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Abstract

This paper links judgemental adjustment of model-based forecasts with the potential presence
of exceptional observations in time series. Specific attention is given to current and future
additive outliers, as these require most consideration. A brief illustration to a quarterly real
GDP series demonstrates various issues. The main focus of the paper is on various testable
propositions, which should facilitate the creation and the evaluation of judgemental

adjustment of time series forecasts.

February 27 2008

Address for correspondence is Econometric Institute, Erasmus University Rotterdam, PO Box

1738, NL-3000 DR Rotterdam, The Netherlands, franses@few.eur.nl. Thanks are due to

Rianne Legerstee and especially Dick van Dijk and Paul Goodwin for helpful comments



1. Introduction and motivation

Consider an expert who has domain knowledge concerning an economic variable ¥ and who
needs to make one-step-ahead forecasts for its realizations y. This expert is aware of the fact
that y cannot fully be predicted by its past values, but as a benchmark model he or she relies
on an autoregression of order p. When considered necessary, the expert can use to judgment
to modify the time series model forecast to give a final adjusted forecast. Such an adjustment
can be relevant when the expert knows that in the next period there will be a structural level
shift that is currently not included in the model. Another reason may be that the expert feels
that the most recent observation, which in fact is the forecast origin for the one-step-ahead
forecast, is exceptional. This can be due to a possible shift in level that has already started, or
to a single-observation outlier. At the time of producing the forecast the expert has no tools to
decide what could be the reason for this exceptional data point, but he or she does feel the
need to judgementally adjust the model forecast. It is this situation that is considered in this
paper. As will be seen, whether an expert uses a simple time series model or a more
elaborated econometric model does not matter much for the main results, so for ease of use
and discussion I stick to the simpler notation here to illustrate various issues. It also does not
matter whether or not the expert is actually involved in model building and parameter
estimation.

Suppose the expert has data for the variable Y for n consecutive periods (weeks,
months, quarters), and denote these as y;, 2, ..., V. S0, observation y, is the forecast origin,
and suppose the expert wants to forecast y,+,;. Suppose further that the expert considers y, as
exceptional. In Section 2 below I will show that when the exceptional observation concerns a
so-called innovation outlier [IO] (see Fox, 1975 and Franses, 1998 Chapter 6 for the
nomenclature), the expert should not adjust the forecast. While when it is a so-called additive
outlier [AQO] then the adjustment should be a function of the forecast error at time n. In
Section 3 there will be an illustration to forecasting annual growth in quarterly real GDP for
the Netherlands, where the most recent observation (at the time of writing) concerns 2007Q3
is considered as quite exceptional. Section 4 elaborates on the link between outliers and
judgemental adjustment and it puts forward a range of testable propositions. Section 5
concludes with practical suggestions which can be applied when one has historical data on

adjustment and on model-based forecasts.



2. Adjusting (or NOT) for an exceptional observation at the forecast origin

For ease of notation I consider an autoregression of order 1 [AR(1)], that is

(1) yn+1=lu+pyn+gn+l'

The forecast made at origin # is equal to

(2) j>n+l\n :#+pyn

It is assumed that the parameters can be consistently estimated using ordinary least squares
[OLS]. Ledolter (1989) has shown that if an exceptional observation (whether it is an IO or an
AO that does not matter) occurs at the forecast origin this does not have much effect on the
OLS estimated parameters. To save notation, I therefore use hats only for forecasts, and not
for estimated parameters.

One example of an exceptional observation is an innovation outlier [IO], which when

it occurs at the time #n can be written as

(3) yn=y+nyn—l+gn+a)n

where w, is defined as equal to w at time » and equal to 0 elsewhere. Assuming that @ > 0,
this means that y, is exceptionally larger at time » even when taking the distribution of &, into
account. Now, the interesting feature of an innovation outlier is that for the next observation

one simply has that

(4) yn+l :/u-"_pyn +gn+l

and so, when looking back from n+1, there is nothing exceptional about y, when forecasting
vu+1, While y, is exceptional when seen from origin n-1. Hence, in case of an innovation
outlier, the expert better not adjust the forecast, even though the value of y, is being thought
of as exceptional. Of course, at time # it is unknown whether the observation is an 10 or not.
The discussion changes dramatically for the case of a so-called additive outlier [AO]

at time #. For the AR(1) model this would mean that the true data are



(5) yi1=ﬂ+mn—l+5n

but that one does not observe realizations of Y but of another (but of course very related)

variable X, with realizations
(6) X, =y, to,

with w, again defined as equal to w at time » and equal to 0 elsewhere, suppose. Note that this
means that the observed data are {y,+1, Xu, Vu-1, Vu-2, ... }. Substituting the AR(1) expression (5)
gives for time n

(7) xn:/'l+pyn—l+gn+a)n

which means that the forecast error at time 7 is ¢, + ®, and for time n+1

(8) xn+] :/'l+pxn +8n+1 :lu+p(yn +a))+gn+1 :/u-'-pyn +gn+1 +pa)

Thus, for x,; to become y,+, as it should, the expert would provide the most successful
adjustment if he or she would subtract pew from the model-based forecast made at time 7.

