forming cells are not present in the subcutaneous environment. Since alginate SLG 

formulation combined with low BMP-2 dose resulted in a sustained protein release, it 

matched the release timing needed for ectopic bone formation. However, when used in 

an orthotopic defect in which osteogenic activity is found, the need not only of sustained 

release but also of a burst release might be accentuated and essential to further reduce the 

effective protein dosage. In that scenario, the use of a combination of strategies to allow 

different protein release kinetics is desirable. This could be achieved, for instance, by 

covalently conjugating growth factors to hydrogels. Recently, linking TGF-β to an injectable 

chitosan-based hydrogel resulted in stable protein release even when tested in cells and 

serum-containing environment (364). Using a combination between physical adsorption-

based and conjugation-based delivery techniques to ensure both burst release and 

continuous treatment is intriguing, and might help to overcome some of the challenges 

that growth-factor based therapies face.  

FST is known to be an essential regulatory protein in bone metabolism and showed 

promising results promoting bone-related processes in our in vitro studies. Therefore, in 

parallel to the previous study, FST potency for bone defect repair was assessed in a rat 

calvarial bone defect model and SLG formulation was also used as protein carrier (Chapter Chapter Chapter Chapter 

5555). In a previous study Funaba et al. implanted DBM subcutaneously in rats to investigate 
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FST involvement in osteochondral ossification (320). Their results showed that FST was 

highly expressed by osteoblasts in their proliferating state, whereas it was not longer 

expressed in non-proliferating cells. The administration of FST at days 9 and 10 

postimplantation decreased calcium content suggesting that FST plays a role in bone 

modeling in a stage-specific manner. So far, FST has never been used as a growth factor-

based bone TE strategy. Our data indicated that bone repair was not improved in 10 

weeks’ time when FST was loaded in the alginate SLG formulation. In our study, we have 

used a slow delivery system to release FST over time. However, FST may be an early player 

in bone formation, having a role in the vasculature formation and indirectly triggering ECM 

mineralization. It could even be that FST burst release is necessary to trigger bone 

formation and that its continuos release might inhibit the following events needed for 

bone modeling. If that was the case, the use of an alginate-based slow-release system 

might be an unsuitable carrier to evaluate FST performance since it would not fit with the 

pharmacokinetics of the protein.  

The ideal pharmacokinetics for growth factor delivery in bone repair is often based on 

what has been generally accepted as the optimal BMP-2 pharmacokinetics, which includes 

both burst and sustained release. Nonetheless, the release profile of the protein should 

not be only determined by the rate of degradation, crosslinking extent or porous size of 

the carrier, but also by the impact of the target site on the local release kinetics and the 

role(s) that the protein plays in various processes involved in bone repair. Different factors 

need different release kinetics. Therefore, as it has been previously suggested (91, 365), 

individualizing growth factor release kinetics that respond specifically to a particular 

situation may help to overcome the limitations that growth factor therapies face when 

improving skeletal repair.  

6.1.46.1.46.1.46.1.4 The art of making bones. Do we use the proper preclinical tools?The art of making bones. Do we use the proper preclinical tools?The art of making bones. Do we use the proper preclinical tools?The art of making bones. Do we use the proper preclinical tools?    

Many tissue-engineered products fail to make it to the clinics due to the inconsistencies 

observed between the in vitro and the in vivo preclinical studies. To reduce and eventually 

replace animal testing, a vast amount of effort is being put into the development of 

sophisticated in vitro models capable of mimicking the complexity of the cellular 

processes that take part in bone turnover (366-369). So far, in vitro studies are not able to 

recreate the in vivo milieu, but they are very useful to assess in a more direct, simple and 

detailed way the effect of specific agents while controlling most of the parameters when 

compared to in vivo studies. Therefore, by using in vitro studies we were able to investigate 

the intrinsic response of different cell types to several doses of Nell-1, CCN2, HMGB1, and 

FST. To assess the effect of those factors upon different biological processes, primary cells 

and an osteoblastic cell line were used (Chapter 4Chapter 4Chapter 4Chapter 4 and Chapter 5Chapter 5Chapter 5Chapter 5). SV-HFO is a well-

characterized preosteoblast cell line in which human fetal osteoblasts are immortalized by 

simian virus 40 (SV40) (239). The SV-HFO cell line is considered a suitable model for 
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studying the stimulating effect of bone-forming factors and the metabolism of human bone 

cells (370-373); however, SV40-induced immortalization is usually accompanied by 

karyotypic instability (374) and that is also the case in SV-HFO cells (239). Cell lines offer an 

unlimited supply, are more reproducible and are usually less complicated to culture, but 

the obtained data might be less reflective of the in vivo environment than the data 

obtained when using primary cells. However, since cell lines are genetically manipulated, 

their genotype and phenotype is likely to suffer alterations over time, which might have an 

impact on their primary functions or response to exogenous stimulation (375). To make 

their use more reliable, some strategies are being developed to expand the utility of cell 

lines such as the establishment of immortalized cell lines with chromosomal consistency 

