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In this paper, a bibliometric study of the computational intelligence field is presented.
Bibliometric maps showing the associations between the main concepts in the field are
provided for the periods 1996—2000 and 2001-2005. Both the current structure of the
field and the evolution of the field over the last decade are analyzed. In addition, a
number of emerging areas in the field are identified. It turns out that computational
intelligence can best be seen as a field that is structured around four important types
of problems, namely control problems, classification problems, regression problems, and
optimization problems. Within the computational intelligence field, the neural networks
and fuzzy systems subfields are fairly intertwined, whereas the evolutionary computation
subfield has a relatively independent position.

Keywords: Bibliometrics; bibliometric mapping; computational intelligence; neural net-
works; fuzzy systems; evolutionary computation.

1. Introduction

In this paper, a bibliometric study of the field of computational intelligence (CI) is
presented. The CI field is analyzed by means of bibliometric maps that show the
associations between the main concepts in the field. The maps provide insight into
the structure of the CI field. More specifically, they visualize the division of the
field into several subfields, and they indicate the relations between these subfields.
By comparing bibliometric maps based on different periods of time, some insights
are obtained into the evolution of the field over the last decade. The way in which
the field has evolved is also studied through a quantitative analysis of the number
of times researchers use specific concepts in their papers.

Bibliometric studies of the CI field are scarce. We are only aware of two studies
in which the neural networks subfield is analyzed.'? However, these studies are
rather outdated, since they are based on data from the 1980s and the beginning
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of the 1990s. The present study is an extension of our earlier research,®# in which
we analyzed the CI field based on papers presented at the IEEE World Congress
on Computational Intelligence in 2002 and 2006. In the present study, we use data
from three major journals and three major conferences over the period 1996-2005.
By considerably increasing the amount of data on which our analysis is based, we
expect to improve the reliability of our results compared to our earlier research.
In the present study, we also discuss a method for assessing the stability of a
bibliometric map. In our opinion, the stability of bibliometric maps usually does not
get sufficient attention in bibliometric studies. By taking into account the stability
of a map, the reliability of a bibliometric analysis can be improved significantly. A
third improvement over our earlier research is the refinement of our methodology
for constructing so-called concept density maps. The refined methodology better
visualizes the amount of attention researchers pay to the various research topics in
a field of science.

Bibliometric maps can be constructed in many different ways. Overviews of vari-
ous approaches to bibliometric mapping are provided by Bérner, Chen, and Boyack?®
and by Noyons.® The closely related field of information visualization is covered by
Chen.” In this paper, we are concerned with maps in which the distance between
two objects indicates the strength of the association between the objects. Objects
that are located close to each other are regarded as strongly associated, whereas
objects that are located far from each other are regarded as weakly associated or
as not associated at all. In the field of bibliometrics, a number of approaches have
been proposed for constructing this type of map. Most of these approaches rely on
the method of multidimensional scaling.® The most popular approach seems to be
the one that is discussed by McCain.? A good example of the application of this
approach is provided by White and McCain.!? In the present paper, we use our
own approach to constructing bibliometric maps. Rather than on multidimensional
scaling, our approach relies on a closely related method called VOS, which is an
abbreviation for wvisualization of similarities. In our experience, our approach to
constructing bibliometric maps provides better results than the approaches that
have been proposed in the bibliometric literature. The focus of the present paper,
however, is not on the methodological aspect of our research. Although we do pro-
vide a detailed description of our approach to constructing bibliometric maps, we
do not discuss the differences with and the advantages over alternative approaches.

The paper is organized as follows. Our methodology for constructing biblio-
metric maps is discussed in Section 2. The bibliometric analysis of the CI field is
presented in Section 3. Conclusions are drawn in Section 4.

2. Methodology

According to Borner et al.,® the process of constructing a bibliometric map can be
divided into the following six steps: (1) collection of raw data, (2) selection of the
type of item to analyze, (3) extraction of relevant information from the raw data,
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Table 1. Summary of our implementation of the process of bibliometric mapping.

Step of the mapping process Implementation
(1) Collection of data Abstracts of papers from journals and
conferences in the CI field
(2) Selection of type of item Concepts
(3) Extraction of information Co-occurrence frequency (Paragraph 2.1)
(4) Calculation of similarities Association strength (Paragraph 2.2)
(5) Positioning of items VOS (Paragraph 2.3)
(6) Visualization Concept map (Paragraph 2.4)

Concept density map (Paragraph 2.5)

(4) calculation of similarities between items based on the extracted information,
(5) positioning of items in a low-dimensional space based on the similarities, and
(6) visualization of the low-dimensional space. We now discuss the way in which
we implement each of these steps in this paper. Our approach is summarized in
Table 1.

