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COPD

Chronic obstructive pulmonary disease (COPD) is the most common respiratory 
disease, characterized by chronic and progressive course.1 It’s pathology involves 
chronic inflammatory response of the airways, overproduction of mucus (resulting 
in chronic bronchitis), parenchymal tissue destruction (resulting in emphysema) 
and abnormal repair defence mechanisms (resulting in small airway fibrosis).2 
This leads to air trapping in the lungs, sputum production, obstructed exhalation, 
dyspnoea and cough, common symptoms associated with COPD.2 Although COPD 
can be stable over time, exacerbations, defined as an acute worsening of respiratory 
symptoms resulting in additional therapy, often occur.3

Epidemiology and risk factors
Chronic obstructive pulmonary disease is a major public health burden.3,4 COPD 
is currently the third leading cause of death worldwide with more than 3 million 
deaths per year.5,6 Although it is difficult to estimate the prevalence due to the vari-
ability in diagnostic criteria, recent standardized meta-analyses show a significant 
increase in both global and regional prevalence in 2010, compared with 1990.7 In 
2010, the global prevalence based on spirometry was estimated to be 11.7% with 384 
million cases.7 Prevalence is higher in current smokers and ex-smokers, in males 
compared with females and increases with age and air pollution.3

The COPD prevalence and annual deaths are predicted to increase, due to the 
increased prevalence of smoking and air pollution in some regions and aging of 
the population.4 Exacerbations are an important reason for hospitalization and are 
responsible for about 10% of all acute medical admissions, adding to the mortality 
and morbidity rates and overall burden of the disease.8 Survival rates of COPD pa-
tients with three or more exacerbations in 5 years follow-up are markedly reduced 
compared with those without exacerbations (30% versus 80%).9

Although smoking is a predominant risk factor, 25-45% of never-smokers also de-
velop COPD.10,11 It has been hypothesized that COPD is the result of a more complex 
interaction of cumulative exposures to noxious gases and particles (smoking, air 
pollution and/or occupational exposure) and a range of host factors, including (epi)
genetic factors, poor lung growth, age and airway hyper-responsiveness.3 From a 
genetic perspective, an important question to answer is to what extent the genetic 
determinants of COPD are overlapping in smokers and non-smokers or whether 
there are specific gene-environment interactions that change the genetic architec-
ture in these two groups.
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Diagnosis
According to the Global initiative for chronic Obstructive Lung Disease (GOLD) the 
COPD diagnosis is based on the airflow limitation, as measured by the lung function 
tests.2 Spirometry is the most objective lung function test and the post-bronchodi-
lator ratio of the forced expiratory volume in 1 second (FEV1) over the forced vital 
capacity of the lungs (FVC) resulting in <0.7 is a standard definition of the airflow 
limitation.3 However, using this fixed ratio results in more frequent over-diagnosis 
in the elderly (the lung function normally lowers with age), and more frequent 
under-diagnosis in younger adults (<45 years).12 Thus, the American Thoracic So-
ciety (ATS) and the European Respiratory Society (ERS) guidelines recommend the 
lower limit of normal (LLN) as a cut-off value (FEV1/FVC<LLN). LLN represents the 
lower 5% of the healthy population, evaluated by comparison with the reference 
values based on age, height, sex and race.13 However, this value is highly dependent 
on the reference population. Since simplicity and consistency of a diagnostic tool 
are highly valued in clinical practice and research, GOLD still prefers the use of the 
fixed ratio3 and is therefore widely used in genetic and epidemiological studies as 
well as in the studies described in this thesis. In the new assessment tool proposed 
by GOLD 2017,3 COPD is classified in stages of severity based on the combination of 
severity of airflow limitation (FEV1 % predicted), exacerbation history and symp-
toms burden (Figure 1).2,3 GOLD is confident that this tool will result in a decrease 
of misclassification and better diagnosis and treatment of COPD.

GOLD FEV1
I ≥ 80
II 50 - 79
III 30 - 49
IV < 30

mMRC 0-1 mMRC ≥ 2
CAT < 10 CAT ≥ 10

Symptoms

Exacerbation 
history

Assesment of symptoms / risk of exacerbations 

A

DC

0 or 1
(not leading to 

hospital admission)
≥ 2 or 

≥ 1 leading to 
hospital admission

B

Assesment of airflow 
limitation

Spirometrically 
confirmed diagnosis

Post-bronchodilator
FEV1/FVC < 0.7

Figure 1. Combined COPD assessment tool proposed by GOLD 2017 (Adapted with permission 
from GOLD from “GOLD Management and Prevention of COPD 2017”, Copyright © 2016 GOLD),2 
mMRC- Modified British Medical Research Council Questionnaire used for symptom assessment; 
CAT – COPD Assessment TestTM.
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Comorbidities
Various other pulmonary conditions are known to coexist with COPD and increase 
the severity of the disease. Those include asthma, pneumonia, pulmonary hyper-
tension, pulmonary embolism, obstructive sleep apnoea, idiopathic pulmonary 
fibrosis and lung cancer.14,15 Most are considered to be part of the COPD spectrum or 
a consequence of COPD pathology.14 Asthma is considered to be a major risk factor 
for COPD, where people with asthma have 12-fold increased risk of COPD compared 
with those without asthma.16 However, it is difficult to clinically differentiate asthma 
and COPD in adults as in 40% of the elderly it coexists with COPD.17

Furthermore, COPD is a systemic disorder that is associated with multiple extra-
pulmonary comorbid diseases.18,19 Most common are cardiovascular diseases, meta-
bolic diseases, cancer and depression, among many others.15 The comorbidities may 
in part be explained by common factors such as smoking, alcohol, diet, ageing and 
polypharmacy or may share pathophysiological mechanisms and be consequence 
of the systemic inflammation.15,18 Comorbidities have impact on the severity of the 
exacerbations and consequently on hospitalization rates and prognosis and are thus 
relevant for clinical care and management.20 Depression is proposed to be one of the 
most underestimated, yet prevalent comorbidities of COPD15 for which the common 
mechanisms are far from understood.21 A total of 26% of COPD cases have depres-
sion, which has been associated with female gender, younger age, poor prognosis, 
smoking and severity of COPD with higher exacerbation risk.22,23 Depression may be 
the result of (preclinical) pathology, which impacts quality of life. On the other hand, 
it has been speculated that there may be shared risk factors with effects on brain, 
such as smoking, ageing, hypoxaemia and systemic inflammation.15,24 Alternatively, 
there may be shared genomics determinants.15 In the present study, I studied the 
common genetic and epigenetic determinants of COPD, depression and other COPD 
related comorbidity.

Omics of COPD

The suffix -omics (from Greek word “ὁμοῖος” - common, general, one that concerns 
all parts) added to a molecular term denotes a comprehensive or global assess-
ment of a set of molecules, which are collectively denoted with the suffix –ome.25 
Accordingly, genomics, epigenomics, transcriptomics and metabolomics represent 
a comprehensive study of a genome, epigenome, transcriptome and metabolome, 
respectively, the complete sets of different genes, transcripts of genes, proteins or 
active molecules (metabolites) of an organism (Figure 2).
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Analyses that integrate these layers are powerful tools for understanding the 
pathogenesis and pathology of complex diseases.25 Such integrative studies may 
improve our understanding of how specific genetic variations contribute to the 
disease.26 The integration of data across multi-omics layers allows us to:
•	 gain understanding of the functional consequences and relevant interactions 

between different layers;27

•	 build pathways and networks based on a prior published or bioinformatic 
knowledge in order to understand the pathophysiology of a disease.26,28

There has been significant progress in understanding pulmonary diseases in re-
cent years based on the development of omics research.29 COPD is a complex disease 
with overlapping endophenotypes, which may be the result of interactions of many 
factors, both external and internal.30 In this thesis I aim to disentangle the pathogen-
esis of COPD and its co-morbidity, using various omics approaches discussed below.

Figure 2. Multi-omics approach to studying a disease. Reprinted with permission from Elsevier. 
Sun YV, Hu YJ. Chapter Three-Integrative Analysis of Multi-omics Data for Discovery and Functional 
Studies of Complex Human Diseases. Advances in genetics. 2016 Dec 31;93:147-90. Copyright © 
2016 Elsevier Inc.
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Genetics
Genetics focuses on identification of a DNA (Deoxyribonucleic acid) sequence 
changes, such as single nucleotide variations (SNVs). These may be associated with 
the risk and development of pathology, treatment response or prognosis.26,31 The 
human genome is an important driver of the risk of COPD. The heritability of COPD 
is estimated to be 20-60%.32,33 COPD as a complex disease is likely the result of the 
interplay of rare variants with moderate to large effects and common variants with 
small effects. Genetic studies identified several genetic risk factors for COPD. The 
first and most well-known genetic variant causing emphysema at young age is the 
rare variant in SERPINA1 gene at chromosome 14q, resulting in Alpha-1-antitrypsin 
(AAT) deficiency.34,35 Candidate-gene studies, focusing on genes encoding protein 
implicated in the pathogenesis of COPD, highlighted broad areas of the genome 
potentially involved in COPD, but did not yield informative reproducible results.36 
Genome-wide association studies (GWAS), using hypothesis-free and genome wide 
approach, have successfully identified common variants associated with COPD37–43 
and related outcomes, such as lung function measurements (FEV1, FEV1/FVC),37,44–47 
emphysema,48 chronic bronchitis.41,49 Findings are not only replicable within an 
endophenotype, but also show a substantial overlap accross.43 The loci identified 
in COPD GWASs that were replicated include Hedgehog-interacting protein (HHIP), 
Family with sequence similarity 13 member A (FAM13A), Nicotinic cholinergic recep-
tors (CHRNA3/5), Ion-responsive element binding protein 2 (IREB2), Cytochrome 
P450 family gene (CYP2A6), Member RAS oncogene family gene (RAB4B) and Egl-9 
family hypoxic-inducible factor 2 (EGLN2).37,43

As has been the case in many other disorders, the use of endophenotypes, i.e., 
continuous heritable traits that are associated with the disease (diagnosis), has 
been even more successful in identifying genetic loci.50 The major advantage of this 
approach is that it overcomes the problems of diagnostic classification, which for 
many disorders including COPD is arbitrary and may introduce misclassification. 
The use of endophenotypes results in loss of specificity as there is no 1:1 relationship 
between the endophenotype and the disease and endophenotype may be related to 
multiple disorders.51 Yet, there is a gain in efficiency because the endophenotypes 
often have a higher heritability than the disease and are usually available in large 
number of persons, covering a full range of disease severity: from healthy, pre-clinic, 
moderate to severe. Based on a genome-wide association discovery in 48,943 indi-
viduals and follow-up in 95,375 individuals, Wain et al. reported 97 loci relevant for 
lung function, of which 43 were novel.37 Figure 3 gives an overview of the 97 loci, 
underlying those relevant for COPD.
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The genetic risk score derived from these is associated with COPD susceptibil-
ity results in 3.7-fold difference in COPD risk between highest and lowest genetic 
risk score deciles (figure 4).37 The odds ratios per standard deviation of the risk 
score (~6 alleles) (95% confidence interval) is 1.24 (1.20-1.27), P=5.05×10-49 show a 
consistent increase over the full distribution.

When interpreting the biological and physiological pathways the 97 genetic vari-
ants are implicated in those involved in development, elastic fibres and epigenetic 
regulation pathways. These pathways point to targets for drugs and compounds in 
development for COPD and asthma.

figure 3. Loci associated with lung function related to COPD.50 In bold - novel findings. Underlined – 
loci associated with COPD (P<5.26×10-4). *Loci associated with smoking. #Same gene has 2 variants 
one novel, one already known.
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Despite the successes, a large part of the estimated heritability is still missing. 
This may be explained by:
•	 Rare variants that are not well covered to date by GWASs;
•	 Gene interactions;
•	 Epigenetic modifications that are in part driven by genetic variants.

Figure 4. Odds ratios for spirometrically-defined COPD for weighted genetic risk score deciles in 
UK Biobank (10,547 cases, pre-bronchodilator % predicted FEV1<80% and FEV1/FVC<0.7, and 
53,948 controls, FEV1/FVC>0.7 and % predicted FEV1>80%, weights derived from non-discovery 
populations). For each decile, odds ratios were obtained using a logistic regression adjusted for 
age, age2, sex, height, smoking status, pack-years and the first 10 ancestry principal components. 
Source: Wain et al.37

So far GWAS has brought to surface common variants. Rare variants are not covered 
by the arrays used for GWAS, but, more importantly, are also not well imputed using 
common reference panels (e.g. HapMap and 1000 Genomes).52,53 Of note is that im-
putation is improving with larger reference panels, such as the Haplotype Reference 
Consortium panel (HRC) combining several widely used panels (with total of 64,976 
haplotypes) and data from exome sequencing. Using HRC, rare variants can be imputed 
more reliably in GWAS.52 An alternative route to discover rare variants is family based 
studies. While a variant is rare in the general population, within a family of first- and 
second-degree relatives such variant will be transmitted with a 50% probability. Thus, 
within a family, the variant is common. To find rare variants Qiao et al conducted a whole 
exome sequencing analysis in 2,543 subjects from two family-based studies.54 Applying a 
gene-based segregation test in the family-based data, they identified significant segrega-
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tion of rare loss of function variants in TBC1D10A and RFPL1 (P<2×10–6) but were unable 
to find similar variants in the case–control study. Further, they identified individuals 
with putative high-risk variants, including patients harbouring homozygous mutations 
in genes associated with cutis laxa and Niemann–Pick Disease Type C.54 Also a recent 
whole genome sequencing study in severe COPD identified a large number of potentially 
important functional variants, with the strongest associations being in known COPD 
risk loci, including HHIP and SERPINA1.55 Encouraged by these findings, in this thesis I 
also used a family-based approach to identify rare variants implicated in COPD.

Epigenomics
Epigenomics investigates epigenome which is a set of chemical modifications of 
the chromatin and DNA molecule that regulate gene expression, without changing 
the DNA sequence.26,28 These changes are usually reversible, and may be driven by 
genetic (heritable) and environmental factors. Of note is that in some instances the 
modifications may be permanent,56,57 and cell-type (tissue) specific.58

The most commonly studied epigenetic mechanisms are DNA methylation and 
histone modifications.29 DNA methylation is addition of a methyl group (-CH3) to 
any cytosine (C) that is next to guanine (G) in the DNA sequence, converting it to 
5-methylcytosine. These sites are called CpGs (short for 5’-C-phosphate-G-3’), and 
in humans around 70-80% of CpGs are methylated.59 Epigenome-wide associa-
tion studies (EWAS) have shown that differential DNA methylation patterns have 
a role in the disease development.60 It has also been shown that smoking affects 
DNA methylation,56,61,62 which in turn may lead to the disease. Furthermore, genetic 
variants may modulate regulatory mechanisms such as DNA methylation (methyla-
tion quantitative trait loci - meQTLs).63 Epigenetic studies of COPD have identified 
differential DNA methylation associated with COPD severity, poor lung function and 
use of systemic corticosteroids.64–66 It has been postulated that early exposure to 
risk factors, such as maternal tobacco smoking during pregnancy, are associated 
with risk of asthma and lower lung function, through changes in DNA methylation.67 
This may also affect the risk of COPD at old age. When combining epigenome and 
transcriptome data from lung tissues of COPD patients and controls, EPAS1 gene has 
been proposed as a key regulator of COPD pathogenesis and has been confirmed by 
functional studies, highlighting the need for integrative studies.68 This gene has not 
emerged in the list of genes implicated in COPD or endophenotypes to date.

In this thesis, I addressed the specific question whether the GWAS variants change 
the epigenome landscape and subsequently alter the transcription of the gene, 
integrating genetic, epigenetic and transcriptomic data. GWAS has been extremely 
successful, but the functional effects of the identified genes in COPD pathogenesis 
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were largely not investigated. Another poorly understood issue is the interaction 
of the genetic drivers of pathology with the environment. Integrating genetic re-
search with other -omics may improve our understanding of functional effects and 
gene interactions, since at the omics level such effects are expected to be larger 
than at the level of a complex disease such as COPD, which involves a large range 
of phenotypes and comorbidities driven by both external and internal factors.30 In 
this thesis, I aimed to understand the functional changes driving the association of 
GWAS hits to COPD at the level of epigenomics and transcriptomics. I further use 
genetics to address the question whether a common genetic background explains 
the comorbidity in COPD occurring in patients.

Transcriptomics
Transcriptomics explores genome-wide levels of RNA transcripts (gene expression) 
both qualitatively and quantitatively, which are directly influenced by the genome 
(expression quantitative trait loci – eQTLs) and epigenome (expression quantitative 
trait methylation – eQTMs),26 besides environmental factors. It is known that gene 
expression can be tissue specific and in order to investigate a disease one should 
focus on the tissue of interest. One study showed that environmental risk factors 
such as smoking influences the transcriptome of the small airway epithelium,69 
even after smoking cessation.70 However, some genes are expressed globally over 
tissues. An important issue to consider is that multiple tissues may be involved in 
a disease. Smoking, the major determinant of COPD, may affect the expression in 
blood, lung tissue or other tissues. Indeed, a study investigating blood of smokers 
with and without COPD, could discriminate the cases from the controls based on 
the expression profile of 26 genes involved in immune and inflammatory response 
and sphingolipid metabolism.71 Although transcriptomic studies were useful in 
identifying specific gene expression pattern associated with COPD72,73 and with 
drug response,74,75 a global expression profile unique for COPD has not been found.29 
In this thesis, I chose to integrate genomics with gene expression to explore the 
functional effects of genetic and epigenetic changes.

Metabolomics
Metabolomic studies all metabolites present in a tissue, which are small molecules 
(<1 kDa) of endogenous or exogenous etiology.29 These include peptides, amino 
acids, nucleic acids, carbohydrates, vitamins, polyphenols, and alkaloids, among 
other compounds that are involved in cellular metabolic functions. In pulmonary 
research of metabolomics, studied samples include blood, sputum, exhaled breath 
condensate, bronchoalveolar lavage fluid and lung tissue.76 The identification 
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of changes in biomarkers that can identify or differentiate various disease phe-
notypes even in the early stages is of high importance in COPD.76 Several studies 
used metabolomics methods to investigate biochemical effects induced by COPD, 
exacerbations and its related outcomes as well as external effects of smoking and 
drugs, using different samples.76 Most of the studies identified metabolites involved 
in systemic inflammation, protein degradation and oxidative stress.77–79 Consistent 
with the transcriptomics studies in blood, mentioned above, another study of lipids 
in sputum reported that sphingolipids were highly expressed in sputum of smokers 
with COPD compared with smoking controls.80,81 However, these studies were very 
limited in sample size, therefore the results should be further confirmed in larger 
samples. In this thesis I have combined the data of two large population-based stud-
ies to understand the metabolomics changes in COPD. As a person’s metabolism 
may change causing the disease or change as a result of the disease process, I used 
a genomic method, explained below, to disentangle these effects.

Mendelian Randomization
A major problem in observational epidemiological studies and the translation of 
findings to the clinics is the problem of causal inferences due to the possible reverse 
causation: e.g. to distinguish whether the metabolic or other omics changes are 
causing a disease or are the consequence of the pathology. One of the most impor-
tant approaches developed in the omics era is the method referred to as Mendelian 
Randomization (MR). MR is a cross-omics approach, which uses genetic data as an 
instrumental variable (IV) to examine the evidence for causal effects between modifi-
able exposures (risk factors) and an outcome (disease).82 The rationale is that similar 
to randomized controlled trials, the genotypes are assigned randomly and the disease 
starts after meiosis.83 Randomisation is based on Mendel’s second law that the inheri-
tance of one trait is independent of the inheritance of other traits.83 The IV (usually 
based on a combination of genotypes that are associated to the disease) has to comply 
with three assumptions: (1) to be associated with the exposure; (2) to be independent 
of any confounders of the exposure-outcome association and (3) to be related to the 
outcome only through the exposure.83 MR analysis can be conducted unilateral, test-
ing a specific hypothesis, e.g. if alcohol consumption is casually related to the risk of 
cardiovascular mortality.84 In the setting of multi- or cross-omics research as in the 
metabolomics-COPD study I performed, the MR is often bi-directional, testing the 
hypothesis that: 1) the metabolite is causally related to COPD and therefore the genetic 
determinants of metabolite (used as instrumental variable) are also associated to 
COPD and 2) (pre)clinical COPD pathology affect the metabolite levels, which trans-
lates into the model where genes determining COPD are also associated to metabolite.
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Scope of this thesis

The overall aim of this thesis is to identify novel molecular determinants of COPD, 
lower lung function and related pathology such as depression and to perform inte-
grative studies to investigate the functional role and interaction of multiple omics 
layers.

