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In this paper we present two algorithms for a machine allocation problem occurring in manufacturing systems. For the 
two algorithms presented we prove worst-case performance ratios of 2 and 312, respectively. The machlne allocat~on 
problem we consider is a general convex resource allocation problem, which makes the algorithms applicable to a varlety 
of resource allocation problems. Numerical results are presented for two real-life manufacturing systems. 

An 
concerns 

important design problem in manufacturing 
the optima1 allocation of machines 

(servers) to workstations within a manufacturing sys- 
tem. One can think, for example, of the problem of 
allocating a fixed number of machines among different 
workstations such that the performance of the system 
(e.g., in terms of work-in-process or lead times of 
products) is optimal. Another problem concerns the 
minimum cost allocation of machines such that the per- 
formance of the system meets a certain target. The 
latter problem is the subject of this paper. 

The production process we consider can be 
modeled as an open network of queues with different 
product classes. This means that the production pro- 
cess consists of workstations through which each 
product follows its own deterministic route. A work-
station consists of several parallel identical machines 
(servers). In the sequel we assume that product rout- 
ings, the amount of traffic offered, the location of 
machines, and technology (e.g., processing times) are 
specified. 

Several authors have considered server allocation 
problems in manufacturing queueing networks. For 
closed queueing networks, which are a popular means 

to model a flexible manufacturing system (FMS), 
Vinod and Solberg (1985), Dallery and Frein (1986), 
Shanthikumar and Yao (1987, 1988), and Dallery and 
Stecke (1990) considered various server allocation 
problems. The server allocation issues addressed in 
these papers differ according to the optimization 
problem treated, the kind of manufacturing system 
analyzed, and the queueing network used for model- 
ing. Boxma et al. (1990) and Van Vliet and Rinnooy 
Kan (1991) trezted server allocation problems in open 
queueing networks in which each workstation is 
modeled as an MIMIm and a GIIGlm queue, respec- 
tively. Boxma et al. present the so-called sewer allo-
cation problem. For this problem they propose a 
greedy algorithm which generates undominated solu- 
tions. Furthermore, their algorithm provides bounds 
to check how close the heuristic solution is to the 
optimal one. 

In this paper, we study the same problem setting. 
The algorithms we present are improved versions of 
the greedy algorithm presented in Boxma et al. 
Whereas Boxma et al. do not give any worst-case 
analysis of their algorithm, we prove our algorithms 
to have worst-case ratio performances of 2 and 312, 

Subject classifications: Manufacturing: allocation of machines in an FMS. Manufacturing, performance/productivity: optimization of steady-state 
performance. Queues, networks: optimization of queueing networks. 

Area of review: OPTIMJZATION. 

Operations Research 0030-364x19414203-0523 $01.25 
Vol. 42, No. 3, May-June 1994 % 1994 Operations Research Society of America 



respectively. Although the problem is treated here in 
the context of server allocation, it represents a gen- 
eral class of resource allocation problems. Therefore, 
the algorithms are applicable to a wider class of 
problems. 

In Section 1 we describe the underlying queueing 
network and the server allocation problem treated. In 
Section 2 we discuss the algorithms and their theo- 
retical analysis. Numerical results of the algorithms 
applied to two real-life manufacturing systems are 
presented in Section 3. Conclusions and suggestions 
for further research are stated in Section 4. 

