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Recent developments in experimental animal models of Henipavirus

infection
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A review of these BSL-4-level select agents is a timely addition to the repertoire of papers that address animal models that

may be used to study these highly dangerous agents.
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Introduction

Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus
(HNV; family Paramyxoviridae) are emerging zoonotic
agents that can cause severe respiratory distress and
acute encephalitis in humans and are considered biosafety
level 4 (BSL-4) pathogens. Following the initial identification
of HeV and NiV in 1994 and 1998, respectively, almost
yearly outbreaks of HeV and NiV have occurred in Australia
(HeV) and Bangladesh (NiV) over the past decade (Rockx
et al., 2012).

Fruit bats (Pteropodidae family) are considered to be the
reservoir for HNV (Young et al., 1996; Olson et al., 2002)
with a geographic distribution extending beyond South-East
Asia and Australia to West Africa (Hayman et al., 2008).
Bats infected with HNV primarily shed virus in urine and
transmit to humans through infection of intermediate hosts
such as horses (HeV) and pigs (NiV, Malaysia) (Luby et al.,
2009). Outbreaks of NiV in Bangladesh have primarily been
associated with the consumption of raw date palm sap,
which is believed to be contaminated with NiV from bats

Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory
distress and acute encephalitis in humans. Given the lack of effective therapeutics
and vaccines for human use, these viruses are considered as public health
concerns. Several experimental animal models of HNV infection have been
developed in recent years. Here, we review the current status of four of the most
promising experimental animal models (mice, hamsters, ferrets, and African green
monkeys) and their suitability for modeling the clinical disease, transmission,
pathogenesis, prevention, and treatment for HNV infection in humans.

Importantly, person-to-person transmission has been
observed in several outbreaks of NiV in Bangladesh (Gurley
et al., 2007), highlighting the potential of wider spread of this
virus (Luby, 2013).

Given the lack of effective therapeutics and vaccines for
human use, these viruses are considered as public health
concerns and listed as category C priority pathogens for
biodefense research by the National Institute of Allergy and
Infectious Diseases.

Unlike many other paramyxoviruses, HNV displays a
broad species tropism. Here, we review the current status of
four of the most promising experimental animal models and
their suitability for modeling the clinical disease, transmis-
sion, pathogenesis, prevention, and treatment for henipavi-
rus infection in humans.

Pathogenesis in humans

Hendra virus

Hendra virus (HeV) was first isolated in 1994 during an
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horses and humans in Queensland, Australia (Selvey et al.,
1995). A total of seven human cases have been reported to
date, with a case fatality rate of 57% (Selvey et al., 1995;
O'Sullivan et al., 1997; Wong et al., 2009; Playford et al.,
2010; Rockx et al., 2012). Following an incubation period of
7-16 days, human cases develop an influenza-like illness
(ILI). Cases can develop acute meningitis and/or encepha-
litis with tonic—clonic seizures, recurrent focal, and motor
seizures, which can rapidly progress to coma (O’Sullivan
et al., 1997). Of four fatal human cases, three were due to
severe neurological disease (encephalitis), while one case
exhibited severe respiratory distress, multiorgan failure, and
arterial thrombosis with chest radiographs showing bilateral
alveolar and interstitial infiltration. One of the cases who
recovered from the initial infection died from a fatal relapse
of acute encephalitis 13 months later (O’'Sullivan et al.,
1997). In survivors, residual neurological symptoms have
been observed in survivors including residual ataxia (Play-
ford et al., 2010).

At autopsy, histopathological changes associated with
HeV infection in humans are characterized by vasculitis and
syncytial formation in the endothelium of target organs such
as brain, liver, spleen, and lungs. In the brain, leptomen-
ingitis with lymphocyte and plasma cell infiltration is
observed (O’Sullivan et al., 1997). Focal areas of necrosis
are present in the neocortex, basal ganglia, brainstem, and
cerebellum, whereas in the lungs, gross pathological
changes include congestions and hemorrhages (Selvey
et al., 1995). Histopathological changes in the lungs include
severe parenchymal inflammation and necrosis with focal
necrotizing alveolitis and intra-alveolar macrophages/
inflammatory cells (Selvey et al, 1995; Wong et al,
2009). Type Il pneumocytes, alveolar macrophages as well
as vascular endothelium are positive for viral antigen (Wong
et al., 2009).

Nipah virus

NiV was first isolated during an outbreak of respiratory
disease and acute encephalitis in pigs and humans in
Malaysia and Singapore (NiV-M) in 1998-1999 (Chua et al.,
1999, 2000). During that outbreak, a total of 276 human
cases were identified with a case fatality rate of 40%.
Following an incubation period of 4 days to 2 weeks, cases
initially presented with ILI. The majority of cases presented
with fever, headache, dizziness, and vomiting. More than
half of patients exhibited reduced levels of consciousness,
cognitive impairment, and prominent brain-stem dysfunc-
tion. Distinctive clinical signs included segmental myoclonus
and hypotonia, suggesting involvement in the brain stem
and the upper cervical spinal cord.