(376). In our study, FST addition significantly increased the differentiation and 

mineralization of a calvarial-derived osteoblastic cell line. However, it did not improve 

calvarial bone repair in vivo. This can be due to several causes, such as intrinsic differences 

between the effect of FST on an osteogenic-commited cell line in a 2D culture and its 

effect in the in vivo situation, where numerous processes and cell types are simultaneously 

involved.  

In vivo animal studies provide a closer approximation to the clinical scenario and are 

generally used to further investigate bone TE strategies once their biological activity and 

toxicity among other parameters have been screened in vitro (377). Therefore, in vivo 

studies are considered in many cases the clinical trials’ anteroom. In this thesis, the bone-

forming capacity of three in situ gelling formulations loaded with BMP-2 was firstly 

assessed subcutaneously in rats due to its technical simplicity, relatively low estimated 

animal discomfort and reduction of the number of treated specimens (Chapter 2Chapter 2Chapter 2Chapter 2). The 

selected formulation was subsequently investigated in a rat calvarial defect. It is an 

standardized non-load bearing orthotopic defect to evaluate bone regeneration, and it is 

especially adequate when studying the use of tissue-engineered constructs to repair 

craniofacial bone defects (378). Calvarial defect models do not need external fixation and 

are relatively easy to standardize and evaluate. They have been also widely used to 

investigate an extensive range of BMP2-based products (264, 379-383). Nonetheless, it is 

important to mention that calvarial bones are formed via intramembranous ossification 

and therefore, this model could be less accurate when investigating strategies for 

endochondral bone regeneration (308). It has been postulated that “A human is not just 

80 kilograms of rat” (384). Indeed, their skeleton present a more primitive bone structure, 

with open growth plates, limited trabecular content and a lack of cortical bone Haversian 

canals (385). Therefore, preclinical testing is also frequently performed in large skeletally 

mature animals such as horses, dogs, goats or sheep, and less often on non-human 

primates, who are considered the most suitable model for human bone (386). Certainly, 

the use of large animals –especially non-human primates– arise cultural and ethical 

questions as well as exponentially increases research costs. Nonetheless, larger does not 

mean closer to human scenario. For instance, rehesus monkeys were used to predict the 
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optimal concentration of BMP-2 to treat spine fusion in humans, however, proportionally 

lower doses are needed in rhesus monkeys than in humans, indicating that rhesus 

monkeys could be more responsive to BMP-2 administration than humans (387). This 

highlights the fact that there is not an ideal animal model and that both the choice of bone 

defects and animal species should rely on a compelling rationale. In this thesis, the use of a 

rat calvarial defect model allowed us to evaluate not only the biocompatibility of the 

selected formulation but its capability to trigger bone repair w/o BMP-2. It is closest 

clinical translation would be addressed to the treatment of flat bones. Per contra, to assess 

its performance in long bones and/or load-bearing locations, other bone defect models 

would be selected such as femoral bone defects.  

6.26.26.26.2 Conclusions and future perspectivesConclusions and future perspectivesConclusions and future perspectivesConclusions and future perspectives    

In conclusion,,,, we have tested an in situ gelling cell-free product to be used as BMP-2 slow-

release system for bone TE applications. This injectable material resulted in time- and 

dose-dependent bone formation both ectopically and orthotopically. Using this RCP-MS 

alginate-based controlled-release system for the induction of new bone formation may 

provide the beneficial properties of both a protein carrier and a support scaffold when 

applied as a void-filler. It would also be interesting to further study the performance of this 

newly developed biomaterial in load-bearing locations like the femur, the tibia or the 

mandible. There, to ensure mechanical stability, it would be combined with fixation 

techniques, such as fusion cages, plates and screws or used in composite devices in 

combination with stiffer materials such as calcium phosphates, fiber meshes or 3D printed 

polymers (388-392). It has been shown that mechanical strain has an effect on BMP 

signalling and, consequently, on endogenous BMP production and osteoblast 

differentiation (393, 394). Besides, in a non-human primate study in which BMP-2-loaded 

collagen was used to treat spinal arthrodesis, tissue compression squeezed the protein out 

of the sponge preventing bone induction (395). Thus, both BMP-2 production and release 

may vary under mechanical strain and should be taken in consideration when investigating 

the effect of this in situ gelling system upon load-bearing bones regeneration. 

