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COPD

Chronic obstructive pulmonary disease (COPD) is the most common respiratory 
disease, characterized by chronic and progressive course.1 It’s pathology involves 
chronic inflammatory response of the airways, overproduction of mucus (resulting 
in chronic bronchitis), parenchymal tissue destruction (resulting in emphysema) 
and abnormal repair defence mechanisms (resulting in small airway fibrosis).2 
This leads to air trapping in the lungs, sputum production, obstructed exhalation, 
dyspnoea and cough, common symptoms associated with COPD.2 Although COPD 
can be stable over time, exacerbations, defined as an acute worsening of respiratory 
symptoms resulting in additional therapy, often occur.3

Epidemiology and risk factors
Chronic obstructive pulmonary disease is a major public health burden.3,4 COPD 
is currently the third leading cause of death worldwide with more than 3 million 
deaths per year.5,6 Although it is difficult to estimate the prevalence due to the vari-
ability in diagnostic criteria, recent standardized meta-analyses show a significant 
increase in both global and regional prevalence in 2010, compared with 1990.7 In 
2010, the global prevalence based on spirometry was estimated to be 11.7% with 384 
million cases.7 Prevalence is higher in current smokers and ex-smokers, in males 
compared with females and increases with age and air pollution.3

The COPD prevalence and annual deaths are predicted to increase, due to the 
increased prevalence of smoking and air pollution in some regions and aging of 
the population.4 Exacerbations are an important reason for hospitalization and are 
responsible for about 10% of all acute medical admissions, adding to the mortality 
and morbidity rates and overall burden of the disease.8 Survival rates of COPD pa-
tients with three or more exacerbations in 5 years follow-up are markedly reduced 
compared with those without exacerbations (30% versus 80%).9

Although smoking is a predominant risk factor, 25-45% of never-smokers also de-
velop COPD.10,11 It has been hypothesized that COPD is the result of a more complex 
interaction of cumulative exposures to noxious gases and particles (smoking, air 
pollution and/or occupational exposure) and a range of host factors, including (epi)
genetic factors, poor lung growth, age and airway hyper-responsiveness.3 From a 
genetic perspective, an important question to answer is to what extent the genetic 
determinants of COPD are overlapping in smokers and non-smokers or whether 
there are specific gene-environment interactions that change the genetic architec-
ture in these two groups.
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Diagnosis
According to the Global initiative for chronic Obstructive Lung Disease (GOLD) the 
COPD diagnosis is based on the airflow limitation, as measured by the lung function 
tests.2 Spirometry is the most objective lung function test and the post-bronchodi-
lator ratio of the forced expiratory volume in 1 second (FEV1) over the forced vital 
capacity of the lungs (FVC) resulting in <0.7 is a standard definition of the airflow 
limitation.3 However, using this fixed ratio results in more frequent over-diagnosis 
in the elderly (the lung function normally lowers with age), and more frequent 
under-diagnosis in younger adults (<45 years).12 Thus, the American Thoracic So-
ciety (ATS) and the European Respiratory Society (ERS) guidelines recommend the 
lower limit of normal (LLN) as a cut-off value (FEV1/FVC<LLN). LLN represents the 
lower 5% of the healthy population, evaluated by comparison with the reference 
values based on age, height, sex and race.13 However, this value is highly dependent 
on the reference population. Since simplicity and consistency of a diagnostic tool 
are highly valued in clinical practice and research, GOLD still prefers the use of the 
fixed ratio3 and is therefore widely used in genetic and epidemiological studies as 
well as in the studies described in this thesis. In the new assessment tool proposed 
by GOLD 2017,3 COPD is classified in stages of severity based on the combination of 
severity of airflow limitation (FEV1 % predicted), exacerbation history and symp-
toms burden (Figure 1).2,3 GOLD is confident that this tool will result in a decrease 
of misclassification and better diagnosis and treatment of COPD.