The first step in the process of bibliometric mapping is the collection of raw
data. In this paper, the raw data consist of a corpus containing abstracts of pa-
pers from three major journals and three major conferences in the CI field.* The
journals are the IEEE Transactions on Neural Networks, the IEEE Transactions
on Fuzzy Systems, and the IEEE Transactions on Evolutionary Computation. The
conferences are the International Joint Conference on Neural Networks, the IEEE
International Conference on Fuzzy Systems, and the IEEE Congress on Evolution-
ary Computation. Both the journals and the proceedings of the conferences are
published by the IEEE Computational Intelligence Society. Two sets of data are
collected, one containing abstracts from the period 1996-2000 and one contain-
ing abstracts from the period 2001-2005. In this way, separate bibliometric maps
can be constructed for each of the two periods. The data are collected using two
databases, IEEE Xplore and Elsevier Scopus. The latter database can be seen as
an alternative to the well-known ISI Web of Science database. Compared to Web
of Science, Scopus has the advantage that it also includes conference proceedings.

The second step in the process of bibliometric mapping is the selection of the
type of item to analyze. According to Bérner et al.,® journals, papers, authors,
and descriptive terms or words are most commonly selected as the type of item to
analyze. Each type of item provides a different visualization of a field of science and
results in a different analysis. In the present study, we choose to analyze concepts.”

2Actually, the corpus not only contains abstracts of papers, it also contains titles. Both abstracts
and titles are used to construct bibliometric maps. However, for simplicity we will only refer to
the abstracts in the rest of this paper.

b According to the Merriam-Webster Online Dictionary, a concept is an abstract or generic idea
generalized from particular instances. Concepts can be designated using terms. For example, the
terms neural network, fuzzy system, and genetic algorithm designate three well-known concepts
in the CI field. There may exist multiple terms designating the same concept. The terms neural
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A bibliometric map showing the associations between concepts in a scientific field
is referred to as a concept map in this paper. To avoid any possible confusion, we
note that our concept maps are very different from the concept maps originally
introduced by Joseph D. Novak.!!

The third step in the process of bibliometric mapping is the extraction of relevant
information from the raw data collected in the first step. In this paper, the relevant
information consists of the co-occurrence frequencies of concepts. The co-occurrence
frequency of two concepts is extracted from a corpus of abstracts by counting the
number of abstracts in which the two concepts both occur. To identify the concepts
that occur in an abstract, one needs a thesaurus of the scientific field with which
one is concerned. Because a thesaurus of the CI field is not available to us, we
construct one ourselves. The approach that we take to construct a thesaurus of the
CI field is discussed in Paragraph 2.1. We note that in the present study we do not
use the same thesaurus as in our earlier research.®# This is because the present
study covers a longer period of time and, as a consequence, the concepts of interest
may differ from our earlier research.

The fourth step in the process of bibliometric mapping is the calculation of sim-
ilarities between items based on the information extracted in the third step. In this
paper, similarities between items are calculated based on co-occurrence frequencies.
In the bibliometric literature, two approaches can be distinguished for calculating
similarities between items based on co-occurrence frequencies. One approach, which
seems the most popular, is to use the Pearson correlation between the vectors of
co-occurrence frequencies of two items as a measure of the items’ similarity.?'9 The
other approach is to normalize co-occurrence frequencies using, for example, the co-
sine measure, the inclusion index, or the Jaccard index.'? In this paper, we take the
latter approach, since that approach is recommended in the statistical literature.®
To normalize co-occurrence frequencies, we use a measure that we call association
strength. A discussion of this measure is provided in Paragraph 2.2.

The fifth step in the process of bibliometric mapping is the positioning of items
in a low-dimensional space based on the similarities calculated in the fourth step.
In this paper, the low-dimensional space is referred to as a concept map and only
two-dimensional concept maps are considered. In many studies,? %1213 the fifth
step in the process of bibliometric mapping is performed using the method of mul-
tidimensional scaling.® However, it is our experience that multidimensional scaling
does not always provide satisfactory results when it is used for bibliometric map-
ping. More specifically, when a large proportion of the similarities equal zero, which
occurs quite frequently in bibliometric mapping, multidimensional scaling always
provides maps in which the items lie more or less equally distributed within a circle

network and neural net, for example, designate the same concept, and so do the terms fuzzy
system, fuzzy inference system, and fuzzy logic system. Terms that designate the same concept
are referred to as synonyms. In the case of synonyms, we have chosen a preferred term that we
use to designate the corresponding concept in a consistent way throughout this paper.
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(in the case of a two-dimensional map). To avoid this problem, we use a method
that is closely related to multidimensional scaling. The method, which is called
VOS, is discussed in Paragraph 2.3.

