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Abstract - -  Zusammenfassung 

Order Statistics mad ~elAnear Assignment Problem. Under mild conditions on the distribution function 
F, we analyze the a s ~ p t o t i c  behavior in expectation of the smallest order statistic, both for the case that 
F is defined on (-- 0o, + co) and for the case that F is defined on (0, co). These results yield asymptotic 
estimates of the expected optimal value of the linear assignment problem under the assumption that the 
cost coefficients are independent random variables with distribution function F. 

AMS Subject Classifications: 68E10, 62G30. 
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Ordnungsstatistiken und das lineare Zuordnungsproblem. Wir analysieren das asymptotische Verhalten 
des Erwartungswerts der kleinsten Ordnungsstatistik unter schwachen Voraussetzungen fiber die 
Verteilungsftmktion F. Dabei wird unterschieden, ob F auf ganz ( -  co, + co) oder nur auf (0, co) 
definiert ist. Die Ergebnisse liefem asymptotische Absch/itzungen for den Erwartungswert des 
optimalen Wertes beim linearen Zuordnungsproblem, wobei angenommen wird, dab die Kostenkoeffi- 
zienten unabh~ingige Zufallsvariable mit Verteilungsfunktion F sind. 

1. Introduction 

Given an n x n matrix (aij), the linear assignment problem (LAP), is to find a 
n 

permutation q) e S, that minimizes ~, aieo. This classical problem, which has many 
i = 1  

applications, can be solved efficiently by a variety of algorithms (see, e.g. (Lawler 
1976)). It  Can be conveniently viewed as the problem of finding a minimum weight 
perfect matching in a complete bipartite graph. Here we shall be concerned with a 
probabiIistic analysis of the value Z of the LAP, under the assumption that the 
coefficients a u are independent, identically distributed (i.i.d.) random variables with 
distribution function F. We shall be particularly interested in the asymptotic 
behavior of n 

E_Z = E min ~ _ai~o(i). (i) 
~~ i = 1  

Previous analyses of this nature have focused on several special choices for F. In the 
case that _a~-j is uniformly distributed on (0, t), E_Z = 0 (1); the initial upper bound of 3 
on the constant (Walkup 1979) was recent}y improved to 2 (Karp 1984). In the case 
that -_aij is exponentialty distributed, E ( -  Z_ ) = 0 (n log n) (Loulou 1983). 
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We shall generalize the above results by  showing that ,  under  mild conditions on F, 
E_Z is asymptot ic  to nF  -1 (l/n). The interpreta t ion of this result is that  the 
asymptot ic  behavior  of EZ_/n is determined by that  of the smallest order statistic. In  
Section 2, we establish lower and upper  bounds  o n  the expected value of this 
statistic, that  m a y  be of interest on their own. In Section 3, we apply  the technique 
developed in (Walkup 1979) to these bounds  to arrive at the desired result. As we 
shall see, the condit ion on F under  which the result is valid, is in a sense bo th  a 
necessary and a sufficient one. 

2. Order Statistics 

Suppose that  X i ( i=  l, ..., n) is a sequence of i.i.d, r a n d o m  variables with 
distribution function F. I t  is well known that  Xi__dF-l(U_i), where the U i are 
independent  and  uniformly distr ibuted on (0, 1), and where 

F - i  (y) = inf {v I F (v) __ y}. 

The  smallest order statistic (i. e., the min imum) of r a n d o m  variables _Y1, ..., Y, will be 
denoted by -Yl:,. 

We first consider the case that  

l im F -1 ( l / n )=  - oe (2) 

under the addit ional  assumpt ion  that  

+co 

[xl F ( d x ) < o e .  (3) 
- c o  

We start  by deriving an upper  bound on E_X 1 :n. 

L e m m a  1: (F defined on ( -  ~ ,  + ~)) .  (1)((?) 
E _Xl:n__<f -I  1 -  1 -  + n  ( l - F ( 0 ) )  " -a  x F ( d x ) .  (4) 

o 

Proof: We observe that  

E X l : , = E m i n  {F 1 (_U1), . . . , F  -1 (U,)} 
(5) 

= E f -  i ( _ g l  : n)" 

Let _Vii = max  { U i, l/n} (i = 1 . . . .  , n). Clearly, E F - 1 (U1 :.) _< E F -  1 (_Vi :.). 