In case of an AO, and as the expected value of ¢, is zero, the expert-adjusted forecast

reads as

(9) J’>s+”n = )%nﬂ - pw

The question of course is what the value of @ is. One choice could be to set it equal to the
forecast error e,+1),, that is, the error observed at time n, when the forecast is made at time n-1.

In that case,

(10) .);Zﬂ\n =£n+l _p(gn +a))=ﬂ+layn _p(yn _pyn—l _;Ll) =(1+p)ﬂ+p2yn71 Z)anJrl\nfl



So, assuming that the observation itself at time » can be viewed as an AO effectively means
that the expert-adjusted forecast is the two-step-ahead forecast from origin n-1.
Perhaps a more plausible option to calibrate « (when w > 0) is by

(11) w=e, , —ko

nln—1

where o is the standard error of ¢, and k can be set by the expert.

In sum, only when the exceptional observation at time n is an additive outlier, the
adjustment made by the expert would result in forecast quality improvement. In fact, when
the expert modifies the forecast in case there is an innovation outlier, forecast quality will in
fact deteriorate, at least in principle. This intriguing result makes judgemental adjustment a
hazardous exercise, as at time n one cannot possibly know whether the observation at the

forecast origin is an 1O or an AO.

3. Hlustration

To illustrate the results in Section 2, consider annual growth rates of quarterly real GDP in the
Netherlands, for the period 1997Q4 to 2007Q3. The realization in 2007Q3 is 4.2%, and by
many this is viewed as exceptionally high. Statistics Netherlands also appreciates this notion
by stating that part of this sudden increase in growth rates might be due to increased revenues
of natural gas production. The mean value of growth per quarter in the considered period is
2.4.

A suitable model to describe these data is an AR(1) model with parameter p estimated
equal to 0.866 for the sample ending in 2007Q3 and 0.863 for the sample ending in 2007Q?2,
supporting the results in Ledolter (1989). The o is estimated as 0.0072, and the forecast error
enn-1 for 2007Q3 is 0.0154, which means that the actual minus the forecast is 1.54%, which
indeed is not small.

The forecast for 2007Q4 based on this AR(1) model would be equal to 3.9%. In that
case, the expert adopts the IO notion and does not intervene. Suppose now that it is treated as
an AO. If 2007Q3 is fully treated as such, then the adjusted forecast is 3.9-0.866(1.54) =
2.6%. If I would use (11) with k = 2, the estimated value for @ is small and the adjusted
forecast is 3.9-0.866%(0.1) = 3.8%. With a k equal to 1, the adjusted forecast becomes 3.2%.



In reality the expert who adjusts a forecast should have strong arguments why he or she wants

to allow for just one standard deviation.

4. Implications and testable propositions

The discussion and the results in Section 2 may seem rather trivial and obvious. However, in
this section it will be argued that there are various consequences for carrying out and
evaluating judgemental adjustment to model-based forecasts. A key issue here concerns the
very nature of that apparently exceptional observation at the forecast horizon and it is also

important how often unexpected data points like these could occur.

Evaluating forecast quality

Now we know how to properly deal with an exceptional observation at the forecast horizon,
the next question is of course whether such adjustment would help. This can only be known at
time n+1, and hence no sensible statement can be made at the time of making the forecast
adjustment. The key reason for this is that one needs to know what kind of exceptional
observation y, was and this can only be learned afterwards.

The only thing that one can do is to study past realizations and to examine whether
exceptional data, if there are any, typically are innovation or additive outliers. This could give
a first impression of what could possibly be happening at time n. Various methods are
available for this purpose, and useful examples are the methods outlined in Chen and Liu

(1993) and Tsay (1988).

Proposition 1:
If only once in a while an innovation outlier occurs at the forecast origin, there is no need to

adjust the model-based forecast. In fact, adjustment would lead to poor expert forecasts.

Proposition 2:
If only once in a while an additive outlier occurs at the forecast origin, judgemental
adjustment by subtracting or adding a fraction of the recent forecast error should lead to

substantial forecast quality improvement.



These two propositions are testable using actually observed time series data, the model-based
forecasts and the expert-adjusted forecasts. Of course, also simulations can be used to show

the empirical relevance of these two propositions.