GOLD FEV1
I ≥ 80
II 50 - 79
III 30 - 49
IV < 30

mMRC 0-1 mMRC ≥ 2
CAT < 10 CAT ≥ 10

Symptoms

Exacerbation 
history

Assesment of symptoms / risk of exacerbations 

A

DC

0 or 1
(not leading to 

hospital admission)
≥ 2 or 

≥ 1 leading to 
hospital admission

B

Assesment of airflow 
limitation

Spirometrically 
confirmed diagnosis

Post-bronchodilator
FEV1/FVC < 0.7

Figure 1. Combined COPD assessment tool proposed by GOLD 2017 (Adapted with permission 
from GOLD from “GOLD Management and Prevention of COPD 2017”, Copyright © 2016 GOLD),2 
mMRC- Modified British Medical Research Council Questionnaire used for symptom assessment; 
CAT – COPD Assessment TestTM.
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Comorbidities
Various other pulmonary conditions are known to coexist with COPD and increase 
the severity of the disease. Those include asthma, pneumonia, pulmonary hyper-
tension, pulmonary embolism, obstructive sleep apnoea, idiopathic pulmonary 
fibrosis and lung cancer.14,15 Most are considered to be part of the COPD spectrum or 
a consequence of COPD pathology.14 Asthma is considered to be a major risk factor 
for COPD, where people with asthma have 12-fold increased risk of COPD compared 
with those without asthma.16 However, it is difficult to clinically differentiate asthma 
and COPD in adults as in 40% of the elderly it coexists with COPD.17

Furthermore, COPD is a systemic disorder that is associated with multiple extra-
pulmonary comorbid diseases.18,19 Most common are cardiovascular diseases, meta-
bolic diseases, cancer and depression, among many others.15 The comorbidities may 
in part be explained by common factors such as smoking, alcohol, diet, ageing and 
polypharmacy or may share pathophysiological mechanisms and be consequence 
of the systemic inflammation.15,18 Comorbidities have impact on the severity of the 
exacerbations and consequently on hospitalization rates and prognosis and are thus 
relevant for clinical care and management.20 Depression is proposed to be one of the 
most underestimated, yet prevalent comorbidities of COPD15 for which the common 
mechanisms are far from understood.21 A total of 26% of COPD cases have depres-
sion, which has been associated with female gender, younger age, poor prognosis, 
smoking and severity of COPD with higher exacerbation risk.22,23 Depression may be 
the result of (preclinical) pathology, which impacts quality of life. On the other hand, 
it has been speculated that there may be shared risk factors with effects on brain, 
such as smoking, ageing, hypoxaemia and systemic inflammation.15,24 Alternatively, 
there may be shared genomics determinants.15 In the present study, I studied the 
common genetic and epigenetic determinants of COPD, depression and other COPD 
related comorbidity.

Omics of COPD

The suffix -omics (from Greek word “ὁμοῖος” - common, general, one that concerns 
all parts) added to a molecular term denotes a comprehensive or global assess-
ment of a set of molecules, which are collectively denoted with the suffix –ome.25 
Accordingly, genomics, epigenomics, transcriptomics and metabolomics represent 
a comprehensive study of a genome, epigenome, transcriptome and metabolome, 
respectively, the complete sets of different genes, transcripts of genes, proteins or 
active molecules (metabolites) of an organism (Figure 2).

﻿ 5



Analyses that integrate these layers are powerful tools for understanding the 
pathogenesis and pathology of complex diseases.25 Such integrative studies may 
improve our understanding of how specific genetic variations contribute to the 
disease.26 The integration of data across multi-omics layers allows us to:
•	 gain understanding of the functional consequences and relevant interactions 

between different layers;27

•	 build pathways and networks based on a prior published or bioinformatic 
knowledge in order to understand the pathophysiology of a disease.26,28

There has been significant progress in understanding pulmonary diseases in re-
cent years based on the development of omics research.29 COPD is a complex disease 
with overlapping endophenotypes, which may be the result of interactions of many 
factors, both external and internal.30 In this thesis I aim to disentangle the pathogen-
esis of COPD and its co-morbidity, using various omics approaches discussed below.