Respiratory symptoms following NiV-M infection are
observed in ¢. 20% of cases and characterized by nonpro-
ductive cough, sore throat, dyspnea, and chest pain. In
these cases, chest radiographs are abnormal with upper/
lower lobe alveolar consolidation and reticular changes.

Since the initial isolation of the Malaysia strain of NiV
(NiV-M) in 1998-1999, a genetically distinct strain of NiV
(Bangladesh, NiV-B) has been the cause of outbreaks in
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humans in Bangladesh and India from 2001 to 2013 (Lo &
Rota, 2008; Rockx et al., 2012). These genetically distinct
NiV strains are distinguished by differences in clinical
outcome in human cases. Specifically, the incubation period
during the NiV-B outbreaks in Bangladesh/India is shorter
compared with NiV-M outbreak in Malaysia with an onset of
clinical symptom ranging from 6 to 11 days (Hossain et al.,
2008; Lo & Rota, 2008). In addition, the proportion of cases
presenting with severe respiratory symptoms is higher
during the outbreaks of NiV-B (69%) compared with NiV-M
(c. 20%). Finally, the case fatality rate of NiV-B is higher
compared with that of NiV-M, 73% vs. 40%, respectively
(Luby et al., 2006).

During NiV-B infection, 69% experienced respiratory
difficulties and chest radiographs, showing diffuse bilateral
opacities consistent with acute respiratory distress syn-
drome (ARDS). Respiratory distress during NiV-B infection
was significantly associated with death (Hossain et al.,
2008).

The majority of patients who survive acute NiV enceph-
alitis make a full recovery. Interestingly, about 22% of
survivors are left with residual neurological sequelae such
as persistent convulsions and personality changes. Similar
to HeV, c. 8% of patients, who recover from infection with
NiV, subsequently develop relapse encephalitis as late as
4 years after infection. In addition, 3% of cases with an initial
asymptomatic or nonencephalitic infection develop delayed
onset encephalitis (Tan et al, 2002). In the long term,
persistent neurological dysfunctions are observed in more
than 15% of people.

Histopathological changes include vasculitis and syncytial
endothelial cells in the central nervous system, lung heart,
and kidney and are characterized by endothelial destruction,
fibrinoid necrosis, and inflammatory cell infiltration (Wong
et al., 2002).

The main histopathological findings in the brain include
necrotic plaques, perivascular cuffing, thrombosis, paren-
chymal inflammation, and meningitis (Wong et al., 2002).
Eosinophilic inclusions in the cytoplasm of neurons were
highly positive for viral antigen.

In the lung, histopathological changes were mainly char-
acterized by alveolar hemorrhage, pulmonary edema, and
aspiration pneumonia (Wong et al., 2002). Fibrinoid necro-
sis and vasculitis in the lung were observed in a majority
of cases. Multinucleated giant cells were occasionally
observed in the alveolar spaces.

Additional organs with histopathological changes involved
lymph nodes, kidney, and spleen, with white pulp depletion
and acute necrotizing inflammation for the latter. In lymph
nodes, large reactive mononuclear cells were observed as
well as necrosis. Finally, histological changes in the kidney
primarily included glomerular inflammation and necrosis.

Henipavirus infection in animals

Unlike other paramyxoviruses, HNV can infect a wide range
of animal species. Natural hosts include bats, pigs, horses,
cats, and dogs. Experimental challenge studies in larger
species such as pigs and horses have been limited to two
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research facilities studying these zoonotic pathogens in their
natural hosts (Weingartl et al., 2005; Marsh et al., 2011).

Experimental infection in cats primarily results in respira-
tory disease and does not consistently recapitulate neuro-
logical disease (Middleton et al., 2002). Conversely,
experimental infection in guinea pigs is primarily associated
with encephalitis (Torres-Velez et al., 2008). More recently,
hamster, ferret, and African green monkey (AGM) models
were developed and characterized, which more closely
mimic the disease progression, both respiratory and neuro-
logical, seen in human cases (Wong et al., 2003; Bossart
et al., 2009; Geisbert et al., 2010; Rockx et al., 2010,
2011a). In addition, two mouse models have recently been
described that primarily develop fatal encephalitis (Dups
et al., 2012; Dhondt et al., 2013). Here, the recent devel-
opment and suitability of the mouse, hamster, ferret, and
AGM models for studying the pathogenesis of HNV as well
as their use in testing countermeasures are reviewed
(Table 1).

Hamster

Syrian golden hamsters (Mesocricetus auratus) can be
lethally challenged with HNV via the intranasal or intra-
peritoneal routes (Wong et al., 2003; Guillaume et al.,
2009; Rockx et al., 2011a; DeBuysscher et al, 2013).
Infection with a high dose of HNV results in severe acute
respiratory distress characterized by labored breathing,
serosanguineous nasal and oral exudates, and radiological
changes, including rapidly progressive increases in pulmo-
nary infilirates occurring as early as day one postchallenge.
Death typically occurs within 3-5 days postchallenge.
Interestingly, animals that are challenged with a low dose
of HNV develop respiratory distress, but in addition, also
develop severe neurological disease at the end stage of
disease by day 7-10. Neurological disease is characterized
by partial or complete paralysis, muscle fasciculations, and
seizures.

