Centre for EBOV diagnostics. Real-time reverse transcription PCR (RT-PCR) was positive for Zaire EBOV; viral load was 2.04×10^4 genome copies/mL. ELISA of the same sample detected Zaire EBOV–specific IgM (titer 1:400) and IgG (titer 1:3,200). This case of EVD in Senegal was reported to WHO on August 29. The patient received supportive care, and his clinical course progressed well; on August 31, he was afebrile and his asthenia had decreased. In terms of virus evolution, a second blood sample tested on day 18 after illness onset showed diminution of viral load (4.96×10^3 genome copies/mL) and an IgG titer increase to 1:6,400. A third blood sample collected on day 20 showed a negative RT-PCR result, but a urine sample collected the same day showed a positive result with a viral load of 2.04×10^4 genome copies/mL. RT-PCRs of blood and urine collected on days 24 and 34 were negative, and serologic analyses showed a high IgG titer (1:12,800).

The patient was declared cured on September 18, 2014. Epidemiologic investigations revealed a total of 74 contacts in Senegal, including 41 healthcare workers (from the suburban medical center and Fann Hospital). Symptoms developed in 5 of these contacts, but their test results were negative for EBOV. No secondary case was detected after 42 days of monitoring, and the outbreak in Senegal was declared over on October 17, 2014, with only 1 confirmed case reported.

The case-patient’s low viral load, detected during the first RT-PCR 10 days after illness onset, probably explains the absence of secondary cases in Fann Hospital. However, the absence of secondary cases in the suburban medical center that the patient had visited on days 3–4 after illness onset and among the family members in Dakar is a rare feature of EVD. The preparedness and surveillance established in Senegal after announcement of EVD in Guinea led to training of healthcare workers for proper use of protective equipment and security procedures with any patient, which probably prevented virus spread in the suburban medical center. This case of EBOV importation from Guinea to Senegal confirms the problems encountered with Ebola outbreak management, including the roles of nonsecure funerals and travel in virus spread.

Acknowledgments
We thank Moussa Dia, El Hadji Abdourahmane Faye, Ousmane Kébé, Khadiata Mbaye, Davy Evrard Kiori, and Oumar Ndiaye for their excellent technical assistance in laboratory diagnosis.

This work was supported by grants from the Institut Pasteur de Dakar, Senegal, and the Ministry of Health, Senegal.

Dr. Ka is an infectious disease physician who works in the Infectious and Tropical Diseases Clinic, Fann Hospital, Dakar, Senegal. His research interests are EVD, HIV, and hepatitis. Dr. Fall is a virologist who works at Arbovirus and Viral Hemorrhagic Fever Unit, Institut Pasteur de Dakar, Senegal.

Her research interests include arbovirus–vector interactions, mechanisms of arbovirus transmission, and public health activities such as diagnosis of arboviruses and hemorrhagic fever viruses.

References

Address for correspondence: Ousmane Faye, Virology Pole, Institut Pasteur de Dakar, BP 220 Dakar, Senegal; email: ofaye@pasteur.sn

 Tick-Borne Encephalitis Virus in Ticks and Roe Deer, the Netherlands

Setareh Jahfari, Anke de Vries, Jolanne M. Rijks, Steven Van Gucht, Harry Vennema, Hein Sprong, Barry Rockx

Author affiliations: National Institute for Public Health and the Environment, Bilthoven, the Netherlands (S. Jahfari, A. de Vries, H. Vennema, H. Sprong, B. Rockx); Utrecht University, Utrecht, the Netherlands (J.M. Rijks); Scientific Institute of Public Health, Brussels, Belgium (S. Van Gucht)

DOI: https://dx.doi.org/10.3201/eid2306.161247
We report the presence of tick-borne encephalitis virus (TBEV) in the Netherlands. Serologic screening of roe deer found TBEV-neutralizing antibodies with a seroprevalence of 2%, and TBEV RNA was detected in 2 ticks from the same location. Enhanced surveillance and awareness among medical professionals has led to the identification of autochthonous cases.

Tick-borne encephalitis virus (TBEV) can infect humans, causing febrile illness; neurologic complications include encephalitis (1). TBEV is transmitted through bites of infected ticks to many animals, including deer, which serve as feeding hosts for ticks (2,3). Expansion of TBEV subtypes has been reported (4). Reports of TBEV-neutralizing antibodies in wildlife and cattle in Belgium prompted us to reinvestigate the presence of TBEV in the Netherlands (5,6).

During January–September 2010, hunters collected 297 blood samples from roe deer (Capreolus capreolus) from locations across the Netherlands. We used a commercial ELISA to detect TBEV-reactive antibodies in roe deer serum samples. Serologic screening of all 297 samples by ELISA yielded 6 positive and 8 borderline results. All positive, 7 borderline, and 3 negative serum samples were confirmed by testing in a TBEV serum neutralization test (SNT), with the Neudörfl strain as the accepted prototype TBEV-EU, formerly called central European encephalitis virus (5). Five of 6 ELISA positive samples and 1 of 7 borderline samples were confirmed positive by SNT. Five of the 6 SNT-confirmed roe deer were shot at or near a popular recreation area, the National Park Sallandse Heuvelrug (Figure, panel A).