Figure 2. Multi-omics approach to studying a disease. Reprinted with permission from Elsevier. 
Sun YV, Hu YJ. Chapter Three-Integrative Analysis of Multi-omics Data for Discovery and Functional 
Studies of Complex Human Diseases. Advances in genetics. 2016 Dec 31;93:147-90. Copyright © 
2016 Elsevier Inc.
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Genetics
Genetics focuses on identification of a DNA (Deoxyribonucleic acid) sequence 
changes, such as single nucleotide variations (SNVs). These may be associated with 
the risk and development of pathology, treatment response or prognosis.26,31 The 
human genome is an important driver of the risk of COPD. The heritability of COPD 
is estimated to be 20-60%.32,33 COPD as a complex disease is likely the result of the 
interplay of rare variants with moderate to large effects and common variants with 
small effects. Genetic studies identified several genetic risk factors for COPD. The 
first and most well-known genetic variant causing emphysema at young age is the 
rare variant in SERPINA1 gene at chromosome 14q, resulting in Alpha-1-antitrypsin 
(AAT) deficiency.34,35 Candidate-gene studies, focusing on genes encoding protein 
implicated in the pathogenesis of COPD, highlighted broad areas of the genome 
potentially involved in COPD, but did not yield informative reproducible results.36 
Genome-wide association studies (GWAS), using hypothesis-free and genome wide 
approach, have successfully identified common variants associated with COPD37–43 
and related outcomes, such as lung function measurements (FEV1, FEV1/FVC),37,44–47 
emphysema,48 chronic bronchitis.41,49 Findings are not only replicable within an 
endophenotype, but also show a substantial overlap accross.43 The loci identified 
in COPD GWASs that were replicated include Hedgehog-interacting protein (HHIP), 
Family with sequence similarity 13 member A (FAM13A), Nicotinic cholinergic recep-
tors (CHRNA3/5), Ion-responsive element binding protein 2 (IREB2), Cytochrome 
P450 family gene (CYP2A6), Member RAS oncogene family gene (RAB4B) and Egl-9 
family hypoxic-inducible factor 2 (EGLN2).37,43

As has been the case in many other disorders, the use of endophenotypes, i.e., 
continuous heritable traits that are associated with the disease (diagnosis), has 
been even more successful in identifying genetic loci.50 The major advantage of this 
approach is that it overcomes the problems of diagnostic classification, which for 
many disorders including COPD is arbitrary and may introduce misclassification. 
The use of endophenotypes results in loss of specificity as there is no 1:1 relationship 
between the endophenotype and the disease and endophenotype may be related to 
multiple disorders.51 Yet, there is a gain in efficiency because the endophenotypes 
often have a higher heritability than the disease and are usually available in large 
number of persons, covering a full range of disease severity: from healthy, pre-clinic, 
moderate to severe. Based on a genome-wide association discovery in 48,943 indi-
viduals and follow-up in 95,375 individuals, Wain et al. reported 97 loci relevant for 
lung function, of which 43 were novel.37 Figure 3 gives an overview of the 97 loci, 
underlying those relevant for COPD.
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The genetic risk score derived from these is associated with COPD susceptibil-
ity results in 3.7-fold difference in COPD risk between highest and lowest genetic 
risk score deciles (Figure 4).37 The odds ratios per standard deviation of the risk 
score (~6 alleles) (95% confidence interval) is 1.24 (1.20-1.27), P=5.05×10-49 show a 
consistent increase over the full distribution.

When interpreting the biological and physiological pathways the 97 genetic vari-
ants are implicated in those involved in development, elastic fibres and epigenetic 
regulation pathways. These pathways point to targets for drugs and compounds in 
development for COPD and asthma.