In Chapter 2 I investigate COPD applying different omics approaches. In Chapter 
2.1, I describe a genome-wide linkage scan performed in a search for rare genetic 
variants which have a role in familial COPD, utilizing family-based settings of the 
Erasmus Rucphen Family (ERF) study and integrating the data from the Rotter-
dam Study (RS), the LifeLines study (LLS), Hobbs et al.85 and the Vlagtwedde/
Vlaardingen study. Chapter 2.2 and Chapter 2.3 investigate the functional role of 
two established COPD GWAS loci by exploring a multi-omics approach linking the 
genetic loci to the epigenomic and transcriptomic effects in the Rotterdam study 
and the Lung expression quantitative loci mapping study. Chapter 2.2 examines the 
chromosome 15q25 locus and its meQTL effects in blood and eQTL effects in lung 
tissue, to understand the functional effects of this locus in relation to COPD. Simi-
larly, Chapter 2.3 investigates a top variant from a novel locus on 19q13, identified 
in COPD GWAS, and mediation of its genetic risk on gene expression, through DNA 
methylation signatures. In Chapter 2.4, I present an EWAS meta-analysis of lung 
function levels in never-smokers only, to identify factors other than smoking which 
affect lung function through DNA methylation in RS and LLS.

In Chapter 3, the thesis focuses on comorbidities of COPD, including early and 
late metabolic effects. Chapter 3.1 describes a large meta-analysis in Pregnancy 
And Childhood Epigenetics (PACE) consortium studying DNA methylation in rela-
tion to lung function at birth and the effects on lung function, asthma and COPD 
throughout life course. In Chapter 3.2, I study circulating metabolites in relation 
with COPD in ERF, RS and several replication cohorts and apply multi-omics Mende-
lian Randomization approach to investigate causal relations of the metabolite-COPD 
associations. In Chapter 3.3, I use an integrative genetic approach to overlap genetic 
drivers of COPD and its non-pulmonary comorbidity. In Chapter 3.4, I investigate 
DNA methylation patterns specific for depression in a largest to date EWAS study in 
Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium with 
the view to determine the overlap with that seen in COPD.

The main findings and implications described in my thesis I discuss in the Chap-
ter 4, which I summarize in English and in Dutch in Chapter 5.
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Chapter 2.1

Abstract

Chronic obstructive pulmonary disease (COPD) is a complex and heritable disease, 
associated with multiple genetic variants. Specific familial types of COPD may be 
explained by rare variants, which have not been widely studied. We aimed to dis-
cover rare genetic variants underlying COPD through a genome-wide linkage scan. 
Affected-only analysis was performed using the 6K Illumina Linkage IV Panel in 142 
cases clustered in 27 families from a genetic isolate, the Erasmus Rucphen Family 
(ERF) study. Potential causal variants were identified by searching for shared rare 
variants in the exome-sequence data of the affected members of the families con-
tributing most to the linkage peak. The identified rare variants were then tested for 
association with COPD in a large meta-analysis of several cohorts.

Significant evidence for linkage was observed on chromosomes 15q14-15q25 (log 
of odds (LOD) score=5.52), 11p15.4-11q14.1 (LOD=3.71) and 5q14.3-5q33.2 (LOD=3.49). 
In the chromosome 15 peak, that harbors the known COPD locus for nicotinic recep-
tors, and in the chromosome 5 peak we could not identify shared variants. In the 
chromosome 11 locus, we identified four rare (minor allele frequency (MAF) <0.02), 
predicted pathogenic, missense variants. These were shared among the affected 
family members. The identified variants localize to genes including neuroblast 
differentiation-associated protein (AHNAK), previously associated with blood bio-
markers in COPD, phospholipase C Beta 3 (PLCB3), shown to increase airway hyper-
responsiveness, solute carrier family 22-A11 (SLC22A11), involved in amino acid 
metabolism and ion transport, and metallothionein-like protein 5 (MTL5), involved 
in nicotinate and nicotinamide metabolism. Association of SLC22A11 and MTL5 vari-
ants were confirmed in the meta-analysis of 9,888 cases and 27,060 controls.

In conclusion, we have identified novel rare variants in plausible genes related 
to COPD. Further studies utilizing large sample whole-genome sequencing should 
further confirm the associations at chromosome 11 and investigate the chromosome 
15 and 5 linked regions.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a common and complex disease, 
and one of the leading causes of death worldwide.1 Previous studies provided 
heritability estimates for COPD of 20% to even 60%.2,3 Both rare variants with a 
large impact and common variants with a modest impact on the risk to develop 
COPD have been identified. The SERPINA1 gene at chromosome 14q32.13, encoding 
Alpha-1-antitrypsin (AAT), was in fact the first gene identified to be associated 
with COPD.4,5 Rare variants in SERPINA1 are known to contribute to COPD risk in 
AAT deficiency in homozygous and heterozygous carriers of the low-frequency Z 
allele.6 In an exome study of severe, early-onset families, Qiao et al identified several 
genes with rare variants segregating in at least two pedigrees.7 In extended families, 
genetic linkage studies have found evidence of linkage to chromosomes 2q, 6q, 
8p, 12p and 19q, among others.8,9 However, many initially promising findings from 
linkage or exome sequencing in candidate-gene studies could not be replicated in 
subsequent analyses.10

Common variants in several genes have been identified in multiple genome-wide 
association studies (GWAS), to be associated with COPD or obstructive lung func-
tion impairment. Among consistently replicated loci in GWAS are genes on chromo-
some 4 – Hedgehog-interacting protein (HHIP) and Family with sequence similarity 
13 member A (FAM13A), chromosome 5 – 5-hydroxytryptamine receptor 4 (HTR4), 
chromosome 15 - Nicotinic cholinergic receptors (CHRNA3/5) and Ion-responsive 
element binding protein 2 (IREB2) and chromosome 19 – Cytochrome P450 fam-
ily gene (CYP2A6), member RAS oncogene family gene (RAB4B) and Egl-9 family 
hypoxic-inducible factor 2 (EGLN2).11,12 However, only few loci identified in GWAS 
could be functionally explained.

Despite the undeniable progress in understanding the genetic origins of COPD, 
a major part of its heritability remains unexplained. A complicating factor in stud-
ies on the genetics of COPD is that COPD is considered a complex genetic trait, 
i.e. multiple, possibly interacting, genetic and environmental factors are involved. 
Therefore, there is a need for fine mapping techniques that can identify functional, 
rare variants with large effects explaining specific types of COPD. Rare variant 
association studies can be carried out in relatively small sample sizes when using 
family-based settings.13 In a genetically isolated population, alleles that are found 
at low or very-low (rare) frequencies in control samples may reach much higher 
proportions due to a limited number of founder individuals, genetic drift, minimal 
immigration and high inbreeding.14 Therefore, attempting to identify risk genes for 
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COPD in populations that are relatively genetically and environmentally homoge-
neous could be beneficial.15

This study uses the Erasmus Rucphen Family (ERF) study, a Dutch genetically 
isolated population, to localize and identify rare genetic variants and subsequently 
shows the relevance of these variants in the general population by performing an 
association analysis in a large sample.

Methods

Study populations

Linkage study

The linkage study was performed in 142 related participants from the ERF study. 
ERF is a family-based cohort study, studied as part of the Genetic Research in 
Isolated Population (GRIP) program. It is based in a genetically isolated com-
munity from the south-west area of the Netherlands, set up to investigate genes 
underlying different quantitative traits and common diseases.14 The participants 
of ERF are living descendants of 22 couples from the religious isolate in the 19th 
century, who had at least six children baptized in the community church. The 
baseline data collection for over 3,000 people was conducted between June 2002 
and February 2005. These individuals are related to each other through multiple 
lines of descent in a single large pedigree spanning 23 generations and connecting 
over 23,000 individuals. In 2015 a follow-up data collection for 1,500 participants 
was performed by reviewing general practitioner’s records, including letters from 
the specialists and spirometry reports and medication use. In total 192 probable 
COPD cases were identified in the follow-up. The COPD diagnosis was confirmed by 
respiratory specialists based on an obstructive lung function, i.e. the ratio of Forced 
Expiratory Volume in one second over the Forced Vital Capacity (FEV1/FVC) <0.7, 
with or without medication use (n=116). If the information on FVC was missing 
(n=14), the following criteria for COPD were used: FEV1 <80%, use of respiratory 
medication and a COPD diagnosis in the report of the respiratory specialist to the 
general practitioner. If no lung function measurement was available (n=15), COPD 
diagnosis was based on: medication use with CT-scan of the lungs indicating COPD 
and/or a history of frequent COPD exacerbations mentioned in the medical docu-
ments. Thus, the COPD diagnosis could be confirmed for 145 participants, of which 
three did not have genotyping data, resulting in the final sample size for the linkage 
study of 142 COPD cases.
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Association Study

The association analysis was performed using data from the Rotterdam Study (RS; 
1,588 cases and 9,784 controls), the Lifelines study (LLS; 1,647 cases and 9,530 con-
trols), the Vlagtwedde/Vlaardingen-study (VlaVla; 375 cases and 1,019 controls) and 
the data from the study of Hobbs et al.16 (6,161 cases and 6,004 controls), in addition 
to the ERF study (117 cases and 1,091 controls).

RS is a prospective, population-based study,17 focusing on the diseases in the participants 
aged 45 or older. The COPD diagnosis in the RS was defined as having pre-bronchodilator 
obstructive spirometry (FEV1/FVC<0.7), assessed either by spirometry in the research 
center or by reviewing medical histories of the participants. Spirometry was performed 
by trained paramedical personnel, according to the guidelines of the American Thoracic 
Society/European Respiratory Society (ATS/ERS). In absence of interpretable spirom-
etry measures, all medical information of subjects regularly using respiratory medication 
was reviewed, including files from specialists and general practitioners, to confirm a 
diagnosis of COPD. Both ERF and RS have been approved by the Medical Ethics Commit-
tee of the Erasmus Medical Center. All participants provided written informed consent to 
participate in the study and to obtain information from their treating physicians.

LLS is a multi-disciplinary prospective population-based cohort of the Northern 
provinces of the Netherlands with a three generation design, focusing on the onset 
of common complex diseases.18 COPD was defined as having pre-bronchodilator 
FEV1/FVC<0.7, assessed by spirometry using a Welch Allyn Version 1.6.0.489, PC-
based SpiroPerfect with Ca Workstation software. All subjects provided written 
informed consent and the study was approved by the Medical Ethics Committee of 
the University Medical Center Groningen, Groningen, the Netherlands.

The Vlagtwedde/Vlaardingen study is a prospective, Dutch population-based co-
hort including individuals from Vlagtwedde (a rural area) and Vlaardingen (an urban 
area), aimed to gain insight into the risk factors for chronic airway diseases and lung 
function.19 COPD was defined as having pre-bronchodilator FEV1/FVC<0.7. Data of the 
last survey in 1989/1990 were used and spirometry data were collected by perform-
ing a slow inspiratory maneuver, using a water-sealed spirometer (Lode instruments, 
Groningen, the Netherlands). The Committee on Human Subjects in Research of the 
University of Groningen reviewed the study and affirmed the safety of the protocol 
and study design and all participants gave their written informed consent.

In the study by Hobbs at al.16 COPD cases were defined as having FEV1/FVC≤0.7 
and FEV1≤ 80% of the predicted value. It was multi-ethnic study with Asian, African, 
and European ancestry individuals. Institutional review board approval and written 
informed consent were obtained for all these cohorts. For more details please refer 
to their publication.16
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Genotyping

DNA isolation

For all participants, DNA was extracted from venous blood using the salting out 
method.20

Linkage array

For the linkage analysis genotyping was performed using the 6K Illumina Linkage 
IV panel (Illumina, San Diego, CA, USA). Further, quality control (QC) was performed 
involving exclusion of the variants with call rate <98%, those diverging from Hardy-
Weinberg equilibrium (P<10-8) and X-chromosome variants and participants with 
an overall call rate <96%. Mendelian inconsistencies were designated as missing 
genotypes. The final dataset comprised 5,250 autosomal single nucleotide variants 
(SNVs) in 3,018 participants.

Exome-sequencing and genotyping

The sequencing and genotyping in the ERF study have been described elsewhere.21 
In short, for 1,336 ERF participants whole exome sequencing was performed at a 
mean depth of 74x (Agilent, v4 capture). After QC, 543,954 SNVs in 1,327 participants 
were retained. For 1,527 individuals whose exomes were not sequenced, the Illu-
mina Infinium HumanExome BeadChip v1.1 was used for genotyping and variant 
calling was done using Genome Studio. After QC 70,000 polymorphic SNVs in 1,515 
participants were retrieved. Of these, the overlap with COPD status information, 
was available for 636 participants (59 cases and 577 controls) with exome-sequence 
and 572 participants (58 cases and 514 controls) with exome-chip data. The cases 
overlap with the sample used in the linkage analysis. The ERF data is available in 
the EGA public repository (https://www.ebi.ac.uk/ega/home) with ID number: 
EGAS00001001134.

The Rotterdam Study was genotyped using Illumina 550K and Illumina 610K and 
660K arrays, and genotyping QC was done as described elsewhere.22 Haplotype 
Reference Consortium imputation panel (HRC)23 was used for imputation. File 
preparation and imputation was done as described elsewhere.22 In the final dataset 
we included 11,372 participants of RS (cases and controls) with HRC imputed geno-
type data available.

In LLS and VlaVla the genotyping was done using Illumina CytoSNP-12 arrays and 
QC was done as described elsewhere.24 The Genome of the Netherlands (GoNL) panel 
was used for imputation of LLS and VlaVla and was done as described elsewhere.18 
The final dataset included 11,177 participants of LLS and 1,394 of VlaVla.



39

2.1

Linkage study of COPD

In Hobbs et al. work all individuals were genotyped using the Illumina Hu-
manExome arrays (v1.1 and v1.2; Illumina, San Diego, CA). For more information 
please refer to their publication.16

Statistical analyses

Genome-wide linkage analysis

For the genome-wide linkage analysis, 142 related COPD cases from ERF were used. 
The cases were linked in a single large pedigree of 23 generations. However, due 
to the linkage software restraints, the cases were clustered into 27 smaller (≤24 
bits) families using PEDCUT software.25 We used Haplopainter26 to illustrate all 27 
pedigrees (Supplementary figure  1). We then performed affected-only paramet-
ric linkage analysis in MERLIN software27 using incomplete penetrance and no 
phenocopies for both dominant (0, 0.5, 0.5) and recessive models (0, 0, 0.5).28 The 
measure of the likelihood of linkage is the logarithm of the odds (LOD) score and we 
considered LOD≥3.3 to be statistically significant. Further we performed per-family 
analysis for significant regions to identify the families with COPD cases contributing 
the most to the LOD score.

Identification of variants in the identified regions

Next, we used exome-sequence data in ERF to identify rare variants that may 
explain the identified linkage peaks. For this, among all variants in this region we 
selected only variants with predicted damaging effects on protein (missense and 
stop-coding) based on the FunctionGVS column of the SeattleSeq Annotation data-
base (http://snp.gs.washington.edu/SeattleSeqAnnotation138/) from the National 
Heart, Lung and Blood Institute (NHLBI) and with minor allele frequency (MAF) 
<0.05 in the general population (1000Genomes). As frequencies in a genetically 
isolated population may be inflated or deflated due to genetic drift,14 we used the 
MAF from the general population for filtering. We selected variants shared among 
most (>50%) of the affected family members as candidate variants.

A formal test of association was performed for the identified candidate variants 
in each study - ERF, in samples with exome-sequence (N=636) and in exome-chip 
(N=572) data, in three RS cohorts (RS-I, RS-II and RS-III), using the HRC imputed 
data (N=11,372), the LLS (N=11,177), the VlaVla cohort (N=1,394) and the Hobbs et 
al results (N=11,797). For this analysis, in ERF we used “seqMeta” package in R29 to 
perform single-variant analysis, adjusted for age, sex and smoking status (current/
past/never smoking). Logistic regression analysis was used to associate the vari-
ants in the RS and the VlaVla cohort, using SPSS software30 and in LLS, using PLINK,31 
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applying the same models as used in ERF. Variants were excluded from the analysis 
if the minor allele count was less than five in either the case or the control category. 
Summary statistics for identified the variants were extracted from the results of 
Hobbs et al.16 A fixed-effects meta-analysis was performed with the summary statis-
tics from all studies using the “rmeta” package in R.32

Functional look-up of the genes

We investigated the Ingenuity Knowledge Base for functional annotation and look 
up of the genes, harboring the identified variants (IPA, Qiagen bioinformatics).33 
Furthermore, we consulted the Gene network tool,34 a bioinformatics database con-
taining co-expression data, functional predictions from gene ontology, Biocarta and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) to investigate our findings.

Results

The general characteristics of the study samples are presented in Table 1.

Table 1. General characteristics of the populations used in this study.

ERF RS Hobbs et al. Life Lines
Vlagtwedde/
Vlaardingen

Linkage* Exome-chip Exome-sequence
HRC

imputed Exome-chip**
GoNL

imputed
GoNL

imputed

Number 142 572 636 11,372 12,165 11,177 1,394

Age, mean(sd) 59.7(10.9) 51.7(14.2) 48.5(14.0) 65.1(9.8) 58.4(10.3) 48.2(11.0) 52.7(10.2)

Female gender, %(n) 59.9(85) 56.8(325) 61.8(393) 58.0(6,592) 44.5(5,410) 58.6(6,547) 46.3(646)

COPD cases, %(n) 100(142) 10.1(58) 9.3(59) 14.0(1,588) 50.6(6,161) 14.7(1,647) 26.9(375)

Never smokers, %(n) 1.4(2) 27.1(155) 29.4(187) 35.3(4,011) 1.7(212) 40.7(4,549) 30.2(421)

Ex-smokers, %(n) 23.2(33) 27.8(159) 28.8(183) 48.8(5,546) 49.6(6,037) 36.7(4,104) 33.1(462)

Current smokers, %(n) 58.5(83) 45.1(258) 41.8(266) 16.0(1,815) 45.0(5,473) 22.6(2,524) 36.7 (511)

*Information on smoking was missing for 16.9% (24) participants; ** Full dataset reported in the 
Hobbs et al meta-analysis. Information on smoking was missing for 3.6% (443) participants.

All 27 families included in the linkage analyses in ERF are depicted in supplemen-
tary Figure S1. The affected relatives were mainly smokers: 81.7% of the cases in-
cluded in the linkage analyses were current or ex-smokers. As shown in Table 2 and 
Figure 1, we identified significant evidence for linkage of COPD to chromosomes 
15q14-15q25 (Heterogeneity LOD score - HLOD=5.52), 11p15.4-11q14.1 (HLOD=3.71) and 
5q14.3-5q33.2 (HLOD=3.49).
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Table 2. Genome wide significant (HLOD>3.3) results of linkage analysis in the ERF study

Cytogenetic 
location* Start SNP End SNP

SNP with 
highest 
HLOD

Start 
position#

End 
position#

Dominant 
model 
HLOD

Recessive 
model 
HLOD

15q14-15q25 rs2004175 rs1402760 rs383902 39039593 79146817 4.24 5.52

11p15.4-11q14.1 rs1609812 rs7102569 rs626333 5247141 79184899 2.61 3.71

5q14.3-5q33.2 rs1366133 rs1432812 rs1154308 91114584 155274700 2.65 3.49
* Region under the linkage peak; Start SNP – single nucleotide polymorphism (SNP) at the beginning 
of the corresponding region; End SNP – SNP at the end of the corresponding region; HLOD - Het-
erogeneity log of odds score; #Corresponding to the region from base to base of the linkage peak, 
based on the hg19 assembly.

Figure 1. LOD score plot for the regions at (A) chromosomes 5, (B) 11 and (C) 15. X-axis shows the 
chromosomal position in cM and the Y-axis shows the HLOD score. Red line represents HLOD scores 
for recessive and green line for dominant model. Dashed red line represents the level of significance 
(HLOD=3.3), while dashed black line represents the suggestive level (HLOD=2).