Hence,  

EF- i (U,:.)  < 

F - i  (l/n) Pr  {V i :. = 1/n} + E ( F  - i  (_V i :.)- Iv,:~ 
1 

F -1 (l/n) (1 - P r  {Ul :n>  1/n})+n y F -1 (x)(1 - -x)  " - i  dx.  
1 / n  

(6) 
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Now (2) and (3) imply that  the latter term is bounded  by 
1 

n y F - i ( x ) ( 1 - x ) " - i d x < _  
F(o) 

1 

n (1 - F (Ol ) ' - t  ~ F - i  (x) dx  = 
F(O) 

n(1 -F (O) )  " - i  ~ x F(dx).  
0 

Together,  (6) and (7) imply (4). 

(7) 

[ ]  

Since 1 - F ( 0 ) <  1, we obtain as an immediate  consequence that  

E_X1 :n 1 
Iim inf F -  ~ > 1 - - - .  (8) 

.~ oo (l/n) e 

To  derive a lower bound on E XI:  . of the same form (and thus an upper  bound on 
EX_I:,/F-I(1/n)), an assumption is needed on the rate of decrease of F when 
x ~  - co). We shall assume that  F is a function of positive decrease at - co, i.e., that  

F(-x) 
lira inf > 1 (9) 

~oo F( - -ax)  

for some a > 1. It can be shown (De Haan  and Resnick 1981) that this condit ion 
implies that 

In (lira inf F ( -  x)/F ( -  ax)) 

(F) = lira (10) 
a-* ~ In a 

exists and is positive. The condit ion is satisfied, for instance, when F(x) decreases 
polynomially ( 0 < a ( F ) < o v )  or exponential ly (a (F )=  co) fast when x - - * - c o .  
Condi t ion (9) implies and is equivalent with (De Haan  and Resnick 1981) 

F -  i (1/ay) 
limsupy~oo F- i (1 /y )  < c o  (11) 

with a > 1. Again, 

In (lira sup F - i  (1/ay)/F - i (l/y)) 
y--+~ 

lim (12) 
a ~ o  l n a  

can be shown to exist and to be equal to fi (F )=  1/c~ (F). 

Theorem 1 : (F defined on ( -  co, + co)). 

E X - 1  : n 
lira sup F -  1 < co 

,~ co (l/n) 

if and only if F is a function of positive decrease at - oo with ~ (F) > 1. 

(13) 
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Proof: We note that 
F(O) 1 

EF-i(U_i:.) =n ~ F - l ( x ) ( 1 - x ) " - l d x + n  ~ V - l ( x ) ( 1 - x ) " - l d x .  
o F (o) 

The latter term is bounded by 

n(1-F(O)) "-~ ~ x F(dx) 
0 

and hence 
1 

n j F - l ( x ) ( 1 - x ) ' ~ - l d x  
lim F(o) = 0 .  
,-~ ~ V - 1 ( l / n )  

If nF(O)> 1, the former term is bounded from below by 

n F(O) 
F - i ( x ) ( 1 - x ) n d x  > - 

1-F(O) o 

n F(o) 
F- l ( x )  e x p ( - n x ) d x  = 

1-F(O) o 

1 
F - i  ( x / n ) e x p ( - x ) d x +  

1-F(O) o 

1 .r(o)  
f - 1  ( x /n ) exp ( - x )dx .  

1-F(O) 1 

(14) 

(15) 

(16) 

(17) 

< co. (21) 

1 

<B S x - P e x p ( - x )  dx<  c~. (20) 
0 

F-  t (x/n) 
0<- <_Bx -~ 

F -  1 (1/.) 

(cf. (12)), so that, for sufficiently large n, 
1 

F -1 (x/n) e x p ( - x ) d x  
0 

F-1 (l/n) 

Together, (20) and (18) imply (13). 