Figure 3. Loci associated with lung function related to COPD.50 In bold - novel findings. Underlined – 
loci associated with COPD (P<5.26×10-4). *Loci associated with smoking. #Same gene has 2 variants 
one novel, one already known.
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Despite the successes, a large part of the estimated heritability is still missing. 
This may be explained by:
•	 Rare variants that are not well covered to date by GWASs;
•	 Gene interactions;
•	 Epigenetic modifications that are in part driven by genetic variants.

Figure 4. Odds ratios for spirometrically-defined COPD for weighted genetic risk score deciles in 
UK Biobank (10,547 cases, pre-bronchodilator % predicted FEV1<80% and FEV1/FVC<0.7, and 
53,948 controls, FEV1/FVC>0.7 and % predicted FEV1>80%, weights derived from non-discovery 
populations). For each decile, odds ratios were obtained using a logistic regression adjusted for 
age, age2, sex, height, smoking status, pack-years and the first 10 ancestry principal components. 
Source: Wain et al.37

So far GWAS has brought to surface common variants. Rare variants are not covered 
by the arrays used for GWAS, but, more importantly, are also not well imputed using 
common reference panels (e.g. HapMap and 1000 Genomes).52,53 Of note is that im-
putation is improving with larger reference panels, such as the Haplotype Reference 
Consortium panel (HRC) combining several widely used panels (with total of 64,976 
haplotypes) and data from exome sequencing. Using HRC, rare variants can be imputed 
more reliably in GWAS.52 An alternative route to discover rare variants is family based 
studies. While a variant is rare in the general population, within a family of first- and 
second-degree relatives such variant will be transmitted with a 50% probability. Thus, 
within a family, the variant is common. To find rare variants Qiao et al conducted a whole 
exome sequencing analysis in 2,543 subjects from two family-based studies.54 Applying a 
gene-based segregation test in the family-based data, they identified significant segrega-
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tion of rare loss of function variants in TBC1D10A and RFPL1 (P<2×10–6) but were unable 
to find similar variants in the case–control study. Further, they identified individuals 
with putative high-risk variants, including patients harbouring homozygous mutations 
in genes associated with cutis laxa and Niemann–Pick Disease Type C.54 Also a recent 
whole genome sequencing study in severe COPD identified a large number of potentially 
important functional variants, with the strongest associations being in known COPD 
risk loci, including HHIP and SERPINA1.55 Encouraged by these findings, in this thesis I 
also used a family-based approach to identify rare variants implicated in COPD.

Epigenomics
Epigenomics investigates epigenome which is a set of chemical modifications of 
the chromatin and DNA molecule that regulate gene expression, without changing 
the DNA sequence.26,28 These changes are usually reversible, and may be driven by 
genetic (heritable) and environmental factors. Of note is that in some instances the 
modifications may be permanent,56,57 and cell-type (tissue) specific.58

The most commonly studied epigenetic mechanisms are DNA methylation and 
histone modifications.29 DNA methylation is addition of a methyl group (-CH3) to 
any cytosine (C) that is next to guanine (G) in the DNA sequence, converting it to 
5-methylcytosine. These sites are called CpGs (short for 5’-C-phosphate-G-3’), and 
in humans around 70-80% of CpGs are methylated.59 Epigenome-wide associa-
tion studies (EWAS) have shown that differential DNA methylation patterns have 
a role in the disease development.60 It has also been shown that smoking affects 
DNA methylation,56,61,62 which in turn may lead to the disease. Furthermore, genetic 
variants may modulate regulatory mechanisms such as DNA methylation (methyla-
tion quantitative trait loci - meQTLs).63 Epigenetic studies of COPD have identified 
differential DNA methylation associated with COPD severity, poor lung function and 
use of systemic corticosteroids.64–66 It has been postulated that early exposure to 
risk factors, such as maternal tobacco smoking during pregnancy, are associated 
with risk of asthma and lower lung function, through changes in DNA methylation.67 
This may also affect the risk of COPD at old age. When combining epigenome and 
transcriptome data from lung tissues of COPD patients and controls, EPAS1 gene has 
been proposed as a key regulator of COPD pathogenesis and has been confirmed by 
functional studies, highlighting the need for integrative studies.68 This gene has not 
emerged in the list of genes implicated in COPD or endophenotypes to date.