In response to the serologic findings, we collected 1,160 nymph and 300 adult Ixodes ricinus ticks by blanket dragging in 7 locations at the national park in September 2015. We extracted RNA from pools of 5 nymphs or 2 adults (7) and tested for flavivirus by using a reverse transcription quantitative PCR. We detected flavivirus RNA in 1 nymph pool and 1 pool of adult female ticks.

To obtain sequences of the 2 reverse transcription quantitative PCR–positive samples, we used primers and protocols as described (8). Both sequences obtained from
the tick pools were identical. The sequences obtained in
this study were designated TBEV-NL and clustered within
the TBEV-EU subtype complex (Figure, panel B), with a
91% sequence identity with the currently known TBEV-
EU sequences.

TBEV-EU RNA in 2 pools of ticks collected through
surveillance in 1 national park confirms the presence of
TBEV-EU in the Netherlands. Serologic evidence that roe
deer from the same location had been infected with a flavivirus, most probably a TBEV, 5 years before the detection of TBEV RNA in ticks suggests that TBEV has been
endemic to the Netherlands for at least 5 years.

The concentration of serologically positive roe deer is
striking and remains unexplained. One explanation could be
that this area has dense beech tree coverage, and beech-nuts are a major food source for roe deer and the bank vole
(Myodes glareolus). These host species play a pivotal role
in the TBEV enzootic cycle; a habitat suitable for both may
have enhanced the local establishment and spread of TBEV.
In addition, the finding of a serologically positive roe deer in
a southern province of the Netherlands (Figure, panel A),
also known for the presence of beech trees, suggests that
TBEV is distributed more widely within the Netherlands.

Dissemination of information about the occurrence of
TBEV in ticks and wildlife is needed for medical
professionals and the general public. In response to our
findings, 2 autochthonous TBEV infections were report-
ed in the Netherlands (9, 10). At least 1 of these autoch-
thonous cases was infected with a TBEV strain showing
99% homology with the Neudörlf strain, suggesting
the presence of multiple TBEV-EU strains in the Neth-
erlands. Our findings indicate that clinicians should be
aware of the possibility of TBEV infection in humans
in the Netherlands.

Acknowledgments
We thank Fedor Gassner, Gilian van Duijvendijk, Ryanne
Jaarsma, Aleksandra Krawczyk, and Miriam Maas for performing
fieldwork; Daan Vreugdenhil and Tom Klomphaar for access to
the nature reserves; Natasha Buijs, Ewa Frazer, Najima Lamkaraf,
and Sophie Lamoral for technical support in the laboratory; and
Marion Koopmans for critically reading this manuscript.

This study was supported by the Netherlands Ministry of Health,
Welfare, and Sport and performed under the frame of EurNegVec
Cost Action TD1303. The collection of roe deer sera in 2010
was financed by the Netherlands Ministry of Economic Affairs
(former LNV; verplichtingnummer 140004212).

Ms. Jahfari is a PhD candidate at the Dutch National Institute for
Public Health and the Environment (RIVM) and Erasmus Medical
Center. Her primary research interest is tickborne diseases.

References

(08)60800-4
2. Bakhvalova VN, Dobrotvorsky AK, Panov VV, Matveeva VA, Tkachev SE, Morozova OV. Natural tick-borne encephalitis virus
infestation among wild small mammals in the southeastern part of
http://dx.doi.org/10.1089/vbz.2006.6.32
3. Gerth HJ, Grimshand D, Stage B, Döller G, Kunz C. Roe deer
as sentinel for endemicity of tick-borne encephalitis virus.
S0950268800058477
4. Donoso Mantke O, Schüdler R, Niedrig M. A survey on cases of
tick-borne encephalitis in European countries. Euro Surveill. 2008;
13:18848.
5. Roelandt S, Suin V, Van der Stede Y, Lamoral S, Marche S,
Tignon M, et al. First TBEV serological screening in Flemish wild
10.3402/iec.v6.31099
6. Roelandt S, Suin V, Ricreux F, Lamoral S, Van der Heyden S,
http://dx.doi.org/10.1089/vbz.2014.1576
et al. Tick-borne encephalitis (TBE) virus prevalence and
virus genome characterization in field-collected ticks (Ixodes ricinus)
from risk, non-risk and former risk areas of TBE,
and in ticks removed from humans in Germany. Clin Microbiol
j.1469-0691.2009.02764.x
8. Kupča AM, Essbauer S, Zoeller G, de Mendonça PG,
of a tick-borne encephalitis virus strain from a new tick-borne
encephalitis focus with severe cases in Bavaria, Germany.
j.ttbdis.2009.11.002
9. de Graaf JA, Reimerink JH, Voorn GP, bij de Vaate EA,
encephalitis virus infection acquired in the Netherlands, July 2016
7917.ES.2016.21.33.30318
10. Weststrate AC, Knappen D, Laverman GD, Schot B, Prick JJ,
Spit SA, et al. Increasing evidence of tick-borne encephalitis (TBE)
virus transmission, the Netherlands, June 2016. Euro
ES.2017.22.11.30482

Address for correspondence: Hein Sprong, Center for Infectious Disease
Control, National Center for Public Health and the Environment, Antonie
van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands; email:
hein.sprong@rivm.nl