Consequently, to more closely mimic the clinical scenario, it would be interesting to 

investigate the effect of this in situ gelling system on a large defect, which are difficult to 

treat and are often found after trauma or tumors surgical treatments in the clinics. 

Therefore, the next step could be testing the system in segmental bone defects with and 

without fixation (for example, to treat long-bone tibia segmental defects or segmental 

bone defects in the maxilla). To do so, it would be plausible to use an animal specie more 

similar to humans in terms of bone physiology, such as dogs, sheep or goats. 

Recruitment and differentiation of progenitor cells that form skeletal and vascular tissues 

are crucial processes during bone healing (26, 332, 396). We have studied the ability of 

four different proteins to enhance bone-formation related processes and we have 
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demonstrated that Nell-1, HMGB1, CCN2, and FST are able to attract both osteoprogenitor 

cells and ECs. In addition, all of the proteins tested were able to stimulate vascularization 

in vitro. It should be noted that the proteins tested were able to induce and/or enhance 

some of the key events that take place in bone formation when 2D cell cultures were used. 

To be able to translate these results to a setting closer to clinical translation and improve 

our understanding upon whether these proteins would promote similar responses in vivo 

and why, some considerations should be taken. 3D cultures are closer to the in vivo 

situation since they offer the possibility to set up more complex biological settings and 

could be used to study, for instance, the interaction of different types of cells, such as 

activated-macrophages, endothelial cells and osteoprogenitor cells under protein-

stimulation. Besides, the actions of Nell-1, HMGB1, CCN2, FST and BMP-2 span so many 

processes that mechanistic studies are needed to clarify the biological activity of this 

proteins within bone healing context. In that way, carriers can be tailored-made to 

improve their release timing and overall, to optimize their use for bone TE applications. 

 

 



 

 

 

 

Summary

 

Summary 

  



 



Summary 

129 

 

Bone defects are generally treated with bone grafts, which are used as a filler and scaffold 

to facilitate wound healing and promote bone formation. The current gold standard is the 

use of autologous bone grafts, however, there are many disadvantages associated with 

their usage such as limited supply and the generation of an additional surgical site, 

resulting in added operative time and donor-site morbidity (36). Moreover, the limited 

moulding properties of autologous bone grafts make their use difficult in morphologically 

complex structures such as the craniofacial skeleton. Injectable biomaterials offer great 

promise in tissue repair applications, especially for the treatment of irregular bone defects. 

Currently developed cell-free biomaterials aim to deliver biomolecules such as growth 

factors (GFs) to a tissue defect in a manner that provides an adequate environment for cell 

survival, proliferation, and differentiation, triggering the required biological events for full 

bone repair. GFs are signalling polypeptides indispensable for the maintenance of tissue 

homeostasis, wound healing and tissue regeneration (397). However, their use in clinical 

applications is limited due to their short effective half-life and low stability (398). Besides, 

regulating the spatiotemporal delivery of the proteins of interest is challenging and 

currently used delivery systems experience insufficient local retention. As a consequence 

large doses of the protein are needed to produce a biological effect (91). Bone 

morphogenetic protein-2 (BMP-2) is widely used to treat bone defects due to its powerful 

osteoinductive nature and has been used in a large number of carriers. However, because 

of the supraphysiological doses of the protein needed, it is related to many adverse effects 

in clinics (105). This thesis aimed to identify and evaluate the therapeutic potential of novel 

injectable slow-release biomaterials in order to reduce the dose of BMP-2 needed for a 

successful bone repair, and to investigate alternative promising proteins for their 

osteogenic induction capacity.  

Among injectable biomaterials, in situ gelling hydrogels provide a 3D architecture, an 

appropriate microenvironment for the recruitment and differentiation of the cells involved 

in bone repair (47). Thus, in situ gelling hydrogels are easier to keep in place while 

preventing leakage, what makes their use appealing to repair non-confined bone defects. 

In Chapter 2Chapter 2Chapter 2Chapter 2, the use of three in situ gelling release systems for bone induction is reported. 

In search of an optimal in situ gelling slow-release system Collagen-I based Recombinant 

Peptide Microspheres (RCP-MS) were embedded in three different hydrogels and used as 

BMP-2 carrier. RCP-MS have previously shown a small burst release succeeded by 

sustained release of BMP-2 in vitro (58), demonstrating their potential as growth factor 

delivery vehicles. Consequently, 3.3 µg (16.5 µg/mL) of BMP-2 were loaded in RCP-MS and 

dispersed in two types of alginate –high mannuronate (SLM) and high guluronate (SLG)– 

and one type of thermoresponsive hyaluronic acid. Both types of alginate displayed a 

shear stress thixotropic behavior and sustained release of BMP-2, while the 

thermoresponsive hyaluronic formed a gel structure at 32 ºC or above and retained most 

of the BMP-2. Alginate and hyaluronic acid formulations were injected subcutaneously in 

rats, showing significant differences in the outcome. Vascularization occurred within all the 
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formulations, but bone formation was only observed in the alginate formulations. 