The sixth step in the process of bibliometric mapping is the visualization of the
low-dimensional space that results from the fifth step. In our study, we use two
different visualization approaches. We have implemented these approaches in two
computer programs, which we call the concept map viewer and the concept density
map viewer. The concept map viewer visualizes a concept map by displaying for
each concept a label that indicates the location of the concept in the concept map.
The concept density map viewer, on the other hand, displays labels only for a small
number of frequently occurring concepts. In addition, this viewer uses colors to
indicate the amount of attention researchers pay to the research topics located in the
various areas of a concept map. The concept density map viewer is especially useful
to get a quick overview of the division of a scientific field into several subfields and
of the way in which subfields are related to each other. The visualizations provided
by the concept map viewer and the concept density map viewer are discussed in
more detail in Paragraph 2.4 and 2.5, respectively.

An issue that, in our opinion, usually does not get sufficient attention in biblio-
metric studies is the stability of bibliometric maps. Taking into account the issue
of stability can significantly improve the reliability of a bibliometric analysis. We
discuss a method for assessing the stability of a bibliometric map in Paragraph 2.6.

2.1. Thesaurus

To construct a thesaurus of the CI field, we make use of a term extraction tool that
we have developed ourselves. The tool receives a corpus of abstracts as input. First,
by using the MontyLingua software,® the tool assigns a part-of-speech category (like
verb, noun, or adjective) to each word in the corpus. Then, based on the assigned
part-of-speech categories, the tool selects words or sequences of words that are
likely to be terms. This is accomplished using a regular expression similar to the
one proposed by Justeson and Katz.' The output of the tool is a list of candidate
terms sorted by frequency of occurrence in the corpus. We manually validate the
list of candidate terms. For each candidate term, we decide whether the term is
relevant to the CI field. Furthermore, when we consider a candidate term relevant,
we identify its synonyms. Synonymy relations are important because terms that
are synonymous designate the same concept. The identification of synonyms is also
done manually. Using the above procedure, we obtain a simple thesaurus of the CI
field consisting of the field’s most important terms as well as the synonymy relations
between these terms. This thesaurus allows us to identify the concepts that occur
in an abstract.

¢See http://web.media.mit.edu/ hugo/montylingua/.
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2.2. Association strength

To normalize co-occurrence frequencies of concepts, we use a measure that we call
association strength. The aim of this measure is to normalize co-occurrence fre-
quencies in such a way that concepts occurring in many abstracts and concepts
occurring in only a few abstracts can be compared in a fair way. The association
strength a;; of the concepts ¢ and j is defined as

mc;;

for i # 74, (1)

M iy

where ¢;; denotes the number of abstracts in which the concepts ¢ and j both oc-
cur, ¢;; denotes the number of abstracts in which concept i occurs, and m denotes
the total number of abstracts. The association strength of two concepts can be
interpreted as the ratio between on the one hand the co-occurrence frequency of
the concepts and on the other hand the expected co-occurrence frequency of the
concepts obtained under the assumption that occurrences of the concepts are sta-
tistically independent.?® To the best of our knowledge, there are, apart from our own
research, only a few bibliometric studies in which the association strength measure
is used.'?13:15 In these studies, the measure is referred to as the proximity index.
In our opinion, however, the association strength measure is preferable over alter-
native measures for normalizing co-occurrence frequencies, like the cosine measure,
the inclusion index, and the Jaccard index. This is because the alternative measures
do not always make fair comparisons between concepts with a high frequency of
occurrence and concepts with a low frequency of occurrence.

2.3. VOS

The positioning of concepts in a concept map based on their association strengths
is accomplished using a method that we call VOS, which is an abbreviation for
visualization of similarities. We now briefly introduce this method. A more elabo-
rate discussion of VOS, including an analysis of the relationship between VOS and
multidimensional scaling, is provided elsewhere.!6

Let there be n concepts. The aim of VOS is to provide a two-dimensional space
in which the concepts 1,...,n are located in such a way that the distance between
any pair of concepts ¢ and j reflects their association strength a;; as accurately as
possible. Concepts that have a high association strength should be located close
to each other, whereas concepts that have a low association strength should be
located far from each other. The idea of VOS is to minimize a weighted sum of the
squared Euclidean distances between all pairs of concepts. The higher the associ-
ation strength of two concepts, the higher the weight of their squared distance in
the summation. To avoid solutions in which all concepts are located at the same
coordinates, the constraint is imposed that the sum of all distances must equal some
positive constant. In mathematical notation, the objective function to be minimized
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in VOS is given by

E‘(Xl,...,Xn):ZainXi—Xsz7 (2)

i<j
where the vector x; = (x;1,xi2) denotes the location of concept i in a two-
dimensional space and || - || denotes the Euclidean norm. Minimization of the ob-

jective function is performed subject to the constraint

1

w1 ; Ixi — x| = 1. 3)
Note that the distances ||x; — x;|| in the constraint are not squared. We numeri-
cally solve the constrained optimization problem of minimizing (2) subject to (3)
in two steps. We first convert the constrained optimization problem into an un-
constrained optimization problem. We then solve the latter problem using a ma-
jorization algorithm.® To reduce the effect of local minima, we run the majorization
algorithm using ten random starts. A computer program that implements the ma-
jorization algorithm is available online.4