In this thesis, I addressed the specific question whether the GWAS variants change 
the epigenome landscape and subsequently alter the transcription of the gene, 
integrating genetic, epigenetic and transcriptomic data. GWAS has been extremely 
successful, but the functional effects of the identified genes in COPD pathogenesis 
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were largely not investigated. Another poorly understood issue is the interaction 
of the genetic drivers of pathology with the environment. Integrating genetic re-
search with other -omics may improve our understanding of functional effects and 
gene interactions, since at the omics level such effects are expected to be larger 
than at the level of a complex disease such as COPD, which involves a large range 
of phenotypes and comorbidities driven by both external and internal factors.30 In 
this thesis, I aimed to understand the functional changes driving the association of 
GWAS hits to COPD at the level of epigenomics and transcriptomics. I further use 
genetics to address the question whether a common genetic background explains 
the comorbidity in COPD occurring in patients.

Transcriptomics
Transcriptomics explores genome-wide levels of RNA transcripts (gene expression) 
both qualitatively and quantitatively, which are directly influenced by the genome 
(expression quantitative trait loci – eQTLs) and epigenome (expression quantitative 
trait methylation – eQTMs),26 besides environmental factors. It is known that gene 
expression can be tissue specific and in order to investigate a disease one should 
focus on the tissue of interest. One study showed that environmental risk factors 
such as smoking influences the transcriptome of the small airway epithelium,69 
even after smoking cessation.70 However, some genes are expressed globally over 
tissues. An important issue to consider is that multiple tissues may be involved in 
a disease. Smoking, the major determinant of COPD, may affect the expression in 
blood, lung tissue or other tissues. Indeed, a study investigating blood of smokers 
with and without COPD, could discriminate the cases from the controls based on 
the expression profile of 26 genes involved in immune and inflammatory response 
and sphingolipid metabolism.71 Although transcriptomic studies were useful in 
identifying specific gene expression pattern associated with COPD72,73 and with 
drug response,74,75 a global expression profile unique for COPD has not been found.29 
In this thesis, I chose to integrate genomics with gene expression to explore the 
functional effects of genetic and epigenetic changes.

Metabolomics
Metabolomic studies all metabolites present in a tissue, which are small molecules 
(<1 kDa) of endogenous or exogenous etiology.29 These include peptides, amino 
acids, nucleic acids, carbohydrates, vitamins, polyphenols, and alkaloids, among 
other compounds that are involved in cellular metabolic functions. In pulmonary 
research of metabolomics, studied samples include blood, sputum, exhaled breath 
condensate, bronchoalveolar lavage fluid and lung tissue.76 The identification 
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of changes in biomarkers that can identify or differentiate various disease phe-
notypes even in the early stages is of high importance in COPD.76 Several studies 
used metabolomics methods to investigate biochemical effects induced by COPD, 
exacerbations and its related outcomes as well as external effects of smoking and 
drugs, using different samples.76 Most of the studies identified metabolites involved 
in systemic inflammation, protein degradation and oxidative stress.77–79 Consistent 
with the transcriptomics studies in blood, mentioned above, another study of lipids 
in sputum reported that sphingolipids were highly expressed in sputum of smokers 
with COPD compared with smoking controls.80,81 However, these studies were very 
limited in sample size, therefore the results should be further confirmed in larger 
samples. In this thesis I have combined the data of two large population-based stud-
ies to understand the metabolomics changes in COPD. As a person’s metabolism 
may change causing the disease or change as a result of the disease process, I used 
a genomic method, explained below, to disentangle these effects.