Moreover, inflammation decreased over time in both alginate formulations, but increased 

in the hyaluronic acid. From the alginate formulations, alginate SLG combined with RCP-

MS and loaded with low dose BMP-2 displayed the greatest amount of bone formation at 

the end of the study. Therefore, alginate SLG combined with RCP-MS was selected as the 

best choice and was used as in situ gelling formulation in further studies presented in this 

thesis.  

To reduce the clinically used supraphysiological dose of BMP-2, it is necessary to know the 

in vivo release profile of BMP-2 from the alginate SLG formulation. With this aim, time- and 

dose-dependent subcutaneous ectopic bone formation using 4 different doses of BMP-2 –

10 µg (50 µg/mL), 3 µg (15 µg/mL), 1 µg (5 µg/mL) and 0.3 µg (1.5 µg/mL)– was assessed in 

Chapter 3Chapter 3Chapter 3Chapter 3.    Ectopically, the density of bone formed by 50 µg/mL and 15 µg/mL was similar, 

although the bone volume formed was time- and dose-dependent. The highest bone 

volume was observed when the highest dose (10 µg, 50 µg/mL) was used and no bone 

formation was detected when the lowest dose was used (0.3 µg, 1.5 µg/mL). In addition, 

the fluorescence signal generated by fluorescently labelled BMP-2 confirmed that the 

protein was still detectable within the formulation for at least four weeks in vivo, matching 

the time frame of natural bone healing process (20). To test the bone regeneration 

capacity of BMP-2 in a bone defect when loaded in alginate SLG+RCP-MS, two doses of 

BMP-2 –200 ng (50 µg/mL) and 20 ng (5 µg/mL)– were investigated in a 5 mm rat calvarial 

defect model. The 50 µg/mL BMP-2 loaded biomaterial showed full defect healing at the 

end of the experiment. However, the implantation of 5 µg/mL BMP-2 or the biomaterial 

alone did not significantly induce more bone formation than the empty control. The 

results indicate a threshold dose for effective BMP-2 use, which should be higher than 5 

µg/mL BMP-2 –ranging between 15-50 µg/mL– to induce bone formation both ectopically 

and orthotopically when used in combination with alginate SLG+RCP-MS. 

Because of the need to eliminate the risks of BMP-2 use in vivo, the ability of four putative 

osteogenic factors –Nel-like molecule type 1 (Nell-1), high mobility group box 1 (HMGB1), 

connective tissue growth factor (CTGF, also called CCN2) (in Chapter 4Chapter 4Chapter 4Chapter 4) and follistatin 

(FST) (in Chapter 5Chapter 5Chapter 5Chapter 5)– to enhance the essential processes needed for bone repair was 

assessed. Bone regeneration is a complex process that involves a series of well-

orchestrated biological events. At the cellular level, migration, proliferation, angiogenesis, 

osteogenic differentiation and subsequent mineralization are crucial processes to enable 

bone formation and repair to occur. It is therefore likely that an off-the-shelf product for 

bone defect repair will not succeed if those key processes are unbalanced or inhibited. 

Therefore, we evaluated whether Nell-1, CCN2, HMGB1 and FST enhance migration, 

vascularization and osteogenic differentiation, comparing them to BMP-2. These studies 

demonstrated that Nell-1, CCN2, HMGB1 and FST significantly induced human 

mesenchymal stem cell (MSC) migration but BMP-2 did not. All the proteins studied 
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induced human endothelial cell (EC) migration and vasculogenic differentiation. BMP-2 

enhanced MSC osteogenic differentiation but inhibited the production of the calcified 

matrix upon committed osteoblasts, whereas FST increased differentiation and 

subsequent mineralization of committed osteoblasts. In vitro screening indicated the 

potential of FST to be used as both pro-vasculogenic and pro-osteogenic factor. Overall, 

these results have shown that Nell-1, HMGB1, CCN2 and FST promoted bone formation 

related processes that might accelerate and optimize bone remodeling. Consequently, the 

study shed some light to the possibility of the use of Nell-1, HMGB1, CCN2 and FST to 

reduce the possible side effects observed when single factor therapies are applied.  

