Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies

Summary

Background Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke.

Methods We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke.

Findings Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20,322 patients from 38 cohorts (over 322 patients from 38 cohorts (over 3

Interpretation In patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, antomical distribution, or burden.

Lancet Neurol 2019; 18: 653–65
Published Online
May 23, 2019
http://dx.doi.org/10.1016/
S1474-4422(19)30197-8
See Comment page 619

*Collaborators are listed in the appendix.
Cerebral microbleeds are a radiological finding of small (<10 mm), hypointense (black), ovoid or rounded regions on T2*-weighted gradient-recalled echo (GRE) or susceptibility-weighted imaging (SWI). Cerebral microbleeds mostly correspond pathologically to haemosiderin-laden macrophages close to arterioles affected by small vessel diseases; strictly lobar cerebral microbleeds suggest cerebral amyloid angiopathy (CAA), whereas deep patterns probably indicate arteriolar sclerosis and mixed patterns probably indicate mixed pathologies. Cerebral microbleeds might result from red blood cell leakage from arterioles and capillaries, raising clinical concerns that they herald an increased risk of potentially devastating intracranial haemorrhage, particularly in patients treated with antithrombotic drugs. However, cerebral microbleeds signal small vessel diseases that can also cause ischaemic stroke, and might result from non-haemorrhagic mechanisms. In ischaemic stroke cohorts, cerebral microbleeds are associated with the risks of both subsequent intracranial haemorrhage and recurrent ischaemic stroke. As the number of cerebral microbleeds increases, the risk of intracranial haemorrhage seems to rise more steeply than that of recurrent ischaemic stroke, and having five or more cerebral microbleeds has been reported to be associated with similar absolute risks of intracranial haemorrhage and ischaemic stroke.

Because previous studies had small sample sizes and few intracranial haemorrhage outcome events, they could not reliably answer the important clinical question of whether many cerebral microbleeds, or patterns (distributions) of cerebral microbleeds, indicate a higher risk of intracranial haemorrhage than of recurrent ischaemic stroke. We established the Microbleeds International Collaborative Network to undertake large-scale pooled analyses of prospective observational cohort studies. We tested the hypothesis that a large burden of cerebral microbleeds, or their anatomical patterns, can identify ischaemic stroke or transient ischaemic attack patients at higher risk of intracranial haemorrhage.

Funding British Heart Foundation and UK Stroke Association.

Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license.

Research in context

Evidence before this study

We searched Medline and EMBASE from Jan 1, 1996, to Dec 1, 2018 (search strategy: “cerebral adj2 micro” OR “CMB” OR “microbleed.mp” AND (“stroke.mp” OR “stroke”) OR “intra|ecrebral h|emorrh|” OR “intracranial h|emorrh|” OR “isch|emic stroke” OR “isch|emic infarc|t|”)) for studies in English that included patients with ischaemic stroke or transient ischaemic attack in whom the presence and anatomical distribution of cerebral microbleeds were measured, with at least 90 days of follow-up. An aggregate level meta-analysis (n=5068) showed that cerebral microbleeds were associated with both intracranial haemorrhage (risk ratio [RR] 3.8 [95% CI 3.5–11.4]) and ischaemic stroke (RR 1.8 [1.4–2.5]); this pooled analysis, and another study in two cohorts (one including 1003 mainly Chinese participants and the other including 1080 mainly white participants) reported that five or more cerebral microbleeds were associated with similar absolute risks of intracranial haemorrhage and ischaemic stroke. However, small sample sizes and few intracranial haemorrhage outcome events in previous studies did not provide enough statistical power and precision to establish whether a large cerebral microbleed burden or distribution pattern is associated with a higher absolute risk of intracranial haemorrhage than ischaemic stroke in patients with recent ischaemic stroke or transient ischaemic attack treated with antithrombotic drugs.

Added value of this study

Our pooled analysis of individual data from 20 322 patients shows that regardless of cerebral microbleed burden and distribution (ie, mixed, deep, or lobar), or the type of antithrombotic treatment received (oral anticoagulants or antiplatelet therapy), the absolute rate of ischaemic stroke is consistently substantially higher than that of intracranial haemorrhage. By contrast with previous studies, the large number of patients provided more precise estimates of stroke recurrence rates and risks, while inclusion of individual patient data allowed adjustment for potential confounding factors. Our study adds new data for patients with many (eg, ≥20) cerebral microbleeds, which cause the most clinical concern regarding intracranial bleeding.

Implications of all the available evidence

Although cerebral microbleeds can inform regarding the hazard for intracranial haemorrhage in patients with recent ischaemic stroke or transient ischaemic attack treated with antithrombotic drugs, the absolute risk of ischaemic stroke is much higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, burden, or pattern. The available evidence does not support withholding antithrombotic treatment because of cerebral microbleeds, but to definitively answer this question requires data from randomised controlled trials.
higher absolute risk of intracranial haemorrhage than ischaemic stroke.