Now, suppose that (13) is satisfied, i.e., that 
F(o) 

n ~ F - l ( x ) ( 1 - x ) " - l d x  
lira sup o 

.-co f a (l/n) 

(19) 

The monotonicity o f F -  1 implies that, for large n, the latter term is at least as large as 

F-1 (l/n) 
e x p ( - x ) d x .  (18) 

l - F ( 0 )  

Also, (11), c~ (F) > 1 and (Frenk 1983, Theorem 1.1.7) imply that there exist constants 
B > 0  and fie(0, 1) such that for sufficiently large n and xe(0, 1) 
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I f  a < n F (0), then 

a/n F (0) 

nF-l(a/n) ~ (1-x)"-ldx>_n ~ e - l (x ) (1-x)" -*dx  (22) 
0 0 

and hence 

F- l (a/n) =o ( 1 )  (23) 
lim_+sup F - 1  (l/n) 1 - exp ( -  a) " 

Hence  (cf. (11)) F is of positive decrease with e (F )>  1, and all that  has to be shown is 
tha t  c~ (F) @ 1. Thus,  it is sufficient to show tha t  e (F) = 1 implies tha t  

1 

F-'(x/n)dx F- (1/xn)x-2d  
l im sup o = 1 = oo. (24) 

,-+ ~ F - 1  (l/n) F - 1  (l/n) 

In (De H a a n  and Resnick 1981) it is shown that  there exists a sequence nk and a 
fu~action go (z) _> z (z_> 1) such that  

F -1 (1/Xnk) 
lira = go (x) >_ x (25) 
k-+~ F-l(1/nk) 

for a lmost  every x_>l,  i.e., except in the (countably many)  points x where go 
is discontinuous.  But this implies the existence of a sequence xm, with 
Xm~(2m, 2m+ 1), such that  for all N 

• F- (1/xnk)X dx 1 1 2  

re 1 1 N 2 m + l ~  
.imsup' 

(26) 

which goes to + oo when N ~ o o .  [ ]  

L e m m a  1 and  Theorem 1 imply that,  under  condit ions (2) and (3), the following 
s ta tements  are equivalent:  

(i) F is a function of  posit ive decrease at - oo with c~ (F) > 1 ; 

EX_ l : n  EX_ I:  n 
(ii) 1 - e  -1 < l i m i n f  F -  1 (l/n) < l i m  sup F -  1 (l/n) < oo. 

N o w  let us deal with the (much simpler) case that  

lim (27, 
n ~ o o  

N o  addit ional  assumpt ion  such as (3) is needed. 

Lemma 2: (F defined on (0, oo)). 

(28) 
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Proof: Define 

1/n if _Ui>l/n 

-Wi = 0 if U i < 1/n. 
Then 

EX_I: =EF-~(UI: , )2EF- i (W~: , )=F -~ - . 

(29) 

(30) 

[ ]  

in two parts, corresponding to x e (0, 1) and x ~ (1, n) 

(34) 

(3s) 

(36) 

As before, we split the integral 
respectively. The first part  is bounded  by 

1 

F-~(1/n) ~ exp( -x )dx .  
o 

As in the proof  of Theorem 1, we can bound 

i F  (x/n) exp ( - x )  dx 1 

1 

F -  1 (l/n) 

by invoking (12). This yields the proof  of (32). 

Conversely, (32) implies that,  since for 0 < a < 1 

1 1 

F-i(a/n) S ( l ' x ) " - l d x < S  F - i ( x ) ( 1 - x )  " - ldx ,  
#In 0 

1 

nS 
0 

0 

F - i  (x) exp ( - n x ) d x =  

F -1 (x/n) exp ( - x ) d x .  

(33) 

1 

E-S l :n  = n  I F- l  (x) (1-  x) " - i d x <  
0 

Again, let us assume that  F - 1  satisfies (11), or that,  equivalently, 

r(x) 
lira inf > 1 (31) 
x ~o F(ax) 

for some a < 1. Thus, F being defined on (0, ~ ) ,  the function is assumed to be of 
positive decrease at 0. 

Theorem 2: (F defined on (0, oo)). 

EX_ I:n 
lim,~sup F -  1 (l/n) < oo (32) 

if and only if F is a function of positive decrease at O. 