Since FST was the most promising protein investigated in this thesis in terms of 

enhancement of bone-related processes in vitro, in Chapter 5Chapter 5Chapter 5Chapter 5 two FST variants –FST288 

and FST315– were investigated. FST288 and FST315 present major differences in their 

affinity to cell-surface proteoglycans, which may influence their effect upon in vivo bone 

repair and their release from the formulation. In fact, the in vitro release profile of FST288 

and FST315 from alginate SLG RCP-MS showed that most of the loaded FST315 was released 

over 4 weeks, contrary to FST288, which was mostly retained in the formulation. Both FST 

variants were loaded in the alginate SLG formulation and implanted in a rat calvarial 

defect. Although a broader and more homogeneous mineralization occurred in the FST-

treated samples compared to the biomaterial treated samples, bone repair was not 

significantly improved in 10 weeks’ time. In this study, the RCP-MS alginate-based 

formulation was used as FST carrier to achieve FST’s slow release, but FST might be an early 

player in bone formation. Besides, when used in bone defect repair, alginate may not only 

delay the protein release, but also the cell and cytokine infiltration within the defects. In 

conclusion, the slow/late release alginate-based system may not be optimal for bone 

repair when loaded with FST and might influence the FST effect upon extracellular matrix 

(ECM) mineralization due to a suboptimal FST release timing.  

In conclusion, we have proven the therapeutic potential of an in situ gelling system based 

on RCP-MS and alginate loaded with a reduced-BMP2 dose for bone repair. The 

application of this system is suitable for the treatment of non-load bearing bone defects 

and therefore, its use within the craniofacial complex might be especially interesting. 

Further studies should be performed to assess its efficacy in the appropriate animal models 

to investigate its possible translation to the clinics. Besides, we have investigated in vitro 

the effect of Nell-1, HMGB1, CCN2 and FST on some of the key processes needed for bone 

formation, showing that their use might be promising to further reduce the side effects 

observed in single-factor therapies. Therefore, in vivo analyses using dual release systems 

should be performed to assess their potency for bone defect repair. For FST, however, we 

demonstrated that its use does not promote bone repair in an orthotopic defect when 

loaded in RCP-MS and alginate, which can be due to several causes such as poor bone-

forming capacity, underdosage and suboptimal release kinetics among others. To move on 
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further using growth factor-based therapies, mechanistic approaches should be taken in 

consideration to investigate how and in which extent the factor of interest regulates key 

processes in bone repair. Besides, the optimal release kinetics of the factor(s) must be 

investigated in vivo to successfully translate its use into bone tissue engineering based 

therapies. 
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Grote botdefecten worden gewoonlijk behandeld met transplantaten om het defect op te 

vullen en wondgenezing en botvorming te stimuleren. De huidige gouden standaard is het 

gebruik van patiënteigen botweefsel. Nadelen hiervan zijn dat er een beperkte 

hoeveelheid bot beschikbaar is in het lichaam van de patiënt en dat er een extra ingreep 

nodig is om bot te verkrijgen. Dit laatste leidt tot een langere operatietijd en het kan 

problemen geven, zoals pijn, op de plaats waar bottransplantaat wordt weggehaald. 

Bovendien is het bij complexe botstructuren, zoals in het hoofd-halsgebied, lastig om het 

patiënteigen bottransplantaat de correcte vorm te geven.  

Injecteerbare biomaterialen zouden hiervoor een oplossing kunnen bieden. Recent zijn er 

systemen ontwikkeld die als doel hebben biologisch actieve eiwitten, zoals groeifactoren, 

naar de plaats van het botdefect te brengen. Groeifactoren zijn eiwitten die onmisbaar zijn 

voor wondgenezing en weefselherstel. Het klinische gebruik wordt echter beperkt door 

hun korte halfwaardetijd en instabiliteit. Daarnaast is het een uitdaging de groeifactoren 

op de gewenste plek te houden. Daarom is een hoge dosis van groeifactoren nodig. Bone 

morphogenetic protein-2 (BMP-2) is een veelgebruikte groeifactor om botdefecten te 

behandelen. Vanwege de hoge benodigde dosis is er een hoog risico op bijwerkingen. 

Om de benodigde dosis BMP-2 te kunnen verlagen, onderzochten we voor dit proefschrift 

de therapeutische potentie van nieuwe injecteerbare langzame afgiftesystemen. Ook 

identificeerden we andere veelbelovende eiwitten die botherstel kunnen stimuleren. 