Methods

Study design
For this pooled analysis of individual patient data, we identified cohorts by searching Medline and EMBASE (search terms “cerebral adj2 micro$” OR “CMB” OR “microbleed.mp” AND “stroke.mp” OR “stroke/” OR “intracerebral hemo” OR “intracranial hemo” OR “isch?emic stroke” OR “isch?emic infarct$”), clinical trial databases (clinicaltrials.gov and strokecenter.org), and scientific meeting abstracts. We invited members of the METACOHORTS consortium:21 an international database of more than 90 studies of small vessel disease, including 660000 patients. Two authors (DW and DJ) independently did the search and reviewed all titles and abstracts; they also did an independent risk of bias assessment for all included studies. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility (GRE or SWI); and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Each patient was only included in one cohort. We assessed all studies for risk of bias (including selection bias) and quality using the Cochrane Collaboration tool.32 All cohorts included at least 50 patients; the last available follow-up (truncated to 5 years) or at the time of the prespecified outcome event. When a patient had multiple events of the same type, we censored follow-up at the first event. We calculated absolute event rates per 1000 patient-years for primary outcomes in patients with and without cerebral microbleeds. We assessed the proportional hazards assumption through visual inspection of (log–log) plots of log cumulative hazard against time and tested for a non-zero slope in a regression of scaled Schoenfeld residuals against time. We calculated univariate Kaplan-Meier survival probabilities in patients with and without cerebral microbleeds to estimate event rates and used the log-rank test to compare groups. We did multivariable Cox regression adjusting for the following prognostic and confounding variables (selected by consensus based on availability, biological plausibility, and known associations with cerebral microbleeds and outcomes): age, sex, presentation with transient ischaemic attack or ischaemic stroke, history of hypertension, presence of atrial fibrillation, antithrombotic use after index event, and type of MRI sequence used to detect cerebral microbleeds (T2*-weighted GRE or SWI). We investigated the effect of predefined cerebral microbleed burden categories (one, two to four, five or more, ten or more, and 20 or more). When investigating cerebral microbleed distribution, we adjusted for number of cerebral microbleeds. We added a shared frailty term20 to account for patients being nested in individual studies (thus potentially having correlated data). We performed subanalyses for patients treated with oral anticoagulants and antiplatelet drugs and added interaction terms between antithrombotic therapy and presence of cerebral microbleeds. We categorised ethnicity (when available) as white or Asian (Japanese, Chinese, Malays, Indian, Pakistani, or Korean) to investigate the interaction between ethnicity and cerebral microbleed presence. We performed two prespecified sensitivity analyses: the first exploring time-varying risks within the Cox model to investigate later events (beyond the first year) accounting for death as a competing risk (using the Fine-Gray subdistribution hazard model), calculating subdistribution hazard ratios (sHRs); and the second, a two-stage individual-patient meta-analysis to quantify between-study heterogeneity using the inverse-variance method (which fits a separate survival model for each cohort then pools and displays estimates in a forest plot). We did three post-hoc analyses as follows: (1) we added white matter hyperintensities (another common marker of cerebral small vessel disease, rated using the Fazekas scale24 and considered severe if rated 2 or greater in the periventricular deep white matter) into our multivariable model; (2) we included only intracerebral haemorrhage, Katholieke Universiteit Leuven, University of Leuven, Laboratory of Neurobiology, Leuven, Belgium (R.Lemmens PhD); Department of Neurology, Medical University of Graz, Graz, Austria (J.Eppinger MD, T.Gattringer MD, F.Fazekas MD); Department of Neurology, Deminguio Bilim University, Istanbul, Turkey (E.Uysal MD, Z.Tanriverdi MD, D.O.Dikmen MD); Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel (N.M.Borstein MD, E.R.Asayag MD, H.Halleli MD); Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan (J.Tanaka MD, H.Hara PhD, Y.Yakushiji PhD); Calgary Stroke Program, Department of Clinical Neurosciences, Radiology and Community Health Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada (S.B. Coutuks MD, E.E. Smith MD); Department of Neurology and Stroke Centre, University Hospital Basel and University of Basel, Basel, Switzerland (H.Hert MD, A.Polymers MD, E.J.Saffert, P.Lyrer MD, S.T.Engelter MD, N.Peters MD); Julius Centre for Health Sciences and Primary Care (A.Algra MD) and Department of Neurology and Neurosurgery, Utrecht Stroke Centre (A.Algra, F.Kappelle MD), University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands; Centre for Clinical Brain Sciences (R.Al-Shahb Salmann PhD), Edinburgh Imaging (F.Chappell PhD, J.M.Wardlaw MD), and UK Dementia Institute at the University of Edinburgh (F.Chappel, J.M.Wardlaw), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK; Lysenhof Department of Neuroradiology and the Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK (H.H.Lager FRCS); Liverpool Centre for Cardiovascular Science, University of Liverpool and
The incidence of all composite events in patients with any cerebral microbleed was 59 per 1000 patient-years (95% CI 54–64) compared with 35 per 1000 patient-years (33–38) in those without cerebral microbleeds, an absolute increased incidence of 24 per 1000 patient-years (21–26; table 2). The aHR for a composite event became larger with increased cerebral microbleed burden (figure 2; table 2; p_intrasubset<0.0001). aHRs were similar across different cerebral microbleed anatomical distributions (table 2).