We next searched for rare, deleterious and shared variants by most (>50%) of 
the affected family members in the three identified regions mentioned above. In 
the linked regions of chromosomes 5 and 15 we could not identify any variants that 
passed mentioned filtering criteria. For the linked region on chromosome 11, we 
identified two families that were contributing most (LOD>1) to the linkage score 
(Figure 2). Exome-sequence data were available for 8 of 17 COPD cases from these 
two families.

We identified four missense variants including rs116243978 (AHNAK), rs35169799 
(PLCB3), rs141159367 (SLC22A11) and rs146043252 (MTL5), shared among five of the 
eight affected family members (Table 3).
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Figure 2. The two sub-families contributing most to the linkage peak on chromosome 11. Squares 
represent males and circles females. Cases are denoted in black, known controls are denoted in grey 
and the family members for which we do not have COPD information are denoted in white. Family 
members with dot in the middle are not included in ERF study and for them only pedigree informa-
tion was available. Deceased family members are crossed.  For cases with exome-sequence data 
used in the sharing analysis information on 5-year age range (in years) is provided.

Table 3. Deleterious variants from chromosome 11q (missense, stop codon or CADD > 15) with a 
frequency in the 1000 genomes <0.05 that are shared by at least 5 cases.

Gene Variant 1KG MAF ERF MAF
Cytogenetic

band
Position
(hg19) A1 A2

Carrier-
HET

Carrier-
HOM Function CADD PolyPhen

AHNAK rs116243978 0.005 0.04 11q12.3 62286165 G C 5/8 0/8 missense 15.55 1

PLCB3 rs35169799 0.023 0.08 11q13.1 64031241 T C 6/8 1/8 missense 15.73 0.982

SLC22A11 rs141159367 0.0006 0.04 11q13.1 64323476 T C 5/8 1/8 missense 18.25 1

MTL5 rs146043252 0.0002 0.04 11q13.3 68478487 G A 5/8 0/8 missense 21 1

1KG MAF – minor allele (A1) frequency (MAF) in 1000 Genomes - EUR; A1: effect allele; A2: alterna-
tive allele; Carrier-HET: number of heterozygote carriers within the 8 COPD cases of the two top 
contributing families of the chromosome 11 region; Carrier-HOM: number of homozygote carriers 
within the 8 COPD cases; Function: predicted function of the variant; CADD: Combined Annota-
tion Dependant Depletion score (>15 considered deleterious); PolyPhen: probability that variant 
is damaging.

Each of these variants was predicted to be highly pathogenic (Combined Annota-
tion Dependent Depletion score, CADD>15, PolyPhen>0.98) which suggests their 
relevance for the disease development. Of these four variants, one (rs141159367 in 
SLC22A11) showed a significant association (OR=1.87, P=0.002) with COPD in the 
meta-analysis (Table  4). The variant rs146043252 in MTL5 showed a nominal as-
sociation signal (OR=1.66, P=0.04).
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Table 4. Results of association analysis with COPD
Gene Variant β OR SE P N

AHNAK rs116243978 0.14 1.15 0.18 0.422 13,402

PLCB3 rs35169799 0.05 1.05 0.04 0.247 36,948

SLC22A11 rs141159367 0.63 1.87 0.20 0.002 18,562

MTL5 rs146043252 0.51 1.66 0.25 0.044 12,050

Meta-analysis of the ERF exome-sequence, ERF exome-chip, Rotterdam Study – HRC, Hobbs et al. 
exome-chip, LifeLines – GoNL and Vlagtwedde/Vlaardingen cohort - GoNL results. In bold: signifi-
cant results. β: Regression coefficient estimates from logistic regression model regressing COPD 
status on indicated variants, corrected for sex, age and smoking; OR: odds ratio; SE: standard error 
of the effect; P: p-value of the significance; N-sample size used in the analysis.

Discussion

In this study, we found significant evidence for extensive linkage of COPD to the 
chromosomes 15q14-15q25 (40.1Mb), 11p15.4-11q14.1 (73.9Mb) and 5q14.3-5q33.2 
(64.1Mb). We were able to identify four rare and predicted pathogenic variants under 
the chromosome 11 peak, in plausible genes (AHNAK, PLCB3, SLC22A11 and MTL5), 
shared by at least five family members. One of these four variants, i.e. rs141159367 in 
SLC22A11, was significantly associated with COPD in 9,888 cases and 27,428 controls 
(P=0.002) while another variant (rs146043252 in MTL5) showed nominal association 
with COPD (P=0.04).

The finding of our family-based linkage analysis aligns with that of large scale 
GWASs implicating the CHRNA3/5-CHRNB4 and IREB2 region on chromosome 15q25 
in COPD development. This region is also associated with lung cancer, peripheral 
arterial disease, nicotine addiction and smoking quantity.35 The evidence in the lit-
erature on the role of smoking in the genetic risk of COPD thus far is controversial. 
On one hand, there is evidence to support that the variants in this region, although 
implicated in both lung disease and smoking behavior, are associated with COPD 
susceptibility, independently of cigarette smoke exposure.36 On the other hand, in a 
previous study we show that two variants, previously associated with COPD in the 
CHRNA3/5 locus, were associated with lung function measurements in ever-smokers, 
but not in never-smokers,37 which is in line with the only longitudinal study on the 
relation between the nicotine receptor variant and annual lung function decline.38 
That study shows that carriers of the nicotinic receptors variants are significantly 
less able to quit smoking, leading to the lung function decline and, subsequently 
to COPD. Similarly, for the chromosome 5 linked region, we could not observe any 
shared rare variant. This region, known for its associations with pulmonary func-
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tion and airflow obstruction39,40 was recently associated with COPD by the largest 
GWAS to date.11 The HTR4 gene in 5q32 encodes a serotonin receptor involved in 
depression and is strongly expressed in respiratory complex neurons.41

However, the functional variants in these regions have still not been confirmed. 
In our families, we could not identify rare damaging variants shared between the 
cases in this region. This may be explained if rare intronic regulatory variants play 
a key role, which we could not investigate using the exome data. It is unlikely that 
these linkage peaks are attributed to the common variants which have small ef-
fects identified in GWASs, given the very strong evidence for linkage of this region 
to COPD. Future studies using whole-genome sequencing should investigate this 
region further, ideally in never smokers. This emphasizes the need for integration 
of available genomic information into more focused, candidate-gene based efforts 
to disentangle the functional role of the chromosome 5 and 15 regions.

In the identified region of chromosome 11 we were able to pinpoint four strong 
candidate genes for the association with COPD, i.e. SLC22A11, AHNAK, PLCB3, and 
MTL5. The most interesting finding is the rare variant in SLC22A11 (solute carrier 
family 22 member 11), which encodes an integral membrane protein and part of the 
family of organic anion transporters (OATs), known to mediate the absorption and 
elimination of endogenous and exogenous organic anions and as such, are involved 
in the pharmacokinetic, pharmacodynamic and safety profiles in a wide range of 
drugs.42 SLC22A11 (OAT4) is mainly expressed in kidney and placenta. However, it is 
also shown to be expressed in lung tissue, fibroblasts and T-lymphocytes (P<5×10-7), 
among other tissues/cells reported in the Gene network.34 In addition, in vitro 
SLC22A11 mRNA was absent in normal human bronchial epithelial cells, but highly 
expressed in other bronchial cells models comprising transformed cells.43 SLC22A11 
in particular is known to be a drug target for probenecid, a SLC22A11 inhibitor, used 
in the gout prevention and to increase antibiotic blood levels, yet its direct role in 
lung disease treatment is still unknown.42

Our linkage analysis yielded different regions compared with those identified 
earlier. However, the fact that both SLC22A11 and MTL5 variants were associated 
with COPD in our meta-analysis confirms their role in COPD and makes them even 
more interesting candidates. MTL5 (metallothionein-like protein 5) encodes testis 
expressed metallothionein like proteins (TESMIN). They are highly conserved, low-
molecular-weight cysteine-rich proteins induced by and binding to heavy metal ions, 
and they do not have enzymatic activity. They play a central role in the regulation of 
cell growth and differentiation, and are involved in spermatogenesis, differentially 
regulating meiosis in male and female cells.44 MTL5 was shown to be involved in 
nicotinate and nicotinamide metabolism and is also expressed in fibroblasts and 
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lung tissue (P<7×10-29), based on the Gene network.34 Metallothioneins were ad-
ditionally shown to protect cells against oxidative stress damage and participate 
in differentiation, proliferation and/or apoptosis of normal and lung cancer cells.45

The main strength of our study is the genetically isolated family-based population, 
which can display increased frequencies of some variants found at very low propor-
tions in panmictic populations. This allowed us to perform a genome-wide linkage 
scan and identify rare coding variants. However, even though we identified linkage 
of three regions to COPD, a limitation of our study is the low power to explain the 
peaks at chromosomes 5 and 15, possibly due to the use of exome data. As intronic 
regulatory variants may play a significant role, in the future, faster and cheaper 
whole-genome sequencing will allow us to improve identification of rare variants 
and our understanding of their involvement in COPD. As our sample consists of 
high percentage of current or ex-smokers, it is possible that we are demonstrat-
ing genetic effects on smoking which further affects the development of COPD. 
Nevertheless, we were able to demonstrate a positive association, independent of 
smoking, of two variants in the association meta-analysis comprising 9,888 cases 
and 27,060 controls. Yet, studies with very large sample sizes utilizing mediation or 
mendelian randomization techniques are needed to disentangle these relationships 
and confirm our results in the general population.

To conclude, using the powerful genome-wide linkage scan in a Dutch genetic iso-
late, we have confirmed the implication of the 15q25 region in COPD and identified 
regions at chromosomes 5 and 11. Within the region on chromosome 11 we identified 
four deleterious rare variants shared between most of the affected family members 
in AHNAK, PLCB3, SLC22A11 and MTL5. The variants in SLC22A11 and MTL5 were 
significantly associated with COPD in our meta-analysis. Further studies pooling 
large sample sizes could confirm the role of the identified rare variants at chromo-
some 11 in the general population. Similarly, large studies utilizing whole-genome 
sequencing should further investigate the role of linked regions in chromosomes 5 
and 15 in COPD.



46

Chapter 2.1

References

	 1.	 Lozano R, Naghavi M FK. Global and regional mortality from 235 causes of death for 20 age 
groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. 
Lancet. 2012;​380(380):​2095–2128. doi:​https:​//doi.org/10.1016/S0140-6736(12)61728-0

	 2.	 Ingebrigtsen T, Thomsen SF, Vestbo J, et al. Genetic influences on Chronic Obstructive Pul-
monary Disease. a Twin Study. 2010;​104(12):​1890-1895. doi:​10.1016/j.rmed.2010.05.004

	 3.	 Zhou JJ, Cho MH, Castaldi PJ, Hersh CP, Silverman EK, Laird NM. Heritability of Chronic 
Obstructive Pulmonary Disease and Related Phenotypes in Smokers. Am J Respir Crit Care 
Med. 2013;​188(8):​941-947. doi:​10.1164/rccm.201302-0263OC [doi]

	 4.	 Laurell CB ES, Laurell CB ES. The electrophoretic alpha 1-globulin pattern of serum in 
alpha 1-antitrypsin deficiency. Scand J Clin Lab Invest. 1963;​15(2):​132-140. doi:​https:​//doi.
org/10.1080/00365516309051324

	 5.	 Bashir, A., Shah, N.N., Hazari, Y.M., Habib, M., Bashir, S., Hilal, N., Banday, M., Asrafuzzaman, 
S., and Fazili KM. Novel variants of SERPIN1A gene: Interplay between alpha1- antitrypsin 
deficiency and chronic obstructive pulmonary disease. Respir Med. 2016;​117:​139-149. doi:​
https:​//doi.org/10.1016/j.rmed.2016.06.005

	 6.	 Foreman MG, Wilson C, DeMeo DL, et al. Alpha-1 antitrypsin PiMZ genotype is associated 
with chronic obstructive pulmonary disease in two racial groups. Ann Am Thorac Soc. 2017;​
14(8):​1280-1287. doi:​10.1513/AnnalsATS.201611-838OC

	 7.	 Qiao D, Lange C, Beaty TH, Crapo JD, Barnes KC, Bamshad M. Exome Sequencing Analysis 
in Severe , Early-Onset Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 
2016;​193(12):​1-61. doi:​https:​//doi.org/10.1164/rccm.201506-1223OC

	 8.	 Silverman EK, Mosley JD, Palmer LJ, et al. Genome-wide linkage analysis of severe , early-
onset chronic obstructive pulmonary disease : airflow obstruction and chronic bronchitis 
phenotypes. Hum Mol Genet. 2002;​11(6):​623-632. http:​//dx.doi.org/10.1093/hmg/11.6.623.

	 9.	 Palmer LJ, Celedón JC, Chapman HA, Speizer E. FE, Weiss ST, Silverman EK. Genome-wide 
linkage analysis of bronchodilator responsiveness and post-bronchodilator spirometric 
phenotypes in chronic obstructive pulmonary disease. Hum Mol Genet. 2003;​12(10):​1199-1210. 
doi:​10.1093/hmg/ddg125

	 10.	 Hersh CP, DeMeo DL, Lange C, et al. Attempted replication of reported chronic obstructive 
pulmonary disease candidate gene associations. Am J Respir Cell Mol Biol. 2005;​33(1):​71-78. 
doi:​10.1165/rcmb.2005-0073OC

	 11.	 Hobbs BD, De Jong K, Lamontagne M, et al. Genetic loci associated with chronic obstructive 
pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet. 
2017;​49(3):​426-432. doi:​10.1038/ng.3752

	 12.	 Wain L V., Shrine N, Artigas MS, et al. Supplementary: Genome-wide association analyses 
for lung function and chronic obstructive pulmonary disease identify new loci and potential 
druggable targets. Nat Genet. 2017;​49(3):​416-425. doi:​10.1038/ng.3787

	 13.	 Auer PL, Lettre G. Rare variant association studies: Considerations, challenges and opportu-
nities. Genome Med. 2015;​7(1):​16. doi:​10.1186/s13073-015-0138-2

	 14.	 Pardo LM, MacKay I, Oostra B, van Duijn CM, Aulchenko YS. The effect of genetic drift 
in a young genetically isolated population. Ann Hum Genet. 2005;​69(3):​288-295. doi:​
10.1046/j.1529-8817.2005.00162.x



47

2.1

Linkage study of COPD

	 15.	 Van Diemen CC, Postma DS, Aulchenko YS, et al. Novel strategy to identify genetic 
risk factors for COPD severity: A genetic isolate. Eur Respir J. 2010;​35(4):​768-775. doi:​
10.1183/09031936.00054408

	 16.	 Hobbs BD, Parker MM, Chen H, et al. Exome array analysis identifies a common Variant in 
IL27 associated with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;​
194(1):​48-57. doi:​10.1164/rccm.201510-2053OC

	 17.	 Ikram MA, Brusselle GGO, Murad SD, et al. The Rotterdam Study: 2018 update on objectives, 
design and main results. Eur J Epidemiol. 2017;​32(9):​807-850. doi:​10.1007/s10654-017-0321-4

	 18.	 Scholtens S, Smidt N, Swertz MA, et al. Cohort Profile: LifeLines, a three-generation cohort 
study and biobank. Int J Epidemiol. 2015;​44(4):​1172-1180. doi:​10.1093/ije/dyu229

	 19.	 Van Diemen CC, Postma DS, Vonk JM, Bruinenberg M, Scheuten JP, Boezen HM. A disintegrin 
and metalloprotease 33 polymorphisms and lung function decline in the general population. 
Am J Respir Crit Care Med. 2005;​172(3):​329-333. doi:​10.1164/rccm.200411-1486OC

	 20.	 S.A.Miller DDD and HFP. A simple salting out procedure for extractin DNA from humam 
nnucleated cells. Nucleic Acids Res. 1988;​15(3):​1215.

	 21.	 Amin N, de Vrij FMS, Baghdadi M, et al. A rare missense variant in RCL1 segregates with 
depression in extended families. Mol Psychiatry. 2017. doi:​10.1038/mp.2017.49

	 22.	 Iglesias AI, van der Lee SJ, Bonnemaijer PWM, et al. Haplotype reference consortium panel: 
Practical implications of imputations with large reference panels. Hum Mutat. 2017;​38(8):​
1025-1032. doi:​10.1002/humu.23247

	 23.	 McCarthy S, Das S, Kretzschmar W, Durbin R, Abecasis G, Marchini J. A reference panel of 
64,976 haplotypes for genotype imputation. bioRxiv. 2015;​48(10):​035170. doi:​10.1101/035170

	 24.	 De Jong K, Vonk JM, Timens W, et al. Genome-wide interaction study of gene-by-occupational 
exposure and effects on FEV1levels. J Allergy Clin Immunol. 2015;​136(6):​1664-1672e14. doi:​
10.1016/j.jaci.2015.03.042

	 25.	 Liu F, Kirichenko A, Axenovich TI, van Duijn CM, Aulchenko YS. An approach for cutting 
large and complex pedigrees for linkage analysis. Eur J Hum Genet. 2008;​16(7):​854-860. doi:​
10.1038/ejhg.2008.24

	 26.	 Thiele H, Nürnberg P. HaploPainter: A tool for drawing pedigrees with complex haplotypes. 
Bioinformatics. 2005;​21(8):​1730-1732. doi:​10.1093/bioinformatics/bth488

	 27.	 Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin—rapid analysis of dense genetic 
maps using sparse gene flow trees. Nat Genet. 2002;​30(1):​97-101. doi:​10.1038/ng786

	 28.	 Durner M, Vieland VJ, Greenberg DA. Further evidence for the increased power of LOD 
scores compared with nonparametric methods. Am J Hum Genet. 1999;​64(1):​281-289. doi:​
10.1086/302181

	 29.	 Voorman A, Brody J, Lumley T. skatMeta: an R Package for meta analyzing region-based tests 
of rare DNA variants June. R Packag version. 2013;​1:​1-17.

	 30.	 Norušis MJ. SPSS/PC+ Professional Statistics Version 5.0. SPSS, Inc.; 1992.
	 31.	 Purcell S, Neale B, Todd-Brown K, et al. PLINK: A Tool Set for Whole-Genome Association and 

Population-Based Linkage Analyses. Am J Hum Genet. 2007;​81(3):​559-575. doi:​10.1086/519795
	 32.	 Lumley T. rmeta: Meta-analysis. R package version 2.16. 2009. Cited on. 2011.
	 33.	 Ipa Q. Redwood City, CA. CA Available online http//www.ingenuity.com/products/ipa. 2015.
	 34.	 Fehrmann RSN, Karjalainen JM, Westra H, et al. Gene expression analysis identifies global 

gene dosage sensitivity in cancer. Nat Genet. 2015;​47(2):​115-126. doi:​10.1038/ng.3173



48

Chapter 2.1

	 35.	 Thorgeirsson TE, Geller F, Sulem1 P, et al. A variant associated with nicotine dependence, 
lung cancer and peripheral arterial disease. Nat. 2008;​452(7187):​638-642. doi:​10.1038/
nature06846

	 36.	 Hardin M, Silverman EK. Chronic Obstructive Pulmonary Disease Genetics : A Review 
of the Past and a Look Into the Future. J COPD Found. 2014;​1(1):​33-46. doi:​10.15326/
jcopdf.1.1.2014.0120

	 37.	 van der Plaat DA, de Jong K, Lahousse L, et al. Genome-wide association study on the FEV1/
FVC ratio in never-smokers identifies HHIP and FAM13A. J Allergy Clin Immunol. 2017;​139(2):​
533-540. doi:​10.1016/j.jaci.2016.06.062

	 38.	 Budulac SE, Vonk JM, Postma DS, Siedlinski M, Timens W, Boezen MH. Nicotinic acetylcho-
line receptor variants are related to smoking habits, but not directly to COPD. PLoS One. 
2012;​7(3):​e33386. doi:​10.1371/journal.pone.0033386

	 39.	 Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association stud-
ies identify multiple loci associated with pulmonary function. Nat Genet. 2010;​42(1):​45-52. 
doi:​10.1038/ng.500

	 40.	 Wilk JB, Shrine NRG, Loehr LR, et al. Genome-wide association studies identify CHRNA5/3 
and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med. 2012;​186(7):​
622-632. doi:​10.1164/rccm.201202-0366OC

	 41.	 Manzke T, Guenther U, Ponimaskin EG, et al. 5-HT4(a) receptors avert opioid-induced 
breathing depression without loss of analgesia. Science (80- ). 2003;​301(5630):​226-229. doi:​
10.1126/science.1084674

	 42.	 Bosquillon C. Drug Transporters in the Lung—Do They Play a Role in the Biopharmaceutics 
of Inhaled Drugs? J Pharm Sci. 2010;​99(5):​4215-4227. doi:​10.1002/jps

	 43.	 Endter S, Francombe D, Gumbleton M, Ehrhardt C. RT-PCR analysis of ABC, SLC and SLCO 
drug transporters in human lung epithelial cell models. J Pharm Pharmacol. 2009;​61(5):​583-
591. doi:​10.1211/jpp/61.05.0006

	 44.	 Olesen C, Moller M, Byskov AG. Tesmin Transcription is Regulated Differently during Male 
and Female Meiosis. Mol Reprod Dev. 2004;​67(1):​116-126. doi:​10.1002/mrd.20007

	 45.	 Werynska B, Pula B, Kobierzycki C, Dziegiel P, Podhorska-Okolow M. Metallothioneins in the 
lung cancer. Folia Histochem Cytobiol. 2015;​53(1):​1-10. doi:​10.5603/FHC.a2015.0009







 Chapter 2.2

Understanding the role of the 
chromosome 15q25.1 in COPD through 

epigenetics and transcriptomics

Ivana Nedeljković, Elena Carnero-Montoro, Lies Lahousse, 
Diana A. van der Plaat, Kim de Jong, Judith M. Vonk, Cleo C. van Diemen, 

Alen Faiz, Maarten van den Berge, Ma’en Obeidat, Yohan Bossé,
David C. Nickle, BIOS consortium, Andre G. Uitterlinden, 

Joyce B.J. van Meurs, Bruno H.C. Stricker, Guy G. Brusselle, Dirkje S. Postma, 
H. Marike Boezen, Cornelia M. van Duijn, Najaf Amin

This chapter is published in European Journal of Human Genetics, February 2018.
The supplemental material for this paper is available at: 

https://www.nature.com/articles/s41431-017-0089-8



52

Chapter 2.2

Abstract

Chronic obstructive pulmonary disease (COPD) is a major health burden in adults 
and cigarette smoking is considered the most important environmental risk factor 
of COPD. Chromosome 15q25.1 locus is associated with both COPD and smoking. 
Our study aims at understanding the mechanism underlying the association of 
chromosome 15q25.1 with COPD through epigenetic and transcriptional variation in 
a population-based setting. 

To assess if COPD-associated variants in 15q25.1 are methylation quantitative 
trait loci, epigenome-wide association analysis of four genetic variants, previ-
ously associated with COPD (P<5×10-8) in the 15q25.1 locus (rs12914385:C>T-CHRNA3, 
rs8034191:T>C-HYKK, rs13180:C>T-IREB2, rs8042238:C>T-IREB2), was performed 
in the Rotterdam study (n=1 489). All four variants were significantly associated 
(P<1.4×10-6) with blood DNA methylation of IREB2, CHRNA3 and PSMA4, of which 
two, including IREB2 and PSMA4 were also differentially methylated in COPD 
cases and controls (P<0.04). Further additive and multiplicative effects of smok-
ing were evaluated, and no significant effect was observed. To evaluate if these 
four genetic variants are expression quantitative trait loci, transcriptome-wide 
association analysis was performed in 1 087 lung samples. All four variants were 
also significantly associated with differential expression of the IREB2 3’UTR in lung 
tissues (P<5.4×10-95). 

We conclude that regulatory mechanisms affecting the expression of IREB2 gene, 
such as DNA methylation, may explain the association between genetic variants in 
chromosome 15q25.1 and COPD, largely independent of smoking.
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Introduction

Chronic obstructive pulmonary disease (COPD) affects over 300 million people and 
is the third leading cause of death worldwide, which makes it a major public health 
burden.1 COPD is characterized by airflow limitation and chronic, inflammatory 
response of the airways to cigarette smoke, occupational exposures, air pollution 
etc.2 Systemic inflammation and complications, together with comorbid conditions 
add to its complexity.3

COPD is determined by both genetic and environmental factors. Genetic factors 
explain 20-40% of the variance in the disease,4 while the most important environ-
mental risk factor is smoking. Smokers have 10 fold increased incidence of COPD 
compared to never-smokers.5 Genome-wide association studies (GWAS) revealed 
genetic variants associated with COPD and lung function.6,7 From a genetic-epidemi-
ological perspective, the chromosome 15q25.1 locus is of interest, harbouring three 
nicotinic receptors (CHRNA3, CHRNA5 and CHRNB4) and other genes that could 
have potential impact on COPD, including IREB2, PSMA4 and HYKK.8-11 The 15q25.1 
region has also been associated with smoking12,13 and lung cancer14 in large GWAS. 
Because smoking is a risk factor for both COPD and lung cancer, the association of 
this locus with COPD and lung cancer might be mediated through smoking,15 which 
is in line with the only longitudinal study investigating this hypothesis thus far.16

The mechanism through which these SNPs and smoking are involved in COPD 
and related outcomes remains obscure. SNPs in the 15q25.1 locus are shown to be 
cis- expression quantitative trait loci (cis-eQTLs) in blood,17 brain,18 sputum19 and 
lungs.20,21 This raises the question whether the variants are involved in COPD through 
the regulatory mechanisms. DNA methylation is a heritable, dynamic, epigenetic 
mark that plays a critical role in the regulation of gene expression.22 Despite having 
a strong genetic component, DNA methylation is known to respond to changes in 
environmental factors,23 and its role in mediating genetic risk effect and the interac-
tion with environmental exposure has been widely proposed.24

Recent studies have shown the association between genome-wide patterns of DNA 
methylation variation with smoking behaviour25,26 and COPD.22,27 Though differential 
DNA methylation sites (CpG) in CHRNA3 (15q25.1) were associated with COPD status 
and lung cancer,28 the role of DNA methylation as a mechanism through which the ge-
netic variants may be involved in COPD and related outcomes, remains unexplored.

In this study we selected all single nucleotide polymorphisms (SNP) in the 15q25.1 
region, associated with COPD in GWAS: rs12914385:C>T (CHRNA3), rs8034191:T>C 
(HYKK, CHRNA3, CHRNA5), rs13180:C>T (IREB2) and rs8042238:C>T (IREB2).8-11 
Rs12914385:C>T is a top hit in the largest GWAS of COPD (OR=1.39, P=2.7×10-16 ).8 



54

Chapter 2.2

SNPs rs12914385:C>T and rs8034191:T>C are in moderate linkage disequilibrium 
(LD; r2 = 0.723), while rs13180:C>T and rs8042238:C>T are in perfect LD (r2 = 0.997). 
Rs8034191:T>C is estimated to explain 12.2% of COPD risk in the general population 
and 14.3% in current smokers.11 Rs13180:C>T, is associated with COPD, independently 
of smoking and of rs8034191:T>C.10,15,21 Evidence suggests that the association of 
COPD with rs8034191:T>C may be mediated by smoking while the association with 
rs13180:C>T is independent of smoking.21,29 We examined whether SNPs in the 15q25.1 
locus are also associated with differential DNA methylation in the population-based 
Rotterdam study (RS). Further, we tested if methylation patterns associated with 
these variants are associated with COPD and FEV1/FVC (the ratio of the forced ex-
piratory volume in first second (FEV1) over forced vital capacity of the lungs (FVC)). 
We also tested whether the variants are associated with a differential expression in 
non-tumour lung tissue from the Lung eQTL study (LES).

Methods

Study populations
Participants of the discovery and replication cohorts were part of the RS, a pro-
spective, population-based study, designed to investigate the occurrence and 
determinants of diseases in the elderly, as described elsewhere.30 The discovery 
cohort of our epigenetic analysis is a random sample of 723 participants from RS 
with complete phenotype, genome-wide genotype and methylation data available. 
An independent sample of 766 participants from RS, were included as a replication 
cohort. RS is part of the Biobanking and Biomolecular Resources Research Infra-
structure for The Netherlands (BBMRI-NL), BIOS (Biobank-based Integrative Omics 
Studies) project.31 The EWAS data of RS was made publically available as a Rainbow 
Project (RP3; BIOS) of the BBMRI-NL (data access link: http://wiki.bbmri.nl/wiki/
BIOS_bios). Results of this study are available through dbGaP (accession number 
phs000930, https://www.ncbi.nlm.nih.gov/gap).

Detailed information on spirometry measures, COPD diagnosis, COPD SNPs selec-
tion, genotyping and DNA methylation assessment in RS and RNA array in LES is 
provided in the Supplementary information.

Statistical analyses
First, we tested the association of the four selected SNPs with COPD and FEV1/
FVC in our discovery and replication cohorts, using logistic and linear regression 
models, respectively, adjusted for age and sex in Model 1 and additionally adjusting 
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for current smoking and pack-years in Model 2. Results from the two cohorts were 
then meta-analysed using fixed effects models with “rmeta” package in R. Further, 
in the RS discovery cohort (n=723), we performed four epigenome-wide association 
studies (EWAS), to assess the relationship between dosages of each SNP, as inde-
pendent variable, and epigenome-wide DNA methylation in blood as dependent 
variable. We applied linear regression methods using two models. One adjusted for 
age, sex, technical covariates to correct for batch effects (array number and posi-
tion on array), and white blood cell types to correct for the cellular heterogeneity 
of blood (number of lymphocytes, monocytes and granulocytes) (Model 1). The 
other was adjusted additionally for current smoking and pack-years, the number of 
cigarette packs smoked in one year (Model 2). The False discovery rate (FDR) <0.05 
was used to declare epigenome-wide significance. Significant sites were tested in 
the replication cohort (n=766) using the same models. Since the 15q25.1 region is 
also associated with smoking behaviour, significant CpG sites were also tested in a 
third model including ‘SNP × current smoking’ and ‘SNP × pack-years’ interaction 
terms to assess possible genetic-environment interaction between the tested SNPs 
and smoking per cohort. Per cohort results were meta-analysed using fixed effects 
models with “rmeta” package in R. Associations of the identified CpG sites with 
COPD and FEV1/FVC, were further performed using logistic and linear regression, 
respectively, adjusted for age, sex, technical covariates and white blood cell counts 
in both the discovery and replication cohorts, and meta-analysed as mentioned 
above.

Finally, we assessed whether the identified SNPs were acting as eQTLs in lung tis-
sue. We performed genome-wide eQTL analysis in 1 087 samples from GRN, UBC and 
Laval, compared to Nguyen et al. who used Laval (N=420) as the discovery and UBC 
and GRN samples for replication. First, cohort specific (GRN, Laval and UBC) princi-
pal components explaining at least one percent were calculated based on residuals 
from linear regression models on genome-wide 2-log transformed gene expression 
levels (of each probe separately) adjusted for COPD status, age, sex and smoking 
status. Second, in each cohort separately, linear regression analysis was used to 
test for association between the SNPs and genome-wide 2-log transformed gene 
expression levels. SNPs were tested in an additive genetic model and the models 
were adjusted for disease status (COPD, alpha-1 antitrypsin deficiency, idiopathic 
pulmonary fibrosis, pulmonary hypertension, cystic fibrosis, and other disease), 
age, sex, smoking status and the cohort specific number of PCs (14 PCs for GRN and 
Laval, and 16 for UBC). Finally, SNP effect estimates of the three cohorts were meta-
analysed using fixed effects models with effect estimates weighted by the reciprocal 
of the estimated variance. We used FDR<0.05 to correct for multiple testing.
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Results

The discovery set comprised 723 participants of RS, with genotype and DNA methyla-
tion data from whole blood, including 114 COPD cases and 541 controls (68 excluded 
due to possible asthma). The replication set comprised 766 independent participants 
of Rotterdam study, with genotype and DNA methylation data, including 93 COPD 
cases and 591 controls (82 excluded due to possible asthma). The characteristics of the 
discovery and replication cohorts are shown in Table 1. COPD cases were more often 
male and smokers and had smoked on average more pack-years, compared to controls.

Table 1. Characteristics of the discovery and replication cohorts and per COPD status.
Discovery cohort Replication cohort

P-valueCOPD Controls All COPD Controls All

N (% of all) 114 (15.8) 541 (74.8) 723 93 (12.1) 591 (77.2) 766 0.054*

Age (years) 61.9±8.6 59.3±7.9 59.9±8.2 68.2±5.7 67.6±5.9 67.7±5.9 <5×10-6

Gender (% males) 59.6 43.1 45.8 58.1 42.1 42.3 0.176

FEV1/FVC 0.63±0.07 0.78±0.04 0.75±0.08 0.63±0.07 0.78±0.05 0.76±0.08 0.08

Smoking status: <5×10-6

Current smokers (%) 37.7 19.8 23.2 21.5 8.8 10.4

Ex- smokers (%) 48.2 44.2 44.4 54.8 55.2 55.7

Never smokers (%) 14 36 32.4 23.7 36 33.8

Pack-years † 34.3±26.9 19.9±19.6 23.2±22.0 33.7±18.7 19.6±20.1 21.9±20.6 0.261

Data presented as % or mean±SD; COPD: Chronic Obstructive Pulmonary Disease cases; All: all 
participants included in EWAS; For COPD status, which was not available for all participants, the 
valid percentage is denoted in brackets (% of all); In the Discovery cohort 68 patients and in the 
Replication cohort 82 patients were excluded from the association analyses with COPD, due to pos-
sible asthma; P-value: P-value of the difference of Discovery and Replication cohorts; * P-value of 
the difference of COPD status in Discovery and Replication cohorts; † Pack-years calculated in cur-
rent and ex-smokers only.

Three of the four selected SNPs (rs12914385:C>T, rs13180:C>T and rs8042238:C>T) 
on chromosome 15q25.1 were nominally associated with COPD in RS (n=1 339) while 
only rs12914385:C>T was nominally associated with COPD in a considerably smaller 
dataset from LES (n=512) (Table S1). None of the SNPs were associated with FEV1/
FVC (Table S1). 

To determine whether the four SNPs (rs12914385:C>T, rs8034191:T>C, rs13180:C>T 
and rs8042238:C>T) in chromosome 15q25.1 are methylation quantitative trait 
loci (meQTLs), we performed EWAS in RS for each SNP. Significant associations 
(FDR<0.05) were detected at 14 unique CpG sites (Figure 1), 12 sites in cis (within 
the window of 400kb) (Figure  2), and two in different chromosomes, 6 and 12 
(Table 2, Model 1).
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Of these 14 CpG sites, 10 were significantly replicated in the independent sample 
from RS at a significance level of P<0.0019, corresponding to the Bonferroni cor-
rection for number of tests performed in the replication sample (n=26) (Table 2, 
Model 1). All four SNPs were significantly associated with differential methylation 
at three CpG sites (cg18825076, cg04882995 and cg04140906) in IREB2, CHRNA3 and 
PSMA4, respectively (Table 2, Figure 2). Addition of smoking as a confounder did 
not change the results (Table 2; Model 2), suggesting that the effects of the SNPs 
on DNA methylation are independent of smoking. However, significant genetic-

Figure 1. Plotted results of the discovery EWAS of the four SNPs at chromosome 15. In circles are 
represented all CpGs throughout the genome. X-axis shows all chromosomes. Y-axis shows nega-
tive logarithm of the p-value of the associations of (A) rs12914385:C>T, (B) rs8034191:T>C, (C) 
rs13180:C>T and (D) rs8042238:C>T with epigenome-wide DNA methylation levels. Upper line 
represents the significance threshold (FDR < 0.05). N=723.
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meQTLs of COPD SNPs in 15q25.1 region

environment interaction between pack-years and rs12914385:C>T (CHRNA3) was ob-
served for DNA methylation levels at two CpG sites including the top hit, cg18825076 
(IREB2; Pinteraction=5.0×10-4), and cg00540400 (ADAMTS7-MORF4L1; Pinteraction=1.7×10-3) 
(Table S2). The association between rs12914385:C>T (CHRNA3) and cg18825076 and 
cg00540400 remained significant, albeit slightly decreased (Table S2). However, the 
direction of the effect of both significant interactions was opposite in the discovery 
and replication cohorts (Table S3), suggesting this is likely a false positive finding.

Interestingly, these two CpG sites i.e. cg18825076 and cg00540400 and a third one, 
cg04140906 in PSMA4, were nominally associated (P<0.04) with COPD (Table  3, 
Table S4, Model 1). When correcting for smoking (Table 3, Table S4, Model 2) the 
association between cg18825076 and COPD disappeared (P=0.16), while the asso-
ciation of the other two CpG sites (cg00540400 and cg04140906) became stronger 
(P<0.03). None of the CpGs were associated with FEV1/FVC (Table S5).

Figure 2. Regional P-value plot of chromosome 15q25.1 with significant SNP-CpG associations. 
Every point in the plot represents one SNP-CpG association (n=12). X-axis shows all genes in the 
region as well as the position of SNPs of interest; Y-axis shows negative logarithm of the p-values 
of the associations of CpGs with the corresponding SNP (distinguished by different colours). In the 
case a CpG associates with more than one SNP, the smaller p-value is taken into account.
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Table 3. Association of COPD with DNA methylation at 10 replicated sites from the meQTL analysis; 
meta-analyzed results (N=1339).

CpG Position (hg19) Gene

Model 1 Model 2

β SE P β SE P

cg18825076 78729989 IREB2 -5.165 2.514 0.04 -3.65 2.58 0.158

cg04882995 78912658 CHRNA3 1.6 3.098 0.606 -0.57 3.225 0.86

cg21242079 79101063 ADAMTS7 2.321 1.354 0.086 2.454 1.389 0.077

cg00540400 79124168 ADAMTS7-MORF4L1 2.577 1.27 0.042 3.228 1.313 0.014

cg04140906 78833505 PSMA4 -5.674 2.714 0.037 -6.002 2.772 0.03

cg05786009 79152474 ADAMTS7-MORF4L1 2.043 4.307 0.635 1.723 4.469 0.7

cg20117256 78726576 IREB2 -1.227 1.188 0.302 -1.54 1.23 0.212

cg16751781 78858589 CHRNA5 0.891 3.57 0.803 2.092 3.707 0.573

cg08701566 78911099 CHRNA3 6.785 3.971 0.087 6.333 4.136 0.126

cg13561554 78795944 IREB2-HYKK -1.185 1.521 0.436 -0.62 1.559 0.689

β: coefficient estimates from the logistic regression models: Model 1 adjusted for age, sex, technical 
covariates and different white blood cellular proportions; Model 2 additionally adjusted for current 
smoking and pack-years; SE: standard error of the effect; P: p-value of the significance; in bold: 
nominally significant results.

Results involving differential DNA methylation at IREB2 are of special interest, 
as we have detected association with COPD risk allele (rs12914385:C>T) and with 
COPD status. These relationships are illustrated in Figure 3. We found a higher fre-
quency of T allele among the COPD cases, compared to the controls in our dataset 
(Figure  3a). Further, the T allele was associated with lower DNA methylation of 
the cg18825076 (Figure 3b). Lastly, COPD cases showed lower DNA methylation at 
cg18825076 compared to controls (Figure 3c).

Finally, in the eQTL analysis in 1087 lung tissue samples from LES significant as-
sociation (FDR<0.05) was observed at 15 expression probe sets both in cis and trans 
(Table 4). All four SNPs were significantly associated with probe set 100154936_TGI_
at (3’UTR of the IREB2 gene, P<3.2×10-98) (Figure 4). The T allele of rs12914385:C>T 
was associated with higher expression of this probe. Trans-eQTL effects were 
observed in the chromosomes 2, 3, 4, 13 and 14 (Table 4). Rs8034191:T>C was associ-
ated with gene expression of FAM13A intron in chromosome 4 (100158626_TGI_at), a 
very well-known gene involved in COPD.10
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meQTLs of COPD SNPs in 15q25.1 region

Figure 3. Interplay between genetics, DNA methylation and COPD status at IREB2 gene. (A) The 
frequency of T and C alleles of rs12914385:C>T (Y-axis) among COPD cases and controls (X-axis) 
(N=1339, P=0.043). Homozygotes were counted as carrying two and heterozygotes as carrying 
one copy of a given allele. (B) Differences in cg18825076 DNA methylation levels (Y-axis) between 
rs12914385:C>T genotypes (X-axis) (N=1489, P=1.05×10-125). (C) Differences in cg18825076 DNA 
methylation levels (Y-axis) in COPD cases and controls (X-axis) (N=1339, P=0.04).
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Discussion

In the current study we show that four COPD-associated SNPs (rs12914385:C>T, 
CHRNA3; rs8034191:T>C, HYKK; rs13180:C>T and rs8042238:C>T, IREB2) in the 15q25.1 
locus are also blood meQTLs that regulate mostly nearby DNA methylation levels. 
All variants are associated with differential DNA methylation of IREB2, CHRNA3 and 
PSMA4 genes, independently of smoking. We further show that DNA methylation at 
two sites in genes IREB2 and PSMA4, together with the site between ADAMTS7 and 
MORF4L1, are associated with COPD. Finally, we show that all four SNPs are also 
lung cis- and trans-eQTLs, affecting the expression of several genes including IREB2, 
PSMA4, CHRNA3, CHRNA5, HYKK, FAM13A, KLC1 and TRIM13. Our results demonstrate 
that COPD-SNPs shape the epigenetic regulatory landscape in the 15q25.1 locus in 
blood and lung tissues, and suggest that the genetic risk of these SNPs on COPD 

Figure 4. 3’UTR IREB2 expression plot in regard to the genotypes of four SNPs. Plots of genotype 
specific mean residuals (with 95% confidence intervals) from the linear regression models on gene 
expression levels adjusted for disease status, age, sex, smoking status and the cohort specific num-
ber of PCs. The association of residuals of the expression levels (probe set 100154936_TGI_at, 3’UTR 
IREB2) on the Y-axis with genotypes of (A) rs12914385:C>T, (B) rs8034191:T>C, (C) rs13180:C>T 
and (D) rs8042238:C>T on the X-axis, risk/tested allele is given in brackets; β: Regression coeffi-
cient estimate, SE: standard error, P: p-value of the significance, TT/TC/CC are different genotypes 
of the given SNP and number of carriers is given in brackets.



64

Chapter 2.2

might be mediated and/or modified by DNA methylation levels in this region. Over-
all, our findings put forward the role of DNA methylation in COPD as an important 
mechanism in the complex regulation of the 15q25.1 locus.

Rs12914385:C>T and rs8034191:T>C are in moderate linkage disequilibrium (LD) 
(Table S6), so as expected they yielded multiple overlapping results. Rs13180:C>T 
and rs8042238:C>T are in perfect LD (Table S6) and thus showed almost the same 
effects. We show that rs12914385:C>T, rs8034191:T>C and rs13180:C>T are associated 
with COPD in RS, but only rs12914385:C>T in LES, which is expected given the lower 
sample size. While rs12914385:C>T was not vastly studied, rs8034191:T>C is a well-
studied SNP with regards to COPD and lung function in different populations.32-35 It 
has been shown that rs8034191:T>C is associated with an increased risk for COPD 
independent of rs13180:C>T and pack-years of smoking.33 On the contrary, the same 
study shows that the association of rs13180:C>T with severe COPD is possibly driven 
by moderate LD with rs8034191:T>C (r2=0.21). However, a study in a Chinese popula-
tion shows association of both SNP with lung function but not with COPD, and the 
association of rs8034191:T>C with pack-years in COPD cases.35 A study including 
3,424 COPD cases and 1,872 controls showed that the association of rs8034191:T>C 
with COPD is 30% mediated by pack-years, and this mediation increases to 42% 
when adjusted for rs13180:C>T.15 In our study we show that the rs8034191:T>C 
yielded more epigenome-wide significant results and that some overlapped with 
rs13180:C>T (Figure 2).

The most interesting finding of this study is that all four SNPs influence the three 
CpG sites in the IREB2, CHRNA3 and PSMA4 genes. Furthermore, the same site in 
PSMA4 is also associated with COPD, independent of smoking. Site in IREB2, our 
top hit, is also associated with COPD, but this association drops after correcting for 
smoking. This suggests that the four genetic variants may influence COPD suscepti-
bility through changes in DNA methylation of IREB2, PSMA4 and CHRNA3.

We focused on chromosome 15q25.1 region hits from COPD GWASs. However, this 
region has also been reported in the association with smoking by several large 
smoking genetics consortia.12,13 They showed that locus in 15q25.1, represented by 
rs16969968:G>A, and other SNPs, are mostly associated with smoking quantity. Sac-
cone et al.36 showed no significant association between rs16969968:G>A and COPD 
in smokers, adjusted for cigarettes per day. This SNP was in high LD with our SNPs, 
rs12914385:C>T (r2=0.84) and rs8034191:T>C (r2=0.93), but in this study we show 
that the proposed pathway, in which SNPs act as meQTLs, is mainly independent of 
smoking. Additionally, none of our four SNPs, were found to be significant meQTLs 
in the brain in a study of nicotine dependence.37 Despite the well-described role of 
smoking behaviour in shaping the methylome at multiple tissues,25,26 our SNP-DNA 



65

2.2

meQTLs of COPD SNPs in 15q25.1 region

methylation associations could not be explained by exposure to smoking, making a 
mediating effect of smoking improbable. In line with our observations, the studies 
of the role of smoking on DNA methylation have failed to show an effect in this re-
gion.25,38-41 In a recent large smoking EWAS meta-analysis,41 none of our 10 replicated 
sites were associated with smoking, strengthening our claims. Yet the failure to 
detect an association in these analyses does not necessarily represent absence of 
a true effect, it may rather reflect the lack of the statistical power to detect a true 
interaction. Further larger studies are needed to elucidate this question.

In blood, rs12914385:C>T, rs13180:C>T and rs8042238:C>T have been previously 
associated with differential expression of IREB2 and PSMA4, while rs8034191:T>C 
was associated with the expression of IREB2, PSMA4 and CHRNA5.17 However, in 
the present study we examined the gene expression in the lung tissue and found 
that all four SNPs were also lung eQTLs for multiple genes in cis, including IREB2, 
PSMA4, CHRNA3, CHRNA5, HYKK, as well as with other genes in trans involved in 
COPD pathogenesis, such as FAM13A (chromosome 4).10 Compared to Nguyen et al.,20 
who only used a part of this dataset as discovery, we showed that in addition to 
CHRNA3, CHRNA5 and PSMA4, the four SNPs were also associated with differential 
expression of IREB2 and HYKK. Again, all SNPs were associated with differential 
expression of IREB2 gene, suggesting that possibly the genetic variants are involved 
in the pathogenesis of the disease through differential DNA methylation and regula-
tion of expression.

Based on our results in relation to IREB2, we propose a disease model in which 
the COPD-risk allele (rs12914385:C>T, CHRNA3), exert its risk by lowering the DNA 
methylation level at IREB2 gene and subsequently increasing its expression in COPD 
patients. The lower level of IREB2 DNA methylation in blood from COPD cases and 
the positive effect of the risk allele on gene expression in lungs support this sce-
nario. As we do not have the methylation and expression data in the same tissue, 
we were not able to validate this hypothesis directly, but future integrative studies 
in lung tissue should elucidate this further. IREB2 gene is coding the RNA-binding 
protein that binds to iron-responsive elements and can regulate the expression of 
transferrin receptor and ferritin by changing its own protein expression and thereby 
regulate iron metabolism, important in pathogenesis of lung diseases.42 It is shown 
that IREB2 gene interacts with MYC and MAX genes involved in the regulation of the 
gene transcription through epigenetic changes.43

The strength of this study is that our findings are based on a large and unique 
sample of patients in-depth characterized genomically and epigenetically and our 
findings on the role of the genetic variants in blood corroborate with the changes 
in the transcriptome in lung. However, there are some limitations to our study. The 
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first and main limitation is the use of blood in the DNA methylation analysis as a 
proxy for clinically and biologically relevant changes that develop in the lungs. In ab-
sence of lung tissue DNA methylation measurements, blood is the most reasonable 
surrogate for examination of methylation changes related to COPD and smoking. 
This is because the disease, apart from affecting lung tissue, also induces systemic 
changes and has been associated with elevation in markers of systemic inflamma-
tion.44 Furthermore, studies comparing the DNA methylation patterns in multiple 
tissues confirm that there is a great overlap in patterns, encouraging us to believe 
that blood is a good surrogate to study differences that occur in lungs.45,46 Second 
limitation is the use of COPD definition based on the pre-bronchodilator spirometry. 
This measure demonstrates the variability of the smooth muscle contraction, while 
by using post-bronchodilator spirometry we can observe the irreversibility of the 
airflow limitation, the main characteristic of COPD.47 However, in the attempt to 
minimize potential misclassification, we have identified and excluded all possible 
asthmatic patients. In addition, some epidemiological studies show that both pre- 
and post-bronchodilator spirometry predicted mortality related to COPD, with a 
similar degree of accuracy.48 Third limitation to this study is the use of the whole 
lung tissue for gene expression analysis, which is very heterogeneous, instead of 
identifying the source cells for our eQTL signals. Finally, we formulated hypothesis 
based on results obtained from a cross-sectional study, in which inferences on di-
rectionality of effects are complicated. Future results based on longitudinal studies 
will help to support the role of DNA methylation and gene expression as regulatory 
mediators for COPD genetic risk. In addition, further replication of our results in 
other ethnicities and more diverse studies may corroborate our results. Since ge-
netic variants identified through GWASs usually map to non-coding intergenic and 
intronic regulatory regions, the functional role is often unclear.49,50 They are more 
likely to modulate gene expression through regulatory mechanisms and epigenetic 
modifications (e.g. DNA methylation), as we show in this study. However, we do not 
show significant association of all SNPs with the disease, but this is expected since 
our sample size is considerably smaller than that used in the original GWAS. Our 
study did not aim to prioritize between the four variants in terms of relevance to 
COPD, but to investigate if the variants in 15q25.1 region, associated to COPD, are 
involved in regulatory mechanisms. The changes in DNA methylation levels that we 
observed in blood are small, most likely because we assess differential methylation 
in a variety of cell types. More substantial changes may be found in lung tissue in 
future integrative studies.

In summary, we found evidence suggesting that genetic variations underlying 
IREB2, HYKK and CHRNA3 act as cis meQTLs and eQTLs. They all affect the DNA 
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methylation and expression of IREB2, which also contributes to the risk of having 
COPD. We did not find evidence that smoking mediates these relationships, although 
this should be corroborated in larger sample sizes. This finding is compatible with 
the hypothesis that the genetic variants are involved in the pathogenesis of COPD 
through differential methylation and regulation of expression. Future integrative 
studies quantifying both DNA methylation and gene expression in lung tissue, as 
well as functional studies, are needed to confirm suggested hypothesis.



68

Chapter 2.2

References

	 1.	 Lozano R: Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, et al: 
Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a 
systematic analysis for the Global Burden of Disease Study 2010. Lancet, The 2012; 380: 2095.

	 2.	 de Jong K, Vonk JM, Timens W et al: Genome-wide interaction study of gene-by-occupational 
exposure and effects on FEV1 levels. Journal of Allergy and Clinical Immunology 2015; 136: 
1664-1672.e1614.

	 3.	 Vestbo J, Hurd SS, Agusti AG et al: Global strategy for the diagnosis, management, and pre-
vention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir 
Crit Care Med 2013; 187: 347-365.

	 4.	 Zhou JJ, Cho MH, Castaldi PJ, Hersh CP, Silverman EK, Laird NM: Heritability of chronic 
obstructive pulmonary disease and related phenotypes in smokers. American journal of 
respiratory and critical care medicine 2013; 188: 941-947.

	 5.	 Society ER: European lung white book, 2016, Vol 2016.
	 6.	 Soler Artigas M, Loth DW, Wain LV et al: Genome-wide association and large-scale follow up 

identifies 16 new loci influencing lung function. Nat Genet 2011; 43: 1082-1090.
	 7.	 Wilk JB, Shrine NR, Loehr LR et al: Genome-wide association studies identify CHRNA5/3 

and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med 2012; 186: 
622-632.

	 8.	 Cho MH, McDonald M-LN, Zhou X et al: Risk loci for chronic obstructive pulmonary disease: 
a genome-wide association study and meta-analysis. The lancet Respiratory medicine 2014; 
2: 214-225.

	 9.	 Lee JH, Cho MH, Hersh CP et al: Genetic susceptibility for chronic bronchitis in chronic 
obstructive pulmonary disease. Respiratory research 2014; 15: 1.

	 10.	 Cho MH, Boutaoui N, Klanderman BJ et al: Variants in FAM13A are associated with chronic 
obstructive pulmonary disease. Nat Genet 2010; 42: 200-202.

	 11.	 Pillai SG, Ge D, Zhu G et al: A genome-wide association study in chronic obstructive pul-
monary disease (COPD): identification of two major susceptibility loci. PLoS Genet 2009; 5: 
e1000421.

	 12.	 Tobacco, Genetics C: Genome-wide meta-analyses identify multiple loci associated with 
smoking behavior. Nature genetics 2010; 42: 441-447.

	 13.	 Liu JZ, Tozzi F, Waterworth DM et al: Meta-analysis and imputation refines the association of 
15q25 with smoking quantity. Nature genetics 2010; 42: 436-440.

	 14.	 Hung RJ, McKay JD, Gaborieau V et al: A susceptibility locus for lung cancer maps to nicotinic 
acetylcholine receptor subunit genes on 15q25. Nature 2008; 452: 633-637.

	 15.	 Siedlinski M, Tingley D, Lipman PJ et al: Dissecting direct and indirect genetic effects on 
chronic obstructive pulmonary disease (COPD) susceptibility. Human genetics 2013; 132: 
431-441.

	 16.	 Budulac SE, Vonk JM, Postma DS, Siedlinski M, Timens W, Boezen MH: Nicotinic acetylcho-
line receptor variants are related to smoking habits, but not directly to COPD. PloS one 2012; 
7: e33386.

	 17.	 Westra H-J, Peters MJ, Esko T et al: Systematic identification of trans eQTLs as putative driv-
ers of known disease associations 2013; 45: 1238-1243.



69

2.2

meQTLs of COPD SNPs in 15q25.1 region

	 18.	 Wang JC, Cruchaga C, Saccone NL et al: Risk for nicotine dependence and lung cancer is 
conferred by mRNA expression levels and amino acid change in CHRNA5. Hum Mol Genet 
2009; 18: 3125-3135.

	 19.	 Qiu W, Cho MH, Riley JH et al: Genetics of sputum gene expression in chronic obstructive 
pulmonary disease. PLoS One 2011; 6: e24395.

	 20.	 Nguyen JD, Lamontagne M, Couture C et al: Susceptibility loci for lung cancer are associated 
with mRNA levels of nearby genes in the lung. Carcinogenesis 2014; 35: 2653-2659.

	 21.	 DeMeo DL, Mariani T, Bhattacharya S et al: Integration of genomic and genetic approaches 
implicates IREB2 as a COPD susceptibility gene. The American Journal of Human Genetics 
2009; 85: 493-502.

	 22.	 Vucic EA, Chari R, Thu KL et al: DNA methylation is globally disrupted and associated with 
expression changes in chronic obstructive pulmonary disease small airways. Am J Respir Cell 
Mol Biol 2014; 50: 912-922.

	 23.	 Yet I, Tsai PC, Castillo-Fernandez JE, Carnero-Montoro E, Bell JT: Genetic and environmental 
impacts on DNA methylation levels in twins. Epigenomics 2016; 8: 105-117.

	 24.	 Ladd-Acosta C, Fallin MD: The role of epigenetics in genetic and environmental epidemiol-
ogy. Epigenomics 2016; 8: 271-283.

	 25.	 Zeilinger S, Kuhnel B, Klopp N et al: Tobacco smoking leads to extensive genome-wide 
changes in DNA methylation. PLoS One 2013; 8: e63812.

	 26.	 Hillemacher T, Frieling H, Moskau S et al: Global DNA methylation is influenced by smoking 
behaviour. European Neuropsychopharmacology 2008; 18: 295-298.

	 27.	 Qiu W, Baccarelli A, Carey VJ et al: Variable DNA methylation is associated with chronic ob-
structive pulmonary disease and lung function. Am J Respir Crit Care Med 2012; 185: 373-381.

	 28.	 Paliwal A, Vaissière T, Krais A et al: Aberrant DNA methylation links cancer susceptibility 
locus 15q25. 1 to apoptotic regulation and lung cancer. Cancer research 2010; 70: 2779-2788.

	 29.	 Bossé Y: Updates on the COPD gene list. Int J Chron Obstruct Pulmon Dis 2012; 7: 607-631.
	 30.	 Ligthart S, Steenaard RV, Peters MJ et al: Tobacco smoking is associated with DNA methyla-

tion of diabetes susceptibility genes. Diabetologia 2016; 59: 998-1006.
	 31.	 Netherlands BaBrriot: BIOS 2016, Vol 2016.
	 32.	 Cui K, Ge X, Ma H: Four SNPs in the CHRNA3/5 alpha-neuronal nicotinic acetylcholine recep-

tor subunit locus are associated with COPD risk based on meta-analyses. PLoS One 2014; 9: 
e102324.

	 33.	 Hardin M, Zielinski J, Wan ES et al: CHRNA3/5, IREB2, and ADCY2 are associated with severe 
chronic obstructive pulmonary disease in Poland. Am J Respir Cell Mol Biol 2012; 47: 203-208.

	 34.	 Kim WJ, Wood AM, Barker AF et al: Association of IREB2 and CHRNA3 polymorphisms with 
airflow obstruction in severe alpha-1 antitrypsin deficiency. Respir Res 2012; 13: 16.

	 35.	 Zhou H, Yang J, Li D et al: Association of IREB2 and CHRNA3/5 polymorphisms with COPD 
and COPD-related phenotypes in a Chinese Han population. J Hum Genet 2012; 57: 738-746.

	 36.	 Saccone NL, Culverhouse RC, Schwantes-An TH et al: Multiple independent loci at chromo-
some 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and 
COPD. PLoS Genet 2010; 6.

	 37.	 Hancock DB, Wang J-C, Gaddis NC et al: A multiancestry study identifies novel genetic asso-
ciations with CHRNA5 methylation in human brain and risk of nicotine dependence. Human 
molecular genetics 2015: ddv303.



70

Chapter 2.2

	 38.	 Wan ES, Qiu W, Carey VJ et al: Smoking-Associated Site-Specific Differential Methylation in 
Buccal Mucosa in the COPDGene Study. American journal of respiratory cell and molecular 
biology 2015; 53: 246-254.

	 39.	 Tsaprouni LG, Yang T-P, Bell J et al: Cigarette smoking reduces DNA methylation levels at 
multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics 2014; 
9: 1382-1396.

	 40.	 Shenker NS, Ueland PM, Polidoro S et al: DNA methylation as a long-term biomarker of 
exposure to tobacco smoke. Epidemiology 2013; 24: 712-716.

	 41.	 Joehanes R, Just AC, Marioni RE et al: Epigenetic Signatures of Cigarette Smoking. Circ 
Cardiovasc Genet 2016; 9: 436-447.

	 42.	 Cheng Z, Dai LL, Song YN et al: Regulatory effect of iron regulatory protein-2 on iron metabo-
lism in lung cancer. Genet Mol Res 2014; 13: 5514-5522.

	 43.	 Ning B, Liu G, Liu Y et al: 5-aza-2’-deoxycytidine activates iron uptake and heme biosynthesis 
by increasing c-Myc nuclear localization and binding to the E-boxes of transferrin receptor 1 
(TfR1) and ferrochelatase (Fech) genes. J Biol Chem 2011; 286: 37196-37206.

	 44.	 Agustí A: Systemic effects of chronic obstructive pulmonary disease: what we know and 
what we don’t know (but should). Proceedings of the American Thoracic Society 2007; 4: 
522-525.

	 45.	 Lokk K, Modhukur V, Rajashekar B et al: DNA methylome profiling of human tissues identi-
fies global and tissue-specific methylation patterns. Genome Biol 2014; 15: r54.

	 46.	 Yang X, Shao X, Gao L, Zhang S: Systematic DNA methylation analysis of multiple cell lines 
reveals common and specific patterns within and across tissues of origin. Hum Mol Genet 
2015; 24: 4374-4384.

	 47.	 Sterk PJ: Let’s not forget: the GOLD criteria for COPD are based on post-bronchodilator FEV1. 
Eur Respir J 2004; 23: 497-498.

	 48.	 Mannino DM, Diaz-Guzman E, Buist S: Pre-and post-bronchodilator lung function as predic-
tors of mortality in the Lung Health Study. Respiratory research 2011; 12: 1.

	 49.	 Hindorff LA, Sethupathy P, Junkins HA et al: Potential etiologic and functional implications 
of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 2009; 
106: 9362-9367.

	 50.	 Maurano MT, Humbert R, Rynes E et al: Systematic localization of common disease-associat-
ed variation in regulatory DNA. Science 2012; 337: 1190-1195.







 Chapter 2.3

COPD GWAS variant at 19q13.2 in 
relation with DNA methylation and gene 

expression

Ivana Nedeljković, Lies Lahousse, Elena Carnero-Montoro, 
Alen Faiz, Judith M Vonk, Kim de Jong, Diana A van der Plaat, 

Cleo C van Diemen, Maarten van den Berge, Ma’en Obeidat, Yohan Bossé, 
David C Nickle, BIOS Consortium, Andre G Uitterlinden, Joyce B J van Meurs, 

Bruno H C Stricker, Guy G Brusselle, Dirkje S Postma, H Marike Boezen, 
Cornelia M van Duijn, Najaf Amin

This chapter is published in Human Molecular Genetics, October 2017.
The supplemental material for this paper is available at: 

https://doi.org/10.1093/hmg/ddx390



74

Chapter 2.3

Abstract

Chronic obstructive pulmonary disease (COPD) is among the major health burdens 
in adults. While cigarette smoking is the leading risk factor, a growing number of ge-
netic variations have been discovered to influence disease susceptibility. Epigenetic 
modifications may mediate the response of the genome to smoking and regulate 
gene expression. Chromosome 19q13.2 region is associated with both smoking and 
COPD, yet its functional role is unclear. Our study aimed to determine whether 
rs7937 (RAB4B, EGLN2), a top genetic variant in 19q13.2 region identified in genome-
wide association studies of COPD, is associated with differential DNA methylation in 
blood (N=1490) and gene expression in blood (N=721) and lungs (N=1087). 

We combined genetic and epigenetic data from the Rotterdam Study (RS) to per-
form the epigenome-wide association analysis of rs7937. Further, we used genetic 
and transcriptomic data from blood (RS) and from lung tissue (Lung expression 
quantitative trait loci mapping study), to perform the transcriptome-wide associa-
tion study of rs7937. Rs7937 was significantly (FDR<0.05) and consistently associ-
ated with differential DNA methylation in blood at 4 CpG sites in cis, independent of 
smoking. One methylation site (cg11298343-EGLN2) was also associated with COPD 
(P=0.001). Additionally, rs7937 was associated with gene expression levels in blood 
in cis (EGLN2), 42% mediated through cg11298343, and in lung tissue, in cis and trans 
(NUMBL, EGLN2, DNMT3A, LOC101929709 and PAK2). 

Our results suggest that changes of DNA methylation and gene expression may be 
intermediate steps between genetic variants and COPD, but further causal studies 
in lung tissue should confirm this hypothesis.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a common, systemic, lung disease, 
mainly characterized by airway obstruction and inflammation.1 COPD often devel-
ops as a response to chronic exposure to cigarette smoke, fumes and gases.2, 3 There 
is significant inter-individual variability in the response to these environmental 
exposures4, 5 that has been attributed to genetic factors.6, 7 Genome-wide association 
studies (GWAS) have identified genetic variants associated with COPD susceptibility 
on chromosomes 4q31, 4q22, 15q25 and 19q13.8-11 However, the mechanism explaining 
how these variants are involved in the pathogenesis of COPD remains elusive.12

As is the case for many complex diseases, many single nucleotide polymorphisms 
(SNPs) associated with COPD and lung function by GWAS are located in non-protein 
coding intergenic and intronic regulatory regions.13, 14 It has been hypothesized that 
these SNPs may modulate regulatory mechanisms, such as RNA expression, splicing, 
transcription factor binding and epigenetic modifications (e.g. DNA methylation). 
Changes in RNA expression as well as in DNA methylation regulating expression 
have recently been associated with COPD, suggesting that genetic and epigenetic 
factors are working in concert in the pathogenesis of COPD.15, 16 Emerging evidence 
suggests that differential methylation sites (CpGs) are potentially important for 
COPD susceptibility,15-17 but their location was not linked to the GWAS loci. However, 
important associations in COPD genomic regions may have been missed as arrays 
with limited coverage (27K) were used in the studies conducted to date.

The 19q13.2 region is associated with COPD and cigarette smoking,18, 19 lung func-
tion20 and emphysema patterns.21 Genes in this region include RAB4B (member RAS 
oncogene family), EGLN2 (Egl-nine homolog 2), MIA (melanoma inhibitory activity) 
and CYP2A6 (cytochrome P450 family 2 subfamily A member 6). The top variant in 
the region, rs7937:C>T, has been identified by Cho et al..9 This SNP (RAB4B, EGLN2) 
was associated with COPD (OR=1.37, P=2.9×10-9), but not with smoking. Neverthe-
less, in a study of 10 healthy non-smokers and 7 healthy smokers, EGLN2 was found 
to be expressed at a higher level in airway epithelium of smokers compared to non-
smokers.22 In this small, underpowered study of airway epithelial DNA, there was 
no significant evidence for differential DNA methylation of EGLN2 between smokers 
and non-smokers.

In this study we set out to determine whether rs7937 is involved in regulatory 
mechanisms like DNA methylation and gene expression and whether these mecha-
nisms are also associated with COPD. We further evaluated the role of smoking in 
these regulatory mechanisms. For that purpose, we performed an epigenome-wide 
association study (EWAS) of rs7937 in blood using an array with high coverage (450K) 
and a transcriptome-wide association study of rs7937 in blood and lung tissues.
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Results

Our discovery cohort comprised 724 participants with genotype and DNA methyla-
tion data, while the replication cohort comprised 766 participants from the Rotter-
dam Study (RS).23 The summary statistics of the discovery and replication cohorts 
are shown in Table 1.

Table 1. Characteristics of the discovery and replication cohorts and per COPD status
Discovery cohort Replication cohort

COPD Controls All COPD Controls All

N (% of all) 114 (15.7)* 541 (74.7) 724 93 (12.1)* 591 (77.2) 766

Age (years)* 61.9±8.6 59.3±7.9 59.9±8.2 68.2±5.7 67.6±5.9 67.7±5.9

Males (%) 68 (59.6) 233 (43.1) 331 (45.7) 54 (58.1) 249 (42.1) 324 (42.3)

FEV1/FVC
(% of all)

0.63±0.07
(71.9)

0.78±0.04
(66.0)

0.76±0.08
(67.0)

0.63±0.07
(95.7)

0.79±0.05
(91.0)

0.76±0.08
(91.8)

Current smokers, n (%)* 43 (37.7) 107 (19.8) 168 (23.2) 20 (21.5) 52 (8.8) 80 (10.4)

Ex-smokers, n (%) 55 (48.2) 239 (44.2) 322 (44.5) 51 (54.8) 326 (55.2) 427 (55.7)

Never smokers, n (%) 16 (14.0) 195 (36.0) 234 (32.3) 22 (23.7) 213 (36.0) 259 (33.8)

Pack-years# 34.3±26.9 19.9±19.6 23.2±22.0 33.7±18.7 19.6±20.1 21.9±20.6

Data for quantitative measures presented as mean±SD. COPD: Chronic Obstructive Pulmonary Dis-
ease cases, All: all participants included in EWAS. For traits that were not available for all partici-
pants (COPD status and FEV1/FVC), the valid percentage is denoted in brackets (% of all). * Signifi-
cantly different between the discovery and replication cohort. #Pack-years data were available for 
all participants (mean and SD calculated in current and ex-smokers only).

As expected, the prevalence of males, smokers and the average pack-years of 
smoking were higher in cases, compared to controls. Compared to the replication 
cohort, participants in the discovery cohort were on average 8 years younger and 
included significantly more COPD cases and current smokers, although the pack-
years of smoking were comparable. The overview of the analysis pipeline and 
sample sizes used is presented in Figure 1.
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Methylation quantitative trait locus (meQTL) analysis
In the genome-wide blood meQTL analysis of rs7937 in the discovery cohort, rs7937 
was significantly (False Discovery Rate (FDR) <0.05) associated with differential 
DNA methylation at 6 CpG sites in the genes ITPKC and EGLN2, located within the 
same 19q13.2 region (Model 1, Table 2, Figure 2A). Five of the six methylation sites 
were available in the replication dataset and four were significantly replicated with 
the same direction as found in the discovery cohort (Table 2, Figures 2B and 3). 
Adding smoking as a confounder (Model 2, Table 2) and testing interaction with 
smoking (Model 3, data not shown) did not change the results, suggesting that the 
association between rs7937 and DNA methylation at these sites is independent of 
smoking. In an additional Model 4, we show that adding COPD to the model did not 
change the effect of rs7937 on DNA methylation (Supplementary Table 1).

Figure 1. Analysis pipeline and datasets overview. 
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meQTLs of COPD SNPs in 19q13.2 region

Figure 2. Association of the rs7937 with DNA methylation across the genome. In circles are repre-
sented all CpGs throughout the genome. X-axis shows chromosome locations; Y-axis shows negative 
logarithm of the p-value of the associations of the SNP with each CpG site. Red line represents the 
significance threshold (FDR<0.05). A. Discovery analysis; B. Replication analysis.

Figure 3. Region plot of chromosome 19q13.2 with significant SNP-CpG associations. The circles 
represent SNP-CpG associations; X-axis shows all genes in the region; Y-axis shows negative loga-
rithm of the p-values of the associations of CpGs with the SNP. Crossed circle represents the non-
replicated associations.
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COPD and FEV1/FVC analyses
When testing for association of DNA methylation at the four replicated differen-
tially methylated CpG sites with COPD, we observed a significant association with 
cg11298343 (EGLN2) in Model 1 (β (SE)=-7.080 (2.16), P=0.001) (Table 3, Supplemen-
tary Table 2), which remained nominally significant with diminished but still strong 
and concordant negative effect, after adjusting for smoking (Model 2; β (SE)=-4.924 
(2.25), P=0.029). Further we show that additionally adjusting for rs7937 slightly 
deteriorated the effect of cg11298343 on COPD (Model 4; Supplementary Table 1).

In the association with the quantitative determinant of COPD (Table 3, Supple-
mentary Table 2), the ratio of forced expiratory volume in one second (FEV1) over 
the forced vital capacity (FVC), we observed nominal significance for the same site 
(Model 1; β (SE)=0.138 (0.07), P=0.04), which deteriorated with adjusting for smok-
ing (Model 2; β (SE)=0.047 (0.06), P=0.46).

Table 3. Association of DNA methylation at significant CpG sites in 19q13.2, with COPD and FEV1/
FVC ratio – meta-analysis results
Trait CpG N Model β SE P

COPD cg21653913 1339 1 -0.084 0.711 0.906
2 0.175 0.738 0.812

cg11298343 1339 1 -7.080 2.163 0.001
2 -4.924 2.254 0.029

cg10585486 1339 1 -2.215 3.657 0.545
2 -3.110 3.811 0.415

cg25923056 1339 1 -0.368 2.153 0.864
2 1.551 2.255 0.492

FEV1/FVC cg21653913 1188 1 -0.008 0.020 0.676
2 -0.017 0.020 0.382

cg11298343 1188 1 0.138 0.065 0.035
2 0.047 0.064 0.464

cg10585486 1188 1 0.096 0.093 0.304
2 0.094 0.090 0.299

cg25923056 1188 1 -0.021 0.064 0.743
2 -0.098 0.062 0.114

N: number of participants in the meta-analysis; Model 1 is adjusted for age, sex, technical covari-
ates and different white blood cellular proportions, Model 2 is additionally adjusted for smoking; β: 
Regression coefficient estimates from logistic/linear regression models; SE: standard error of the 
effect; P: p-value of the significance. In bold: nominally significant associations.
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Blood and lung expression quantitative trait loci (eQTL) analysis
In the genome-wide blood eQTL analysis in RS, rs7937 was significantly associ-
ated with differential expression of the ILMN_2354391 probe in the EGLN2 gene 
(β (SE)=0.064 (0.01), P=9.3×10-9, Table 4). The risk allele (T) was associated with 
increased expression of EGLN2 (Supplementary figure 1). The association signal 
dropped albeit remained significant (β (SE)=0.058 (0.01), P=1.9×10-6) after adjusting 
for the top CpG site cg11298343 in the same gene (Table 4).

Suggesting that differential DNA methylation at cg11298343 is partly responsible 
for the differential expression of ILMN_2354391 in EGLN2 in blood. In further inves-
tigation we performed the formal mediation analysis where we show (Table 5) that 
42% of the association between rs7937 and EGLN2 expression is indeed mediated 
through cg11298343 (P=0.04).

Table 4. Association of rs7937 with transcriptome-wide gene expression in blood (N=721)

SNP A1 A2 Probe Chr

Position 
(GRCh37/

hg19) Gene Model β SE P FDR

rs7937 T C NM_080732.1 19 46006086-
46006135

EGLN2 1 0.0635 0.0109 9.29×10-9 0.000197

2 0.0577 0.0120 1.88×10-6 0.039942

A1: effect allele (tested allele), A2: alternative allele, Chr: chromosome of the probe, Model 1 is 
adjusted for age, sex, current smoking, technical covariates and different white blood cellular pro-
portions, Model 2 is additionally adjusted for cg11298343; β: Regression coefficient estimates from 
linear regression models regressing gene expression on indicated SNP, SE: standard error, P: p-
value of the significance, FDR: False discovery rate value.

Table 5. Mediation of the rs7937-EGLN2 expression association through cg11298343 (N=721)
Estimate 95%CI Lower 95%CI Upper P-value

ACME 0.02 0.005 0.032 0.01

ADE 0.02 -0.014 0.068 0.22

Total Effect 0.04 0.005 0.080 0.03

Proportion Mediated 0.42 0.058 1.995 0.04

ACME: average causal mediation effect by DNA methylation at cg11298343; ADE: average direct 
effect of rs7937 on EGLN2 expression; Total: total effect rs7937 on EGLN2 expression; Propor-
tion Mediated: proportion of the association between rs7937 and EGLN2 expression, explained by 
methylation at cg11298343; Regression models adjusted for sex, age, current smoking, pack-years, 
technical variance and estimated blood cell composition; p-value ˂ 0.05.
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Moreover, genome-wide eQTL analysis of rs7937 in lung tissue of 1087 participants 
from the Lung expression quantitative loci mapping study (LES), showed significant 
associations (P<1.36×10-6) with 5 probes in the same region (in cis; AK097370(EGLN2), 
NUMBL) and other chromosomes (in trans; LOC101929709, DNMT3A and PAK2) 
(Table 6). In all cases, except one (LOC101929709 at chromosome 8), the T allele of 
rs7937 was consistently associated with decreased expression of the genes in lung 
tissue (Table 6, Supplementary figure 2).

Table 6. Association of rs7937 with transcriptome-wide gene expression in lung tissue (N=1087)

SNP A1 A2 Probe Chr

Position 
(GRCh37/

hg19) Annotation β SE P FDR

rs7937 
(T/C)

T C NM_004756 19 40665906-
40690658

NUMBL -0.099 0.013 4.39×10-15 1.17×10-11

BC037804 19 40808443-
40810818

AK097370 
(EGLN2)

-0.077 0.012 3.77×10-10 1.01×10-6

BX330016 8 89720919-
89724906

LOC101929709 0.049 0.011 6.15×10-6 0.016

AK025230 2 25233434-
25246179

DNMT3A -0.028 0.006 8.00×10-6 0.021

BQ445924 3 196829093-
196830253

PAK2 -0.028 0.006 1.36×10-5 0.036

β: Regression coefficient estimates from linear regression models regressing gene expression on 
indicated SNP, SE: standard error, P: p-value of the significance, FDR: False discovery rate value.

Discussion

Our study shows that the rs7937 in 19q13.2 is associated with differential blood DNA 
methylation of 4 CpG sites located in the EGLN2 in the discovery and replication 
cohort. The COPD risk allele (T) is associated with lower DNA methylation at these 
sites. These relationships are independent of smoking and of COPD. We further 
show that DNA methylation in blood at cg11298343 (EGLN2) is associated with COPD 
and remains nominally significant after adjusting for smoking. Finally, rs7937 is as-
sociated with differential expression in blood of EGLN2, 42% explained by EGLN2 
DNA methylation at site cg11298343, and in lung tissue of NUMBL, AK097370 (EGLN2), 
LOC101929709, DNMT3A and PAK2.

EGLN2 is coding prolyl hydroxylase domain-containing protein 1 (PHD1) which regu-
lates posttranscriptional modifications of hypoxia induced factor (HIF), a transcrip-
tional complex involved in oxygen homeostasis. At normal oxygen levels, the alpha 
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subunit of HIF is targeted for degradation by PHD1, which is an essential component 
of the pathway through which cells sense oxygen,24 is also known to be involved in 
activation of inflammatory and immune genes, including those implicated in COPD.25 
Furthermore, read-through transcription exists between this gene and the upstream 
RAB4B, and together they were shown to be involved in invasive lung cancer.26

Our study of DNA methylation in blood replicates the findings of a study on 
meQTLs in blood across the human life course: during pregnancy, at birth, child-
hood, adolescence and middle age27 which reported three (cg10585486, cg11298343, 
cg25923056) out of our four replicated CpGs. We additionally report a novel find-
ing in association with rs7937, our top hit, cg21653913. Interestingly, they report 
differential DNA methylation at cg11298343 to be associated with rs7937 at all five 
time points. In the present study, we now show that rs7937 is also associated with 
cg11298343 in our elderly sample, the age category at highest risk for developing 
COPD. This finding goes in line with our hypothesis that the life-long change in 
the DNA methylation is involved in the pathogenesis and onset of COPD in older 
age, rather than the other way around. However, further longitudinal studies are 
needed, testing this hypothesis in lung tissue.

In line with our findings, rs7937 has previously been associated with differential 
expression of EGLN2 in blood.28 Having both DNA methylation and transcription 
data available, we could further test whether the relation of rs7937 and EGLN2 
expression could be explained by DNA methylation levels of EGLN2 at cg11298343 
site. We show for the first time that in blood there is indeed a mediation of 42% 
through the DNA methylation at cg11298343, confirming our hypothesis. We report 
two novel findings in this region in the lung tissue. We found that rs7937 is involved 
in expression of AK097370 in lung tissue, a DNA clone in the proximity of EGLN2, 
as well as with NUMBL. NUMBL is known as a negative regulator of NF-kappa-B 
signaling pathway in neurons29 and was also found to be expressed in the lungs 
in the GTEx database.30 The association between rs7937 and gene expression in 
the same dataset has been tested earlier by Lamontagne et al.31 but no significant 
results were reported. In the present study, using a more powerful meta-analysis 
approach, rs7937 was associated with two loci in the region (NUMBL and AK097370, 
close to EGLN2) and three more loci in other chromosomes (LOC101929709, DNMT3A 
and PAK2). Taken together, our findings raise the hypothesis that the genetic effect 
of rs7937 on COPD might be mediated by DNA methylation at cg11298343 and sub-
sequent alteration of expression of EGLN2 and other genes in this region, such as 
NUMBL. We show this in blood but further formal mediation analyses in lung tissue 
are needed to confirm this hypothesis, requiring the assembly of a large dataset of 
lung tissue characterized for genetic, epigenetic and transcriptomic data.
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Furthermore, we have found significant associations in lungs of rs7937 in trans, 
i.e. with the expression of genes on other chromosomes. These effects include dif-
ferential expression of PAK2 (chromosome 3), DNMT3A (chromosome 2) and long 
non-coding RNA on chromosome 8. The protein encoded by PAK2 gene is activated 
by proteolytic cleavage during caspase-mediated apoptosis, and may play a role in 
regulating the apoptotic events in the dying cell.32 DNMT3A is the gene encoding 
the DNA methyltransferase which plays a key role in de novo methylation. This may 
imply that rs7937 is involved in the pathogenesis of COPD through differential DNA 
methylation and regulation of expression throughout the genome, again asking for 
further research of DNA methylation.

The strength of our analysis is the use of large and unique samples of patients 
whose genetic, epigenetic and transcriptomic characteristics were assessed in detail. 
However, a limitation of our study is the use of blood tissue for the assessment of 
DNA methylation and gene expression. Nevertheless, our findings regarding the role 
of the genetic variants in blood corroborate with the changes in the transcriptome in 
lung tissue. It has been shown that blood can be used to evaluate methylation changes 
related to COPD and smoking, as the disease induces systemic changes associated 
with elevated markers of systemic inflammation in blood.25 A second limitation of our 
study is that we cannot distinguish the expression in lung parenchymal tissue, which 
comprises multiple cell types. It may be speculated that expression of only distinct 
cells is affected by rs7939. If this is the case, the most likely effect is that the power of 
our study is reduced but has not biased our findings in the sense of generating false 
positives. However, although eQTLs are frequently cell- and tissue-specific,33 many 
eQTLs are also shared across tissues.34 Finally, the number of patients with COPD 
and spirometry measures were limited, which may have compromised the power of 
the study. Nevertheless, we observed significant findings that are relevant for COPD.

In conclusion, our findings suggest that genetic variations underlying EGLN2 
methylation contribute to the risk of developing COPD. This finding adds insight 
into how genetic variants are involved in th e pathogenesis of COPD, through dif-
ferential DNA methylation and regulation of expression, irrespective of smoking. 
Future integrative studies involving genetics, epigenetics and transcriptomics in 
lung tissue are crucial to elucidate the molecular mechanisms behind COPD genetic 
susceptibility and to translate the findings to clinical care and prevention. This may 
lead to an increased specificity and sensitivity of diagnostic and prognostic tools. 
In addition, novel DNA methylation loci may be used as a target for future drug 
design in COPD. While smoking cessation is shown to be a useful prevention tool for 
disease risk and mortality reduction, DNA methylation loci independent of smoking 
may be used as a target for a more personalized and focused treatment approach.
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Materials and Methods

Study population
For our analyses in blood we used two independent subsets of participants from the 
RS.23 The full discovery set for meQTL analysis was comprised of 724 participants 
with full genomic and epigenetic data, while replication set included 766 partici-
pants. The replication subset is part of the Biobanking and Biomolecular Resources 
Research Infrastructure for The Netherlands (BBMRI-NL), BIOS (Biobank-based 
Integrative Omics Studies) project.35 RS has been approved by the Medical Ethics 
Committee of the Erasmus MC and by the Ministry of Health, Welfare and Sport 
of the Netherlands, implementing the Population Studies Act: Rotterdam Study. All 
participants provided written informed consent to participate in the study and to 
obtain information from their treating physicians. The detailed information on our 
samples can be found in Online supplementary material.

Spirometry measures and COPD diagnosis
From the initial full datasets for meQTL analysis (ndiscovery=724, nreplication=766), after 
excluding participants with asthma, we used data from 655 participants in the 
discovery and 684 participants in the replication cohort for the association analyses 
with COPD. COPD diagnosis was defined as pre-bronchodilator FEV1/FVC<0.7. More 
detailed information can be found in Online supplementary material.

COPD SNPs selection
Using the GWAS catalog36 on 15th January 2017, we performed a search with the term 
“19q13.2”, additionally applying filters for the p-value≤5×10-8 and for the trait to in-
clude term “Chronic obstructive pulmonary disease”. One GWAS study passed these 
filtering criteria, and reported the top SNP, rs7937-T (NC_000019.10:g.40796801C>T), 
to be associated with COPD (OR=1.37).9 We used this SNP to perform all analyses in 
our study.

Genotyping in RS
Genotyping was performed using 610K and 660K Illumina arrays for which whole 
blood genomic DNA was used. Detailed information can be found in Online supple-
mentary material. Imputation was done using 1000 Genomes (1KG) phase I v3 refer-
ence panel, with measured genotypes that had minor allele frequencies (MAF)>1%, 
performed with MacH software and Minimac implementation. We extracted dosages 
of rs7937 (risk allele T, allele frequency (AF) =0.54), from RS imputed data using 
DatABEL library of R-package.37
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DNA methylation array in RS
We used Illumina Infinium Human Methylation 450K array to quantify DNA meth-
ylation levels across the genome from whole blood in RS. The detailed QC and nor-
malization criteria can be found in the Online supplementary material. Ultimately, 
after the QC and normalization steps our discovery set included 724 Caucasian 
participants and 463,456 probes, while the replication set included 766 Caucasian 
participants and 419,936 probes.

RNA array in blood in RS
In the discovery sample we used the same blood samples at baseline to isolate RNA, 
which we hybridized to Illumina Whole-Genome Expression Beadchips Human HT-
12 v4 array. Raw probe intensities were quantile-normalized, and 2-log transformed 
and controlled for quality as described elsewhere.28 After all normalization and QC 
steps the sample consisted of 21.238 probes in 721 participants with available full 
data on SNP and RNA arrays and all covariates.

RNA array in lung tissue
Gene expression was quantified using lung tissue samples obtained from patients 
that underwent lung resection surgery at three facilities participating in the LES: 
University of Groningen (GRN), Laval University (Laval) and University of British 
Columbia (UBC).38 Illumina Human1M-Duo BeadChip arrays were used for genotyp-
ing, and a custom Affymetrix microarray (GPL10379) for gene expression profiling. 
The final dataset for the eQTL analysis consisted of 1087 subjects. More detailed 
information can be found in Online supplementary material.

Statistical analyses

meQTL analysis

We performed EWAS in the discovery cohort using linear regression analysis with 
rs7937-T as independent variable and DNA methylation sites as dependent variable. 
We fitted two models; first adjusted for age, sex, technical covariates to correct for 
batch effects (array number and position on array) and the estimated white blood 
cell counts39 (including monocytes, T-lymphocytes: CD4 and CD8, B-lymphocytes, 
natural killer cells, neutrophils and eosinophils) (Model 1); and second, for sig-
nificant sites additionally adjusted for current smoking and pack-years smoked 
(Model 2). We used the FDR<0.05 as an epigenome-wide significance threshold.40 
Significant sites from Model 1 were then tested for association in the replication 
cohort using the same models as in the discovery. Since the 19q13.2 region was also 
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implicated in smoking behavior, we also tested significant CpG sites in a third model 
including ‘rs7937×smoking’ interaction term to assess possible interaction between 
rs7937 and smoking (for both current smoking and pack-years smoked), in the 
discovery and replication cohorts. For the significant sites we used another model 
additionally adjusted for COPD status, which we compared to the Model 1 in attempt 
to further elucidate the direction of the effect between DNA methylation and COPD.

COPD and FEV1/FVC analysis

To test if the significantly associated methylation sites are also associated with the 
lung phenotypes, we performed logistic and linear regression analyses with COPD 
and FEV1/FVC ratio, respectively as dependent variables and DNA methylation as in-
dependent variable. In the first model we adjusted for age, sex, technical covariates 
and estimated white blood cell counts and additionally for current smoking and 
pack-years smoked in the second model, in both the discovery and the replication 
cohort. Results from the two cohorts were meta-analyzed using fixed effect models 
with “rmeta” package in R.41 Bonferroni correction was applied to adjust for mul-
tiple testing. For the significant sites we used another model additionally adjusted 
for rs7937, which we compared to the first model in attempt to further elucidate the 
direction of the effect between DNA methylation and COPD.

Blood eQTL analysis

In the discovery cohort we tested whether rs7937 is associated with differential 
expression in the whole blood. We used linear regression analysis with rs7937 as 
independent variable and genome-wide normalized gene expression as dependent 
variable. For this analysis we used model adjusted for age, sex, current smoking, 
technical batch effects (plate ID and RNA quality) and white blood cell counts 
(lymphocytes, monocytes and granulocytes). For significant (FDR<0.05) probes, the 
second model was additionally adjusted for significant DNA methylation levels.

Mediation analysis

We have performed formal mediation analysis using the bootstrapping method in 
the “mediation” package in R,42 to assess the potential mediator role of significant 
DNA methylation in the SNP-expression association. One thousand bootstraps were 
run to estimate the confidence intervals.43 We used models adjusted for age, sex, 
current smoking, pack-years, expression technical batch effects (plate ID and RNA 
quality), methylation technical batch effects (position on array and array number) 
and estimated blood cell composition.
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Lung eQTL analysis

To test if the SNP rs7937 is associated (FDR<0.05) with differential expression in 
lung tissue in LES, we performed a genome-wide linear regression analysis with the 
SNP as the independent variable and 2-log transformed gene expression levels as 
dependent variable. This analysis was performed for each of the three participat-
ing cohorts (GRN, Laval and UBC) separately, adjusted for lung disease status, age, 
sex, smoking status and cohort specific principal components (PCs). The inverse-
variance weighted fixed effect meta-analysis of the results obtained from the three 
cohorts was performed with “rmeta” package in R software. The detailed overview 
of the fitted models can be found in the Online supplementary material.
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Abstract

Active smoking is the main risk factor for COPD. Here, epigenetic mechanisms may 
play a role, since cigarette smoking is associated with differential DNA methylation 
in whole blood. So far, it is unclear whether epigenetics also play a role in subjects 
with COPD who never smoked. Therefore, we aimed to identify differential DNA 
methylation associated with lung function in never-smokers. 

We determined genome-wide DNA methylation levels of 396,243 CpG-sites (Il-
lumina 450K) in blood of never smokers in four independent cohorts, LifeLines 
COPD&C (N=903), LifeLines DEEP (N=166), Rotterdam Study (RS)-III (N=150) and 
RS-BIOS (N=206). We meta-analysed the cohort-specific methylation results to 
identify differentially methylated CpG-sites with FEV1/FVC. Expression Quantitative 
Trait Methylation (eQTM) analysis was performed in the Biobank-based Integrative 
Omics Studies (BIOS). A total of 36 CpG-sites were associated with FEV1/FVC in nev-
er-smokers at p-value<0.0001, but the meta-analysis did not reveal any epi-genome 
wide significant CpG-sites. Of interest, 35 of these 36 CpG-sites have not been associ-
ated with lung function before in studies including subjects irrespective of smoking 
history. Among the top hits were cg10012512, cg02885771, annotated to the gene LTV1 
Ribosome Biogenesis factor (LTV1), and, cg25105536, annotated to Kelch Like Family 
Member 32 (KLHL32). Moreover, a total of 11 eQTMS were identified. 

With the identification of 35 CpG-sites that are unique for never smokers, our 
study shows that DNA methylation is also associated with FEV1/FVC in subjects that 
never smoked and therefore not merely related to smoking.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a progressive inflammatory lung 
disease characterized by persistent airway obstruction that causes severe respira-
tory symptoms and poor quality of life.1 Although smoking is generally considered 
the main environmental risk factor, estimations are that 25-45% of patients with 
COPD have never smoked.2 Despite extensive research, the etiology of COPD re-
mains incompletely understood. It is known that the development of this complex 
heterogeneous disease is influenced by both genetic and environmental factors, 
as well as their interactions.3,4,5,6 As interface between the inherited genome and 
environmental exposure, an important role has been postulated for the epigenome.7 
The epigenome includes multiple epigenetic mechanisms that affect gene expres-
sion without modifying the DNA sequence. These epigenetic mechanisms are highly 
dynamic and respond to environmental exposures, ageing and diseases.8 One such 
epigenetic mechanism is DNA methylation, which involves the binding of a methyl 
group to a cytosine base located adjacent to a guanine base. Methylation of these 
so called CpG-sites in regulatory regions of the DNA generally result in decreased 
expression of a particular gene.9

So far, only a few studies have investigated the association between DNA meth-
ylation in peripheral blood and COPD or lung function using an epigenome-wide 
hypothesis free approach.10,11,12,13,14,15,16 Although findings across the studies are not 
consistent, there is suggestive evidence that alterations in DNA methylation might 
play a role in the etiology of COPD. However, in previous studies, subjects were in-
cluded irrespective of smoking status, thus including current smokers, ex-smokers, 
and never smokers. As a consequence, it is currently not known if there are differ-
ences in DNA methylation between healthy individuals and patients with COPD who 
have never smoked. Recently, we studied the association between epigenome-wide 
DNA methylation and COPD in both current smokers and never smokers.16 Although 
we did not find any epigenome-wide significant association in current smokers nor 
in never smokers, the associations between DNA methylation and COPD were differ-
ent between both groups. Hence, by further exploring the role of DNA methylation 
in a much larger set of never smokers together with a continuous measurement of 
lung function, we might be able to reveal important novel insights in the etiology of 
COPD. In this study, we aim to assess the association between DNA methylation and 
lung function in never smokers, meta-analyzing four independent population-based 
cohorts.
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Results

Subject characteristics
An overview of the characteristics of the subjects included in the study is shown in 
Table 1.

Table 1: Subject characteristics of the subjects from the four different DNA methylation datasets.
LL COPD&C LLDEEP RS-III-1 RS-BIOS

Number of subjects, N (%) 903 166 150 206

Male, N (%) 508 (56.3) 71 (42.8) 74 (49.3) 80 (38.8)

Age (years), median (min-max) 46 (18-80) 42 (20-78) 63 (53-93) 68 (52-79)

Airway obstruction (FEV1/FVC<70%), N (%) 316 (35.0) 15 (9.0) 13 (8.7) 19 (9.0)

FEV1 (L), mean (SD) 3.5 (0.9) 3.6 (0.9) 3.2 (0.8) 2.7 (0.7)

FEV1/FVC, mean (SD) 84.5 (8.2) 78.6 (6.2) 77.8 (5.9) 77.9 (5.9)

LL: Lifelines; RS: Rotterdam study; FEV1: Forced expiratory volume in one second; FVC: Forced Vital 
Capacity; L: Liter; SD: standard deviation

LL COPD&C was the largest cohort included in this meta-analysis. Notably, since 
this cohort is a non-random selection from the LifeLines cohort study with COPD 
(defined as FEV1/FVC < 0.70) as one of the selection criteria, the percentages of 
COPD cases should not be interpreted as prevalence.

Meta-analysis of the four epigenome-wide association studies
An epigenome-wide association study (EWAS) on FEV1/FVC was performed in all 
four cohorts separately and combined with a meta-analysis. The meta-analysis did 
not reveal CpG-sites that were epigenome-wide significantly associated with FEV1/
FVC. We identified 36 CpG-sites as our top associations (Table 2).

The Manhattan plot of the meta-analysis is shown in Figure 1A.
Forest plots of the three most significant CpG-sites cg10012512, located in the in-

tergenic region of chromosome 7q36.3 (p=5.94x10^-7), cg02285771, annotated to LTV1 
Ribosome Biogenesis Factor (LTV1) (p=4.10x10^-6) and, cg25105536, annotated to 
Kelch Like Family Member 32 (KLHL32) (p=9.09x10^-6) are shown in Figure 1B-D. An 
overview of all CpG-sites associated with FEV1/FVC at nominal p-value of 0.05 can be 
found in Supplementary Table 1. Complete summary statistics can be obtained upon 
request by the corresponding author.

The direction of the effect of the 36 top CpG-sites did not change in a sensitiv-
ity analysis in the LL COPD&C cohort excluding the subjects that were exposed to 
environmental tobacco smoke (ETS)(N=659 subjects)(Supplementary Table 2).
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Figure 1: Manhattan and forest plots of the meta-analysis on four independent epigenome-wide 
association studies on FEV1/FVC in never smokers. A) Manhattan plot in which every dot repre-
sents an individual CpG-site. Location on the X-axis indicated the chromosomal position and loca-
tion on the Y-axis indicates the inversed log [10] p-value of the meta-analysis. Dotted horizontal 
line indicates p-value of 0.0001, horizontal fixed line indicates genome wide significance (p-value 
< 0.05/396,243 = 1.26×10-7). B-D) Forest plots showing the effect estimates and standard errors of 
the 4 independent EWA studies and meta-analysis for the top hits cg10012512 (B), cg028885771 
(C) and cg25105536 (D).



100

Chapter 2.4

Expression Quantitative trait Methylation (eQTM) analysis
To test if the top CpG-sites were associated with gene expression levels, we per-
formed eQTM analysis. In total, 803 genes were located within 2 MB of the 36 CpG-
sites. The expression of 11 genes was significantly associated with DNA methylation 
levels at the 9 different CpG-sites (Table 3).

Table 3: Overview of the results of the meta-analysis of the eQTM analysis.

CpG-site

Gene 
annotation 

CpG-site

Genes 
located 
within 

1MB (N)
Gene 

(expression) Beta SE P-value
Adjusted 
P-value

cg02137691 FGFR3 31 SLC26A1 0.0156 0.0038 3.53E-05 0.0011

cg02206852 PROCA1 52 NUFIP2 0.0084 0.0022 1.06E-04 0.0055

cg02206852 PROCA1 52 GIT1 0.0080 0.0023 6.11E-04 0.0318

cg02885771 LTV1 11 VDAC1P8 0.0096 0.0033 3.51E-03 0.0386

cg07148038 TNXB 89 ATP6V1G2 0.0074 0.0021 3.79E-04 0.0337

cg07148038 TNXB 89 STK19B 0.0035 0.0010 3.77E-04 0.0335

cg08065963 12 ABAT 0.0127 0.0034 1.85E-04 0.0022

cg20939319 TEX15 10 SARAF -0.0029 0.0010 3.36E-03 0.0336

cg22127773 KDM6B 80 TMEM88 0.0011 0.0003 1.82E-04 0.0146

cg23396786 SFXN5 18 CYP26B1 0.0024 0.0008 1.78E-03 0.0321

cg25105536 KLHL32 4 KLHL32 -0.0004 0.0002 5.52E-03 0.0221

eQTM: Expression Quantitative Trait Methylation; Beta: effect estimate; SE: standard error.

DNA methylation at cg25105536, annotated to KLHL32, was significantly associ-
ated with gene expression levels of KLHL32. DNA methylation levels at cg08065963, 
located in the intergenic region on chromosome 16 and not yet annotated to a gene, 
showed a significant association with gene expression levels of 4-Aminobutyrate 
Aminotransferase (ABAT). For the other 7 CpG-sites, DNA methylation levels were 
associated with gene expression levels of one or two genes other than the previ-
ously annotated genes. An overview of the association between DNA methylation 
and gene expression levels of all genes can be found in Supplementary Table 3.

Discussion

This study is the first large general population-based EWA study on lung function 
in never smokers. So far, virtually all EWA studies on the origin of COPD included 
subjects with a history of cigarette smoking. As a consequence, these studies mainly 
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addressed the origins of COPD in response to smoking. It is unclear if the results of 
these studies help to explain the etiology of COPD or rather explain the contribution 
of cigarette smoke towards the disease. Therefore, our study importantly contrib-
utes to the current understanding of COPD in never smokers.