Mendelian Randomization
A major problem in observational epidemiological studies and the translation of 
findings to the clinics is the problem of causal inferences due to the possible reverse 
causation: e.g. to distinguish whether the metabolic or other omics changes are 
causing a disease or are the consequence of the pathology. One of the most impor-
tant approaches developed in the omics era is the method referred to as Mendelian 
Randomization (MR). MR is a cross-omics approach, which uses genetic data as an 
instrumental variable (IV) to examine the evidence for causal effects between modifi-
able exposures (risk factors) and an outcome (disease).82 The rationale is that similar 
to randomized controlled trials, the genotypes are assigned randomly and the disease 
starts after meiosis.83 Randomisation is based on Mendel’s second law that the inheri-
tance of one trait is independent of the inheritance of other traits.83 The IV (usually 
based on a combination of genotypes that are associated to the disease) has to comply 
with three assumptions: (1) to be associated with the exposure; (2) to be independent 
of any confounders of the exposure-outcome association and (3) to be related to the 
outcome only through the exposure.83 MR analysis can be conducted unilateral, test-
ing a specific hypothesis, e.g. if alcohol consumption is casually related to the risk of 
cardiovascular mortality.84 In the setting of multi- or cross-omics research as in the 
metabolomics-COPD study I performed, the MR is often bi-directional, testing the 
hypothesis that: 1) the metabolite is causally related to COPD and therefore the genetic 
determinants of metabolite (used as instrumental variable) are also associated to 
COPD and 2) (pre)clinical COPD pathology affect the metabolite levels, which trans-
lates into the model where genes determining COPD are also associated to metabolite.
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Scope of this thesis

The overall aim of this thesis is to identify novel molecular determinants of COPD, 
lower lung function and related pathology such as depression and to perform inte-
grative studies to investigate the functional role and interaction of multiple omics 
layers.

In Chapter 2 I investigate COPD applying different omics approaches. In Chapter 
2.1, I describe a genome-wide linkage scan performed in a search for rare genetic 
variants which have a role in familial COPD, utilizing family-based settings of the 
Erasmus Rucphen Family (ERF) study and integrating the data from the Rotter-
dam Study (RS), the LifeLines study (LLS), Hobbs et al.85 and the Vlagtwedde/
Vlaardingen study. Chapter 2.2 and Chapter 2.3 investigate the functional role of 
two established COPD GWAS loci by exploring a multi-omics approach linking the 
genetic loci to the epigenomic and transcriptomic effects in the Rotterdam study 
and the Lung expression quantitative loci mapping study. Chapter 2.2 examines the 
chromosome 15q25 locus and its meQTL effects in blood and eQTL effects in lung 
tissue, to understand the functional effects of this locus in relation to COPD. Simi-
larly, Chapter 2.3 investigates a top variant from a novel locus on 19q13, identified 
in COPD GWAS, and mediation of its genetic risk on gene expression, through DNA 
methylation signatures. In Chapter 2.4, I present an EWAS meta-analysis of lung 
function levels in never-smokers only, to identify factors other than smoking which 
affect lung function through DNA methylation in RS and LLS.

In Chapter 3, the thesis focuses on comorbidities of COPD, including early and 
late metabolic effects. Chapter 3.1 describes a large meta-analysis in Pregnancy 
And Childhood Epigenetics (PACE) consortium studying DNA methylation in rela-
tion to lung function at birth and the effects on lung function, asthma and COPD 
throughout life course. In Chapter 3.2, I study circulating metabolites in relation 
with COPD in ERF, RS and several replication cohorts and apply multi-omics Mende-
lian Randomization approach to investigate causal relations of the metabolite-COPD 
associations. In Chapter 3.3, I use an integrative genetic approach to overlap genetic 
drivers of COPD and its non-pulmonary comorbidity. In Chapter 3.4, I investigate 
DNA methylation patterns specific for depression in a largest to date EWAS study in 
Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium with 
the view to determine the overlap with that seen in COPD.

The main findings and implications described in my thesis I discuss in the Chap-
ter 4, which I summarize in English and in Dutch in Chapter 5.
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