2.4. Concept map visualization

To visualize a concept map, we use a Java applet that we call the concept map
viewer. The concept map viewer indicates the location of a concept in a concept
map by displaying a label at that location. This label shows a term that designates
the concept. The viewer has scroll, zoom, and search functionality to support a
comprehensive examination of a concept map. In addition to visualizing the associ-
ations between concepts, the viewer also visualizes the importance of concepts and
the distribution of the interest in concepts over the neural networks, fuzzy systems,
and evolutionary computation subfields. The importance of a concept, measured
by counting the number of abstracts in which the concept occurs, is indicated by
the size of the label representing the concept. The distribution of the interest in
a concept over the neural networks, fuzzy systems, and evolutionary computation
subfields, measured by calculating for each subfield the proportion of the abstracts
in which the concept occurs, is indicated by the color of the label representing the
concept. A color consists of a red, green, and blue component, each of which has
a value between 0 and 255. Consider the color of the label representing concept 3.
The red, green, and blue component of this color are given by

FS
FS , NN _EC D;
r\p; D D = 180 + 75, (4)
( % % [ ) pE‘S +pi\IN +p?c
IO

szS _|_p%\IN _;'_p?C

g (pFS, pN, pE©) =

b; sD; D 180 + 75, (5)

dSee www.neesjanvaneck.nl/vos/.
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and
pFe
pis + pN + piC

b (pfS, pIN, pEC) =

180 + 75, (6)
respectively, where pfs denotes the proportion of the abstracts from the IEEE
Transactions on Fuzzy Systems and the IEEE International Conference on Fuzzy
Systems in which concept i occurs, pN™ denotes the proportion of the abstracts from
the IEEE Transactions on Neural Networks and the International Joint Conference
on Neural Networks in which concept ¢ occurs, and p;»EC denotes the proportion
of the abstracts from the IEEE Transactions on Evolutionary Computation and
the IEEE Congress on Evolutionary Computation in which concept ¢ occurs. Using
(4), (5), and (6), the color of a label is not influenced by differences in the num-
ber of papers published in the neural networks, fuzzy systems, and evolutionary
computation subfields.

2.5. Concept density map visualization

A disadvantage of the concept map visualization discussed above is that labels of
concepts usually overlap each other. This may obscure the overall structure of a
concept map. Due to overlapping labels, it may for example be difficult to get a clear
overview of the way in which a field of science is divided into subfields. To gain more
insight into the overall structure of a concept map, we use a MATLAB program that
we call the concept density map viewer. We refer to the maps shown by this viewer
as concept density maps. Rather than displaying labels for all concepts, the concept
density map viewer displays labels only for a small number of frequently occurring
concepts. In addition, the viewer uses colors to indicate the amount of attention
researchers pay to the research topics located in the various areas of a concept map.
The amount of attention for a research topic is measured by counting the number
of abstracts concerned with that topic. The idea of concept density maps has been
introduced by van Eck, Frasincar, and van den Berg.'” In this paragraph, we present
a refinement of their methodology for constructing concept density maps.

Concept density maps are based on the notion of concept density. The concept
density at a specific location in a concept map depends both on the number of
neighboring concepts and on the importance of these concepts. The higher the
number of neighboring concepts and the smaller the distance between these concepts
and the location under consideration, the higher the concept density. Also, the more
important the neighboring concepts, as indicated by the number of abstracts in
which they occur, the higher the concept density. The general idea of a concept
density map is that the amount of attention researchers pay to a research topic
located in a specific area of a concept map is indicated by the concept density in
that area. In a concept density map, colors are used to display the concept density in
the various areas of a concept map. In this way, areas with a high concept density
can be easily identified. Such areas contain concepts that together receive a lot
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of attention from researchers. Most likely, the areas therefore point to important
research topics.

We now discuss the construction of concept density maps. The concept density
at a specific location in a concept map is calculated by first placing a so-called kernel
function at each concept location and then taking a weighted average of the kernel
functions. The weight of a kernel function is set equal to the number of abstracts
in which the corresponding concept occurs. In mathematical notation, the concept
density at location x = (x1,x2) is given by

_ 1 = T1— Tl T2 — Tig
D = h2 370 cii Z;C“K( ho 7 h )7 @

where K denotes a kernel function and h denotes a smoothing parameter. Recall
further that c;; denotes the number of abstracts in which concept i occurs and
xX; = (x;1,%;2) denotes the location of concept 4 in a concept map. The kernel
function K must satisfy the conditions

i=

Vi, to,ta, ty 13+ 15 =15+ 13 = K(t1,ta) = K(t3,t4), (8)
Viy,to, b, byt 13 4+ 12 < 12 4+ 12 = K(t1,t2) > K(t3,t4), 9)

and
iy, by o K(t1,t2) > 0. (10)