Gross pathological lesions are primarily seen in lungs and
brain. Large hemorrhagic lesions are present on the lungs
and can cover as much as 100% of the surface of the lung
by the end stage. Congestion of vessels in the brain was
also observed occasionally.

Histopathological changes are similar between the HNV
strains but can differ in severity and occur at earlier time
points in HeV- vs. NiV-M- vs. NiV-B-infected animals (Rockx
et al., 2011a; DeBuysscher et al., 2013). Pulmonary lesions
begin as focal to multifocal, predominantly peribronchial,
areas of mononuclear inflammation admixed with scattered
neutrophils and associated with necrosis of alveolar walls.
Over time lesions expand in size, and viral syncytial cells are
observed in both bronchial epithelium and the interstitium. At
the end stage of disease, multifocal areas of inflammation,
necrosis, fibrin exudation, and hemorrhage are observed in
the lungs with severe consolidation of entire lung lobes in
several cases.

Histopathological lesions in the brain are characterized by
multifocal areas of neuropil vacuolation (Fig. 1a), neuronal
necrosis, and moderate to severe meningitis (Fig. 1b).

Table 1 Characteristics of Henipavirus animal models and their use in studies of pathogenesis and testing of countermeasures

Experimental use

Histopathology

Clinical signs

Vaccine

Antivirals

Transmission

Pathogenesis

Brain

Lung

Neurological

Respiratory

Species

+H—*

Encephalitis, neuronal degradation,

None

Hypersensitivity,

None

Mice

microglial activation, glial reaction,

ataxia tremors,
partial paralysis

perivascular cuffing and nonsuppurative

meningitis
Perivascular cuffing, neurons with

+-F

Necrohemorrhagic

Tremors, partial

Labored breathing,

Hamster

eosinophilic inclusion bodies, edema,

meningitis

bronchopneumonia, peribronchial,
interstitial, and perivascular

paralysis,

serosanguineous nasal

discharge, diffuse

seizures

hemorrhages, necrotizing vasculitis,
Alveolar hemorrhage, edema
Focal necrotizing alveolitis and

pulmonary vasculitis

interstitial infiltrates

+-*

Perivascular cuffing, neurons with

Tremors, partial

Labored breathing,

Ferret

eosinophilic inclusion bodies,

nonsuppurative meningitis
Meningeal hemorrhaging and edema,

paralysis

serosanguineous nasal

discharge

Henipavirus animal models

Necrotizing alveolitis, pulmonary

Tremors, partial

Labored breathing,

African
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inclusion bodies, neurons were swollen
and vacuolated (degeneration) or were
fragmented with karyolysis (necrosis).

multifocal encephalitis, neurons with
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Fig. 1 Tropism of lethal Henipavirus infection in hamsters. Hendra virus
antigen is present in (a) focal areas of neuropil vacuolization in the brain,
(b) areas of meningitis, and (c) olfactory epithelium in nasal turbinates.
Sections were stained for HNV nucleoprotein (brown).

Blood vessels, neurons, glial cells, neuropil, ependyma, and
meninges stain positive for viral antigen. Lesions are
randomly distributed throughout the brain, affecting cere-
brum, cerebellum, hippocampus, and olfactory cortex simul-
taneously. Additional organs that are affected include heart,
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liver, kidneys, and bladder and are characterized by multi-
focal neutrophilic, histiocytic, and lymphocytic inflammation
with or without necrotizing vasculitis. Infectious HNV can be
recovered in a range of tissues, although HeV seems to be
more efficient in systemic dissemination.

The hamster model has been used to study transmission
and pathogenesis as well as testing of countermeasures.
Interestingly, a difference in initial sites of replication was
observed between HeV and NiV-M. NiV-M initially replicates
in the epithelium of the trachea and bronchi and progressing
to the alveoli and lung interstitium, whereas HeV only
replicates in the alveolar epithelium and interstitium. This
provides a potential mechanism for the differences in the
efficiency of zoonotic transmission observed between NiV-M
and HeV outbreaks (Rockx et al., 2011a). More recently,
this model was use to study animal-to-animal transmission
of NiV-M (De Wit et al., 2011). Virus transmission primarily
occurred through direct contact and not via aerosols (De Wit
et al., 2011). Overall, animal-to-animal transmission was not
very efficient which is in line with the limited human-to-hu-
man transmission observed during outbreaks. Transmission
studies have not been reported for HeV or the Bangladesh
strain of NiV.

Studies into the pathogenesis of these viruses in ham-
sters have been limited by the lack of hamster-specific
reagents. The recent development of molecular assays for
the characterization of hamster gene expression (Zivcec
et al., 2011) has been crucial in characterizing the host
response to HNV infection (Rockx et al., 2011a; DeBuys-
scher et al., 2013). Interestingly, HNV infection of the brain
results in increased permeability of the blood-brain barrier
(BBB) and expression of TNF-o and IL-1B (Rockx et al.,
2011a). These pro-inflammatory cytokines play a role in
BBB permeability and the induction of neuronal injury and
death. It is unknown whether disruption of the BBB is a
direct cytopathic effect of virus replication in the endothelium
or an indirect effect through expression of TNF-o and IL-1
by neurons and microglia.