189 patients had a symptomatic intracranial haemorrhage over 32,847 patient-years of follow-up (151 intracerebral haemorrhages, 31 subdural haemorrhages, eight subarachnoid haemorrhages [four of which were cortical], and three extradural haemorrhages; four patients had more than one type of intracranial haemorrhage). The incidence of intracranial haemorrhage was 12 per 1000 patient-years (95% CI 10–14) in those with cerebral microbleeds compared with 4 per 1000 patient-years (3–5) in those without cerebral microbleeds, an absolute increased incidence of 8 per 1000 patient-years (7–9; table 2). The rate of intracranial haemorrhage increased with increasing cerebral microbleed burden, but was consistently lower than the rate of ischaemic stroke (table 2). The aHR for symptomatic intracranial haemorrhage was 2.45 (95% CI 1.82–3.29) for patients with cerebral microbleeds versus those without, and became larger with increased cerebral microbleed burden (p_intrasubset<0.0001; figure 2; table 2); aHRs did not significantly differ between different cerebral microbleed anatomical distributions. Patients with multiple strictly lobar cerebral microbleeds (fulfilling the Boston criteria for probable CAA) did not have a significantly higher aHR for symptomatic intracranial haemorrhage than those without multiple strictly lobar cerebral microbleeds (1.29 [95% CI 0.60–2.77]; table 2). No interaction was detected between cerebral microbleeds and antiplatelet medication (p_intrasubset=0.358), oral anticoagulants (p_intrasubset=0.717), or combined oral anticoagulants and antiplatelet medication (p_intrasubset=0.163) for intracranial haemorrhage risk.

1113 patients had a symptomatic ischaemic stroke over 32,293 patient-years of follow-up. The incidence of symptomatic ischaemic stroke in patients with cerebral microbleeds was 46 per 1000 patient-years (95% CI 42–51) compared with 30 per 1000 patient-years (28–33) in those without, with an absolute increased incidence of 16 per 1000 patient-years (14–18; table 2). The rate of ischaemic stroke became greater with an increasing burden of cerebral microbleeds, and for each burden category substantially exceeded the rate of intracranial haemorrhage (table 2). The aHR for symptomatic ischaemic stroke was 1.23 (95% CI 1.08–1.40) for patients with cerebral microbleeds versus those without, and the aHR became larger with increasing cerebral microbleed burden (p_intrasubset=0.0053; figure 2; table 2). Cerebral microbleed anatomical distribution had little effect on ischaemic stroke risk (table 2). No interaction was detected.
between cerebral microbleeds and antiplatelet medication (pinteraction=0.943) or oral anticoagulants (pinteraction=0.408) for ischaemic stroke risk, but there was weak evidence for an interaction between cerebral microbleeds and combined use of oral anticoagulants and antiplatelet medication (pinteraction=0.047).

There were 2148 deaths, 484 of which were due to vascular causes. In multivariable analyses, cerebral microbleed presence was not associated with all-cause death (aHR 1.03 [95% CI 0.94–1.12]) or vascular death (aHR 0.97 [0.79–1.19]). No interaction was detected between cerebral microbleeds and ethnicity (n=15123; 6743 white and 8380 Asian) for the risks of the composite outcome of intracranial haemorrhage or ischaemic stroke (pinteraction=0.707); intracranial haemorrhage (pinteraction=0.537); or ischaemic stroke (pinteraction=0.654). No interaction was detected between cerebral microbleed and older age (4376 patients older than 80 years) for the risk of the composite outcome (pinteraction=0.538); intracranial haemorrhage (pinteraction=0.219); or ischaemic stroke (pinteraction=0.286).

Using a two-stage meta-analysis, the estimated risks associated with cerebral microbleed presence were consistent with our main model for the composite outcome (heterogeneity [I²=31.7%]; intracranial haemorrhage [I²=24–2%]; appendix); 23 cohorts, including 10 235 patients, provided ratings for white matter hyperintensities, which were moderate to severe (Fazekas grade ≥2) in 3105 (30%) patients. Including white matter hyperintensities in multimodal models did not substantially change the aHR associated with the presence of cerebral microbleeds for the composite outcome (aHR 1.30 [95% CI 1.12–1.52]); intracranial haemorrhage (aHR 2.44 [1.68–3.53]); or ischaemic stroke (aHR 1.16 [0.98–1.37]).

In our sensitivity analysis including only intracerebral, convexity subarachnoid, and subdural intracranial haemorrhages, 183 patients had a symptomatic intracranial haemorrhage over 32847 patient-years of follow-up. The aHR for symptomatic intracranial haemorrhage was 2.59 (95% CI 1.91–3.50) for patients with cerebral microbleeds versus patients without, and became larger with increasing burden. Compared with no cerebral microbleeds, aHRs were 1.92 (95% CI 1.25–2.94) for one cerebral microbleed; 2.02 (1.30–3.16) for two to four cerebral microbleeds; 4.88 (3.29–7.25) for five or more cerebral microbleeds; 5.87 (3.56–9.66) for ten or more cerebral microbleeds; and 9.32 (5.06–17.16) for 20 or more cerebral microbleeds. These results are consistent with our primary findings.

There were 102 symptomatic intracranial haemorrhages over 12794 patient-years of follow-up within the first year, and 87 over 31059 patient-years of follow-up after the first year. In patients with cerebral microbleeds, the rate of intracranial haemorrhage was 18 per 1000 patient-years (95% CI 14–23) within the first year, and 5 per 1000 patient-years (3–6) after the first year.