1. SYSTEM ANALYSIS 

The manufacturing system we consider consists of J 
workstations. Each workstation j has m, identical 
parallel servers with independent exponentially dis- 
tributed service times with mean l /pJ ;  N product 
types are produced by the system. Products of type i 
arrive at the first workstation they visit according 
to a Poisson process with parameter A', and then 
follow a deterministic route through a subset of work- 
stations. A product may visit a workstation more than 
once, but for simplicity we will not allow two succes- 
sive stages of a product route to be identical. Fur- 
thermore, we assume that the arrival and service 
processes are independent. The assumptions that ser- 
vice times are independently and exponentially dis- 
tributed, and the arrival process is Poisson, allow us 
to make an exact analysis of the steady-state behavior 
of the queueing network. Since the focus in this paper 
is on combinatorial optimization problems, rather 
than on the queueing network analysis, we prefer to 
model the manufacturing system as a queueing net- 
work that can be analyzed exactly. However, for 
some practical environments the exponential and 
Poisson assumptions might not be valid. Van Vliet 
(1993) shows how the algorithms presanted in this 
paper can be, under mild additional assumptions, ap- 
plied to general queueing networks for which the 
exponential and Poisson assumptions do not hold. 

For further analysis we can treat the different prod- 
uct types as one aggregate product with an aggregate 
arrival rate A, at each workstation j. The joint equi- 
librium queue length distribution in the system has a 
product form (cf. Kelly 1979, corollary 3.4). Each 
workstation j behaves as an MIMIm, queue in the 
steady state. This leads to the following well known 
formula for the average number of products present 
(in queue and in process) at workstation j (cf. 'rijms 
1986, p. 332). 

In the sequel we assume that the arrival and service 
rates are given, while the number of servers at each 
workstation are the decision variables. This means 
that Lj(mj, g,, A,) can be regarded as a function of 
m, only: Lj(mj). Dyer and Pro11 (1977) proved that 
Lj(mj) as given by (1) is a convex decreasing func- 
tion in m,. 

We will measure the steady-state performance 
of the system by the work-in-process (WIP) of 
the system. The WIP (inventory) is the total value 
of all the products that are in the system. Without 
loss of generality, we make the assumption that 
the value of a product at workstation j, either in 
queue or in process, is independent of the type 
of product and equal to vj. In other words, v, 
represents the value of inventory per unit at 
workstation j. For example, products waiting 
at the end of the production process, i.e., the 
last workstation they visit, have more added 
value in terms of material and manpower than 
the products waiting at the beginning of the 
production process. The formulation for WIP then 
becomes 

Furthermore, we assume that the allocation of m, 
servers at workstation j generates investment costs 
of P,(m,), with Fj(mj) a convex and nondecreasing 
function in mi. To prevent the system from 
becoming instable, we have to require the trafic 
intensity at a workstation j(= pi = A,l,mj) to 
be less than one. It is easy to verify that this re-
sults in requiring that m, a mf = bjlp. + +, 
where 1.1 represents the integer round-down 
operation. 

For convenience we use the following notation. 



From the convexity of 1.;. and L j ( j  E (1, . . . ,J))it 
follows that 

AFj(mj + 1) AF,(mj) 
and

ALj(mj + 1) 'AL,(m,) 

The optimizatio~~ problem we consider is to allocate 
servers to workstations in such a way that the WIP is 
below a target WIP level W,. The configuration we 
are looking for is a minimum cost configuration. The 
mathematical formulation is as follows. 

Problem SA 

Minimize F(m)  
m 


subject to L(m)  d WT 

mi 3 mf, mj integer ( j  E (1, .. . ,a). 
2. ALGORITHMS AND THEIR ANALYSIS 

Since problem SA can be regarded as a generalization 
of the knapsack problem it is NP-hard. Therefore, our 
focus will be on algorithms to find approximately 
optimal solutions. We will discuss two such algo- 
rithms. However, to make this paper self-contained 
we first briefly mention the results by Boxma et al., 
because the algorithms and results presented in their 
study serve as a starting point for our analysis. 

The algorithm by Boxma et al. to approximately 
solve SA starts with the smallest possible allocation, 
that is, mf- for each workstation j. At every iteration it 
then adds a server at that workstation where the quo- 
tient of the increase of the objective function and the 
decrease of WIP is the smallest. The algorithm termi- 
nates as soon as adding a server makes the allocation 
feasible. 

Algorithm SA1 

STEP 1. Start with c0 where c,? = m? 


STEP2. k := 1. 


STEP 3. Set ck := ck-I + e,, where e, is the ith 

unit vector, and 

AF,(~:-' + 1)
i = Arg min 

j W , .  . . , J }  AL,(c!-l + 1) 

STEP 4. 1f L ( c ~ )  < WT,cSA1:= ck, stop; else k := 
k + 1, go to Step 3. 

Definition 1. An allocation x is called undominated 
(efficient) jcf. Fox 1966) if for ally E S :  

Boxma et al. prove the following results on algorithm 
SA1. 

Lemma 1. Allocations generated by algorithm SA1 
are undominated. 

Lemma 2. If cO, ... , cP are the allocations gener- 
ated by algorithm SAl and c * is an optimal allocation 
for SA, then it holds that F(cP-') < F(c*)  d F(cP). 

Concerning the complexity of SA1, the following 
can be shown. Let the maximum number of servers 
among all undominated allocations be m, then the 
total number of operations needed by SA1 is B(mJ). 

Lemma 2 shows that the solution generated by SA1 
provides bounds to check whether the allocation found 
by SA1 is sufficiently close to the optimal allocation. 
The difference (if any) between the heuristic and the 
optimal solution is created by the server which is added 
to a workstation (j', say) in the final step of the algo- 
rithm. If this 'final server' causes the 'final WIP' to be 
substantially larger than W,, the heuristic solution 
might be far from the optimal one. If, however, the final 
WIP is very close to W,, chances are high that the 
heuristic solution cannot be much improved upon. 

The following algorithm tries to improve upon the 
allocation generated by algorithm SA1 by making use 
of the above observation. Algorithm SA2 generates J 
allocations. The first allocation is as given by SA1. To 
get the second allocation, SA2 takes the number of 
servers at each workstation equal to those as given 
in the first allocation, except for workstationj', where 
the number of servers is decreased by one. Note that 
this allocation is not feasible. Given this allocation, 
servers are added in the same greedy manner as in 
SA1. The procedure stops as soon as a feasibie allo- 
cation is found. The resulting allocation is the second 
of the J allocations. The number of servers a t j '  is now 
kept fixed in all the following steps of the algorithm. 
The third allocation is found by the same procedure, 
with j' now equal to the workstation at which the last 
server was added to get the previous allocation. This 



procedure is repeated until J allocations have been 
generated. The allocation with the lowest objective 
function value is the heuristic allocation as given by 
SA2.This procedure can be stated as follows. 

Algorithm SA2 
(Initialization) Set cH1 := cSA1;C := {cH1);A := 
{I, ... ,J}; k := 1. 

STEP 1. Let j, be the index of the workstation at 
which a server is added in the final iteration to obtain 
heuristic allocation H,. 

'4 :=A\{j,); 

cHk+l= (c?, .. . ,cHk- 1, ... ,c p ) ;  k := k + 1.


l k  

STEP 2. Set cHk := cHk+ e,, where ei is the ith 
unit vector and 

A F ~ ( C ~  
i = Arg min 

+ 1) 

J'EA A L , ( C ~+ I )  

STEP 3. If L (cHk)a W,  

then C := C U {cHk). If k = J go to Step 4, else 
go to Step 1. 

else go to Step 2. 

STEP 4. Choose cSA2 := Arg minc~c F(c). 

Before presenting the worst-case analysis for SA2, 
note that the complexity of SA2 is 6(mJ2) (cf. the 
complexity of algorithm SA1 presented before). 

We can now prove the following theorem. 

Theorem 1. Let c * be the optimal allocation for SA, 
then it holds that 

and this bound is tight. 

Proof. We relabel the indices such that i equals the 
index ji of the last workstation at which a server is 
added to obtain the heuristic solution cH1, i E 
{I,  . . . ,J).Note that C? = C? - 1 for i = 1, .. . , 
J - 1. Furthermore, ( c y ,  .. . , cy?,, c? - 1) is 
infeasible with regard to SA.Hence, there exists at 
least one index j for which c,* 2 c p .  Let d be the 
smallest index for which this is satisfied, i.e., c z  2 
c P a n d c ; <  c F f o r j  = 1, ... , d  - 1. 

In the proof we use the two relations: 

When applying SA2,servers are successively added 
to the workstations in a nondecreasing order of the 
ratio AFJ(mJ)/ALJ(mJ). Hence, (2) and the fact that 
d is the index of the last workstation at which a server 
is added to obtain cgd imply that 

A F ,  (i) A F ~(cFd)  

a,(i) 'A L ~( c p )  

for j = 1, . . . ,J and i = 1, . . . , c y  (4) 

We know that 

Furthermore, (4) implies that 

Now, since (c?, . . . , c:!~, CP- 1, cyi1, . . . , 
c,H,') is not feasible with regard to SA we get 



Moreover, since the optimal solution c *  is feasible, 
we obtain 

cPd 

- C, C ALj(i) 
j:c,!d<c; ~ = m , & + l  

j*d 

cr "  

j:~,!'d <c; i = c P  +l  
j f d  

Using (8) and (9) in (7) we obtain 

where the second inequality follows from the defini- 
tion of d which implies that (5) holds fo rd  and for all 
j such that C? > c;. 

Finally, substituting (10) in (6) yields 

To prove that the above bound is tight we use a similar 
example as in Csirik et al. (1990), where the same 
bound was proven for a similar algorithm for the 0-1 
min-knapsack problem. 

Take the problem instance: 


J = 3  

~ ( m ~ ) 
- WT= C +  1 

L
F,(m,)  = 0 ( j= 1, 2,  3) 


ALl(mf + 1) = AFl(mf + 1) = 1 


It is easy to verify that cSA2 = (m? + 1, m i  + 1, 
m i  + 1) and c*  = (mf + 1, m i  + 1, m i )  with 
F ( c ' ~ ~ )= 2C + E and F ( c * )  = C + 1 + E .  This 
implies that 

which can be arbitrarily close to 2 for large C and 
small E. 

From Theorem 1 it follows that S A 2  has a worst- 
case performance ratio of 2. To improve upon this 
performance ratio, we introduce the following algo- 
rithm, which is again an improvement algorithm that 
uses allocations from the set of possible allocations, 
generated by algorithm S A 2 ,  as initial allocations. For 
each of the J allocations cHk (k E (1, ... ,J } ) , as 
generated by SA2, S A 3  creates one new problem SA,  
by introducing the additional restriction that the work- 
stationk (which is the last workstation to which a server 
has been added to obtain cHk) has at least c p  servers. 
Then, S A 2  is applied to each such new problem S&, 
(k E (1, .. . ,J}) to generate new feasible solutions. 
The heuristic solution returned by SA3 is the alloca- 
tion generated by S A 2  when applied to S A  or S& (k E 
(1, ... ,a ) ,  which minimizes the objective function. 

Algorithm SA3 

STEP I .  Apply S A 2  and denote the set of possible 
allocations by C = (cH1,. . . , cHJ). 

STEP 2. For k := 1 to J construct the following 
problem. 

Problem SA, 

Minimize 2 Fj (mj)  
m, ] = I  

subject to 
I 

m, 3 mf, mj integer ( j  E (1, .. . ,a\\(}) 
mk 3 C P ,  mk integer. 

Apply algorithm S A 2  to problem S A ,  and denote the 
heuristic solutions by zHk= ( ~ 7 ,. . . ,CJW*). 

STEP 3. Let C = (CH1,. . . ,CHJ). Choose 

cSA3= Arg min F(c) .
CECUC 



Note that the complexity of SA3 is 6 ( m ~ ~ )  (cf. the 
complexities of SA1 and SA2 discussed before). 

Theorem 2. Let c * be the optimal allocation for S 4  
then it holds that 

Proof. We use the same notation as in the proof of 
Theorem 1. So, let d be the index such that c*, 2 c p  
and c; < c? f o r j  = 1, ... , d - 1. 

We now distinguish between two cases. 

Case a 

In this case it follows directly from (11) that 

F(cSA2)- F(mL, a 3/2 (F(c*j - F(m L)),  

and the result follows from F ( c " ~ ~ )  < F(c"~'). 

Case b 

Let C* denote the optimal allocation of problem SA,. 
We then have 

F(C SA3) - F(m L, 

< F ( C ~ ~ )- ~ ( mL, 

r 

jtd 


+ F ~ ( c ~ )mi)-

The second inequality is obtained by applying 
Theorem 1 to problem SA, and the third inequality 
follows from the fact that c *  is feasible to SAd given 
the definition of SA,. 

Note that the situation in which AF,(c,~") > 
l /2(F(c*)  - F(mL))  is only likely to occur when the 
number of workstations is small. In most practical 

environments the number of workstations is fairly 
large ( J  3 4), which may well imply that AFd(cP)  a 
1/2(F(c*) - F(mL))  for all d E J. In this case, it 
follows from the above that SA2 also has a worst-case 
performance ratio of 312. In Section 3 we show that 
the numerical results obtained for the practical set- 
tings we considered are similar for SA2 and SA3. The 
above observation, together with the numerical re. 
sults, strongly suggzsts that rhe average performance 
of SA2 and SA3 will be very similar. 

3. NUMERICAL RESULTS 

We applied the algorithms to two manufacturing sys- 
tems which were taken from Van Vliet and Rinnooy 
Kan (1991). The first system is a manufacturing sys- 
tem producing semiconductor devices and consists of 
13 workstations. Up to 10 different semiconductor 
devices (product types) are produced. The second 
system consists of 11 workstations and produces 2 
product types. 

The two manufacturing systems were modeled in 
Van Vliet and Rinnooy Kan as queueing networks 
with independent GIIG1m queues. Since we focus on 
the nonlinear optimization problems rather than 
on the queueing network aspects, we model each 
workstation as an M!M/m queue. This makes the 
queueing network analysis exact (see Section 1). For 
how to apply the above optimization problems to 
(more realistic) non-Markovian queueing networks 
we refer to Van Vliet and Rinnooy Kan. 

To compare the performance of heuristics SA1, 
SA2, and SA3 we use a relative error indicator. For 
each heuristic SAi we use the upperbound (UB,) and 
the lowerbound (LB,) as given by the algorithms. The 
relative error is then calculated by: 

UBi - LBi 
Relative error of SAi = 

UB, + LB; ' 

We performed the heuristics for a wide range of 
WIP values. It appeared that the results for SA2 and 
SA3 did not differ for the two manufacturing systems 
we examined. This means that SA2 provides a solu- 
tion that has a WIP value which is extremely close to 
the target value. Hence, there is no space left for any 
improvement when the additional steps of SA3 are 
performed. This might indicate that for the two man- 
ufacturing systems examined, SA2 provides an opti- 
mal solution in most cases. Note that SA3 has a 
complexity which is a factor J higher than SA2. 
Therefore, in practice, SA2 would be the preferred 
algorithm. However, in some special cases (see the 



discussion at the end of Section 2), SA3 can indeed 
provide better solutions than SA2. Figures 1 and 2 
show the results of heuristics SA1, SA2, and SA3 for 
system 1. 

From Figures 1 and 2 we see that the relative errors 
decrease substantially when the improved algorithms 
SA2 and SA3 are used. Especially when SA1 produces 
large relative errors (up to 30%), the improved algo- 
rithms are able to cut the relative errors substantially. 
Heuristic SA1 produces large relative errors when the 
last 'greedy' server added by the algorithm increases 
the WIP by a large amount (relative to the existing 
difference with W,). If this is the case, the improved 
algorithms have a lot of 'space' between W ,  and the 
WIP produced by SA1 to find improvements. This 
is not the case when the relative errors produced by 
SA1 are small. In most cases, where SA1 produced 
small relative errors (<2%), SA2 produced the same 
solution. 