Two routes of HNV entry into the CNS have been
proposed. First, following intranasal challenge, HNV initially
targets the olfactory epithelium in the nasal turbinates
(Munster et al., 2012) (Fig. 1c). It has been shown that
NiV-M-infected neurons can extend through the cribriform
plate and into the olfactory bulb as a mode of entry into the
CNS (Munster et al., 2012). Second, while lymphocytes are
not permissive to infection with NiV, it has been shown that
the virus can efficiently bind to leukocytes and transfer
infection to endothelial and Vero cells (Mathieu et al.,
2011). In hamsters, NiV-bound leukocytes can transfer
lethal NiV infection into naive animals, demonstrating
efficient virus transinfection in vivo as a method of viral
dissemination.

Finally, the hamster model has been used to test the
efficacy of a variety of antiviral and vaccine candidates
such as chloroquine, ribavirin, poly I:C, neutralizing anti-
bodies, and adeno-associated virus vectored vaccines
(Guillaume et al,, 2004, 2006, 2009; Georges-Courbot
et al., 2006; Freiberg et al, 2010; Porotto et al., 2010;
Ploquin et al., 2013).
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Ferrets

In ferrets (Mustela putorius furo), HNV infection via the
oro-nasal route results in the development of fever at days
4-7 postchallenge and rapidly progresses to severe respi-
ratory distress and neurological signs between days 6 and
10 (depending on challenge dose). Clinical signs include
cough, nasal discharge, shortness of breath, edema of the
head, tremors, and partial or complete limb paralysis
(Bossart et al., 2009; Pallister et al., 2011). Unlike hamsters
(Rockx et al., 2011a), and no correlation between challenge
dose and clinical outcome is observed in these animals
(Bossart et al., 2009).

Gross pathological changes are primarily limited to the
respiratory tract and include scattered small pinpoint hem-
orrhagic lesions on the surface of the lungs. These lesions
are notably distinct from the large hemorrhagic lesions
observed in hamsters and AGM (Geisbert et al., 2010;
Rockx et al., 2010, 2011a). In addition to lesions in the
lungs, hemorrhages in lymph nodes can be observed in
some animals.

Fig. 2 Tropism of lethal Henipavirus infection in ferrets. Hendra virus
antigen is present in (a) focal areas of necrotizing alveolitis and (b)
neurons in the brain. Sections were stained for HNV nucleoprotein
(brown).

Henipavirus animal models

Histopathological changes primarily involve the lungs,
spleen, and kidneys (Bossart et al., 2009). They are
characterized by acute focal necrotizing alveolitis and
pulmonary vasculitis in the lungs (Fig. 2a) and by necrosis
in spleen and kidney. While typically no evidence of
vasculitis or encephalitis is observed in these animals,
nonsuppurative meningitis can be observed occasionally.

Viral antigen is detected in syncytial cells of small blood
vessels and the alveolar walls in lungs as well as in the
necrotic glomerular and tubular epithelium in the kidneys.
Despite the near absence of histopathological changes in
the brain, HNV antigen can be detected in meningeal blood
vessels, choroid plexus endothelium and in neurons
(Fig. 2b). HNV genome can be detected in a variety of
tissues including the respiratory tract, brain, liver, spleen,
and kidneys. In addition, low level viremia can be detected in
most animals. Finally, low level virus shedding is observed
in both pharyngeal and rectal swabs.

This model has been used to compare the possible
differences in transmission and pathogenesis between the
Malaysia and Bangladesh strain of NiV (Clayton et al.,
2012). Over the course of infection in ferrets, significantly
higher levels of virus are recovered from oral secretions of
animals infected with the Bangladesh strain compared with
NiV-M. However, no attempt at studying animal-to-animal
transmission has been made in this model.

While reagents for ferrets are limited, several immuno-
logical and molecular assays are now available to study the
host responses following viral infection (Rowe et al., 2010;
Ljungberg et al., 2012; Leon et al,, 2013). In addition to
transmission and pathogenesis studies, these models have
also been successfully used to test both passive immuni-
zation and vaccine candidates, as well as studying long--
term immunity of a vaccine candidate (Bossart et al., 2009;
Pallister et al., 2011, 2013).

Nonhuman primates

To date, experimental challenge studies with HNV have only
been reported for squirrel monkeys (Saimiri sciureus) and
African green monkeys (AGM; Chlorocebus aethiops)
(Geisbert et al., 2010; Marianneau et al., 2010; Rockx
et al., 2010). Experimental infection of squirrel monkeys
requires an intravenous challenge and does not result in a
uniformly lethal model (Marianneau et al., 2010).
Intratracheal inoculation of AGM with HeV or NiV
(Malaysia strain) results in a uniformly lethal infection with
animals dying of acute respiratory distress within 7-9 or
9-12 days postchallenge, respectively (Geisbert et al.,
2010; Rockx et al., 2010). Clinical signs include nasal
discharge and labored breathing. Chest x-rays show
an acute onset of extensive diffuse interstitial infiltrates
1-2 days prior to death. Gross pathological changes are
primarily limited to the respiratory tract and include
sanguineous discharge from the nares, edema, hemor-
rhagic lesions of the lungs covering over 90% of the
surface and the presence of serous fluid in the thoracic
cavity (Rockx et al., 2010). In addition to the lesions in the
lung, congestion of vessels in the brain is also observed
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as well as focal hemorrhages in the bladder in some
animals.