696 ischaemic strokes were recorded over 12873 patient-years of follow-up within the first year and 417 symptomatic ischaemic strokes during 30 447 patient-years of follow-up after the first year. In patients with cerebral microbleeds, the rate of symptomatic ischaemic stroke within the first year was 70 (95% CI 62–80), then 18 (15–21) after the first year.

Accounting for death as a competing risk, we found no evidence for a change in risk over time associated with cerebral microbleed presence for intracranial haemorrhage (sHR 4.96 [95% CI 3.18–7.74] at day 0 vs 4.81 [3.15–7.35] after 1 year) or ischaemic stroke (sHR 1.40 [1.23–1.73] at day 0 vs 1.49 [1.27–1.75] after 1 year).

In those treated with oral anticoagulants after their index ischaemic stroke or transient ischaemic attack (n=7737; vitamin K antagonist=5253, non-vitamin K oral anticoagulant=2484), 91 intracranial haemorrhages occurred over 13 942 patient-years of follow-up, and 384 ischaemic strokes occurred over 13737 patient-years of follow-up. For patients with cerebral microbleeds, the rate of intracranial haemorrhage was 12 per 1000 patient-years (95% CI 9–16); the rate of ischaemic stroke was 32 per 1000 patient-years (26–39; table 3). The rate of ischaemic stroke was much higher than that of intracranial haemorrhage for all cerebral microbleed burden and anatomical distribution categories; the aHR for intracranial haemorrhage for patients with cerebral microbleeds (vs those without)

Figure 1: Study selection profile
<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Women (%)</th>
<th>Mean Age (SD), Years</th>
<th>Ischaemic heart disease</th>
<th>Previous stroke</th>
<th>Taking oral anticoagulation</th>
<th>Any cerebral microbleed</th>
<th>Susceptibility-weighted imaging</th>
<th>Hyper-tension</th>
<th>Mean age (SD), Years</th>
<th>Ischaemic heart disease</th>
<th>Previous stroke</th>
<th>Taking oral anticoagulation</th>
<th>Any cerebral microbleed</th>
<th>Susceptibility-weighted imaging</th>
<th>Hyper-tension</th>
<th>Mean age (SD), Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBS</td>
<td>680</td>
<td>14 (17%)</td>
<td>69 (10)</td>
<td>128 (16%)</td>
<td>14 (2%)</td>
<td>0</td>
<td>0</td>
<td>264 (33%)</td>
<td>36 (4%)</td>
<td>774 (701–1042)</td>
<td>148 (104–1825)</td>
<td>0</td>
<td>243 (16%)</td>
<td>311 (21%)</td>
<td>70 (5%)</td>
<td>14 (1%)</td>
<td>56 (4%)</td>
</tr>
<tr>
<td>Bern</td>
<td>332</td>
<td>43 (14%)</td>
<td>68 (14)</td>
<td>241 (34%)</td>
<td>26 (7%)</td>
<td>7 (2%)</td>
<td>0</td>
<td>103 (103)</td>
<td>39 (10%)</td>
<td>359 (100%)</td>
<td>142 (46%)</td>
<td>59 (15%)</td>
<td>64 (14%)</td>
<td>37 (10%)</td>
<td>91 (2%)</td>
<td>10 (1%)</td>
<td>32 (9%)</td>
</tr>
<tr>
<td>IPAAC-Warfarin</td>
<td>173</td>
<td>27 (16%)</td>
<td>154 (43%)</td>
<td>239 (68%)</td>
<td>18 (6%)</td>
<td>10 (3%)</td>
<td>0</td>
<td>90 (90–90)</td>
<td>0</td>
<td>289 (44%)</td>
<td>169 (48%)</td>
<td>59 (15%)</td>
<td>80 (15%)</td>
<td>59 (15%)</td>
<td>70 (5%)</td>
<td>10 (1%)</td>
<td>56 (4%)</td>
</tr>
<tr>
<td>TABASCO</td>
<td>436</td>
<td>8 (18%)</td>
<td>184 (43%)</td>
<td>251 (59%)</td>
<td>9 (2%)</td>
<td>0</td>
<td>0</td>
<td>64 (14%)</td>
<td>53 (12%)</td>
<td>225 (44%)</td>
<td>169 (48%)</td>
<td>59 (15%)</td>
<td>80 (15%)</td>
<td>53 (12%)</td>
<td>70 (5%)</td>
<td>10 (1%)</td>
<td>56 (4%)</td>
</tr>
<tr>
<td>PARISK*</td>
<td>228</td>
<td>127 (56%)</td>
<td>67 (29%)</td>
<td>156 (68%)</td>
<td>0</td>
<td>66 (22%)</td>
<td>0</td>
<td>265 (265)</td>
<td>104 (104)</td>
<td>1347 (40%)</td>
<td>480 (44%)</td>
<td>107 (35%)</td>
<td>103 (29%)</td>
<td>90 (29%)</td>
<td>265 (265)</td>
<td>104 (104)</td>
<td>1347 (40%)</td>
</tr>
<tr>
<td>HERO51</td>
<td>1937</td>
<td>1937 (>99%)</td>
<td>248 (95%)</td>
<td>480 (95%)</td>
<td>107 (35%)</td>
<td>103 (29%)</td>
<td>90 (29%)</td>
<td>265 (265)</td>
<td>104 (104)</td>
<td>1347 (40%)</td>
<td>480 (44%)</td>
<td>107 (35%)</td>
<td>103 (29%)</td>
<td>90 (29%)</td>
<td>265 (265)</td>
<td>104 (104)</td>
<td>1347 (40%)</td>
</tr>
</tbody>
</table>