A kernel function satisfying these conditions is invariant to rotation. We require
this property because concept maps are also invariant to rotation. In this paper,
we use the bivariate standard normal distribution for the kernel function K, which
means that

1 2 + t2
K(t1,t2) = o &P <— - 5 2) : (11)

The smoothness of the concept density function in (7) is determined by the smooth-
ing parameter h. Choosing an appropriate value for h is essential. A too small value
for h results in a concept density function that is too rough, whereas a too large
value results in a concept density function that is too smooth. The coloring of a
concept density map is based on concept densities calculated using (7). We use col-
ors ranging from blue to red in our research. Blue areas in a concept density map
have the lowest concept density and thus point to research topics that receive very
little attention from researchers. Red areas, on the other hand, have the highest
concept density and thus point to research topics that receive a lot of attention
from researchers.

As a final remark, we note that the above approach to calculating concept
densities is mathematically somewhat similar to the statistical technique of kernel
density estimation. This technique is discussed by, for example, Scott.'®
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2.6. Stability

A bibliometric map can be considered stable if small changes in the underlying
data produce only small changes in the map.'® Although the concept maps pre-
sented in this paper are constructed using VOS, the stability of the maps can be
analyzed in a similar way as in the case of maps constructed using multidimen-
sional scaling methods. De Leeuw and Meulman'® propose to analyze the stability
of multidimensional scaling maps by studying the effect of leaving out one object.
Other approaches to stability analysis, proposed by Heiser and Meulman2?-2!
Weinberg, Carroll, and Cohen,?? investigate the effect of random sampling on multi-
dimensional scaling maps. The latter approaches all rely on the statistical technique
of bootstrapping.

Our analysis of the stability of our concept maps also focuses on the effect of
random sampling. The approach that we take is quite similar to the one discussed by
Heiser and Meulman.?! When constructing a concept map, the corpus of abstracts
on which the map is based can be regarded as a sample, with each abstract rep-
resenting an observation. The sample defines an empirical probability distribution
over abstracts. A bootstrap sample is a sample that is drawn, with replacement,
from this empirical probability distribution. A bootstrap sample has the same size
as the original sample. In this paper, 100 bootstrap samples are drawn in order to
analyze the stability of a concept map. For each bootstrap sample, a concept map is
constructed using the methodology discussed above. Since concept maps are invari-
ant to rotation, reflection, translation, and dilation (i.e., stretching and shrinking),
we cannot directly compare the concept maps obtained from the different boot-
strap samples. Instead, we first use Procrustes rotation® to match each concept
map as closely as possible to the concept map obtained from the original sample.
In this way, we end up with 100 concept maps that can be used to analyze the
stability of individual concepts. For each concept, we thus have 100 locations, each
obtained from a different bootstrap sample. To analyze the stability of a concept
in a concept map, we draw an ellipse that covers most of the bootstrap locations
of the concept. The ellipse is centered at the average of the bootstrap locations.
The shape of the ellipse is based on the assumption of a bivariate normal sampling
distribution and depends on the standard deviations and the correlation estimated
using the bootstrap procedure. The size of the ellipse is determined in such a way
that the ellipse covers exactly 90% of the bootstrap locations. In this way, an ellipse
can be interpreted as an approximate 90% confidence region for the location of a
concept.

and

3. Analysis

As stated before, our analysis is based on abstracts of papers from three major
journals and three major conferences in the CI field. Furthermore, two time peri-
ods are considered in the analysis, 1996-2000 and 2001-2005. For each period, the
number of abstracts that we obtained from the different journals and conference
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Table 2. Number of abstracts in the corpus.

Number of abstracts

Journal/conference proceedings 1996-2000 2001-2005
IEEE Trans. Neural Networks 701 682
IEEE Trans. Fuzzy Systems 272 360
IEEE Trans. Evolutionary Computation 89 203
Proc. Int. Joint Conf. Neural Networks 2761 2761
Proc. IEEE Int. Conf. Fuzzy Systems 1452 1148
Proc. IEEE Congr. Evolutionary Computation 960 1629
6235 6783