Interestingly, while neurological signs are typically not
observed in HNV-infected animals that succumb, animals
that either show a delay in time to death (Rockx et al., 2010)
or survived due to treatment strategies (Bossart et al., 2011)
exhibit neurological signs. These include behavioral
changes, muscle fasciculations of the arms and face and
seizures (Rockx et al., 2010; Bossart et al., 2011).

Histopathology in the lungs is characterized by acute
respiratory distress syndrome (ARDS) such as changes
including alveolar hemorrhaging, pulmonary edema, and
inflammation. Syncytia formation in lung endothelial cells is
prominent. HNV antigen in the lungs is primarily detected in
endothelial cells of small blood vessels and the alveolar
walls. In the brain, focal areas of HNV antigen are observed
in neuron cell bodies and axons as well as surrounding cells
in animals with and without neurological signs.

Similar to hamsters and ferrets, infectious HNV can be
recovered in a wide range of tissues, including respiratory
tract, brain, heart, liver, spleen, and kidney suggesting
efficient dissemination of the virus and a broad tissue
tropism (Geisbert et al., 2010; Rockx et al., 2010).

Information on the pathogenesis of HNV in the AGM
model has been limited to data from nonlethal procedures
(x-ray, blood sampling, virus shedding) and the end-stage of
disease for HeV and the Malaysia strain of NiV. To date, no
studies have been published using the Bangladesh strain. A
wide variety of reagents are available to study the patho-
genesis of viruses in NHP (Rockx et al., 2011b; Safronetz
et al., 2011; Richt et al., 2012).

Despite the recent development and limited characteriza-
tion of the AGM model, it is considered the ‘gold-standard’
for testing the efficacy of countermeasures against HNV
infection. These models have already been instrumental in
testing the efficacy of antivirals (Rockx et al., 2010), passive
immunization (Bossart et al., 2011), and vaccination (Boss-
art et al., 2012; Yoneda et al., 2013).

Mice

During initial studies, mice were found to be resistant to
infection with HeV and NiV, with exception of intracranial
injection in juvenile mice (Westbury et al., 1995; Wong
et al., 2003). More recently, two mouse models have been
described (Dups et al., 2012; Dhondt et al., 2013). First, a
new model for HeV encephalitis in mice shows that aged
animals (Balb/c and C57BL/6 strains) are susceptible to
HeV infection via the intranasal route (Dups et al., 2012).
Infected animals exhibit signs of ataxia, muscle tremors, and
hypersensitivity. Histopathological changes include neuro-
nal degeneration, microglial activation, glial reaction, peri-
vascular cuffing, and nonsuppurative meningitis with a lack
of vasculitis. Viral antigen is present in the olfactory tract, the
cortex by the olfactory tract and the piriform lobe, suggesting
that HeV potentially enters the CNS via an anterograde
route along the olfactory sensory neurons (Dups et al.,
2012), similar to what has been shown in hamsters (Munster
et al., 2012).

B. Rockx

In addition to aged animals, it has also been shown that
mice lacking the receptor for type | interferon are susceptible
to both HeV and NiV (Dhondt ef al., 2013). In this model,
animals challenged via the intraperitoneal route develop
acute and fatal encephalitis within 8 days postchallenge.
Histopathological changes in the brain include parenchymal
and meningeal nonsuppurative inflammation, vasculitis, and
perivascular cuffing. Ependymal cells and neurons are
positive for viral antigen.

While these models do not recapitulate the respiratory
disease seen in human cases, they can be useful in
studying the pathogenesis of HNV in the CNS. In addition,
the availability of an extensive range of reagents for mice as
well as transgenic mice on these genetic backgrounds will
greatly improve the understanding of HNV neuropathogen-
esis. Finally, these models will be useful for early testing for
efficacy of novel antiviral drugs.

Conclusion

Experimental models of HNV infection that mimic the
disease progression seen in humans are crucial in furthering
our understanding of the pathogenesis of these viruses. The
availability of these well-characterized animal models and
the recent development of reverse genetics systems for
HNV will allow for in-depth studies into the role of host and
virus genes in HNV pathogenesis (Yoneda et al., 2006,
2010; Marsh et al., 2013). In addition, these recombinant
HNV can now be used to express a reporter gene (Marsh
et al., 2013) for detection by in vivo small animal molecular
optical imaging.