Proof: 
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we may conclude that  

1 

F - 1  (a/n) ~ (1 - x y - '  d x  

lim sup a/, < oe (37) 
~-* ~o F -  1 (l/n) 

[ ]  which leads directly to (11). 

Hence,  in the case that  (27) holds, we have the following two equivalent conditions: 

(i) F is a function of positive decrease at 0; 

1 EX_I: , E X I :  n 
(ii) --_< lim inf F - 1 < lim sup < oo. 

e n-~oo ( l / n ) - ,~ - .~o  F - l ( 1 / n )  

We note that no condit ion on ~ (F) occurs in (i). We also note that  the case that F is 
defined on (c, oo) for any finite c can easily be reduced to the above one. 

3. The Linear Assignment Problem 

Our  analysis of the linear assignment problem is based on a technique developed in 
(Walkup 1981). Very roughly speaking, this approach can be summarized as 
follows: if in a complete, randomly weighted biparti te graph all edges but a few of 
the smaller weighted ones at each node are removed,  then the resulting graph will 
still contain a perfect matching with high probability.  In that  way we derive a 
probabilistie upper  bound on the value Z of the LAP.  

More  precisely, assume that  the LAP coefficients alj (i ,j  = 1,. . . ,  n) are i.i.d, r andom 
variables with distribution function F. It is possible to construct  two sequences b~j 
and _clj of i.i.d, r andom variables such that  

_alj __d rain {bij,-cij}. (38) 

Indeed, since we desire that  

Pr  {_atj> x } = P r  {min {_hi j, cij } _>x} = P r  {b_ij>x } Pr  { c i j > x } ,  

the common distribution function F of _bij and _c~ will have to satisfy 

1 - F (x) = (1 - F (x)) 2 (39) 
so that  

F -1 ( x ) = F  ~ (1 - (1  -x )2 ) .  (40) 

For  future reference, we again observe that  _bij d F -  1 (_Vij) and _ctj_d F -  1 (Wij) ' where 
Vi; and Wij are i.i.d, and uniformly distributed on (0, 1). If we fix any pair of indices 
(i,j), then the order  statistics of _Vii (j = 1, . . . ,  n) are independent  of and distributed as 
the order  statistics of _W~j(i= 1, . . . ,n); we shall denote these order  statistics by 
_VI: n <_ _V2: ~ <_... < _V,:, and _WI: n_< _W2: ._<... ~< W~:~ respectively. 

Now,  let _Gn be the complete directed biparti te graph on S =  {sl, ..., s,} and 
T =  {tt, ... , t~} with weight _b~j on arc (s i, tj) and c~i on arc (tj, si). For  any realization 
bli (co), cii (co), we construct  Gn (d, co) by removing arc (st, tj) unless bij (co) is one of the d 
smallest weights at st and by removing arc (t j, st) unless c~j (co) is one of the d smallest 

I2 Computing 39/2 
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weights at tj. Let us define P (n, d) to be the probability that  G. (d) contains a (perfect) 
matching. A counting argument can now be used to prove (Walkup 1981) that 

1 
1 - P (n, 2) < - -  (41) 

5n 

1 [ d \(a+l)(a-2) 
1 - P ( n , d ) < _ ~ : ~ n  ) (d>3) .  (421 

We use these estimates to prove two theorems about the asymptotic value of E_Z. 
Again, we first deal with the case that  

~lim F -  t (l/n) = - oo (43) 
tt - +  c o  

under the additional assumption that  
+ c o  

I xl /7 ' (dx) < oo. (44) 
- c o  

Theorem 3: (F defined on ( -  0% + oo)). 

I f  F is a function of positive decrease a t - - o o  with ~ (F)> 1, then 

( 1 -  _<liminf,_.co n F -  1 (l/n) _< lim sup,. co n F _ l ~ l / n  ) < oo. (45) 

Proof: Since 
EZ>__nEal: . (46) 

the upper bound in (45) is an immediate consequence of Theorem 1. 

For  the lower bound we apply (41) and (42) as follows. 