Hydrogelen zijn biomaterialen die na injectie in het lichaam een vaste gel vormen en 

kunnen zorgen voor een geschikte micro-omgeving voor het aantrekken en differentiëren 

van cellen die betrokken zijn bij botherstel. In hoofdstuk 2hoofdstuk 2hoofdstuk 2hoofdstuk 2 werden verschillende 

hydrogelen onderzocht die gebruikt zouden kunnen worden als eiwit-afgiftesysteem voor 

botherstel. We gebruikten microbolletjes gemaakt van peptiden die op collageen type I 

gebaseerd zijn (RCP-MS). Uit eerdere laboratorium experimenten was bekend dat de RCP-

MS microbolletjes eerst een korte piekafgifte laten zien, gevolgd door het langdurig 

langzaam vrijkomen van BMP-2. In de RCP-MS werd 3.3 µg (16.5 µg/mL) BMP-2 geladen en 

gemengd met drie verschillende hydrogelen: twee typen alginaat, hoog mannuronaat 

(SLM) en hoog guluronaat (SLG), en hyaluronzuur. Beide typen alginaat hadden een 

thixotropisch gedrag, wat betekent dat ze een gelvorm hebben, maar door de hoge 

schuifkrachten tijdens injecteren tijdelijk vloeibaar worden. Beide alginaat systemen lieten 

de BMP-2 langzaam vrijkomen. Het hyaluronzuur was thermo-responsief. Dat wil zeggen 

dat het vloeibaar is bij kamertemperatuur en een gel vormt in het lichaam. Deze gel liet 

weinig afgifte zien in de laboratoriumtesten. De systemen van RCP-MS met alginaat of 

hyaluronzuur werden geïnjecteerd onder de huid van ratten. Bloedvatvorming werd 

aangetroffen bij alle systemen, maar botvorming werd alleen gezien met alginaat. 

Bovendien nam de ontsteking af in de loop van de tijd bij beide alginaten, maar bleef sterk 
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aanwezig bij hyaluronzuur. Alginaat SLG gemengd met RCP-MS en een lage dosis BMP-2 

vormde het meeste bot. Op grond hiervan werd deze combinatie gekozen voor de 

vervolgstudies die beschreven zijn in dit proefschrift. 

Om de dosis BMP-2 te kunnen verlagen, is het nodig om te weten wat het afgifteprofiel van 

BMP-2 uit alginaat SLG is. Daarom onderzochten we in hoofdstuk 3hoofdstuk 3hoofdstuk 3hoofdstuk 3 hoe de botvorming na 

injectie van het systeem onder de huid, verliep in de tijd. We vergeleken vier doses BMP-

2: 10 µg (50 µg/mL), 3 µg (15 µg/mL), 1 µg (5 µg/mL) en 0,3 µg (1,5 µg/mL). De dichtheid 

van het gevormde bot was bij 50 µg/mL en 15 µg/mL gelijk, terwijl het volume van het 

gevormde bot afhankelijk was van tijd en dosis. Het grootste botvolume werd gezien met 

de hoogste dosis (10 µg, 50 µg/mL). Met de laagste dosis (0.3 µg, 1,5 µg/mL) werd 

helemaal geen botvorming waargenomen. Door het BMP-2 fluorescent te labelen 

constateren dat BMP-2 na vier weken nog detecteerbaar was, wat overeenkomt met het 

tijdsbestek van natuurlijke botgenezing. Om het vermogen te onderzoeken van het 

alginaat SLG+RCP-MS met BMP-2 om een botdefect te herstellen, testten we twee doses 

BMP-2 in een 5 mm botdefect in het schedeldak van ratten: 200 ng (50 µg/mL) en 20 ng (5 

µg/mL). Het systeem met 50 µg/mL BMP-2 liet volledig herstel zien aan het einde van het 

experiment. Het systeem met 5 µg/mL BMP-2 of zonder BMP-2 herstelde vergelijkbaar 

met de controle die niet behandeld was. Deze resultaten wijzen op een effectieve dosis 

voor botvorming die hoger is dan 5 µg/mL BMP-2 (tussen 15-50 µg/mL) wanneer BMP-2 

wordt gebruikt in combinatie met alginaat SLG+RCP-MS. 

Om de risico’s op bijwerkingen van BMP-2 te kunnen verminderen, werden vier 

alternatieve eiwitten geëvalueerd: Nel-like molecule type 1 (Nell-1), high mobility group 

box 1 (HMGB1), connective tissue growth factor (CTGF of CCN2) (in hoofdstuk 4hoofdstuk 4hoofdstuk 4hoofdstuk 4) en 

follistatine (FST) (in hoofdstuk 5hoofdstuk 5hoofdstuk 5hoofdstuk 5). Bij botherstel is een serie van goed georganiseerde 

biologische processen betrokken: celmigratie in het defect, celdeling, vorming van 

bloedvaten, celdifferentiatie naar botvormende cel en daaropvolgend, verkalking van de 

matrix. Daarom zal een product voor het herstel van botdefecten niet slagen wanneer één 

van deze centrale processen geremd wordt of als de processen niet in evenwicht zijn. Om 

die reden hebben we onderzocht of Nell-1, CCN2, HMGB1 en FST celmigratie, 

bloedvatvorming en differentiatie naar botcel kunnen verhogen. Nell-1, CCN2, HMGB1 en 