While these animal models are very promising, caveats
exist in the translation of findings from animal models to
human cases of HNV infection. In particular, it has been
shown that entry into the CNS can be achieved via the
olfactory bulb; however, it is unknown whether this route is
also biologically relevant in human infections, as the
olfactory epithelial surface is relatively large in these species
compared with man. No evidence of olfactory bulb involve-
ment was reported in a limited number of human cases
(Wong et al., 2002). It also remains unclear whether the
genetic differences between the Bangladesh and Malaysia
strains of NiV are responsible for the observed differences in
transmission and pathogenesis. In human cases, the case
fatality rate is higher in outbreaks of NiV-B compared with
those with NiV-M; however, in hamsters and ferrets, there is
only a limited difference in virulence (Clayton et al., 2012;
DeBuysscher et al.,, 2013). And in fact, in these models,
NiV-M appears to be more virulent. The availability of a
reverse genetics system will now allow us to study the role
of this genetic variability in the differences in disease
outcome between the distinct HNV strains by creating
chimeric viruses and testing them in these animal models.
Finally, while late-onset encephalitis and recrudescence of
HNV infection have been observed in human cases, these
have not been studied in any of the animal models.

With regard to the development of countermeasures, the
availability of a lethal mouse model will be invaluable for
initial screening of antiviral candidates in the mouse model.
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As HNV is highly virulent, human efficacy studies are neither
ethical nor feasible during the development of countermea-
sures. Therefore, the Food and Drug Administration has
published the ‘Animal Rule’, which requires that experimen-
tal animal models of HNV are available which recapitulate
the disease progression seen in humans and are expected
to react to infection and treatment in these models with a
response predictive for humans (Snoy, 2010). For these
purposes, evaluation of these countermeasures, using the
hamster or ferret model, is recommended with the ultimate
goal of efficacy testing in the AGM model.

Acknowledgements

This work was funded by start-up funds of Department of
Pathology and the Institute of Human Infections & Immunity,
University of Texas Medical Branch, Galveston, TX. Thanks
to Drs. Olivier Escaffre and Viktoriya Borisevich at the
UTMB for critically reading this manuscript.

References

Bossart KN, Zhu Z, Middleton D et al. (2009) A neutralizing human
monoclonal antibody protects against lethal disease in a new
ferret model of acute nipah virus infection. PLoS Pathog 5:
e1000642.

Bossart KN, Geisbert TW, Feldmann H et al. (2011) A neutralizing
human monoclonal antibody protects african green monkeys from
hendra virus challenge. Sci Transl Med 3: 105ra103.

Bossart KN, Rockx B, Feldmann F et al. (2012) A Hendra virus G
glycoprotein subunit vaccine protects African green monkeys
from Nipah virus challenge. Sci Transl Med 4: 146ra107.

Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG,
Zaki SR, Paul G, Lam SK & Tan CT (1999) Fatal encephalitis due to
Nipahvirusamongpig-farmersinMalaysia. Lancet354:1257-1259.

Chua KB, Bellini WJ, Rota PA et al. (2000) Nipah virus: a recently
emergent deadly paramyxovirus. Science 288: 1432-1435.

Clayton BA, Middleton D, Bergfeld J, Haining J, Arkinstall R, Wang L
& Marsh GA (2012) Transmission routes for nipah virus from
Malaysia and Bangladesh. Emerg Infect Dis 18: 1983-1993.

De Wit E, Bushmaker T, Scott D, Feldmann H & Munster VJ (2011)
Nipah virus transmission in a hamster model. PLoS Negl Trop Dis
5: e1432.

DeBuysscher BL, De Wit E, Munster VJ, Scott D, Feldmann H &
Prescott J (2013) Comparison of the pathogenicity of Nipah virus
isolates from Bangladesh and Malaysia in the Syrian hamster.
PLoS Negl Trop Dis 7: e2024.

Dhondt KP, Mathieu C, Chalons M, Reynaud JM, Vallve A, Raoul H
& Horvat B (2013) Type | interferon signaling protects mice from
lethal henipavirus infection. J Infect Dis 207: 142-151.

Dups J, Middleton D, Yamada M, Monaghan P, Long F, Robinson
R, Marsh GA & Wang LF (2012) A new model for Hendra virus
encephalitis in the mouse. PLoS ONE 7: e40308.

Freiberg AN, Worthy MN, Lee B & Holbrook MR (2010) Combined
chloroquine and ribavirin treatment does not prevent death in a
hamster model of Nipah and Hendra virus infection. J Gen Virol
91: 765-772.

Geisbert TW, Daddario-Dicaprio KM, Hickey AC, Smith MA, Chan
YP, Wang LF, Mattapallil JJ, Geisbert JB, Bossart KN & Broder
CC (2010) Development of an acute and highly pathogenic
nonhuman primate model of nipah virus infection. PLoS ONE 5:
€10690.

Henipavirus animal models

Georges-Courbot MC, Contamin H, Faure C, Loth P, Baize S,
Leyssen P, Neyts J & Deubel V (2006) Poly(l)-poly(C12U) but not
ribavirin prevents death in a hamster model of Nipah virus
infection. Antimicrob Agents Chemother 50: 1768-1772.

Guillaume V, Contamin H, Loth P et al. (2004) Nipah virus:
vaccination and passive protection studies in a hamster model.
J Virol 78: 834-840.

Guillaume V, Contamin H, Loth P, Grosjean |, Courbot MC, Deubel
V, Buckland R & Wild TF (2006) Antibody prophylaxis and therapy
against Nipah virus infection in hamsters. J Virol 80: 1972-1978.