Another improvement of SA2 and SA3 over SA1 is 
the monotonic behavior of the relative errors. Al-
though the general trend of (12) for SA1 is decreasing 
when WTdecreases (this is to be expected because 
the constraints get tighter because of the convex 

Relative Error (%) 

Target Work-In-Process (thousands) 

-Algorithm SA1 

Figure 1. Relative error algorithm SA1 for system 1. 

Relative Error (%) 

3596r 

"m 

19 2 4  2 9  3 4  3 9  4 4  4 9  5 4  5 9  
Target Work-In-Process (thousands) 

-Algorithm SA2 B SA3 

Figure 2. Relative error algorithms SA2 and SA3 for 
system 1. 

Table I 

Behavior of Heuristics for Systems 1 and 2 


Average 
Relative 

Error Standard 
Heuristic (%) Deviation 

System 1 
SA1 7.44 0.064 
SA2 & SA3 2.13 0.014 

System 2 
SA1 4.71 0.028 
SA2 & SA3 1.61 0.006 

behavior of L ( m ) ) ,the specific behavior of (12) for 
SA1 is unpredictable. The relative errors produced by 
SA2 and SA3, however, show an almost monotonic 
decreasing behavior. Hence, when WT decreases, 
SA2 and SA3 are almost surely to give a better solu- 
tion. Table I shows the average relative errors over all 
target WIP values and the corresponding standard 
deviations for the heuristics. We see that SA2 and SA3 
improve the quality of the solution by a considerable 
amount. The results for system 2 (see Figures 3 and 4) 
show a similar behavior of the different heuristics (see 
Table I). 

4. 	CONCLUSIONS AND SUGGESTIONS FOR 
FURTHER RESEARCH 

We have presented two algorithms for approximately 
solving a machine allocation problem that arises in the 
area of manufacturing system design. The optimiza- 
tion problem is particularly relevant within the con- 
text of flexible manufacturing, where the issue of 
optimal capacity allocation is important and preva- 
lent. The optimization problem formulated is a gen- 
eral resource allocation problem in which both the 
objective function and the constraint functions are not 
linear and the decision variables show a discrete 
nature. 

The algorithms presented are improvements over a 
greedy algorithm by Boxrna et al. Whereas they did 
not give any worst-case performance guarantees for 
their algorithm, we  prove our algorithms to have 
worst-case bounds of, respectively, 2 and 312. We 
have applied the algorithms to two manufacturing 
systems taken from practice. For these two manufac- 
turing systems we compare the relative error made by 
the algorithm of Boxma et al. and the two algorithms 
presented. The results show that the average relative 
error made by the improved algorithms is substan- 
tially smaller than the average relative error made by 
the algorithm of Boxma et al. 



Relative Error (%) 

O%I- ' 1 

2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 
T a r g e t  Work- In -Process ( thousands)  

-Algorithm SAl 

Figure 3. 	Relative error algorithm SA1 for system 2. 

Relative Error (%) 

12% 	 i 

0%1 
2.65 	 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 

Target  Work-In-Process ( thousands)  

-Algorithm SA2 8 SA3 

Figure 4. 	Relative error algorithms SA2 and SA3 for 
system 2. 

Although outside the scope of this paper, the above 
analysis can be extended by presenting an algorithm 
for which we can prove an E approximation scheme. 
This indicates that the resource allocation problem 
treated, although belonging to the class of NP-hard 
problems, is relatively easy to solve. This is of par- 
ticular interest, because the presented optimization 
problem is applicable to a variety of resource alloca- 
tion problems. We see it as an interesting challenge to 
investigate the performance of the presented algo- 
rithms for other resource allocation problems. 
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