proceedings is reported in Table 2.° Based on the abstracts, we constructed a the-
saurus of the CI field using the approach discussed in Paragraph 2.1. We ended
up with a thesaurus containing 376 concepts. However, when constructing con-
cept maps of the CI field, we only included concepts that occurred in at least ten
abstracts. This was done because we considered the amount of data on concepts
occurring in less than ten abstracts too limited for a reliable analysis. In the peri-
ods 1996-2000 and 2001-2005, there were, respectively, 332 and 337 concepts that
occurred in at least ten abstracts. For these concepts, we counted the co-occurrence
frequencies. In both periods, 74% of the co-occurrence frequencies turned out to be
equal to zero, which indicates that most combinations of concepts did not occur in
any abstract at all. The concept maps that we constructed for the periods 2001—
2005 and 1996-2000 are shown in Figures 1 and 4, respectively. The corresponding
concept density maps are shown in Figures 2 and 5. Since the figures are printed in
black and white, the coloring of the labels (see Paragraph 2.4) is not visible in the
concept maps. Similarly, in the concept density maps, colors indicating the density
of concepts (see Paragraph 2.5) are not visible. Instead, curves that indicate points
of equal density are shown in the concept density maps. Concept maps and con-
cept density maps with the correct coloring are available online.f We encourage the
interested reader to have look at these maps, since they are much more insightful
than maps printed in black and white. Moreover, we have also made available online
our concept map viewer (see Paragraph 2.4). Using this viewer, the concept maps
in Figures 1 and 4 can be examined in much more detail. To provide some insight
into the stability of our concept maps, approximate 90% confidence regions for a
number of frequently occurring concepts in the periods 2001-2005 and 1996—2000
are shown in Figures 3 and 6, respectively. The confidence regions were calculated
using the bootstrap approach discussed in Paragraph 2.6.

¢Since the first issue of the IEEE Transactions on Evolutionary Computation appeared in 1997,
abstracts from this journal were not available for the year 1996.
fSee www.neesjanvaneck.nl/ijufks/
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3.1. Structure of the computational intelligence field

To analyze the current structure of the CI field, we consider the maps for the
period 2001-2005, which are shown in Figures 1, 2, and 3. Our initial expectation
was to find three well-separated clusters of concepts, corresponding to the three
well-known subfields of the CI field, that is, neural networks, fuzzy systems, and
evolutionary computation. This is also what we found in our earlier research,*
in which we used a smaller data set and a smaller thesaurus than in the present
study. However, somewhat to our surprise, there is no very clear correspondence
between on the one hand the clusters that can be observed in our maps and on
the other hand the three subfields of the CI field. The clusters can be seen most
easily in the concept density map in Figure 2. The cluster in the right part of the
map clearly corresponds to the evolutionary computation subfield, but the clusters
in the left part of the map do not correspond one-to-one to the neural networks
and fuzzy systems subfields. Instead, the clustering in the left part of the map
seems to reflect different types of problems that are studied in the CI field. In
the lower left part, there is a cluster for control problems. In the upper left part,
there is a cluster for classification problems, that is, for problems involving the
prediction of a class label. And in the center of the left part, there is a cluster for
problems in which a continuous value has to be predicted. We will refer to the latter
problems as regression problems. Moreover, the interpretation of clusters in terms
of the type of problem with which they are concerned can also be applied to the
cluster in the right part of the map. Since evolutionary computation primarily deals
with optimization, this cluster can be seen as a cluster for optimization problems.
So, following the above interpretation of the maps for the period 2001-2005, it
turns out that, contrary to our expectation, the CI field is not structured around
the three most important techniques studied in the field, that is, neural networks,
fuzzy systems, and evolutionary computation. Instead, the field is structured around
what seem to be the four main types of problems with which the field is concerned.
These types of problems are control problems, classification problems, regression
problems, and optimization problems.

A closer examination of the concept map for the period 2001-2005, either using
Figure 1 or using the concept map viewer available online, reveals that each of the
three clusters in the left part of the map contains both concepts from the neural
networks subfield and concepts from the fuzzy systems subfield. The control cluster
is dominated by fuzzy systems concepts, but the cluster also contains some neural
networks concepts, for example recurrent neural network, neural network controller,
and neural system. Most concepts in the classification and regression clusters, on
the other hand, belong to the neural networks subfield, but there are also a num-
ber of fuzzy systems concepts in these clusters. Some examples are fuzzy c-means,
fuzzy clustering, and fuzzy classifier in the classification cluster and membership
function, fuzzy inference, and defuzzification in the regression cluster. Together,
all these examples clearly indicate that the clustering found in our maps does not
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coincide with the division of the CI field into the neural networks, fuzzy systems, and
evolutionary computation subfields. More specifically, the neural networks and fuzzy
systems subfields turn out to be fairly intertwined. The evolutionary computation
subfield, on the other hand, has a relatively independent position within the CI
field.