Guillaume V, Wong KT, Looi RY, Georges-Courbot MC, Barrot L,
Buckland R, Wild TF & Horvat B (2009) Acute Hendra virus
infection: analysis of the pathogenesis and passive antibody
protection in the hamster model. Virology 387: 459-465.

Gurley ES, Montgomery JM, Hossain MJ et al. (2007) Per-
son-to-person transmission of Nipah virus in a Bangladeshi
community. Emerg Infect Dis 13: 1031-1037.

Hayman DT, Suu-Ire R, Breed AC, McEachern JA, Wang L, Wood
JL & Cunningham AA (2008) Evidence of henipavirus infection in
West African fruit bats. PLoS ONE 3: e2739.

Hossain MJ, Gurley ES, Montgomery JM et al. (2008) Clinical
presentation of nipah virus infection in Bangladesh. Clin Infect Dis
46: 977-984.

Leon AJ, Banner D, Xu L et al. (2013) Sequencing, annotation, and
characterization of the influenza ferret infectome. J Virol 87:
1957-1966.

Ljungberg K, McBrayer A, Camp JV et al. (2012) Host gene
expression signatures discriminate between ferrets infected with
genetically similar HIN1 strains. PLoS ONE 7:(7): e40743.

Lo MK & Rota PA (2008) The emergence of Nipah virus, a highly
pathogenic paramyxovirus. J Clin Virol 43: 396-400.

Luby SP (2013) The pandemic potential of Nipah virus. Antiviral Res
100: 38-43.

Luby SP, Rahman M, Hossain MJ etal. (2006) Foodborne
transmission of Nipah virus, Bangladesh. Emerg Infect Dis 12:
1888-1894.

Luby SP, Gurley ES & Hossain MJ (2009) Transmission of human
infection with Nipah virus. Clin Infect Dis 49: 1743-1748.

Marianneau P, Guillaume V, Wong T et al. (2010) Experimental
infection of squirrel monkeys with nipah virus. Emerg Infect Dis
16: 507-510.

Marsh GA, Haining J, Hancock TJ et al. (2011) Experimental
infection of horses with Hendra virus/Australia/horse/2008/Red-
lands. Emerg Infect Dis 17: 2232-2238.

Marsh GA, Virtue ER, Smith | et al. (2013) Recombinant Hendra
viruses expressing a reporter gene retain pathogenicity in ferrets.
Virol J 10: 95.

Mathieu C, Pohl C, Szecsi J, Trajkovic-Bodennec S, Devergnas S,
Raoul H, Cosset FL, Gerlier D, Wild TF & Horvat B (2011) Nipah
virus uses leukocytes for efficient dissemination within a host.
J Virol 85: 7863-7871.

Middleton DJ, Westbury HA, Morrissy CJ, Van der Heide BM,
Russell GM, Braun MA & Hyatt AD (2002) Experimental Nipah
virus infection in pigs and cats. J Comp Pathol 126: 124-136.

Munster VJ, Prescott JB, Bushmaker T, Long D, Rosenke R,
Thomas T, Scott D, Fischer ER, Feldmann H & De Wit E (2012)
Rapid Nipah virus entry into the central nervous system of
hamsters via the olfactory route. Sci Rep 2: 736.

Olson JG, Rupprecht C, Rollin PE, An US, Niezgoda M, Clemins
T, Walston J & Ksiazek TG (2002) Antibodies to Nipah-like
virus in bats (Pteropus lylei), Cambodia. Emerg Infect Dis 8:
987-988.

O’Sullivan JD, Allworth AM, Paterson DL, Snow TM, Boots R,
Gleeson LJ, Gould AR, Hyatt AD & Bradfield J (1997) Fatal

Pathogens and Disease (2014), 71, 199-206, © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved 205



Henipavirus animal models

encephalitis due to novel paramyxovirus transmitted from horses.
Lancet 349: 93-95.

Pallister J, Middleton D, Wang LF et al. (2011) A recombinant Hendra
virus G glycoprotein-based subunit vaccine protects ferrets
from lethal Hendra virus challenge. Vaccine Aug 5; 29(34): 5623
5630.

Pallister JA, Klein R, Arkinstall R et al. (2013) Vaccination of ferrets
with a recombinant G glycoprotein subunit vaccine provides
protection against Nipah virus disease for over 12 months. Virol
J 10: 237.

Playford EG, McCall B, Smith G, Slinko V, Allen G, Smith I, Moore
F, Taylor C, Kung YH & Field H (2010) Human Hendra virus
encephalitis associated with equine outbreak, Australia, 2008.
Emerg Infect Dis 16: 219-223.

Ploquin A, Szecsi J, Mathieu C, Guillaume V, Barateau V, Ong KC,
Wong KT, Cosset FL, Horvat B & Salvetti A (2013) Protection
against henipavirus infection by use of recombinant adeno-asso-
ciated virus-vector vaccines. J Infect Dis 207: 469-478.