See Online for appendix

For the protocol and statistical analysis plan see https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=36602
<table>
<thead>
<tr>
<th>Demographics, risk factors, and outcome events for each cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total participants</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>HAGAKURE</td>
</tr>
<tr>
<td>Leuven</td>
</tr>
<tr>
<td>NOACISP</td>
</tr>
<tr>
<td>Min Lou</td>
</tr>
<tr>
<td>MICRO</td>
</tr>
<tr>
<td>Orken</td>
</tr>
<tr>
<td>CATCH</td>
</tr>
<tr>
<td>MS52</td>
</tr>
<tr>
<td>Sainte-Anne (Paris)</td>
</tr>
<tr>
<td>STROKDEM</td>
</tr>
<tr>
<td>Singapore (Oen)</td>
</tr>
<tr>
<td>FUTURE Study</td>
</tr>
<tr>
<td>Heidelberg</td>
</tr>
<tr>
<td>NNI</td>
</tr>
<tr>
<td>OXVASC</td>
</tr>
<tr>
<td>HCU</td>
</tr>
<tr>
<td>SIGNal</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Data are n (%), or n/N (%) unless otherwise stated. Studies without references are unpublished. FUTURE study=Follow-Up of Transient ischaemic attack and stroke patients and Unexposed Risk factor Evaluation study. HAGAKURE=Hypertension, Amyloid, and aGe Associated Kaleidoscopic brain lesions on CT/MRI Undertaken with stroke Registry. HBS=Heart Brain Interactions Study. NNI=National Neuroscience Institute, Singapore. NOACISP=Novel Oral Anticoagulants in Stroke Patients, Basel. NCT02535383. SIGNal=Stroke Investigation in North and Central London. STROKDEM=Study of Factors Influencing Post-stroke Dementia. *Denominator for this result is 932. †Denominator for this result is 250. Table 1: Demographics, risk factors, and outcome events for each cohort.
rose more steeply than that of ischaemic stroke with increasing cerebral microbleed burden. Mixed and deep cerebral microbleed distributions had similar aHRs for intracranial haemorrhage and ischaemic stroke in patients with versus without cerebral microbleeds were similar to those in the full cohort, with little variation according to cerebral microbleed anatomical distribution (appendix).

Compared with patients who received antithrombotic treatment (oral anticoagulants or antiplatelets), those not treated with antithrombotic drugs (n=1065) were older (mean age 72 years [SD 13] for those treated vs 70 years [SD 11] for those treated with antithrombotic drugs), a greater proportion were women (46% vs 42%), more had ischaemic stroke (91% vs 83%), more had a previous intracranial haemorrhage (6% vs 2%), more had atrial fibrillation (44% vs 37%), fewer had been taking regular antiplatelet drugs before the qualifying event (27% vs 34%), and more had been taking regular oral anticoagulants before the qualifying event (13% vs 8%). No difference in the prevalence of cerebral microbleeds was observed based on receiving
oral anticoagulants, the large number of participants has improved the precision of our estimates of recurrence rates and relative hazards, while antithrombotic treatment (29% vs 28%). In those not treated with any antithrombotic drugs, five had intracranial haemorrhages over 846 patient-years and 65 had ischaemic strokes over 825 patient-years. The aHRs associated with cerebral microbleed presence were 1·10 (95% CI 0·17–7·34) for intracranial haemorrhage and substantially higher than that of ischaemic stroke; as cerebral microbleed burden increases, the relative risk (aHR) of intracranial haemorrhage rises more steeply than that of ischaemic stroke. Our most important new finding is that, regardless of the number and distribution (ie, mixed, deep, or lobar), or the type of antithrombotic treatment received (oral anticoagulants or antiplatelet therapy), the absolute risk of ischaemic stroke is consistently substantially higher than that of intracranial haemorrhage.

As well as confirming the association between cerebral microbleeds and both recurrent ischaemic stroke and symptomatic intracranial haemorrhage found in smaller cohorts of patients with ischaemic stroke and transient ischaemic attack treated with antithrombotic drugs or oral anticoagulants, the large number of participants has improved the precision of our estimates of stroke recurrence rates and relative hazards, while the inclusion of individual patient data allowed adjustment for potential confounding factors. Our study also adds new data for the important subgroups of patients with many (eg, ≥20) cerebral microbleeds, which cause the most clinical concern and could not be addressed by any of the previously published meta-analyses. The association of cerebral microbleeds with a consistently higher rate of ischaemic stroke than intracranial haemorrhage suggests that cerebral microbleeds are a marker for cerebral small vessel diseases that can cause not only intracranial haemorrhage, but also ischaemic stroke. Although it has been inferred that cerebral microbleeds are a marker of direct extravasation of red blood cells from arterioles and capillaries damaged by bleeding-prone arteriopathies, alternative non-haemorrhagic mechanisms include ischaemia-mediated iron store release by oligodendrocytes or phagocytosis of red cell microemboli into the perivascular space. A report of haemorrhagic transformation of small acute microinfarcts into cerebral microbleeds provides direct evidence that cerebral microbleeds result from ischaemic mechanisms. These varied mechanisms underlying cerebral microbleeds might explain why even patients at the highest risk of intracranial haemorrhage still have a higher absolute risk of ischaemic stroke. Moreover, patients with cerebral microbleeds often have multiple vascular risk factors, so are at risk of not only small vessel ischaemic stroke but also other ischaemic stroke subtypes. Patients with cerebral microbleeds usually also have white matter hyperintensities, which are associated with the risk of recurrent stroke, death, and poor functional outcome after