Based on the maps, some further observations on the structure of the CI field
can be made. The concept density map in Figure 2 shows that the classification
cluster and the regression cluster are only weakly separated from each other. The
separation between other clusters is much stronger. One might even argue, based on
the concept density map, that there is in fact one large cluster, which is concerned
with both classification and regression problems. The weak separation between the
classification cluster and the regression cluster seems to indicate that classification
and regression problems are seen as fairly similar. This is probably due to the fact
that important CI techniques like neural networks and fuzzy systems can be applied
to both types of problems. Using the concept map, it can further be observed that
within the classification cluster there is no clear separation between concepts related
to classification (e.g., classification, support vector machine, and neural network
classifier) on the one hand and concepts related to clustering (e.g., cluster, fuzzy
c-means, and fuzzy clustering) on the other hand. Apparently, researchers do not
see much difference between classification and clustering.

We now consider the map in Figure 3, which shows approximate 90% confidence
regions for a number of frequently occurring concepts in the period 2001-2005. It
can be seen that some concepts, like neuron and fuzzy system, are quite unstable.



Bibliometric Mapping of the Computational Intelligence Field 639

Other concepts, like genetic algorithm and classification, are much more stable.
For comparison, the concept parallel genetic algorithm, which occurs in only ten
abstracts, is also shown in the map. This concept is highly unstable, as indicated
by its very large confidence region. Although concepts with confidence regions of this
size are rather exceptional, it turns out that, on average, less frequently occurring
concepts are also less stable. This is because the locations of these concepts in a
concept map are calculated from a relatively small amount of data. The example
of parallel genetic algorithm shows that one should be very careful when making
detailed statements based on the location of a single concept, especially if the
concept occurs in only a few abstracts. The above analysis of the structure of the
CI field does not contain any very detailed statement, and it therefore does not
depend too strongly on the exact locations of individual concepts. In our opinion, a
more detailed analysis may be possible, but such an analysis should be performed
very carefully.

3.2. FEwolution of the computational intelligence field over the last
decade

To analyze the evolution of the CI field over the last decade, we first consider the
differences in the number of occurrences of concepts in the periods 1996-2000 and
2001-2005. In Table 3, the concepts are listed that have the largest relative increase
in their number of occurrences between the two periods. Only concepts occurring in
at least 20 abstracts in the period 2001-2005 are shown. Similarly, the concepts with
the largest relative decrease in their number of occurrences are listed in Table 4.
This table only shows concepts that occur in at least 20 abstracts in the period
1996-2000. For each concept in Tables 3 and 4, the number of abstracts in which
the concept occurs in the periods 1996-2000 and 2001-2005 is reported.

The data in Table 3 indicate a number of emerging areas in the CI field.
Interestingly, most of these areas lie in the evolutionary computation subfield. The
data reveal six emerging areas in this subfield. These areas are genetic regulatory
networks, evolutionary multiobjective optimization, artificial immune systems, par-
ticle swarm optimization, ant colony optimization, and differential evolution. Fur-
thermore, the interest of evolutionary computation researchers in the area of learn-
ing classifier systems has also increased considerably over the last years. As can be
seen in Table 2, the recent developments in the evolutionary computation subfield
have resulted in a large increase in the number of papers from this subfield. An-
other emerging area revealed by the data in Table 3 is support vector machines.
Most abstracts containing the concept support vector machine belong to papers
from the IEEE Transactions on Neural Networks or the International Joint Con-
ference on Neural Networks. This shows that support vector machines research is
usually seen as part of the neural networks subfield. Given the fairly large number
of papers concerned with support vector machines, it is quite remarkable that the
topic of support vector machines is not covered in two recent textbooks on CI.23:24
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Table 3. Concepts with the largest relative increase in their number of
occurrences.

Number of occurrences

Concept 1996-2000 2001-2005
genetic regulatory network 0 26
NSGA-II 0 22
least squares support vector machine 1 27
artificial immune system 2 34
evolutionary multiobjective optimization 3 36
particle swarm optimization 10 113
pareto front 5 41
gaussian kernel 3 21
ant colony optimization 4 28
support vector machine 39 264
multiobjective evolutionary algorithm 11 70
learning classifier system 4 25
support vector 12 71
association rule 5 23
long term memory 5 21
pareto optimal solution 6 24
ant 14 51
immune system 10 34
kernel 54 173
multiobjective optimization 35 112
differential evolution 11 35
ant colony 8 25
gene 52 135
mutual information 19 49
image retrieval 11 27

Apparently, there is no complete consensus within the CI community on the ques-
tion whether support vector machines research belongs to the CI field at all. In
the fuzzy systems subfield, research interest in the topic of fuzzy association rules
has increased significantly over the last decade. This is indicated by the concept
association rule in Table 3.

Obviously, there must also be areas with a decreasing interest of CI researchers.
These areas are indicated by the data in Table 4. In the neural networks subfield,
interest in the area of feedforward neural networks has decreased considerably. The
same is true for the area of fuzzy control in the fuzzy systems subfield. In the evo-
lutionary computation subfield, the amount of research in the area of evolutionary
programming has clearly decreased.