Obviously, 
E_Z = P (n, 2) E (_Z [ G, (2) contains a matching) 

(47) 
+ (1 - P (n, 2)) E (ZI _G~ (2) aoes  not  contain a matching). 

The second conditional expectation is bounded trivially by nEg,: ,  = 0 (n 2) (cf. (44)). 
The first conditional expectation is bounded by 

n E F -  1 (max { _g2:n, W2: n})" (48) 

Hence it suffices to prove that  

E F  -1 (max {_V2:,, _Wz:~) ) > 1 - 2 ~ i 3  T . (49) l iminf  F -1 (l/n) - - 

To this end, define x.  = 1 - (1 - 1/n) 1/2 and note from (40) that  F -  1 (x,) = F -  1 (1/n! so 
that  

E F -  1 (max {_V2:., W2: .})< 

F -  1 (l/n) Pr{ _Vz:.'<-x., _W2:. _< x.} + (50) 

E (F  -1 (max {V2: ", W2:.}) t~+x~v2,,, w+,,)>_+)- 
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To bound the first term, note that 

Pr {_V2 _<x., ~-- :n W -  2 : n ~ X n S - -  

(Pr {_V2: . _< Xn}) 2 = 

X - -  X n 

which tends to (1 - 3/(2 el/2)) 2 as n +  co. 

The second term in (50) is equal to 
1 

1 e-1 (x) d(Pr {_V2:,_<x}2)= 
x n 

1 

(51) 

(52) 

2 n ( n -  1) ~ F -1 (x) Pr {_V2:,<_x } x(1 -x )" -2dx .  
x n 

After a transformation x = l - ( 1 - y ) l / 2  (cf.(40)), we find that (52) for large n is 
bounded by 

1 

n ( n - 1 )  ~ F-tty)(1-(1-y)!/2)(1-y)~"-3)/2dy<_ 
v(o) (53) 

1 

n ( n -  1 ) (1 -F(O) )  (. F 
F (o)  

thus completing the proof of (49). [] 

Again, the case that 
lira F -~ ( i /n)=0 (54) 
n~oo 

is much simpler to analyze. 

Theorem 4: (F defined on (0, co)). 

I f  F is a function of positive decrease at O, then 
EZ EZ 

0 < lim inf - < lira sup - < (55) 
n f  -1 (1/n) - nF-CO/n)  ~ 

Proof: We have, for all d>3 ,  that 

E Z < (1 - P (n, d)) E (_Z[ _G. (d) does not contain a matching) + 

+ P (n, d) E (Z ] G. (d) does contain a matching) (56) 

< 0 (d a2-a-2 n -d2+a+4) + nEP-  1 (max { _Va:,, _l_Wd :,) ) . 

d2 +d-l-4 1 d 2 + d + 3 + f l  Asin(19),weuseconstantsB, f l>Otoboundn- /nF-  (1/n)byBn- 
and choose d such that - d  2 + d + 3 + f l < 0 .  For this value d, we bound 
EF -1 (max {_Vd:,, _Wd:~} ) as before by (:)1 

d ~ F - t  (x) Pr {_Va:.Nx} (1--x)n-axd-ldx. 
0 

12" 
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These two bound ing  arguments  yield that  lim sup EZ_/nF ~ ( l / n ) <  or. The lower 

bound  on lim i n fEZ /nF-1  (l /n) follows from (46). []  
n --+ c o  

The condit ions of positive decrease on F turned out to be necessary as well as 
sufficient to describe the asymptotic behavior  of the smallest order statistic 
(Theorems 1 and  2) that  play an impor tan t  role in the above theorems. It  can easily 
be seen that  this condi t ion is necessary and  sufficient in Theorem 4 as well, and  one 
suspects that  the same holds for Theorem 3. 

Theorems 3 and  4 capture the behavior  of the expected LAP value for a wide range 
of distributions.  To derive almost  sure convergence results under  the same mild 
condit ions of F,  the results from (Walkup 1981) would have to be strengthened 
further. For  special cases such as the uniform distr ibution,  however, almost sure 
results can indeed be derived quite easily (see (Van Houweninge  1984)). 
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