<table>
<thead>
<tr>
<th>Number</th>
<th>Rate, per 1000 patient-years</th>
<th>Absolute rate increase, per 1000 patient-years</th>
<th>Adjusted hazard ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>35 (33–38)</td>
<td>1 (ref)</td>
<td>1 (ref)</td>
</tr>
<tr>
<td>Any</td>
<td>59 (54–64)</td>
<td>24 (21–26)</td>
<td>1·35 (1·20–1·50)</td>
</tr>
<tr>
<td>One</td>
<td>46 (40–53)</td>
<td>11 (7–15)</td>
<td>1·21 (1·03–1·42)</td>
</tr>
</tbody>
</table>

Table 2: Rate and risk of outcome events according to number (burden) and anatomical distribution of baseline cerebral microbleeds in all patients (n=20 322)

Anatomical distribution

<table>
<thead>
<tr>
<th>Anatomical distribution</th>
<th>Rate, per 1000 patient-years</th>
<th>Absolute rate increase, per 1000 patient-years</th>
<th>Adjusted hazard ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed</td>
<td>80 (68–94)</td>
<td>45 (35–56)</td>
<td>1·28 (1·06–1·54)</td>
</tr>
<tr>
<td>Deep</td>
<td>73 (65–82)</td>
<td>38 (32–44)</td>
<td>1·29 (1·12–1·48)</td>
</tr>
<tr>
<td>Lobar</td>
<td>60 (53–67)</td>
<td>25 (20–29)</td>
<td>1·22 (1·06–1·41)</td>
</tr>
<tr>
<td>Probable cerebral amyloid angiopathy</td>
<td>55 (40–73)</td>
<td>20 (7–35)</td>
<td>1·21 (0·90–1·64)</td>
</tr>
</tbody>
</table>

Ranges in brackets are 95% CIs. Cerebral microbleed location hazard ratios are versus patients without cerebral microbleeds in each location and are adjusted for cerebral microbleed number and our prespecified variables. *Number of patients and time at risk are shown in the appendix. †Overlapping categories.
ischaemic stroke\(^a\) and might also contribute to the increased risk of ischaemic stroke associated with cerebral microbleeds.

We found no evidence that a strictly lobar pattern of cerebral microbleeds (fulfilling the Boston criteria for probable CAA,\(^b\) causing clinical concern for intracranial bleeding risk\(^c\)) is associated with the risk of intracranial haemorrhage or ischaemic stroke. These findings might reflect low diagnostic accuracy when using cerebral microbleeds for diagnosis of CAA in patients without intracerebral haemorrhage or dementia,\(^d\) rather than a true absence of any association of CAA with intracranial haemorrhage. Furthermore, the aHRs for intracranial haemorrhage associated with lobar cerebral microbleeds (compared with patients without lobar cerebral microbleeds [including none]) were closer to those associated with deep or mixed cerebral microbleeds (compared with patients without deep or mixed cerebral microbleeds [including none]).

Our results differ from some previous observations in smaller cohorts. First, in contrast to a smaller two-centre study,\(^e\) we did not find that the risk of intracranial haemorrhage approached the risk of ischaemic stroke after 1 year. Rather, we found that the rate of ischaemic stroke was consistently higher than that of intracranial haemorrhage, and the aHRs associated with cerebral microbleeds for both ischaemic stroke and intracranial haemorrhage remained stable over time. Second, our data indicate a smaller increase in the relative risk of intracranial haemorrhage for patients with five or more cerebral microbleeds than reported in a previous smaller meta-analysis,\(^f\) but our much larger individual participant sample size allowed us to investigate high cerebral microbleed burdens (five or more, ten or more, and 20 or more) with adjustment for confounders and greater statistical precision and power.

The comparatively low frequency of symptomatic intracranial haemorrhage after ischaemic stroke or transient ischaemic attack and the consistently higher risk of recurrent ischaemic stroke make randomised controlled trials of antithrombotic treatment (themselves proven in large randomised trials) guided by cerebral microbleeds challenging. However, ongoing and future randomised controlled trials should provide further insights. The MRI substudy in the RESTART trial\(^g\) of antiplatelet therapy after intracerebral haemorrhage excluded all but a very modest harmful effect of antiplatelet therapy on recurrent intracerebral haemorrhage in the presence of cerebral microbleeds, but also illustrates how very large sample sizes are probably required to identify statistically significant interactions in smaller cerebral microbleed subgroups in current (eg, the MRI substudy of NAVIGATE ESVUS [NCT02313909]) and future randomised controlled trials. Nevertheless, our large collaborative pooled analysis provides the best available evidence on the associations of cerebral microbleeds with subsequent intracranial haemorrhage and ischaemic stroke after ischaemic stroke or transient ischaemic attack.