Several innovation outliers in the future

One possible scenario is that the expert foresees the occurrence of an innovation outlier,
simply as these have been observed before and some common tendency seems noticeable.
Typically this would be associated with an upcoming change in regulations like taxes, or
institutional changes like interest rate changes, or with a combination of unusual factors
which do sometimes happen like strong stock market dips or rapid oil price increases. In a
sense, the expert may then try to forecast the size of the upcoming innovation outlier, and
when this is possible one wants to take account of that. Assuming for the moment that only
positive exceptional innovations would occur, a simple adjustment scheme for the expert to

follow now would be to consider

(12) yn+1 =/u+10yn +€n+1 +a)n+1
with
(13) o, =a+p, +1n,..,ifo, >0,and o, =0,otherwise

where z, covers explanatory variables and to use as a forecast

(14) j>n+l =lu+loyn +d)n+l

The expression in (13) is a so-called censored regression model for the outlier component, and
this combined model has been introduced in Franses and Paap (2002) as the censored latent
effects autoregression. The expert needs to decide on the values of o and f and on the
variance of #, where of course the choice for the variables in z is also important. When

positive and negative innovation outliers can occur, one can replace the expression in (13) by



an expression with two-sided censoring. A useful by-product of this way of formulating what
an expert can do is that it helps to keep track of what experts actually do when they modify
model forecasts. A plea for keeping track of their behaviour has been made in a variety of
recent studies on judgemental adjustment to forecasts, see Sanders and Ritzman (2001) and
Lawrence et al (2006), to mention just a few. Of course, one may also want to modify the
actual time series model and replace it by (12) with (13) in case innovation outliers occur on a
regular basis. Looking at the expression of an 1O in (3), the occurrence of frequent innovation
outliers can be noted from as many large but isolated forecast errors, see also Franses (1998,

Chapter 6).

Proposition 3:
If innovation outliers occur quite frequently, and they are to some extent predictable, one can

formulate judgemental adjustment in a censored latent regression framework.

Several additive outliers

In case one expects the frequent appearance of additive outliers, one basically has the
situation where part of the observations obeys another data generating process [DGP]. To

illustrate, consider the following DGP for a quarterly observed variable

(15) yn :a+alDl,n+8n

where D, is a dummy variable which takes the value 1 in quarter 1 and 0 elsewhere. So, the
mean of the variable is a in quarters 2, 3 and 4, but it is @ + «; in quarter 1. Another way of
putting it is to say that y, has an error term with mean 0 and variance o’ in quarters 2, 3 and 4
and an error term with mean a; and variance ¢° in quarter 1. A graph of this series would
indicate seasonality, which can also be viewed as a repetitive sequence of additive outliers.
What would happen if one used an autoregression to describe this y,? Given the
quarterly seasonality, it could be a model with y,.4 as the explanatory variable. The parameter
to be estimated is then p4. For most of the observations the true value of this p, is of course 0,
and in fact the whole model is mis-specified. The estimated forecast errors for this model will

therefore (on average) be positive for quarter 1 and negative for quarters 2, 3, and 4. The



empirical distribution of the forecast errors therefore shows fatter tails and is also skewed.
Looking at these errors and knowing that the model misses out on regular seasonality the
expert observes that the model is mis-specified as there are so many additive outliers, and

hence he or she will almost always adjust and in fact according to a rather systematic pattern.

Proposition 4:
If it is observed that an expert typically exercises one-sided adjustment (for example, most
often upwards), then this could be in accordance with asymmetric past model-based forecast

CITOor1S.

Proposition 5:
If it is observed that an expert adjusts almost all model-based forecasts, then, given the time

series model used, the data should show many additive outliers.

Note that these two propositions assume that the expert is not just randomly adjusting and also
that he or she sometimes does not adjust a model-based forecast. Proposition 5 basically says
that if there are so many additive outliers, then the model must be mis-specified, and this shall
be known to the expert. Note that this does not mean that the expert can claim that because
the model is a simple time series model it must be wrong, as it could well be that just
occasional innovation outliers are at stake and hence that on average the model is not bad at
all. If the time series model is not useful on its own, that it should be detected from the
presence of many additive outliers, and only then, the expert can claim that he or she often or

almost always has to adjust.