FST stimuleerden de migratie van mesenchymale stamcellen (MSCs), terwijl BMP-2 dat niet 

deed. Alle onderzochte eiwitten stimuleerden de migratie van endotheelcellen en de 

bloedvatvorming. BMP-2 verhoogde de differentiatie van MSCs naar botcellen, maar 

remde de verkalking van de matrix, terwijl FST zowel de differentiatie van de cellen als de 

verkalking van de matrix verhoogde. Deze screening liet de potentie van FST zien om te 

worden gebruikt als eiwit om bloedvat- en botvorming te stimuleren. De resultaten lieten 

zien dat Nell-1, HMGB1, CCN2 en FST, sommige processen bevorderen die botherstel 

zouden kunnen versnellen. Deze eiwitten zouden mogelijk als combinaties gebruikt 
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kunnen worden, om bijwerkingen te verminderen wanneer deze eiwitten afzonderlijk 

worden gebruikt. 

Aangezien FST het meest veelbelovende eiwit was voor stimuleren van botvorming-

gerelateerde processen in de laboratorium experimenten, hebben we twee varianten van 

FST, FST288 en FST315, onderzocht (in hhhhoofdstuk 5oofdstuk 5oofdstuk 5oofdstuk 5). FST288 en FST315 verschillen in hun 

affiniteit voor cel-oppervlakte proteoglycanen, wat invloed kan hebben op botherstel in 

het lichaam en de afgiftesnelheid uit de hydrogelen. Het afgifteprofiel van FST288 en 

FST315 vanuit alginaat SLG+RCP-MS liet zien dat het meeste van de FST315 werd afgegeven 

over een periode van vier weken, in tegenstelling tot FST288 dat in het biomateriaal bleef. 

Beide FST varianten werden vervolgens geladen in het alginaat SLG+RCP-MS systeem en 

geïnjecteerd in een botdefect in het schedeldak van ratten. In de FST behandelde 

defecten was botherstel niet significant verbeterd, hoewel de verkalking meer homogeen 

was. In deze studie werd alginaat RCP-MS gebruikt als FST-drager om langzame afgifte van 

FST te bewerkstelligen, maar FST is waarschijnlijk met name van belang bij de vroege 

processen in botvorming. Daarnaast vertraagde alginaat niet alleen het vrijkomen van 

eiwitten, maar ook de ingroei van cellen in het botdefect. Het langzame afgiftesysteem 

gebaseerd op alginaat is niet optimaal voor botherstel wanneer het geladen is met FST 

omdat de timing van afgifte wellicht niet optimaal is. 

Concluderend hebben we de potentie bewezen van een eiwit-afgiftesysteem voor 

botherstel. Dit systeem, gebaseerd op RCP-MS en alginaat geladen met een lage dosis 

BMP-2, vormt in het lichaam een gel en is geschikt voor de behandeling van defecten in 

niet-belaste botten en daarom interessant voor het gebruik in het hoofd-halsgebied. 

Verder onderzoek moet de doeltreffendheid uitwijzen in een groter diermodel om 

vervolgens de vertaling naar de kliniek te kunnen maken. Daarnaast hebben we de 

effecten van Nell-1, HMGB1, CCN2 en FST onderzocht op een aantal cruciale processen 

voor botvorming. Hiermee laten we zien dat het gebruik hiervan veelbelovend is om 

bijwerkingen, zoals gezien in enkelvoudige therapieën, te verminderen. Verdere studies, 

inclusief dierexperimenten, met tweevoudige afgiftesystemen voor herstel van 

botdefecten zouden moeten worden uitgevoerd. Voor FST hebben we laten zien dat het 

gebruik in het alginaat+RCP-MS systeem het herstel van een botdefect niet verbetert. Dit 

kan verschillende oorzaken hebben, zoals slechte botvormende capaciteit, te lage 

dosering en een suboptimaal afgifteprofiel. Om groeifactor-gebaseerde therapieën verder 

te ontwikkelen, moeten we beter onderzoeken in welke mate de gekozen groeifactor de 

processen regelt die nodig zijn voor botherstel. Daarnaast moet het optimale afgifteprofiel 

van de groeifactor(en) na injectie worden onderzocht om het gebruik ervan succesvol te 

kunnen vertalen naar therapieën voor het herstel van botdefecten.
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2014 Research Integrity (EMC) 0.3 
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2014 FELASA Course on Laboratory Animal Science (LUMC), Leiden 4 