We included data from a worldwide collaborative network, making our results globally generalisable. The large individual patient dataset provides high statistical power and precision for risk estimates, allowing us to

Table 3: Rate and risk of outcome events according to baseline cerebral microbleeds in patients treated with oral anticoagulants with or without antiplatelet drugs (n=7737)
explore associations with several clinically important primary outcomes, while adjusting for important prognostic variables to minimise confounding. Included cohorts used validated rating instruments for cerebral microbleeds, and we adjusted for the use of different MRI sequences (T2* GRE or SWI) to detect cerebral microbleeds, which accounts for the higher sensitivity of SWI for detecting cerebral microbleeds compared with T2* GRE.\(^2\) We followed a published statistical analysis plan and confirmed our findings in a two-stage meta-analysis, indicating the robustness of our results.

In terms of limitations, our observational design has potential for selection bias and confounding of antithrombotic therapy by indication or unmeasured physician factors; thus, the relative hazards (aHRs) for intracranial haemorrhage and ischaemic stroke must be interpreted with caution. To definitively establish whether cerebral microbleeds modify the net clinical benefit of antithrombotic drugs would require a randomised controlled trial. Many of the included studies did not formally adjudicate events. The requirement for MRI-suitable patients probably led to the inclusion of less severe strokes than an unselected population. Even with the many individual participants included, we could not precisely estimate risks associated with an extremely large number of cerebral microbleeds (eg, ≥50), but such patients are very rare in clinical practice. Although we adjusted for known prognostic variables, residual confounding secondary to unknown or uncontrolled factors such as stroke mechanism could still have affected our results. Furthermore, we were unable to include some candidate variables in our multivariable models because they were not sufficiently widely available across all participating cohorts (eg, white matter hyperintensities, MRI field strength, diabetes, ischaemic heart disease, renal function, and statin use on discharge). Our analyses did not formally assess net clinical benefit, accounting for the greater severity of intracranial haemorrhage compared with recurrent ischaemic stroke.

In summary, our large-scale pooled analysis in patients with recent ischaemic stroke or transient ischaemic attack found that the absolute risk of ischaemic stroke is consistently higher than that of intracranial haemorrhage, regardless of the number or anatomical distribution of cerebral microbleeds. However, cerebral microbleeds are associated with a greater relative hazard (aHR) for intracranial haemorrhage than ischaemic stroke; further studies are needed to establish the usefulness of neuroimaging biomarkers, including cerebral microbleeds, in improving risk prediction scores for intracranial haemorrhage and ischaemic stroke.

Declaration of interests

MK reports grants from the Ministry of Health, Labour and Welfare, Japan, and from the National Cerebral and Cardiovascular Center during the conduct of the study; and speaker honoraria from Bayer Yakuskin, Daiichi-Sankyo Company, and Bristol-Myers Squibb (BMS)/Pfizer. HC reports participation in the steering committee for a clinical trial supported by Servier and was a consultant for Hoviv Inc. EMA reports personal fees from Pfizer, Boehringer Ingelheim, Nutricia, Abbott, and Sanofi, outside the submitted work. JP reports personal fees from Boehringer Ingelheim and Akeza and personal fees and non-financial support from Pfizer outside the submitted work. EBA reports grants from US–Israel Bi-national Science Foundation, The American Federation for Aging Research, and The Israelia Chief Scientist, Ministry of Health, during the conduct of the study. SBC reports grants from the Canadian Institute of Health Research and a Pfizer Cardiovascular award during the conduct of the study. DJS reports other funding from Bayer and from BMS/Pfizer outside the submitted work. PL reports other funding from Daiichi-Sankyo, Bayer, and Boehringer Ingelheim, outside the submitted work. RA-SS reports grants from the British Heart Foundation, The Stroke Association, and Chest Heart & Stroke Scotland outside the submitted work. GYH reports consultancy for Bayer/Janssen, BMS/Pfizer, Biotronik, Medtronic, Boehringer Ingelheim, Microlife, and Daiichi-Sankyo; and speaker honoraria from Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, Microlife, Roche, and Daiichi-Sankyo. HPB reports personal fees from Neuravi/Cerenovus, Medtronic, Bayer, Daiichi-Sankyo, and Servier outside the submitted work. DH reports grants from University College Dublin Newman Fellowship supported Bayer during the conduct of the study. MEB reports grants from the Center for Translational Molecular Medicine during the conduct of the study. AMT reports grants from the Dutch Heart Foundation during the conduct of the study. AwDL reports grants from the Center for Translation Molecular Medicine and Dutch Heart Foundation during the conduct of the study. JMW reports grants from Wellcome Trust, Chest Heart Stroke Scotland, and Row Fogo Charitable Trust during the conduct of the study. YS reports a grant from Health and Medical Research Fund. VHR reports grants from the Netherlands Heart Foundation (grant 2001B071) during the conduct of the study. ST reports grants from Daiichi-Sankyo, Bayer, Pfizer, and Swiss Heart Foundation during the conduct of the study; other funding from Daiichi-Sankyo, Mindmaze, and Stago; and grants from the Swiss National Science Foundation outside the submitted work.