We now compare the maps for the period 1996-2000, shown in Figures 4, 5,
and 6, to the maps for the period 2001-2005, shown in Figures 1, 2, and 3. The
concept density map in Figure 5 reveals that in the period 1996—-2000 the CI field
was largely structured around the three most important techniques studied in the
field, that is, neural networks, fuzzy systems, and evolutionary computation. The
map clearly shows three clusters, each corresponding to one of the three techniques.
The correspondence between the three clusters and the three techniques is not
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Table 4. Concepts with the largest relative decrease in their number
of occurrences.

Number of occurrences

Concept 1996-2000 2001-2005
fuzzy constraint 21 4
constructive algorithm 28 8
cascade correlation 23 7
fuzzy logic control 48 15
multilayer feedforward neural network 44 16
control action 33 13
hidden unit 117 48
iris data 31 13
fuzzy number 63 27
evolutionary programming 90 39
fuzzy control system 73 32
feedforward neural network 184 82
sliding mode controller 20 9
universal approximator 31 14
fuzzy logic controller 128 58
defuzzification 44 20
knowledge base 78 37
PID controller 41 20
rule extraction 43 21
inverted pendulum 57 28
expert system 51 26
approximate reasoning 25 13
backpropagation 398 211
fuzzy controller design 22 12
output layer 42 23

perfect. By examining the concept map for the period 19962000, either using Fig-
ure 4 or using the concept map viewer available online, it can be seen that some
fuzzy systems concepts are located in the neural networks cluster. Most of these
concepts have to do with classification (e.g., fuzzy classifier and fuzzy classification),
clustering (e.g., fuzzy clustering and fuzzy c-means), or neuro-fuzzy systems (e.g.,
fuzzy neural network and neuro-fuzzy inference system). However, even though the
correspondence between the three clusters and the three most important CI tech-
niques is not perfect, it is clear that in the period 1996-2000 the CI field was much
more structured around techniques than it was in the period 2001-2005. As dis-
cussed above, in the latter period the field was structured around four types of
problems that each receive a lot of attention in the field.

Based on the concept density maps in Figures 2 and 5, some further observations
on the evolution of the CI field can be made. One thing to note is that in the map
for the period 1996-2000 concepts related to classification and concepts related to
regression are located much closer to each other than in the map for the period
2001-2005. Apparently, nowadays research into classification problems on the one
hand and into regression problems on the other hand is somewhat more separated
than it was some years ago. Another observation is that concepts related to control
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and concepts related to neural networks have moved toward each other. This might
be an indication that the application of neural network techniques to control prob-
lems has increased over the last decade.

4. Conclusions

In this paper, we have presented a bibliometric study of the CI field. Based on our
analysis, we can draw a number of conclusions. First of all, our initial expecta-
tion that the CI field is structured around the neural networks, fuzzy systems, and
evolutionary computation subfields turns out to be too simplistic. As revealed by
our bibliometric maps for the period 2001-2005, the CI field can best be seen as
a field that is structured around four important types of problems, namely control
problems, classification problems, regression problems, and optimization problems.
Moreover, the neural networks and fuzzy systems subfields turn out to be fairly in-
tertwined. Both subfields are concerned with control, classification, and regression
problems. The evolutionary computation subfield mainly deals with optimization
problems, and it therefore turns out to have a relatively independent position within
the CI field. Interestingly, the intertwining of the neural networks and fuzzy systems
subfields has increased considerably over the last decade. This can be seen by com-
paring the maps for the period 2001-2005 to the maps for the period 1996—-2000.
In the latter maps, the neural networks and fuzzy systems subfields are clearly
separated from each other. Apparently, in the last decade there must have been
some development in the CI field that has brought the neural networks and fuzzy
systems subfields closer together. A possible explanation might be that more and
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more researchers recognize that in many cases neural network techniques and fuzzy
system techniques are applied to rather similar problems, even though the tech-
niques themselves are very different. As a consequence, more and more researchers
become interested in comparing the two types of techniques, and they start combin-
ing them into hybrid systems. So, researchers focus less on one type of technique.
Instead, they focus on the problem with which they are concerned, and they try to
find the technique or the combination of techniques that solves the problem in the
most satisfactory way.

Our analysis of the frequency with which researchers use specific concepts in
their papers has revealed a number of emerging areas in the CI field. These areas
are genetic regulatory networks, evolutionary multiobjective optimization, artificial
immune systems, particle swarm optimization, ant colony optimization, differential
evolution, and support vector machines. Interestingly, most of these areas lie in
the evolutionary computation subfield, which suggests that this subfield has been
particularly innovative over the last decade. We also note that it is not completely
clear whether the area of support vector machines should be seen as part of the CI
field at all. The interest of CI researchers in a number of more traditional research
topics has decreased significantly over the last decade. These topics are feedforward
neural networks, fuzzy control, and evolutionary programming.
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