2014 Intellectual Property Course (Fujifilm), Tilburg  2 

2015 Biomedical English Writing Course (Molmed) 2 

2015 Basic Introduction Course on SPSS (Molmed) 1 

2015 Introduction in GraphPad Prism (Molmed) 0.3 

2015 PhD Day (EMC) 0.3 

2016 Time Management Workshop 0.2 
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Biomedical English Writing and Communication Course 
(Molmed) 

3 

2016 PhD Day (EMC)  

2017 
Monocytes: origins, destinations, functions and diagnostic 
targets 

0.2 

2017 SCORE-Day 0.3 

2014-2017 Bio-Inspire Training program (biannually) 1 

   

((((IIIInter)national Conferencesnter)national Conferencesnter)national Conferencesnter)national Conferences    
 
 

2014 New Frontiers in Regenerative Medicine, Nijmegen 1 

2015 19th Molecular Medicine Day, Rotterdam. Poster Presentation 0.5 

2015 
4th Strategies in Tissue Engineering, Wurzburg. Podium 
Presentation 

1 
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Meetings depts of Orthopaedics and Oral Maxillofacial 
Surgery (weekly) 
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2014-2017 Meet-the-Professor meeting (biannually) 0.5 

2015-2017 Orthopaedic Science Day (annually) 0.5 
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Hogeschool Breda) 
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Visiting PhD student at Fraunhofer Institute, Wurzburg (6 
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Curriculum VitaeCurriculum VitaeCurriculum VitaeCurriculum Vitae    

Shorouk Fahmy-Garcia (�������� وق
����) was born on 30th of January 1987 in Valencia (Spain). 

She is the first of five siblings. Shorouk studied at Campanar High School in Valencia, in the 

same neighbourhood where she lived, which was very useful in balancing the academic 

and social life of a teenager. By then, her parents and teachers messed up her life by 

convincing her to follow a scientific career, leading Shorouk to embark on a series of 

adventures. In 2005, she was admitted to a combined bachelor and master degree 

programme –licenciatura, equivalent to Master of Science– in Biotechnology that was 

carried out at the Polytechnic University of Valencia (UPV). During her studies, she went 

on an Erasmus scholarship to Prague, and carried out her studies at both Czech University 

of Life Sciences and the University of Chemistry and Technology. In 2010 she started her 

master’s thesis at the Cytogenetic, Biological Markers and Molecular Biology Laboratory in 

the Haematology Department of the Hospital La Fe (Valencia), under the supervision of Dr. 

José Vicente Cervera and Prof. Dr. Ramón Serrano. The main focus of the thesis was to 

assess the impact of the aberrant methylation of two antagonist Wnt signalling pathway 

genes in the development of Myelodysplastic Syndromes. As she always wanted to pursue 

a fine arts degree, she decided to enrol in 2011 at the BSc. Fine Arts (UPV) while doing an 

internship at the Laboratory of Integrative systems Biology, Institute of Molecular and 

Cellular Biology of Plants, Valencia (supervisor: Dr. Mario Fares). The main goal of the 

internship was to study how molecular chaperones contribute to emerge functions in 

nature. 2012 was a memorable year in which she defended her master's thesis, ended her 

internship and was awarded with an EU fellowship to continue her studies in the Middle 

East. She enrolled in an MRes in Biomedical Sciences and moved to Cairo, where she 

joined Ain Shams University under the coordination of Prof. Dr. Mohamed Hazem. Maybe 

it was not the best political moment in the country but it was an extraordinary experience. 

She returned at the end of 2013 to Valencia and defended her master’s thesis on 

epigenetic processes that affect the progression from Myelodysplastic Syndromes to Acute 

Myeloid Leukaemia (supervisor: Dr. Amparo Gimeno). At the beginning of 2014 she 

moved to Rotterdam to start her PhD project at two departments: Orthopaedics and 

Internal Medicine under the supervision of Prof. Dr. Gerjo van Osch, Prof. Dr. Hans van 

Leeuwen, Dr. Eric Farrell and Dr. Marjolein van Driel. Her PhD project was part of a Marie 

Curie ITN called Bio-Inspire and it involved, among others, Fujifilm Manufacturing and 

Universitätsklinikum Würzburg, in which she carried out part of her studies. During 2018 

she decided to travel for a few months with Jordi, her partner in crime, around South 

America and Southeast Asia. Shorouk is currently working at Erasmus MC as a postdoctoral 

researcher in both the Departments of Orthopaedics and Oral and Maxillofacial Surgery. 

She lives with Jordi and an evil cat. Shorouk enjoys cinema, theatre and good food. When 

she is not thinking about work, she is usually thinking about where to go with Google Maps 

open. In fact, it's exactly what she did after finishing writing this curriculum vitae.
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