Acknowledgments

Funding for the included cohort studies was provided by the British Heart Foundation, Stroke Association, UCLH National Institute of Health Research (NIHR) Biomedical Research Centre, Wellcome Trust, Health Research Board Ireland, NIHR Biomedical Research Centre (Oxford, UK), Canadian Institutes of Health Research, Pfizer Cardiovascular Research award, Basel Stroke Funds, Science Funds Rehabilitation Felix-Platter-Hospital, Neurology Research Pool University Hospital Basel, Bayer AG, Fondo de Investigaciones Sanitarias Instituto de Salud Carlos III (F112/00296; RETICS INVICTION PLUS RD16/0019/0010: FEDER), Imperial College London NIHR Biomedical Research Centre, Dutch Heart Foundation, Servier, Association de Recherche en Neurologie Vasculaire and RHU TRT_eSV (ANR-16-RHUS-004), Vidi innovational grant from The Netherlands ZonMw, Chest Heart Stroke Scotland, Medical Research Council, Fondation Leducq, The Row Fogo Charitable Trust, National Institute of Health (USA), Adriana van Rinsum-Ponsen Stichting, Japan Agency for Medical Research and Development (AMED), Ministry of Health, Labour and Welfare, Japan, and from the National Cerebral and Cardiovascular Center during the conduct of the study; and speaker honoraria from Bayer Yakuskin, Daiichi-Sankyo Company, and Bristol-Myers Squibb (BMS)/Pfizer. HC reports participation in the steering committee for a clinical trial supported by Servier and was a consultant for Hoviv Inc. EMA reports personal fees from Pfizer, Boehringer Ingelheim, Nutricia, Abbott, and Sanofi, outside the submitted work. JP reports personal fees from Boehringer Ingelheim and Akeza and personal fees and non-financial support from Pfizer outside the submitted work. EBA reports grants from US–Israel Bi-national Science Foundation, The American Federation for Aging Research, and The Israelia Chief Scientist, Ministry of Health, during the conduct of the study. SBC reports grants from the Canadian Institute of Health Research and a Pfizer Cardiovascular award during the conduct of the study. DJS reports other funding from Bayer and from BMS/Pfizer outside the submitted work. PL reports other funding from Daiichi-Sankyo, Bayer, and Boehringer Ingelheim, outside the submitted work. RA-SS reports grants from the British Heart Foundation, The Stroke Association, and Chest Heart & Stroke Scotland outside the submitted work. GYH reports consultancy for Bayer/Janssen, BMS/Pfizer, Biotronik, Medtronic, Boehringer Ingelheim, Microlife, and Daiichi-Sankyo; and speaker honoraria from Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, Microlife, Roche, and Daiichi-Sankyo. HPB reports personal fees from Neuravi/Cerenovus, Medtronic, Bayer, Daiichi-Sankyo, and Servier outside the submitted work. DH reports grants from University College Dublin Newman Fellowship supported Bayer during the conduct of the study. MEB reports grants from the Center for Translational Molecular Medicine during the conduct of the study. AMT reports grants from the Dutch Heart Foundation during the conduct of the study. AwDL reports grants from the Center for Translation Molecular Medicine and Dutch Heart Foundation during the conduct of the study. JMW reports grants from Wellcome Trust, Chest Heart Stroke Scotland, and Row Fogo Charitable Trust during the conduct of the study. YS reports a grant from Health and Medical Research Fund. VHR reports grants from the Netherlands Heart Foundation (grant 2001B071) during the conduct of the study. ST reports grants from Daiichi-Sankyo, Bayer, Pfizer, and Swiss Heart Foundation during the conduct of the study; other funding from Daiichi-Sankyo, Mindmaze, and Stago; and grants from the Swiss National Science Foundation outside the submitted work.

NP reports other funding from Daiichi-Sankyo, Bayer, and Boehringer Ingelheim outside the submitted work. EES reports personal fees from Portola Pharmaceuticals and Aylvam Pharmaceuticals outside the submitted work. VT reports personal fees and non-financial support from Boehringer Ingelheim and personal fees from Bayer, Pfizer/BMS, and Amgen and Medtronic outside the submitted work. RV reports grants and personal fees from Bayer, Boehringer Ingelheim, BMS, Daiichi-Sankyo, and Medtronic; and personal fees from Morphosys and Amgen outside the submitted work. HA reports grants from National Institutes of Health during the conduct of the study. PMR reports personal fees from Bayer outside the submitted work. KT reports personal fees from Daiichi-Sankyo, Bayer Yakuskin, BMS, and Nippon Boehringer Ingelheim outside the submitted work. DJWe reports personal fees from Bayer outside the submitted work. All other authors declare no competing interests.

Contributors

DJWe, DW, GA, and JM-F drafted the initial protocol, which was reviewed with critical revisions and approval by all authors. DW and GA did the statistical analysis. DW, DJWe, and GA wrote the first draft of the manuscript. All authors contributed to data acquisition, management, and brain imaging analyses. All authors contributed to critical revision of the manuscript and approved the final manuscript for submission.
References