Model mis-specification

When there are too many additive outliers, almost everything goes wrong for the time series
model, see Ledolter (1989), Franses (1998, Chapter 6). Parameters are estimated incorrectly,
forecast errors are very large and their distribution is likely to be skewed, as indeed the
forecasts are biased. Of course, the key reason for this is that so many additive outliers

basically imply that the model is not well specified. For example, consider the case



(16) X,=y,+to

n

and where the Y variable obeys an AR(1), and where the additive outliers can be described by

(17) 0, =0+ pz, +1,

Writing y, as x, - @,, one then has

(18) xn _a_ﬁzn _ﬂn =/u+p(xn—l _a_ﬁzn—l _nn—l)+gn

or, equivalently,

(19) 'xn :/’l+(1_p)a+pxn71 +IBZn _pﬂzn—l +$n +77n _p77n71

which is a so-called ARMAX(1,1,1) model, as it includes lagged explanatory variables and it
has a first-order autocorrelated error term (a moving average, MA). Interestingly, this model
with an MA component is quite frequently found for macroeconomic time series variables
when there are measurement errors (which is about the same as additive outliers), see Granger
and Morris (1976).

So, when additive outliers occur very frequently, this is usually a sign of serious
misspecification of the model. It still is possible for an expert to add value based on domain
knowledge, but (19) also indicates that for this added value to lead to better forecasts one
needs to specify a rather complicated expression based on lagged variables and (perhaps
unobserved) error terms. In fact, I would conjecture that it would seem quite unlikely that the

expert has that much knowledge of the process that he or she is able to construct (19).
Proposition 6:
When there are too many additive outliers, the quality of the adjustment by the expert most

likely decreases as the optimal forecasting scheme is very complicated.

To sum up, when a simple time series model is used by an expert and occasional innovation

outliers occur, the expert may be most successful if he or she somehow is able to forecast

10



their value, based on domain-specific information. In contrast, when often additive outliers

occur, it seems best to re-specify the model, for example by entering additional variables.

Time series properties of the expert’s contribution

Given the above results for additive and innovation outliers, it seems that experts’ added value
to model-based forecasts would be most beneficial to forecast accuracy if experts only once in
a while have to intervene. If adjustment is always felt needed, then the model clearly is felt to
lack important variables. So often providing adjustment simply cannot be always beneficial,
and the simple advice should be that the model needs to be re-created. Interventions that could
be most successful would respond to an additive outlier at the forecast origin, or to a future
innovation outlier, foreseen by the expert. All in all, the frequency of expert adjustment at
best is low. Note that the size and the sign of adjustment do not matter much, because this
depends on the nature of the outliers that can occur. So, observing more positive adjustments
by an expert is not necessarily a bad sign. Also, because adjustment happens only once in a
while, at least in the optimal situation, it is quite unlikely that expert’s adjustment can be
predicted.

To reverse this argument, it can be seen as not a good sign in case the differences
between the model-based forecasts and the final expert forecasts are predictable from
explanatory variables as that would mean that the time series model is considered by the
expert as seriously mis-specified. Given the argument in Section 2, one would also not want
that the experts’ added values are serially correlated, as that would mean that the experts treat
the additive outlier mechanism as an autoregression itself. For example, if the expert knows

that the model forecasts are obtained from

(20) yn =/u+101yn—1

but the expert also knows that this model is not well specified because it lacks the explanatory

variable x, he or she might use instead

(21) yn :a+/11yn—l+lgxn
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as a forecast, for which it is quite unlikely that p; = 4;. In that case, the added contribution of

the expert is

(22) ﬂ_a—i_(ﬂ’l _pl)yn—l +ﬂxn

This added value could be more often positive than negative, and it also will show correlation
over time. The question here is of course whether the expert is able to properly calibrate (20).
Taking this doubt into account, and also the discussion of Section 2, [ would put forward the

final testable proposition, that is

Proposition 7:
The more predictable is the adjustment made by the expert, the less likely does the final

forecast quality get improved.

Indeed, it seems best to modify the model first, before it is given to the expert for a final
touch. And, the less predictable the adjustment by the expert is, the better can be the quality of

the final forecast.

5. Conclusion

This paper has shown that the relevance and quality of judgemental adjustment of model-
based forecasts depends on the type of outliers in the data. The results were all derived for
simple autoregressive time series models, but it is easily understood that they can be extended
to more general econometric forecasting models. The key results are that innovation outliers
at the forecast horizon do not require judgemental adjustment, but that, if is possible, future
such outliers can be included in an adjustment scheme. In case of additive outliers at the
forecast horizon, judgemental adjustment should improve forecast quality, but when there are
too many of these, it is better to re-specify the model as it is quite unlikely that experts can
come up with the more appropriate but rather complicated forecasting scheme.

The practical consequence of this study is that if one wants to evaluate the quality of
judgemental adjustment of model-based forecasts it helps to first study the time series

properties of the data, and to study the occurrence of outliers. A second issue for future work

12



amounts to a re-iteration of earlier recommendations and that is that it is very useful to
document exactly what the expert does. This is relevant for the expert, but also for the
modeller, who might learn in what way the model can be improved. Franses and Legerstee
(2007) have provided some empirical evidence on what experts actually do, but more

evidence is needed.
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