Porotto M, Rockx B, Yokoyama CC et al. (2010) Inhibition of Nipah
virus infection in vivo: targeting an early stage of paramyxovirus
fusion activation during viral entry. PLoS Pathog 6: e1001168.

Rahman MA, Hossain MJ, Sultana S et al. (2012) Date palm sap
linked to Nipah virus outbreak in Bangladesh, 2008. Vector Borne
Zoonotic Dis 12: 65-72.

Richt JA, Rockx B, Ma W et al. (2012) Recently emerged swine
influenza A virus (H2N3) causes severe pneumonia in Cynomol-
gus macaques. PLoS ONE 7: €39990.

Rockx B, BossartKN, Feldmann F et al. (2010) A novel model of lethal
Hendra virus infection in African green monkeys and the effective-
ness of ribavirin treatment. J Virol Oct; 84(19): 9831-9839.

Rockx B, Brining D, Kramer J, Callison J, Ebihara H, Mansfield K &
Feldmann H (2011a) Clinical outcome of henipavirus infection in
hamsters is determined by the route and dose of infection. J Virol
85: 7658-7671.

Rockx B, Feldmann F, Brining D et al. (2011b) Comparative
pathogenesis of three human and zoonotic SARS-CoV strains
in cynomolgus macaques. PLoS ONE 6: e18558.

Rockx B, Winegar R & Freiberg AN (2012) Recent progress in
henipavirus research: molecular biology, genetic diversity, animal
models. Antiviral Res 95: 135-149.

Rowe T, Leon AJ, Crevar CJ et al. (2010) Modeling host responses
in ferrets during A/California/07/2009 influenza infection. Virology
401: 257-265.

Safronetz D, Rockx B, Feldmann F etal (2011) Pandemic
swine-origin H1N1 influenza A virus isolates show heterogeneous
virulence in macaques. J Virol 85: 1214-1223.

Selvey LA, Wells RM, McCormack JG, Ansford AJ, Murray K,
Rogers RJ, Lavercombe PS, Selleck P & Sheridan JW (1995)

B. Rockx

Infection of humans and horses by a newly described morbillivi-
rus. Med J Aust 162: 642-645.

Snoy PJ (2010) Establishing efficacy of human products using
animals: the US Food and Drug Administration’s “Animal Rule”.
Vet Pathol Sep; 47(5): 774-778.

Tan CT, Goh KJ, Wong KT et al. (2002) Relapsed and late-onset
Nipah encephalitis. Ann Neurol 51: 703-708.

Torres-Velez FJ, Shieh WJ, Rollin PE, Morken T, Brown C, Ksiazek
TG & Zaki SR (2008) Histopathologic and immunohistochemical
characterization of Nipah virus infection in the guinea pig. Vet
Pathol 45: 576-585.

Weingartl H, Czub S, Copps J et al. (2005) Invasion of the central
nervous system in a porcine host by nipah virus. J Virol 79: 7528—
7534.

Westbury HA, Hooper PT, Selleck PW & Murray PK (1995) Equine
morbillivirus pneumonia: susceptibility of laboratory animals to the
virus. Aust Vet J 72: 278-279.

Wong KT, Shieh W-J, Kumar S et al. (2002) Nipah virus infection:
pathology and pathogenesis of an emerging paramyxoviral
zoonosis. Am J Pathol 161: 2153-2167.

Wong KT, Grosjean |, Brisson C et al. (2003) A golden hamster
model for human acute Nipah virus infection. Am J Pathol 163:
2127-2137.

Wong KT, Robertson T, Ong BB, Chong JW, Yaiw KC, Wang LF,
Ansford AJ & Tannenberg A (2009) Human Hendra virus infection
causes acute and relapsing encephalitis. Neuropathol Appl
Neurobiol 35: 296-305.

Yoneda M, Guillaume V, lkeda F, Sakuma Y, Sato H, Wild TF & Kai
C (2006) Establishment of a Nipah virus rescue system. P Natl
Acad Sci USA 103: 16508-16513.

Yoneda M, Guillaume V, Sato H, Fujita K, Georges-Courbot MC,
Ilkeda F, Omi M, Muto-Terao Y, Wild TF & Kai C (2010) The
nonstructural proteins of Nipah virus play a key role in
pathogenicity in experimentally infected animals. PLoS ONE 5:
e12709.

Yoneda M, Georges-Courbot MC, lkeda F, Ishii M, Nagata N,
Jacquot F, Raoul H, Sato H & Kai C (2013) Recombinant
measles virus vaccine expressing the Nipah virus glycoprotein
protects against lethal Nipah virus challenge. PLoS ONE 8:
e58414.

Young PL, Halpin K, Selleck PW, Field H, Gravel JL, Kelly MA &
Mackenzie JS (1996) Serologic evidence for the presence in
Pteropus bats of a paramyxovirus related to equine morbillivirus.
Emerg Infect Dis 2: 239-240.

Zivcec M, Safronetz D, Haddock E, Feldmann H & Ebihara H (2011)
Validation of assays to monitor immune responses in the Syrian
golden hamster (Mesocricetus auratus). J Immunol Methods 368:
24-35.

206 Pathogens and Disease (2014), 71, 199-206, © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved



