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Purpose: High‐resolution three‐dimensional (3D) structural MRI is useful for delin-
eating complex or small structures of the body. However, it requires long acquisition 
times and high SAR, limiting its clinical use. The purpose of this work is to acceler-
ate the acquisition of high‐resolution images by combining compressed sensing and 
parallel imaging (CSPI) on a 3D‐GRASE sequence and to compare it with a (CS)PI 
3D‐FSE sequence. Several sampling patterns were investigated to assess their influ-
ence on image quality.
Methods: The proposed k‐space sampling patterns are based on two undersampled 
k‐space grids, variable density (VD) Poisson‐disc, and VD pseudo‐random 
Gaussian, and five different trajectories described in the literature. Bloch simula-
tions are performed to obtain the transform point spread function and evaluate the 
coherence of each sampling pattern. Image resolution was assessed by the full‐
width at half‐maximum (FWHM). Prospective CSPI 3D‐GRASE phantom and in 
vivo experiments in knee and brain are carried out to assess image quality, SNR, 
SAR, and acquisition time compared to PI 3D‐GRASE, PI 3D‐FSE, and CSPI  
3D‐FSE acquisitions.
Results: Sampling patterns with VD Poisson‐disc obtain the lowest coherence for 
both PD‐weighted and T

2
‐weighted acquisitions. VD pseudo‐random Gaussian  

obtains lower FWHM, but higher sidelobes than VD Poisson‐disc. CSPI 3D‐GRASE 
reduces acquisition time (43% for PD‐weighted and 40% for T

2
‐weighted) and SAR 

(∼45% for PD‐weighted and T
2
‐weighted) compared to CSPI 3D‐FSE.

Conclusions: CSPI 3D‐GRASE reduces acquisition time compared to a CSPI 
3DFSE acquisition, preserving image quality. The design of the sampling pattern is 
crucial for image quality in CSPI 3D‐GRASE image acquisitions.
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1  |   INTRODUCTION

High‐resolution three‐dimensional (3D) structural MR imag-
ing can accurately delineate complex or small structures of 
the body.1 However, it requires long acquisition times, thereby 
limiting its clinical use.2 To mitigate this drawback, a Fast 
Spin Echo (FSE) sequence is often used to acquire 3D high‐
resolution images.2 Nevertheless, in FSE the speed and spatial 
coverage at high magnetic field strengths (≥ 3T) is limited by 
the specific absorption rate (SAR).3 This limitation is over-
come by the Gradient and Spin Echo (GRASE) sequence,4 
since it combines a train of radiofrequency (RF) refocusing 
pulses, also called echo train (ET), with a train of bipolar 
readout gradients in between refocusing pulses. To accommo-
date the readout gradient, the spacing between RF refocusing 
pulses, or RF‐spacing, is elongated for GRASE acquisitions 
compared with FSE acquisitions. Therefore, GRASE reduces 
SAR and may shorten image acquisition time compared to 
FSE. However, GRASE is prone to image artifacts due to 
phase and amplitude differences between spin‐echo (SE) and 
gradient‐recalled‐echo (GRE),5 and to the signal decay along 
the ET. To minimize these artifacts, several k‐space trajec-
tories for a variable flip angle algorithm (VFA) 3D‐GRASE 
sequence have been proposed and evaluated.6

Imaging acquisition techniques can be combined with im-
aging reconstruction methods to achieve shorter scan times. 
Reconstruction methods rely on specific a priori information 
to obtain images from a reduced amount of measurements 
without degrading image quality. Parallel imaging (PI)7  
requires a regular undersampled k‐space and a coil sensitivity 
map to obtain an artifact‐free image. Image domain PI usually 
obtains the coil sensitivity map through an additional scan, 
while k‐space PI requires a fully sampled k‐space center, 
also called autocalibrated signal (ACS) region, to implicitly 
estimate the coil sensitivity map. Compressed sensing (CS)8 
allows reconstructing images from highly undersampled 
measurements, relying on the sparsity of the image in a trans-
form domain, an incoherent sampling pattern, and a nonlinear  
reconstruction method.8 CS has been combined with PI show-
ing higher acceleration rates than each method by itself.9,10 If 
CS and a k‐space‐based PI methods are combined (CSPI), the 
sampling pattern needs to acquire the ACS k‐space region, 
required by PI, and also needs to lead to incoherent aliasing 
artifacts, as required by CS. Recently, CSPI has been success-
fully implemented in 3D‐FSE for T1rho

 imaging of the knee, 
obtaining comparable image quality in a shorter acquisition 
time.11 For 3D‐GRASE, we recently presented promising  
results on CSPI in knee12 and brain imaging.13

The design of the sampling pattern is crucial for a suc-
cessful CSPI reconstruction.14 A CSPI sampling pattern 
comprises the design of the undersampled k‐space grid and 
the trajectory, that is, specifying the k‐space lines and the 
time order to be acquired. Several variable density (VD) 

undersampling k‐space grids have been proposed to satisfy 
the incoherent sampling requirement of CSPI and to take also 
into account the energy distribution of the MR signal.11,14,15 
VD Poisson‐disc or VD pseudo‐random Gaussian k‐space 
grids are among the most commonly and successfully used 
for this purpose. Theoretically, a VD Poisson‐disc k‐space 
grid is beneficial for both CS and PI reconstruction methods 
independently, as it avoids holes and clusters in the k‐space 
grid.16 However, a thoroughly study comparing both k‐space 
grids has not been performed for brain and knee.

The effect of different sampling strategies for CSPI has 
mainly been assessed retrospectively by undersampling a 
fully sampled k‐space to obtain the desired k‐space grid.17,18 
These assessments usually do not take into account the trajec-
tory, neglecting artifacts created by the difference in ampli-
tude and phase of the k‐space lines along the ET. Therefore, 
prospective assessments are essential in 3D‐GRASE, where 
the trajectory plays an important role due to the differences 
in amplitude and phase between SE and GRE. For this rea-
son, CSPI 3D‐GRASE prospective studies investigating how 
different sampling patterns influence the image quality are 
required. Moreover, a CSPI 3D‐GRASE acquisition strategy 
has not been introduced and explored until now.

The aim of this work is to propose and investigate an  
efficient CSPI acquisition strategy for the VFA 3D‐GRASE 
sequence to reduce the acquisition time of high‐resolution 
structural imaging compared to a CSPI 3D‐FSE, maintaining 
image quality. Sampling patterns based on the VD Poisson‐
disc and VD pseudo‐random Gaussian k‐space grids and 
five different k‐space trajectories described Cristobal‐Huerta  
et al6 are considered and evaluated. Bloch simulations are per-
formed to obtain the transform point spread function (TPSF) 
and evaluate the degree of coherence of each sampling pat-
tern. Finally, prospective CSPI 3D‐GRASE phantom and 
prospective in vivo experiments in a knee and a brain were 
performed to assess the influence of each sampling pattern on 
the image quality and compared to PI 3D‐GRASE, PI 3D‐FSE,  
and CSPI 3D‐FSE acquisitions.

2  |   METHODS

2.1  |  K‐space sampling pattern design
The design of a k‐space sampling pattern consists of two 
steps. First, the design must specify the k‐space lines that 
should be acquired, here named as “k‐space grid”. Second, 
it must establish the time order on which each k‐space line is 
acquired, here named as “trajectory”.

In this section, the design of the k‐space grid and the dif-
ferent trajectories to obtain PD‐weighted and T2‐weighted 
images with 3D‐GRASE is provided. Supporting Information 
Figures S1‐S5 show examples of the different sampling 
patterns.
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2.1.1  |  K‐space grid
Two VD cartesian undersampled k‐space grids were inves-
tigated: VD pseudo‐random Gaussian and VD Poisson‐disc. 
The VD pseudo‐random Gaussian k‐space grid was gener-
ated according to the steps described in Pandit et al.11 First, 
the k‐space is regularly undersampled, as conventional for PI 
acquisitions. Afterward, the regular undersampled area is fur-
ther undersampled in a random fashion, following a pseudo‐
random Gaussian distribution with standard deviation in each 
direction equal to the width of the acquisition matrix in that 
direction. In order to obtain a variable density distribution of 
k‐space lines, the further undersampling was only performed 
outside an area slightly larger than the ACS region. Inside 
that region, the regular PI undersampling was preserved (see 
Figure 1A).

The VD Poisson‐disc k‐space grid was generated with the 
Berkeley Advanced Reconstruction Toolbox (BART).19 An 
example of this k‐space grid can be found in Figure 1B.

For the cases evaluated in this paper, the ACS region 
was set to approximately 2% of the total number of k‐space 
lines in a full acquisition. Since more slices were acquired 
for T2‐weighted acquisitions, the ACS regions for this case 
was set to 27 × 27 (ky × kz) k‐space lines. For PD‐weighted 
acquisitions, it was set to 21 × 21 (ky × kz) k‐space lines. 
The PI acceleration factor for both k‐space grids was fixed 
to ky = 2 and kz = 1. For the pseudo‐random Gaussian  
k‐space grid, the area in which no further undersampling 
was performed was fixed empirically to 80 × 32 (ky × kz). 
The overall acceleration factor, here named as CSPI accel-
eration factor, is the same for both k‐space grids, thus, they 

acquire the same total number of k‐space lines. To achieve 
this, the Poisson‐disc k‐space grid was first generated with 
the desired CSPI acceleration factor. Then, the pseudo‐ 
random Gaussian k‐space grid was adjusted to the same 
CSPI acceleration factor by further undersampling the 
outer region of the k‐space.

2.1.2  |  Trajectories
The cartesian trajectories in Cristobal‐Huerta et al6 were 
used to establish the time order of each k‐space line in the 
acquisition. These trajectories were designed to achieve 
the desired contrast while minimizing artifacts caused by 
small phase and amplitude differences between GRE and 
SE. Moreover, they do not require a fixed k‐space grid, 
which allows using different CSPI k‐space grids. Here, 
these trajectories are briefly explained. We refer the read-
ers to Cristobal‐Huerta et al6 for a more detailed explana-
tion of the implementation.

•	 PD‐weighted Trajectories For PD‐weighted images,  it 
proposes the Segmented Radial Encoding (SRE) and the 
Segmented Linear Center‐out Encoding (SLCE). The SRE 
trajectory combines the SORT phase‐encoding20 and the 
cartesian radial modulation21 trajectories. The echoes from 
each GRE position are grouped concentrically, mixing T2 
relaxation and off‐resonance effects along both ky and kz.  
The two modes, named as M = 0 and M = 1, modulate T2 
relaxation effects differently. The SLCE trajectory com-
bines the SORT phase‐encoding and the linear signal mod-
ulation.21 It distributes off‐resonance effects along kz and 

F I G U R E  1   Example of the proposed CSPI undersampled k‐space grids. (A), Undersampled k‐space grid using a variable density pseudo‐
random Gaussian undersampling and (B), Undersampled k‐space grid using a variable density Poisson‐disc undersampling. Both k‐space grids have 
the same ACS region for PI
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T2 relaxation effects along ky, filling the k‐space outward 
along ky. Two different alternatives were proposed, called 
SLCE 1 and SLCE 2. SLCE 1 alternates positive and nega-
tive ky coordinates in each ET, while SLCE 2 alternates ET 
with only positive or only negative ky coordinates.

•	 T2‐weighted Trajectory For T2‐weighted, the Segmented 
Linear Encoding (SLE) combines the SORT phase‐ 
encoding and the linear signal modulation21 trajectories. 
This combination distributes off‐resonance effects along 
kz and T2 relaxation effects along ky to minimize artifacts.

2.2  |  Reconstruction
In 3D‐GRASE, phase correction is needed before the CSPI 
reconstruction to correct phase differences between SE and 
GRE. For this purpose, two reference ETs, one at the begin-
ning and one at the end of the acquisition, were acquired 
without playing out slice and phase encoding gradients. 
GRE‐SE phase differences in‐between RF refocusing pulses 
were estimated for each position in the frequency encoding 
direction, for each coil individually, from the averaged refer-
ence scans. These phase differences were subsequently cor-
rected in every ET of the acquisition.5

CSPI 3D‐FSE and CSPI 3D‐GRASE image reconstruc-
tion are performed by the l1‐ESPIRiT reconstruction method 
implemented in the BART library.22 First, coil sensitivity 
maps are computed by the ESPIRiT algorithm. Secondly, 
the images are reconstructed by the soft‐SENSE algorithm 
with l1‐wavelet regularization, with regularization parameter 
λ = 0.01. This λ was chosen heuristically to avoid either very 
smooth or noisy images.

For PI 3D‐FSE and PI 3D‐GRASE, image reconstruc-
tion is carried out by the Autocalibrating Reconstruction for 
Cartesian imaging (ARC) method.23 A kernel of 7 × 3 × 3 
(x/y/z) was used to estimate missing k‐space lines.

Afterward, magnitude images from each individual chan-
nel were combined by root sum of squares. Finally, vendor's 
provided correction for gradient nonlinearities was applied 
to each slice.

Both sequences followed the same image reconstruc-
tion process for all phantom and in vivo acquisitions,  
except for the phase correction, which was only applied to 
3D‐GRASE.

2.3  |  Simulation experiments
Bloch simulations were carried out to study the degree of  
incoherence and the theoretical image resolution of each 
CSPI sampling pattern. The same Bloch simulations were 
also performed for each PI sampling pattern to evaluate the 
image resolution. The simulations were performed including 
T2 decay, T∗

2
 decay and off‐resonance effects (B0).

The transform point spread function (TPSF) was obtained 
for every sampling pattern following the procedure in Lustig 
et al8 and Lustig et al24: 

where Ψ is the wavelet transform, Cc is a diagonal matrix 
with the complex sensitivity of each coil c,  denotes the 
Fourier operator, Mk is a binary matrix selecting all k‐space 
positions in echo k, sk is the signal in echo k, and ei and ej 
are the i‐th and j‐th natural basis vectors. Due to computa-
tional constraints, for each sampling pattern the TPSF was 
evaluated for all j and 10 000 uniformly distributed pseudo‐
random i (wavelet coefficients). Since each wavelet level has 
different matrix sizes, the 10 000 coefficients were split in 
375 wavelet coefficients for each of the sub‐bands of the first 
level and 1000 wavelet coefficients for each of the sub‐bands 
in the second level.

To measure the coherence on the TPSF, the mean side-
lobe‐to‐peak ratio (SPR) of the TPSF was evaluated8: 

 

To obtain sk, the simulations used the in vivo acquisi-
tions settings in Table 1 for PD‐weighted sampling patterns, 
and Table 2 for T2‐weighted sampling patterns, except for 
the RF‐spacing, for which the following values were used: 
for PD‐weighted: 5.16 milliseconds (CSPI 3D‐FSE) and 
9.28 milliseconds (CSPI 3D‐GRASE); for T2‐weighted: 
4.56 milliseconds (CSPI 3D‐FSE) and 8.07 milliseconds 
(CSPI 3D‐GRASE). The properties of the simulated tis-
sues were25-27: White matter (WM): T1 = 832 millisec-
onds, T2 = 110 milliseconds and T∗

2
= 45 milliseconds 

B0 = 0 Hz; White Matter B0 (WM B0): T1 = 832 milli-
seconds, T2 = 110 milliseconds and T∗

2
= 45 milliseconds 

B0 = 50 Hz; Grey matter (GM): T1 = 1331 milliseconds 
T2 = 79.6 milliseconds and T∗

2
= 45 milliseconds B0 = 0 Hz; 

Grey matter B0: T1 = 1331 milliseconds, T2 = 79.6 milli-
seconds and T∗

2
= 45 milliseconds B0 = 50 Hz; Cartilage 

(CL): T1 = 1240 milliseconds, T2 = 36.9 milliseconds 
and T∗

2
= 22.6 milliseconds B0 = 0 Hz; Cartilage B0  

(CL B0): T1 = 1240 milliseconds, T2 = 36.9 milliseconds 
and T∗

2
= 22.6 milliseconds B0 = 50 Hz; Bone Marrow 

(BM): T1 = 371 milliseconds, T2 = 133 milliseconds 
and T∗

2
= 30 milliseconds B0 = 0 Hz; Bone Marrow B0  

(BM B0): T1 = 371 milliseconds, T2 = 133 milliseconds and 
T∗

2
= 30 milliseconds B0 = 50 Hz. The coil sensitivity maps, 

Cc, were obtained by the ESPIRiT algorithm from the ACR‐
Nema phantom28 with an 8‐channel head coil.

(1)TPSF(i, j) = Σc, ke∗
i
ΨC∗

c
∗MT

k
skMkCcΨ

∗ej,

(2)SPR=
|dT

n|
|dT

d|

with ni = max
j≠i

|TPSF(i, j)| and di = TPSF(i, i).
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The position of the wavelet coefficients was different 
for PD‐weighted simulations and T2‐weighted simulations, 
because of the different matrix sizes used in the protocols. 
However, the same coefficients were simulated for every 
sampling pattern within the PD‐weighted sampling patterns 
and T2‐weighted sampling patterns.

Image resolution was assessed by the full width at half 
maximum (FHWM) of the point spread function (PSF) both 
in CSPI and PI sequences.

2.4  |  Phantom experiment
Signal to noise ratio (SNR) and the no‐reference perception‐
based image quality evaluator (PIQUE)29 of every sampling 
pattern were assessed on the QA head SNR phantom (Model: 
2321556, General Electric, GE, Milwaukee, WI). 3D‐FSE 
and 3D‐GRASE phantom images for each sampling pat-
tern were acquired following the in vivo protocols showed 
in Tables 1 and 2 for PD‐weighted and T2‐weighted images, 
respectively. Images were acquired in the sagittal plane, with 
frequency encoding direction S/I, on a 3T General Electric 
Discovery MR750 clinical scanner (General Electric Medical 
Systems, Waukesha, Wisconsin) with an eight‐channel bird-
cage‐like receive brain coil (8HRBRAIN, General Electric 
Medical Systems).

SNR values were determined as the ratio of the mean 
signal intensity and the standard deviation of the noise. The 
mean signal was calculated in a region of interest (ROI) of a 
homogeneous region at the center of the image. The standard 

deviation of the noise was determined in a ROI in the back-
ground of the image.

PIQUE is a blind image quality assessment method which 
does not require prior information about the type of distor-
tion. Lower quality score (Qscore) implies less distortion 
and thus, better image quality. The Qscore was evaluated in a 
middle slice of the acquisition plane.

2.5  |  In vivo experiments
Human in vivo experiments were carried out to assess the 
image quality of the different CSPI sampling patterns on 
3D‐GRASE and 3D‐FSE sequences. The study was approved 
by our Institutional Review Board and informed consent 
was obtained from the volunteers. The images from four 
volunteers were acquired, two for brain and two for knee. 
The same MR system as for the phantom experiments was 
used for the acquisitions, with an eight‐channel phase‐array 
transmit‐receive knee coil (Precision Eight TX/TR High‐
Resolution Knee Array, In Vivo, Orlando, Florida) for knee 
PD‐weighted and an eight‐channel birdcage‐like receive 
brain coil (8HRBRAIN, General Electric Medical Systems) 
for brain T2‐weighted. The parameters for each protocol are 
shown in Table 1 for PD‐weighted acquisitions and Table 2 
for T2‐weighted acquisitions. Images were acquired in the 
sagittal plane with frequency encoding direction S/I.

As in phantom experiments, SNR and Qscore were eval-
uated from the images of the volunteers. For SNR mea-
surements on knee images, the mean signal intensity was 

T A B L E  2   Phantom and in vivo imaging acquisition parameters for PI 3D‐FSE, CSPI 3D‐FSE, PI 3D‐GRASE, and CSPI 3D‐GRASE  
T

2
‐weighted brain images

T
2
w brain

PI 3D‐FSE CSPI 3D‐FSE PI 3D‐GRASE CSPI 3D‐GRASE

Linear modulation SLE

TR (millisecond) 2800 2800 2800 2800

TE (millisecond) 73.42 74.75 77.07 78.78

ET length 94 94 53 53

RF‐spacing (millisecond) 4.46 4.56 7.87 7.84/7.95

FOV (cm) 24 24 24 24

EPI factor 1 1 3 3

Receive bandwidth (kHz) ±62.5 ±62.5 ±100 ±100

Acquisition matrix 288 × 288 × 156 288 × 288 × 156 288 × 288 × 156 288 × 288 × 156

Voxel size (mm) 0.83 × 0.83 × 1 0.83 × 0.83 × 1 0.83 × 0.83 × 1 0.83 × 0.83 × 1

CSPI Acceleration factor 2.5 5.65 2.5 5.65

Time (min) 8:58 3:52 5:19 2:20

AveSAR ( W

kg
) 0.71 0.71 0.41 0.41

Same parameters were used for PI and CSPI images acquisitions, except for TE, RF‐spacing, and the acceleration factor. For CSPI, different TEs are obtained in the 
sampling patterns depending on the k‐space grid (Variable Density Poisson‐disc/Variable Density pseudo‐random Gaussian). SAR values are shown for the first 
volunteer (weight = 70 Kg).
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calculated in the synovial fluid and for the brain images, the 
mean signal intensity was calculated in the cerebrospinal 
fluid. In both, the standard deviation of the noise was calcu-
lated in an ROI on the background of the image. The Qscore 
was evaluated in a middle slice of the acquisition plane  
(sagittal plane).

For each sequence, the average whole body SAR 
(AveSAR), in W/Kg was obtained from the scanner's  
reported values. Briefly, each active RF pulse in the sequence 
is normalized to a quantity of standardized RF pulses (1 mil-
lisecond long, 180◦ flip angle), where the B1 field is known 
(0.117 G). Afterward, all RF pulses in one TR are summed 
together: 

where γ is the gyromagnetic ratio, B1 is the effective B1 field 
value produced by the RF pulse, PWpulse is the pulse width 
(in milliseconds) that the standardized RF rectangular pulse 
would be if it had an identical area as the absolute value of the 
pulse under consideration.

After, for the eight‐channel birdcage‐like receive brain 
coil, the average whole body SAR is obtained by: 

where jstd is the energy deposited in the subject calculated 
from a curve calibrated to the system (in Joules), weight is 
the subject weight (in Kg), and TR is the repetition time of 
the sequence (in second). For the eight‐channel phase‐array 
transmit‐receive knee coil, the whole body SAR is obtained 
replacing the weight in (4) by: 

where weight is the weight of the subject.
Reported AveSAR values in Tables 1 and 2 belong to vol-

unteers with a weight of 70Kg.

3  |   RESULTS

3.1  |  Simulation experiments
Table 3 presents the values of the coherence of every sampling 
pattern evaluated for CSPI 3D‐GRASE and CSPI 3D‐FSE. 
No coherence values are shown for the PI acquisitions, since 
it is only relevant for CS reconstruction. In general, among 
the sampling patterns investigated the lowest coherence is 
obtained by sampling patterns combining a VD Poisson‐disc 
k‐space grid in both PD‐weighted and T2‐weighted contrasts.

For CSPI 3D‐GRASE, the lowest coherence is achieved 
for PD‐weighted by the sampling patterns combining a VD 
Poisson‐disc k‐space grid with SRE M = 0 or SRE M = 1 

trajectories, and for T2‐weighted by the sampling pattern com-
bining a VD Poisson‐disc k‐space grid with SLE trajectory for 
both tissues. It can be observed that sampling patterns for 3D‐
GRASE PD‐weighted with a VD Poisson‐disc k‐space grid 
obtain higher coherence when off‐resonance effects are taking 
into account. From the coherence values of the different trajec-
tories, it can be observed that they are mainly influenced by the 
chosen k‐space grid. For 3D‐GRASE T2‐weighted, the coher-
ence value is constant with and without off‐resonance effects. 
On the contrary, sampling patterns with a VD pseudo‐ran-
dom Gaussian k‐space grid obtain lower coherence when off‐ 
resonance effects are considered in PD; however, for T2, the 
coherence value is higher if off‐resonance effects are consid-
ered. Coherence for CSPI 3D‐FSE considering off‐resonance 
effects is not different from not considering off‐resonance  
effects, due to SE are not affected by off‐resonance frequencies.

The resolution of every sampling pattern was evaluated 
by the FWHM. For PD, sampling patterns combining a VD 
pseudo‐random Gaussian k‐space grid obtain, in general, 
higher resolution for y and z. However, it also obtains higher 
sidelobes on the PSF than a VD Poisson‐disc k‐space grid, 
suggesting more artifacts on the images (see Supporting 
Information Figure S6 and Supporting Information Figure S7).  
For T2, both k‐space grids obtain similar FWHM measure-
ments. Though, as in PD, a VD pseudo‐random Gaussian 
k‐space grid has higher sidelobes on the PSF than a VD 
Poisson‐disc k‐space grid. Moreover, the peak of the PSF for 
a VD pseudo‐random Gaussian k‐space grid along z is dis-
placed (see Supporting Information Figure S8).

In general, CSPI increases the FWHM of the images com-
pared to PI in both sequences and contrasts, especially for PD.

3.2  |  Phantom experiment
Table 4 shows the SNR and Qscore of every sampling pat-
tern and sequence for PD‐weighted and T2‐weighted phan-
tom images.

For PD‐weighted images, the highest SNR is, in most of 
the cases, achieved by CSPI 3D‐FSE acquisitions. Among 
sampling patterns for CSPI 3D‐FSE, the VD pseudo‐random  
Gaussian k‐space grid with radial modulation achieves the 
highest SNR. Although PI 3D‐FSE obtains lower SNR than 
CSPI, the Qscore indicates a higher image quality. In CSPI 
3D‐GRASE, sampling patterns with a VD Poisson‐disc  
k‐space grid and VD pseudo‐random Gaussian k‐space grid 
achieve the highest SNR for the SLCE 2 trajectory. In gen-
eral, a higher image quality (lower Qscore) is achieved by 
sampling patterns with lower SNR, except for the SLCE 2 
trajectory. In the phantom acquisition, the best compromise 
between SNR and Qscore among CSPI 3D‐GRASE sampling 
patterns, as in PI 3D‐GRASE, is achieved by VD pseudo‐ 
random Gaussian k‐space grid with SLCE 2 trajectory. Figure 2  
shows the phantom images, in sagittal and axial planes, 

(3)stdrf = Σpulses

(
γB1

0.117γ

)2 ( PWpulse

1 millisecond

)
,

(4)AveSAR =
stdrf∗ jstd

weight∗TR
,

(5)CoilWeight = 0.15 (weight)0.67 ,



      |  991CRISTOBAL‐HUERTA et al.

T
A

B
L

E
 3

 
C

oh
er

en
ce

 a
nd

 fu
ll 

w
id

th
 a

t h
al

f m
ax

im
um

 (F
H

W
M

) m
ea

su
re

m
en

ts
 fo

r t
he

 p
ro

po
se

d 
PD

‐w
ei

gh
te

d 
an

d 
T

2
‐w

ei
gh

te
d 

sa
m

pl
in

g 
pa

tte
rn

s f
or

 C
SP

I a
nd

 P
I

Sa
m

pl
in

g 
Pa

tte
rn

C
oh

er
en

ce
FW

H
M

 (v
ox

el
s)

C
on

tr
as

t
Se

qu
en

ce
G

ri
d

Tr
aj

ec
to

ry
C

L
BM

C
L

BM

y
z

y
z

PD
FS

E
C

SP
I

V
D

 P
oi

ss
on

R
ad

ia
l M

od
.

0.
25

/0
.2

5
0.

19
/0

.1
9

1.
8/

1.
8

1.
6/

1.
6

1.
4/

1.
4

1.
2/

1.
2

V
D

 G
au

ss
ia

n
R

ad
ia

l M
od

.
0.

64
/0

.6
4

0.
70

/0
.7

0
1.

6 
/1

.6
1.

6/
1.

6
1.

2/
1.

2
1.

2/
1.

2

PI
R

eg
ul

ar
R

ad
ia

l M
od

.
‐

‐
1.

2/
1.

2
1.

2/
1.

2
1.

0/
1.

0
1.

0/
1.

0

G
R

A
SE

C
SP

I
V

D
 P

oi
ss

on
SR

E 
M

 =
 0

0.
31

/0
.3

5
0.

21
/0

.2
8

1.
4/

1.
6

1.
2/

1.
4

1.
2/

1.
6

1.
4/

1.
6

SR
E 

M
 =

 1
0.

28
/0

.3
3

0.
20

/0
.2

7
1.

4/
1.

9
1.

2/
1.

6
1.

2/
1.

6
1.

2/
1.

4

SL
C

E 
1

0.
34

/0
.3

9
0.

21
/0

.3
4

2.
2/

2.
3

1.
2/

1.
4

1.
4/

2.
6

1.
2/

1.
3

SL
C

E 
2

0.
33

/0
.4

0
0.

21
/0

.3
5

2.
0/

2.
9

1.
2/

1.
4

1.
4/

6.
7

1.
2/

1.
3

V
D

 G
au

ss
ia

n
SR

E 
M

 =
 0

0.
63

/0
.5

9
0.

69
/0

.6
6

1.
2/

1.
5

1.
2/

1.
6

1.
0/

1.
4

1.
0/

1.
3

SR
E 

M
 =

 1
0.

64
/0

.6
0

0.
69

/0
.6

6
1.

2/
1.

8
1.

2/
1.

6
1.

1/
1.

6
1.

1/
1.

4

SL
C

E 
1

0.
64

/0
.6

2
0.

69
/0

.6
9

1.
9/

1.
4

1.
2/

1.
4

1.
2/

1.
4

1.
2/

1.
3

SL
C

E 
2

0.
64

/0
.6

1
0.

69
/0

.6
7

1.
7/

2.
0

1.
2/

1.
3

1.
2/

0.
5

1.
0/

1.
3

PI
R

eg
ul

ar
SR

E 
M

 =
 0

‐
‐

1.
2/

1.
2

1.
2/

1.
2

1.
2/

1.
2

1.
2/

1.
2

SR
E 

M
 =

 1
‐

‐
1.

0/
1.

2
1.

0/
1.

2
1.

2/
1.

2
1.

2/
1.

2

SL
C

E 
1

‐
‐

1.
0/

1.
4

1.
0/

1.
4

1.
2/

1.
0

1.
0/

1.
5

SL
C

E 
2

‐
‐

1.
0/

2.
8

1.
0/

1.
5

1.
2/

3.
2

1.
1/

2.
0

G
M

W
M

G
M

W
M

y
z

y
z

T
2

FS
E

C
SP

I
V

D
 P

oi
ss

on
Li

ne
ar

 M
od

.
0.

25
/0

.2
5

0.
24

/0
.2

4
1.

6/
1.

6
1.

4/
1.

4
1.

4/
1.

4
1.

4/
1.

4

V
D

 G
au

ss
ia

n
Li

ne
ar

 M
od

.
0.

54
/0

.5
4

0.
54

/0
.5

4
1.

3/
1.

3
1.

2/
1.

2
1.

2/
1.

2
1.

2/
1.

2

PI
R

eg
ul

ar
Li

ne
ar

 M
od

.
‐

‐
1.

6/
1.

6
1.

2/
1.

2
1.

4/
1.

4
1.

2/
1.

2

G
R

A
SE

C
SP

I
V

D
 P

oi
ss

on
SL

E
0.

25
/0

.2
5

0.
23

/0
.2

3
1.

5/
1.

1
1.

4/
1.

4
1.

4/
1.

4
1.

4/
1.

4

V
D

 G
au

ss
ia

n
SL

E
0.

54
/0

.5
8

0.
53

/0
.5

9
1.

4/
1.

6
1.

1/
1.

2
1.

4/
1.

5
1.

1/
1.

2

PI
R

eg
ul

ar
SL

E
‐

‐
1.

5/
1.

1
1.

2/
1.

5
1.

4/
1.

1
1.

2/
1.

4

Fo
ur

 ti
ss

ue
s w

er
e 

si
m

ul
at

ed
: c

ar
til

ag
e 

(C
L)

 a
nd

 b
on

e 
m

ar
ro

w
 (B

M
) f

or
 P

D
‐w

ei
gh

te
d 

kn
ee

, a
nd

 g
ra

y 
m

at
te

r (
G

M
) a

nd
 w

hi
te

 m
at

te
r (

W
M

) f
or

 T
2
‐w

ei
gh

te
d 

br
ai

n.
 T

he
 c

oh
er

en
ce

 a
nd

 F
W

H
M

 w
er

e 
ob

ta
in

ed
 fo

r t
he

 d
iff

er
en

t t
is

su
es

 
w

ith
ou

t a
nd

 w
ith

 o
ff

‐r
es

on
an

ce
 e

ff
ec

ts
, d

en
ot

e 
in

 th
e 

ta
bl

e 
by

 a
 sl

as
h 

(B
0 

=
 0

 H
z/

B
0 

=
 5

0 
H

z)
. V

D
 P

oi
ss

on
 st

an
ds

 fo
r v

ar
ia

bl
e 

de
ns

ity
 P

oi
ss

on
‐d

is
c,

 V
D

 G
au

ss
ia

n 
st

an
ds

 fo
r v

ar
ia

bl
e 

de
ns

ity
 p

se
ud

o‐
ra

nd
om

 G
au

ss
ia

n.



992  |      CRISTOBAL‐HUERTA et al.

T
A

B
L

E
 4

 
SN

R
 a

nd
 Q

sc
or

e 
m

ea
su

re
m

en
ts

 in
 a

 p
ha

nt
om

 a
nd

 tw
o 

vo
lu

nt
ee

rs
 fo

r C
SP

I 3
D

‐F
SE

, P
I 3

D
‐G

R
A

SE
, C

SP
I 3

D
‐G

R
A

SE
 a

nd
 P

I 3
D

‐G
R

A
SE

C
on

tr
as

t
Se

qu
en

ce

Sa
m

pl
in

g 
Pa

tte
rn

Ph
an

to
m

V
ol

un
te

er
 1

V
ol

un
te

er
 2

K
‐s

pa
ce

 g
ri

d
Tr

aj
ec

to
ry

SN
R

Q
sc

or
e

SN
R

Q
sc

or
e

SN
R

Q
sc

or
e

PD
FS

E
C

SP
I

V
D

 P
oi

ss
on

R
ad

ia
l M

od
.

13
1.

49
43

.4
4

18
1.

11
35

.2
1

11
2.

07
35

.6
0

V
D

 G
au

ss
ia

n
R

ad
ia

l M
od

.
15

2.
96

44
.0

9
16

4.
86

36
.4

6
10

1.
03

37
.3

7

PI
R

eg
ul

ar
R

ad
ia

l M
od

.
95

.5
4

40
.7

9
12

5.
19

39
.0

7
10

2.
75

40
.0

4

G
R

A
SE

C
SP

I
V

D
 P

oi
ss

on
SR

E 
M

 =
 0

38
.7

9
43

.5
8

14
3.

32
35

.2
7

77
.9

2
32

.5
6

SR
E 

M
 =

 1
45

.7
1

43
.5

0
21

0.
70

36
.5

9
10

1.
85

34
.1

8

SL
C

E 
1

47
.8

7
39

.1
4

80
.7

8
32

.8
1

60
.8

4
32

.6
5

SL
C

E 
2

87
.8

3
41

.4
1

11
6.

95
33

.4
6

79
.4

6
32

.4
0

V
D

 G
au

ss
ia

n
SR

E 
M

 =
 0

33
.0

4
43

.1
2

13
4.

65
35

.5
8

61
.7

4
31

.9
8

SR
E 

M
 =

 1
49

.3
3

42
.5

4
12

1.
14

39
.9

1
78

.1
1

33
.7

9

SL
C

E 
1

40
.3

4
38

.6
1

71
.8

4
33

.3
6

38
.1

4
32

.5
4

SL
C

E 
2

15
4.

30
42

.2
4

93
.8

4
33

.6
2

62
.7

1
32

.8
2

PI
R

eg
ul

ar
SR

E 
M

 =
 0

42
.1

2
40

.3
6

96
.5

0
36

.1
6

11
5.

49
39

.7
9

SR
E 

M
 =

 1
44

.1
1

41
.0

7
10

4.
71

35
.1

5
77

.3
5

37
.9

4

SL
C

E 
1

45
.7

6
35

.6
6

66
.3

8
34

.3
9

10
9.

62
38

.6
3

SL
C

E 
2

35
.4

9
36

.5
5

10
9.

01
35

.1
5

55
.7

0
36

.6

T
2

FS
E

C
SP

I
V

D
 P

oi
ss

on
Li

ne
ar

 M
od

.
29

.8
5

63
.7

9
24

1.
39

41
.7

5
25

0.
60

45
.9

6

V
D

 G
au

ss
ia

n
Li

ne
ar

 M
od

.
32

.3
4

64
.5

7
37

2.
88

44
.0

8
23

5.
96

47
.2

3

PI
R

eg
ul

ar
Li

ne
ar

 M
od

.
55

.3
3

75
.7

6
15

2.
05

42
.7

2
15

9.
54

49
.6

0

G
R

A
SE

C
SP

I
V

D
 P

oi
ss

on
SL

E
46

.8
5

64
.7

1
13

0.
25

42
.3

1
10

9.
79

44
.5

6

V
D

 G
au

ss
ia

n
SL

E
48

.5
6

66
.7

1
96

.2
4

42
.4

5
11

5.
02

42
.8

0

PI
R

eg
ul

ar
SL

E
32

.9
0

75
.6

7
97

.8
1

41
.4

9
13

2.
56

43
.3

1

V
D

 P
oi

ss
on

 st
an

ds
 fo

r v
ar

ia
bl

e 
de

ns
ity

 P
oi

ss
on

‐d
is

c,
 V

D
 G

au
ss

ia
n 

st
an

ds
 fo

r v
ar

ia
bl

e 
de

ns
ity

 p
se

ud
o‐

ra
nd

om
 G

au
ss

ia
n.



      |  993CRISTOBAL‐HUERTA et al.

acquired by 3D‐FSE and 3D‐GRASE with every sam-
pling pattern and acceleration technique (PI and CSPI). PI  
3D‐FSE obtains the most sharp image, with no artifacts, as it is 
reported by its low Qscore. We can also appraise that the axial 
plane shows strong blurring artifacts for the sampling pattern 
combining a VD Poisson‐disc with the SLCE 2 trajectory.

For T2‐weighted images, the highest SNR is achieved 
by the PI 3D‐FSE acquisition, while CSPI 3D‐FSE, PI  
3D‐GRASE, and CSPI 3D‐GRASE acquisitions reduce the 
SNR about 15%. Among CSPI sampling patterns, the highest 

SNR is achieved by the VD pseudo‐random Gaussian for  
both 3D‐FSE and 3D‐GRASE. The Qscore measurement 
shows that PI obtains lower image quality than CSPI acquisi-
tions. Among sampling patterns, the highest image quality is  
obtained by the VD Poisson‐disc k‐space grid for CSPI  
3D‐FSE and for CSPI 3D‐GRASE. The differences in Qscore 
among sampling patterns for CSPI are small, while between 
acceleration techniques (PI and CSPI) are moderate. Figure 3  
shows the phantom images acquired by 3D‐FSE and  
3D‐GRASE with every sampling pattern and acceleration 

F I G U R E  2   PD‐weighted phantom 
images for 3D‐FSE and 3D‐GRASE with 
the proposed sampling patterns. Each row 
shows a different trajectory: (A), 3D‐FSE 
with radial trajectory, (B), 3D‐GRASE with 
SRE = 0, (C), 3D‐GRASE with SRE = 1, 
(D), 3D‐GRASE with SLCE 1, (E), 3D‐
GRASE with SLCE 2. Each column pair 
shows a different k‐space grid: PI k‐space 
grid, CSPI VD Poisson‐disc undersampled 
k‐space grid (VD‐P) and the VD pseudo‐
random Gaussian undersampled k‐space 
grid (VD‐G). The sagittal and axial planes 
are shown for every k‐space grid

F I G U R E  3   T
2
‐weighted phantom images for 3D‐FSE and 3D‐GRASE with the proposed sampling patterns. Each row shows a different 

trajectory: (A), 3D‐FSE with linear trajectory, (B), 3D‐GRASE with SLE trajectory. Each column pair shows a different k‐space grid: PI k‐space 
grid, CSPI VD Poisson‐disc undersampled k‐space grid (VD‐P), and the VD pseudo‐random Gaussian undersampled k‐space grid (VD‐G). The 
sagittal and axial planes are shown for every k‐space grid
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technique (PI and CSPI). For CSPI, both sampling patterns 
obtain equivalent image quality.

3.3  |  In vivo experiments
As for phantom experiments, Table 4 shows the SNR 
and Qscore of every sampling pattern and sequence for  
PD‐weighted knee images and T2‐weighted brain images.

For PD‐weighted knee images, PI and CSPI acquisitions 
achieve, in general, comparable SNR among the different 
sampling patterns. The highest SNR is achieved by a dif-
ferent sampling pattern in each volunteer. In general, CSPI 
3D‐FSE obtains the highest SNR compared to the sam-
pling patterns proposed for CSPI 3D‐GRASE. Among the 

sampling patterns proposed for CSPI 3D‐GRASE, those 
using a VD Poisson‐disc k‐space grid achieve higher SNR 
for each trajectory. CSPI obtains comparable image quality 
than PI for both sequences. For both volunteers, the low-
est Qscore is achieved by the sampling patterns combining 
the SLCE 1 or SLCE 2 trajectories. Taking into account 
the SNR and Qscore measurements, sampling patterns  
including a VD Poisson‐disc k‐space grid obtains the best 
image quality, since they obtain higher SNR with low 
Qscore. Specifically, the sampling patterns combining a 
VD Poisson‐disc k‐space grid with the SLCE 1 or SLCE 2 
trajectory obtain the highest SNR with a low Qscore. CSPI 
3D‐GRASE reduces the acquisition time by 43% compared 
to a CSPI 3D‐FSE acquisition. Figures 4 and 5 shows the 

F I G U R E  4   PD‐weighted knee images of the first volunteer for 3D‐FSE and 3D‐GRASE with the proposed sampling patterns. Two 
orthogonal scan planes are shown every two columns: sagittal and axial. From left to right, the column pairs show the PI, the VD Poisson‐disc 
undersampled k‐space grid (VD‐P), and the VD pseudo‐random Gaussian undersampled k‐space grid (VD‐G). The different trajectories are shown 
in each row: (A), 3D‐FSE with radial trajectory, (B), 3D‐GRASE with SRE = 0, (C), 3D‐GRASE with SRE = 1, (D), 3D‐GRASE with SLCE 1, 
(E), 3D‐GRASE with SLCE 2
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in vivo knee images for the first and the second volunteers, 
respectively, obtained with the different sampling patterns 
proposed for 3D‐FSE and 3D‐GRASE, both for PI and 
CSPI accelerated acquisitions. CSPI 3D‐GRASE with the 
sampling patterns combining a VD Poisson‐disc k‐space 
grid with the SLCE 1 or the SLCE 2 trajectories obtain 
higher image quality than CSPI 3D‐FSE (see Supporting 
Information Figure S9 and Supporting Information  
Figure S10).

For T2‐weighted brain images, CSPI acquisitions 
achieve the highest SNR among the acceleration tech-
niques. The Qscore shows better image quality for CSPI 
3D‐GRASE than for CSPI 3D‐FSE. This can be due to the 
lower SNR of 3D‐GRASE, since less artifacts could be 

discerned. According to the measurements performed in in 
vivo T2‐weighted acquisitions, there is almost no difference 
among sampling patterns for CSPI 3D‐GRASE and CSPI 
3D‐FSE in both volunteers, although the VD Poisson‐disc 
k‐space grid obtains significant higher SNR in volunteer 1. 
As in PD‐weighted acquisitions, CSPI 3D‐GRASE reduces 
the acquisition time by 40% compared to a CSPI 3D‐FSE 
acquisition. Figure 6 shows the in vivo T2‐weigted brain 
images obtained for both volunteers with the different 
sampling patterns proposed for 3D‐FSE and 3D‐GRASE, 
both for PI and CSPI accelerated acquisitions. These  
images show that there is no clear artifacts or image degra-
dation when CSPI is used (see also Supporting Information 
Figure S11).

F I G U R E  5   PD‐weighted knee images of the second volunteer with the proposed sampling patterns. Two orthogonal scan planes are shown 
every two columns: sagittal and axial. From left to right, the column pairs show the PI, the VD Poisson‐disc undersampled k‐space grid (VD‐P), 
and the VD pseudo‐random Gaussian undersampled k‐space grid (VD‐G). The different trajectories are shown in each row: (A), 3D‐FSE with radial 
trajectory, (B), 3D‐GRASE with SRE = 0, (C), 3D‐GRASE with SRE = 1, (D), 3D‐GRASE with SLCE 1, (E), 3D‐GRASE with SLCE 2
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4  |   DISCUSSION

In this work, we presented and investigated a CSPI acqui-
sition scheme for a 3D‐GRASE sequence. To this end, ten 
CSPI k‐space sampling strategies to accelerate the acquisi-
tion of 3D‐GRASE were analyzed, eight for PD‐weighted 
knee images and two for T2‐weighted brain images. PI  
images with every sequence were also analyzed and used as 
reference.

In CSPI, the coherence of the sampling pattern is, theo-
retically, one of the main elements influencing the recon-
struction performance. The SPR showed that the lowest 
degree of coherence was obtained for sampling patterns 
combining a VD Poisson‐disc k‐space grid in PD‐weighted 
and T2‐weighted contrasts for both CSPI 3D‐GRASE and 
CSPI 3D‐FSE sequences. Based on this fact, a better image 
quality could be expected than from sampling patterns 
combining a VD Poisson‐disc k‐space. Additionally, the  
differences in coherence among the trajectories for the 

different sampling patterns are small, suggesting that 
the trajectory has low influence on the coherence. Thus,  
the undersampling pattern of the k‐space grid is the most 
important factor in terms of coherence. Nevertheless, the 
trajectory plays an important role for the image quality 
in 3D‐GRASE acquisitions. Depending on the trajectory, 
different artifacts may be appraised in the images, as pre-
viously shown for accelerated high‐resolution images,6 
since every trajectory modulates T2 and T∗

2
 effects differ-

ently. Phantom and in vivo experiments showed that the 
coherence measurement cannot totally predict the final 
image quality. One of the reasons is that the simulations 
performed do not take into account all the effects that 
can happen in a real acquisition, as for example, eddy 
currents.

For PD‐weighted images, the sampling patterns combin-
ing a VD Poisson‐disc k‐space grid with the SLCE 1 or SLCE 
2 obtains one of the worse FWHM values along y among 
the trajectories, especially for off‐resonance effects. Also, 

F I G U R E  6   T
2
‐weighted brain images for the first and second volunteers with PI 3D‐FSE, CSPI 3D‐FSE, PI 3D‐GRASE, and CSPI 3D‐

GRASE with the proposed sampling patterns. Two orthogonal scan planes are shown every two columns: sagittal and axial. From left to right, the 
column pairs show the PI, VD Poisson‐disc undersampled k‐space grid (VD‐P) and the VD pseudo‐random Gaussian undersampled k‐space grid 
(VD‐G). Each row shows a different trajectory: (A), 3D‐FSE with linear trajectory, (B), 3D‐GRASE with SLE trajectory for the first volunteer, and 
(C), 3D‐FSE with linear trajectory, (D), 3D‐GRASE with SLE trajectory for the second volunteer
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we found that phantom images with the sampling pattern 
combining a VD Poisson‐disc k‐space grid with the SLCE 
2 trajectory shows blur in the axial plane. However, we have 
not appraised this issue in in vivo knee images. The different 
properties of the phantom can cause different artifacts than 
expected in tissues. Though, compared to the other sampling 
pattern investigated, these sampling pattern obtain images 
where the cartilage can be clearly differentiated from the rest 
of the structures in the orthogonal planes. This demonstrates 
that prospective acquisitions are needed to fully investigate 
and evaluate CSPI acquisitions. Moreover, in PD‐weighted 
knee imaging, CSPI loses some details of the patellar bone 
marrow compared to PI, both in 3D‐FSE and 3D‐GRASE.

For T2‐weighted images, SNR and Qscore showed that 
there is almost no difference in image quality between tra-
jectories, although a VD pseudo‐random Gaussian with 
the SLE trajectory obtains a slightly higher SNR in most 
of the cases. Simulations showed that the resolution, mea-
sured by the FWHM, is generally higher for sampling pat-
terns including a VD pseudo‐random Gaussian k‐space grid 
when off‐resonance effects are taking into account for CSPI  
3D‐FSE and for CSPI 3D‐GRASE. Based on the FWHM, 
VD pseudo‐random Gaussian k‐space grids are less sensitive 
to off‐resonance effects in 3D‐GRASE and they should be 
used for CSPI 3D‐GRASE acquisitions. However, we did not 
identify a loss of image resolution or more artifacts in WM 
for the sampling pattern including a VD Poisson‐disc k‐space 
as was predicted by the FHWM simulations.

An increase of the SNR in CSPI compared to PI was 
also found in this study. Although, in general 3D‐GRASE  
reduces the SNR, since lower signal amplitudes are achieved 
by GRE, different reconstruction algorithms were used for PI 
and CSPI, which may be the cause of higher SNR in CSPI.

There were slight differences in TE among the acquisitions 
with different sampling patterns and sequences. Even though 
changes in TE may slightly affect the SNR and Qscore, it is 
not expected to influence the conclusions.

It is worth to mention that different ACS region sizes and 
shapes can influence image artifacts and, especially, acquisi-
tion time. For this work, a square ACS region was chosen since 
the BART library used to generate the Poisson‐disc k‐space 
only allows to create a square ACS region. The effect of the 
size and shape of the ACS region on the image quality of the 
different sampling patterns was not studied. In the same way, 
the effect of size and shape of the regular k‐space area in the 
VD pseudo‐random Gaussian k‐space grid was not studied. 
Nevertheless, ACS size and shape differences are expected to 
impact PI and CSPI acquisitions in the same way. Additionally, 
the image quality of 3D‐GRASE with a higher EPI factor has 
not been investigated in this work. For the applications consid-
ered in this paper (high‐resolution structural imaging), a higher 
EPI factor is not recommendable, since it would increase the 
RF‐spacing, obtaining blurrier images.

The image quality of the proposed CSPI 3D‐GRASE 
acquisitions is similar to CSPI 3D‐FSE, with the advantage 
that CSPI 3D‐GRASE reduces the scan time by 43% for 
PD‐weighted images and by 40% for T2‐weighted images. 
Although the images of CSPI 3D‐GRASE acquisitions are 
slightly more blurred than PI acquisitions, the scan time  
reduction achieved may enable high‐resolution 3D imaging 
to be rapidly incorporated in conventional clinical protocols.

5  |   CONCLUSIONS

CSPI 3D‐GRASE significantly reduces acquisition time 
compared to a CSPI 3D‐FSE acquisition and can reduce SAR 
in clinical protocols. The design of the sampling pattern,  
including both the k‐space grid and the k‐space trajectory, is 
crucial to obtain high image quality in a high‐resolution CSPI 
3D‐GRASE acquisition.

This work identifies several suitable undersampled  
k‐space grid and trajectory combinations. Overall, we pro-
pose to use a VD Poisson‐disc k‐space grid with the SLCE 1 
trajectory for PD‐weighted knee imaging and a VD pseudo‐
random Gaussian k‐space grid with the SLE trajectory for 
brain T2‐weighted imaging with CSPI 3D‐GRASE.
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FIGURE S1 CSPI 3D‐GRASE sampling patterns for 
PD‐weighted images with the SRE M = 0 trajectory:  
(A), VD Poisson‐disc undersampled k‐space grid and (B), VD 
pseudo‐random Gaussian undersampled k‐space grid. The 
EPI factor is set to 3. The different marker shapes indicate 
the different echo types: square for GRE before the SE, circle 
symbol for SE, and triangle for GRE after SE. The colormap 
represents the order in the acquisition of every echo along 
the ET. Transparency indicates the train number in which the  
k‐space line is acquired, increasing for higher train numbers
FIGURE S2 CSPI 3D‐GRASE sampling patterns for 
PD‐weighted images with the SRE M = 1 trajectory: (A), 
VD Poisson‐disc undersampled k‐space grid and (B), VD 
pseudo‐random Gaussian undersampled k‐space grid. The 
EPI factor is set to 3. The different marker shapes indicate 
the different echo types: square for GRE before the SE, circle 
symbol for SE, and triangle for GRE after SE. The colormap 
represents the order in the acquisition of every echo along 
the ET. Transparency indicates the train number in which the 
k‐space line is acquired, increasing for higher train numbers
FIGURE S3 CSPI 3D‐GRASE sampling patterns 
for PD‐weighted images with the SLCE 1 trajectory:  
(A), VD Poisson‐disc undersampled k‐space grid and (B), VD 
pseudo‐random Gaussian undersampled k‐space grid. The 
EPI factor is set to 3. The different marker shapes indicate 
the different echo types: square for GRE before the SE, circle 
symbol for SE, and triangle for GRE after SE. The colormap 
represents the order in the acquisition of every echo along 
the ET. Transparency indicates the train number in which the  
k‐space line is acquired, increasing for higher train numbers
FIGURE S4 CSPI 3D‐GRASE sampling patterns 
for PD‐weighted images with the SLCE 2 trajectory:  
(A), VD Poisson‐disc undersampled k‐space grid and (B), VD 
pseudo‐random Gaussian undersampled k‐space grid. The 
EPI factor is set to 3. The different marker shapes indicate 
the different echo types: square for GRE before the SE, circle 
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symbol for SE, and triangle for GRE after SE. The colormap 
represents the order in the acquisition of every echo along 
the ET. Transparency indicates the train number in which the  
k‐space line is acquired, increasing for higher train numbers
FIGURE S5 CSPI 3D‐GRASE sampling patterns for T

2
‐ 

weighted images with the SLE trajectory: (A), VD Poisson‐disc  
undersampled k‐space grid and (B), VD pseudo‐random 
Gaussian undersampled k‐space grid. The EPI factor is set 
to 3. The different marker shapes indicate the different echo 
types: square for GRE before the SE, circle symbol for SE. 
and triangle for GRE after SE. The colormap represents 
the order in the acquisition of every echo along the ET. 
Transparency indicates the train number in which the k‐space 
line is acquired, increasing for higher train numbers
FIGURE S6 PSF for PD‐weighted PI 3D‐FSE and PI 3D‐
GRASE with each sampling pattern. Each column shows 
the PSF along y and z for: (A), 3D‐FSE radial modulation, 
(B), PI and CSPI 3D‐GRASE SRE M = 0, (C), 3D‐GRASE 
SRE M = 1, (D), 3D‐GRASE SCLE 1 and (E) 3D‐GRASE  
SCLE 2
FIGURE S7 PSF for PD‐weighted CSPI 3D‐FSE and CSPI 
3D‐GRASE with each sampling pattern. Each pair of col-
umns show the PSF along y and z for the VD Poisson‐disc 
undersampled k‐space grid (VD‐P) and the VD pseudo‐ 
random Gaussian undersampled k‐space grid (VD‐G).  
Each row shows a different trajectory and sequence: (A),  
3D‐FSE radial modulation, (B), 3D‐GRASE SRE M = 0, (C),  
PI and CSPI 3D‐GRASE SRE M = 1, (D), 3D‐GRASE 
SCLE 1 and (E), 3D‐GRASE SCLE 2
FIGURE S8 PSF for T

2
‐weighted PI 3D‐FSE, CSPI 3D‐

FSE, PI 3D‐GRASE, and CSPI 3D‐FSE with each sampling 
pattern. Columns show the PSF along y and z for PI, the VD 
Poisson‐disc undersampled k‐space grid (VD‐P) and the 
VD pseudo‐random Gaussian undersampled k‐space grid 
(VD‐G): (A), PI 3D‐FSE and CSPI 3D‐FSE linear modula-
tion, (B), PI and CSPI 3D‐GRASE SLE
FIGURE S9 Zoomed PD‐weighted knee images for  
3D‐FSE and 3D‐GRASE with the proposed sampling 

patterns for the first volunteer. Cartilage is zoomed in the 
sagittal plane. Each column shows the parallel imaging (PI) 
images, CSPI VD Poisson‐disc undersampled k‐space grid 
(VD‐P), and the CSPI VD pseudo‐random Gaussian under-
sampled k‐space grid (VD‐G). The different trajectories  
are shown in each row: (A), 3D‐FSE with radial trajec-
tory, (B), 3D‐GRASE with SRE = 0, (C), 3D‐GRASE with 
SRE = 1, (D), 3D‐GRASE with SLCE 1, (E), 3D‐GRASE 
with SLCE 2
FIGURE S10 Zoomed PD‐weighted knee images for 3D‐
FSE and 3D‐GRASE with the proposed sampling patterns 
for the second volunteer. Cartilage is zoomed in the sag-
ittal plane. Each column shows the parallel imaging (PI) 
images, CSPI VD Poisson‐disc undersampled k‐space grid 
(VD‐P) and the CSPI VD pseudo‐random Gaussian under-
sampled k‐space grid (VD‐G). The different trajectories 
are shown in each row: (A), 3D‐FSE with radial trajec-
tory, (B), 3D‐GRASE with SRE = 0, (C), 3D‐GRASE with 
SRE = 1, (D), 3D‐GRASE with SLCE 1, (E), 3D‐GRASE 
with SLCE 2
FIGURE S11 Zoomed T

2
‐weighted brain images for CSPI 

3D‐FSE and CSPI 3D‐GRASE with the proposed sampling 
patterns in the sagittal plane for the first and second volun-
teers. Each column shows the parallel imaging (PI) with lin-
ear trajectory, CSPI VD Poisson‐disc undersampled kspace 
grid (VD‐P), and the CSPI VD pseudo‐random Gaussian  
undersampled k‐space grid (VD‐G). The first two rows show 
(A), 3D‐FSE, (B), 3D‐GRASE for the first volunteer. The 
two last rows show (C), 3D‐FSE, (D), 3D‐GRASE for the 
second volunteer
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