We identified 36 CpG-sites that were significantly associated with FEV1/FVC at 
p-value below 0.0001. The top hit of our meta-analysis, cg10012512, is located in the 
intergenic region of chromosome 7q36.3. It is therefore not possible to speculate 
on the functional effect of differences in DNA methylation at this specific CpG-site 
and how these differences may affect FEV1/FVC. While associations found with an 
eQTM analysis may help to get more insight in the function of a CpG-site, our eQTM 
analysis did not reveal any nominal significant associations for cg10012512. However, 
this CpG-site was differentially methylated between never smokers and current 
smokers.17 Presumably, this CpG-site does also respond to other inhaled deleteri-
ous substances, which in turn affects lung function. The second top hit, cg02885771 
located on chromosome 6q24.2 is annotated LTV1. Previously, this CpG-site has been 
associated with asthma in airway epithelial cells18 and LTV1 was shown to be ex-
pressed in lung tissue in the Genotype Tissue Expression (GTEx) project. Although 
studies in yeast describe LTV1 as a conserved 40S-associated biogenesis factor that 
functions in small subunit nuclear export, a specific role for LTV1 in respiratory dis-
eases is not known.19 The third top hit, cg25105536, is annotated to KLHL32 on chro-
mosome 6q16.1 and we found a significant association between DNA methylation 
levels of cg25105536 and gene expression levels of KLHL32. The function of KLHL32 
is poorly understood, however, four genetic variants in the KLHL32 gene have been 
associated with FEV1 and FEV1/FVC in African American subjects with COPD and a 
history of smoking.20 Notwithstanding the fact that these associations were only 
identified in a specific group, it might suggest a role for KLHL32 in the respiratory 
system. Next to KLHL32, we found that gene expression levels of 10 additional genes 
were significantly associated with DNA methylation levels at one of the 36 CpG-sites. 
cg08065963, which was not yet annotated to a gene, was significantly associated 
with 4-Aminobutyrate Aminotransferase (ABAT). Interestingly, a role for ABAT in 
COPD has not been described before. The remaining nine genes were other genes 
than the annotated genes of the particular CpG-sites. This suggest that the CpG-
sites may also regulate distant genes within a region of 2 MB, which complicates the 
functional assessment of differences in DNA methylation even further. To the best 
of our knowledge, there are seven studies in literature describing the association 
between DNA methylation and lung function (Table 4).
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Table 4: Overview of studies reporting results of differential DNA methylation with lung function 
or COPD in whole blood

Study Study population Trait

Adjustment 
included in 
model

DNA methylation 
platform

Number of 
CpG-sites 
available for 
comparison

No association 
between DNA 
methylation and 
COPD in never 
and current 
smokers
De Vries et al, 
2018 [16]

Non-random 
selection from 
LifeLines cohort 
(N=1561 subjects)
-	 Smoking status: 

Stratified for 
smoking (658 
smokers and 
903 never 
smokers)

-	 COPD (defined 
as FEV1/FVC ≤ 
0.7)

Sex, Age, 
Pack years 
(in smoking 
stratified 
analysis), Batch 
effects, Blood cell 
composition

Illumina 
Infinium Human 
Methylation450 
BeadChips array
-	 Number of 

included probes: 
420,938

Smokers: 
19492 †

Never 
smokers: 
19393 †

Lung function 
discordance in 
monozygotic 
twins and 
associated 
differences 
in blood DNA 
methylation
Bolund et al, 2017 
[11]

Sub-population 
of twins from 
the Middle-Aged 
Danish Twin 
(MADT) study 
(N=169 twin pairs)
-	 Smoking status: 

subjects with 
and without 
smoking history

Intra-pair 
difference in 
z-score calculated 
as “superior” minus 
“inferior” twin 
at baseline and 
during follow-up 
period for:
-	 FEV1

-	 FVC
-	 FEV1/FVC

Sex, Age, BMI, 
Pack years, 
Smoking status 
at follow-up, 
Blood cell 
composition
*Intra-pair 
difference was 
calculated for all 
the variables

Illumina 
Infinium Human 
Methylation450 
BeadChips array
-	 Number of 

included probes: 
453,014

37 *

Epigenome-wide 
association 
study of chronic 
obstructive 
pulmonary 
disease and 
lung function in 
Koreans
Lee et al, 2017 
[12]

Sample of Korean 
COPD cohort 
(N=100 subjects)
-	 Smoking status: 

subjects with 
and without 
smoking history

-	 COPD status 
(defined as 
FEV1/FVC <0.7)

-	 FEV1

-	 FVC
-	 FEV1/FVC

Sex, Age, Height, 
Smoking status, 
Pack years, Blood 
cell composition

Illumina 
Infinium Human 
Methylation450 
BeadChips array
-	 Number of 

included probes: 
402,508

16 *

Differential DNA 
methylation 
marks and gene 
comethylation of 
COPD in African-
Americans 
with COPD 
exacerbations
Busch et al, 2016 
[13]

Sample of PA-
SCOPE AA study 
population (N=362 
subjects)
-	 Smoking status: 

smokers >20 
pack years

-	 COPD (defined 
as FEV1/FVC ≤ 
0.7 and FEV1 ≤ 
80%)

Sex, Age, Pack 
years, Batch 
number, Blood 
cell composition

Illumina 
Infinium Human 
Methylation27 
BeadChips array
-	 Number of 

included probes: 
19,302

12 *

The epigenetic 
clock is correlated 
with physical and 
cognitive fitness 
in the Lothian 
Birth Cohort
Marioni et al, 
2015 [15]

The Lothian Birth 
Cohort of 1936 
(N=1,091)
-	 Smoking status: 

self-reported, 
subjects with 
and without 
smoking history

-	 FEV1 Sex, Age, Heigth, 
Smoking status, 
Blood cell 
composition

Illumina 
Infinium Human 
Methylation450 
BeadChips array
-	 Number of 

included probes: 
450,726

2 *
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Six of these studies included both subjects with and without a history of cigarette 
smoking and, except for the study by Qui et al, adjusted for smoking status in the sta-
tistical analysis. Altogether, these studies identified 406 unique CpG-sites. Interest-
ingly, none of the 36 CpG-sites from our meta-analysis in never smokers were among 
these 406 previously identified CpG-sites (Table 5). Apparently these 36 CpG-sites 
are only associated with lung function level in never smokers. The fact that 17 CpG-
sites (47%) were associated at nominal p-value <0.05 with COPD (dichotomously 
defined as the ratio of FEV1/FVC below 70%) in our previously EWAS stratified for 
never smoking, further underscores this assumption.16 There is, however, one ex-
ception, since cg22742965, annotated to Transmembrane Protein With EGF Like And 
Two Follistatin Like Domains 2 (TMEFF2), was also significantly associated with 
COPD in smokers. Most likely, this CpG-site shows a general response to inhaled 
deleterious substances such as cigarette smoke and other yet unknown substances.

Table 4: Overview of studies reporting results of differential DNA methylation with lung function 
or COPD in whole blood (continued)

Study Study population Trait

Adjustment 
included in 
model

DNA methylation 
platform

Number of 
CpG-sites 
available for 
comparison

Variable DNA 
methylation 
is associated 
with chronic 
obstructive 
pulmonary 
disease and lung 
function
Qiu et al, 2012 
[10]

Test-replication 
approach in 2 
family-based 
cohorts (N=1,085 
and 369 subjects)
-	 Smoking status: 

subjects with 
and without 
smoking history

-	 COPD status 
(FEV1/FVC ≤0.7 
and FEV1 ≤70%)

-	 FEV1/FVC
-	 FEV1

Random family 
effect

Illumina 
Infinium Human 
Methylation27 
BeadChips array
-	 Number of 

included probes: 
26,485

349 *

Epigenome-wide 
scans identify 
differentially 
methylated 
regions for age 
and age-related 
phenotypes in a 
healthy ageing 
population
Bell et al, 2012 
[14]

Sample of the 
TwinsUK cohort 
(N=172 female 
twin pairs)
-	 Smoking status: 

unknown

-	 FEV1

-	 FVC
Age, Batch effects Illumina 

Infinium Human 
Methylation27 
BeadChips array
-	 Number of 

included probes: 
24,641

1 *

† CpG-sites obtained from the online available data; $ CpG-sites selected at nominal p-value <0.05 
available from self-performed analyses; COPD: Chronic Obstructive Pulmonary Disease; FEV1: 
Forced Expiratory Volume in 1 sec; FVC: Forced Expiratory Capacity.
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Table 5: Overview of CpG location, gene annotation, gene function and literature comparison of the 
top 36 CpG-sites of the meta-analysis

CpG-site CpG location
Gene 

annotation Gene function

Previously 
associated with 

lung function

cg10012512 7:157224041 Intergenic NA Yes 1

cg02885771 6:144163654 LTV1 Involved in ribosome biogenesis No

cg25105536 6:97372436 KLHL32 Only described as protein coding gene No

cg20102034 2:74653166 RTKN Negative regulator of GTPase activity of 
Rho proteins

Yes 1

cg03703840 11:93394809 KIAA1731 Mediating of centriole-to-centrosome 
conversion at late mitosis

No

cg21614201 4:119888794 SYNPO2 Only described as protein coding gene No

cg07957088 20:62196387 PRIC285 Nuclear transcriptional co-activator 
for peroxisome proliferator activated 

receptor alpha

Yes 1

cg05304461 1:11019377 C1orf127 Only described as protein coding gene No

cg11749902 8:41093619 Intergenic NA Yes 1

cg02207312 11:60674164 PRPF19 Involved in cell survival and DNA repair No

cg19734370 17:78444348 NPTX1 Exclusively localized to the nervous 
system as binding protein for taipoxin

Yes 1

cg03077331 17:80693076 FN3K Catalyzes the phosphorylation of 
fructosamines

Yes 1

cg18387671 17:27920246 ANKRD13B Only described as protein coding gene Yes 1

cg03224276 16:72829831 ZFHX3 Regulates myogenic and neuronal 
differentiation

No

cg02137691 4:1805671 FGFR3 Involved in bone development and 
maintenance

No

cg25884324 15:91482502 UNC45A Regulator of the progesterone receptor 
chaperoning pathway

No

cg27158523 6:149867355 PPIL4 Involved in protein folding, 
immunosuppression and infection of 

HIV-1 virions

Yes 1

cg01157143 11:19478542 NAV2 Plays a role in cellular growth and 
migration

No

cg07160694 14:69619856 DCAF5 Only described as protein coding gene No

cg22127773 17:7754785 KDM6B Demethylation of di- or tri-methylated 
lysine 27 of histone H3

Yes 1

cg20939319 8:30707701 TEX15 Involved in cell cycle processes of 
spermatocytes

No

cg02206852 17:27030540 PROCA1 Only described as protein coding gene No

cg17075019 10:79541650 Intergenic NA Yes 1

cg25556432 2:239628926 Intergenic NA Yes 1
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Assuming that the observed differential DNA methylation at the majority of the 
CpG-sites in our study occurs without exposure to smoking, the question arises why 
this differential DNA methylation is observed. One possible explanation may be that 
other factors within the environment such as air pollution and job-related expo-
sures are responsible for the observed differences in DNA methylation. Recently, we 
studied the epigenome-wide association between DNA methylation and exposure 
to air pollution and job-related exposures in a selection of the LifeLines population 
cohort including both never and current smokers.21,22 While we did find significant 
associations, none of them were replicated in independent cohorts. Additional 
analyses in never smokers for this paper did not reveal novel associations between 
DNA methylation and environmental exposures (Online supplement Table  4 and 
Online supplement Figure 1). This might potentially be due to lack of power, since 
only a small percentage of the subjects that have never smoked in the LL COPD&C 
cohort have been exposed to environmental exposures. Moreover, exposure levels 

Table 5: Overview of CpG location, gene annotation, gene function and literature comparison of the 
top 36 CpG-sites of the meta-analysis (continued)

CpG-site CpG location
Gene 

annotation Gene function

Previously 
associated with 

lung function

cg22742965 2:192891657 TMEFF2 Cellular context-dependent oncogene 
or tumor suppressor

Yes

cg16734845 15:44781962 CTDSPL2 Only described as protein coding gene No

cg09108394 16:23850106 PRKCB As kinase involved in diverse cellular 
signaling pathways

No

cg10034572 2:160921789 Intergenic NA No

cg20066227 10:16564552 C1QL3 Only described as protein coding gene No

cg07148038 6:32061160 TNXB Anti-adhesive protein involved in 
matrix maturation during wound 

healing

Yes 1

cg23396786 2:73299151 SFXN5 Only described as protein coding gene Yes 1

cg06218079 17:80834228 TBCD As co-factor D involved in the correct 
folding of beta-tubulin

No

cg06982745 10:72454006 ADAMTS14 The matured enzyme is involved in the 
formation of collagen fibers

No

cg05946118 16:8985638 Intergenic NA Yes 1

cg08065963 16:8985593 Intergenic NA Yes 1

cg12064372 12:30948792 Intergenic NA Yes 1

1 Only observed in study by de Vries et al in never smokers; Gene function obtained by www.gen-
ecards.org
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to air pollution in the LL COPD&C are relatively low compared to the average Dutch 
levels determined within the 2012 Dutch national health survey as described by 
Strak et al.23 Next to environmental exposures, another explanation may be that a 
reduced lung function level precedes the differences in DNA methylation. However, 
with the cross-sectional design of this study, we cannot derive conclusions on the 
direction of the association and causality. Large longitudinal studies are required to 
investigate causality between DNA methylation and FEV1/FVC.

In conclusion, with this study we show that epigenetics indeed may be associ-
ated with FEV1/FVC in subjects who never smoked. Moreover, since 35 out of the 
36 identified CpG-sites are unique for never smokers, our data suggest that factors 
other than smoking affect FEV1/FVC via DNA methylation.

Methods

Study population
To study the association between epigenome-wide DNA methylation and lung 
function, defined as the ratio between the Forced Expiratory Volume in one sec-
ond (FEV1) and Forced Vital Capacity (FVC), in never smokers, we performed a 
meta-analysis in four different cohorts. Two cohorts originated from the LifeLines 
population-based cohort study24: the LifeLines COPD & Controls DNA methylation 
study16,22 (LL COPD&C, n=903) and the LifeLines DEEP study25 (LLDEEP, n=166). The 
two other cohorts originated from the population-based Rotterdam study (RS)26 : 
The first visit of the third RS cohort (RS-III-1, n=150) and a cohort selected for the 
Biobank-based Integrative Omics Studies (BIOS) project (RS-BIOS, n=206). Both 
population-based cohort studies were approved by the local university medical 
hospital ethical committees and all participants signed written informed consent. 
In all cohorts, never smoking was defined based on self-reported never-smoking 
history and zero pack years included in the standardized questionnaires.

Measurements

Lung function

Within the LifeLines population-based cohort study, pre-bronchodilator spirometry 
was performed with a Welch Allyn Version 1.6.0.489, PC-based Spiroperfect with 
CA Workstation software according to ATS/ERS guidelines. Technical quality and 
results were evaluated by well-trained assistants and difficult to interpret results 
were re-evaluated by a lung physician. Within the population-based Rotterdam 



107

2.4

EWAS of COPD in never smokers

study, pre-bronchodilator spirometry was performed during the research center 
visit using a SpiroPro portable spirometer (RS-III-1) or a Master Screen® PFT 
Pro (RS-BIOS) by trained paramedical staff according to the ERS/ATS Guidelines. 
Spirometry results were analyzed by two researchers and verified by a specialist in 
pulmonary medicine.

DNA methylation

In all four cohorts, DNA methylation levels in whole blood were determined with the 
Illumina Infinium Methylation 450K array. Data was presented as beta values (ratio 
of methylated probe intensity and the overall intensity) ranging from 0 to 1. Quality 
control has been performed for all datasets separately as described before.22,27 After 
quality control, data was available on 396,243 CpG-sites in all four datasets.

Statistical analysis

Epigenome-wide association study and meta-analysis

We performed EWAS on lung function defined as FEV1/FVC in all four cohorts 
separately using robust linear regression analysis in R. The analysis was adjusted 
for the potential confounders: age and sex. To adjust for the cellular heterogene-
ity of the whole blood samples, we included proportional white blood cell counts 
of mononuclear cells, lymphocytes, neutrophils, and eosinophils, obtained by 
standard laboratory techniques. For LL COPD&C, we adjusted for technical varia-
tion by performing a principal components analysis using the 220 control probes 
incorporated in the Illumina 450k Chip. The 7 principal components that explained 
>1% of the technical variation were included in the analysis. For LLDEEP, data on 
technical variance was not accessible. For the two RS cohorts, we included the posi-
tion on the array and array number to adjust for technical variation. Regression 
estimates from all four individual EWA studies were combined by a random-effect 
meta-analysis using the effect estimates and standard errors in “rmeta” package in 
R. CpG-sites with a p-value below 1.26×10-7 (Bonferroni corrected p-value by number 
of CpG-sites 0.05/396,243) were considered epigenome-wide significant. CpG-sites 
with a p-value below 0.0001 in the meta-analysis were defined as top associations 
in our study.

Expression Quantitative Trait Methylation (eQTM) analysis

To assess whether top associations were also associated with gene expression 
levels, we used the never smokers included in the Biobank-based Integrative Omics 
Studies (BIOS). For all cohorts separately, reads were normalized to counts per 
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million. To adjust for technical variation for gene expression and DNA methylation, 
principal component analysis was conducted on the residual normalized counts 
and beta-values excluding the potential confounders age and gender. Principal com-
ponents that explained more than 5% of the technical variation in gene expression 
or DNA methylation were included in the analysis. Subsequently, robust linear re-
gression analysis was performed on the CpG-sites and the genes within 1 MB around 
the CpG-sites. The analyses were adjusted for the potential confounders: age, sex, 
and technical variation by principal components as stated before. The individual 
eQTM analysis were combined by a random-effect meta-analysis using the effect 
estimates and standard errors in rmeta. An eQTM was considered significant when 
the Bonferroni-adjusted p-value for the number of genes within 1 MB around the 
CpG-sites was below 0.05.
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Abstract

We aimed to identify differentially methylated regions (DMRs) in cord blood DNA 
associated with childhood lung function, asthma and chronic obstructive pulmo-
nary disease (COPD) across the life course. 

We meta-analysed epigenome-wide data of 1688 children from five cohorts to 
identify cord blood DMRs and their annotated genes, in relation to Forced Expiratory 
Volume in 1 second (FEV1), FEV1/Forced Vital Capacity (FVC), and Forced Expiratory 
Flow at 75% of FVC (FEF75) at ages 7 to 13 years. Identified DMRs were explored for 
associations with childhood asthma, adult lung function and COPD, gene expression 
and involvement in biological processes. We identified 59 DMRs associated with 
childhood lung function, of which 18 were associated with childhood asthma and 
9 with COPD in adulthood. Genes annotated to the top ten identified DMRs were 
HOXA5, PAOX, LINC00602, ABCA7, PER3, CLCA1, VENTX, NUDT12, PTPRN2 and 
TCL1A. Differential gene expression in blood was observed for 32 DMRs in childhood 
and 18 in adulthood. Genes related with 16 identified DMRs were associated with 
respiratory developmental or pathogenic pathways. 

Our findings suggest that the epigenetic status of the new-born affects respiratory 
health and disease across the life course.
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Introduction

Asthma and chronic obstructive pulmonary disease (COPD) have become major 
global health problems in the last decades.1 Both diseases are characterized by 
airway obstruction, as indicated by a reduced Forced Expiratory Volume in 1 sec-
ond (FEV1), FEV1 to Forced Vital Capacity (FVC) ratio, and Forced Expiratory Flow 
at 75% of FVC (FEF75).2 Childhood lung function predicts lung function and risks 
of asthma and COPD in later life.3 An accumulating body of evidence suggests that 
asthma and COPD have at least part of their origins in fetal life.4, 5 Genetics alone 
fail to explain the quickly altering prevalence of allergies and chronic respiratory 
diseases in the past decades, because any mutation would require multiple genera-
tions to occur on a population level.6 Furthermore, adverse fetal exposures, such 
as maternal smoking and suboptimal diet, increase the risk of asthma and COPD.5 
The pathways linking genetic predisposition and environmental exposures in fetal 
life with life course respiratory disease may include epigenetic changes, including 
DNA-methylation.5 Epigenetic changes are influenced by environmental exposures 
and could exert population effects much more rapidly than genetic mutations.6 
DNA-methylation is currently the best understood epigenetic mechanism, and 
techniques have been developed to assess epigenome-wide DNA-methylation pat-
terns in large population- based studies. Fetal development is characterized by high 
rates of DNA-methylation changes and rapid organ development.5 DNA-methylation 
may affect fetal development through effects on gene transcription and expression.7 
Recent studies assessing the associations between DNA-methylation and child-
hood respiratory health are mainly limited to candidate genes and small sample 
sizes.3, 8 We focused on identification of differential DNA-methylated regions (DMRs) 
because regional methylation of CpGs controls cell-type-specific transcription. Also, 
the use of DMRs increases statistical power and minimizes the effects of genetic 
variants in the methylation analyses.9 Identification of genomic regions with altered 
DNA-methylation levels related to lung function and respiratory diseases across 
the life course is important to understand mechanisms underlying associations of 
environmental and genetic factors with the development of lower lung function and 
risk of chronic respiratory diseases. We hypothesized that fetal differential DNA-
methylation reflected in cord blood DNA of newborns affect gene expression and 
subsequent respiratory tract development, and predispose individuals for obstruc-
tive airway diseases in later life.10, 11

We meta-analyzed five epigenome-wide association studies using data from 1,688 
children participating in prospective cohort studies to identify differential DNA-
methylated regions (DMRs) of newborns associated with childhood FEV1, FEV1/FVC 
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and FEF75. Identified top DMRs were subsequently explored for their associations 
with childhood asthma, lung function in adolescence and adulthood, and COPD in 
adulthood, and explored for association with gene expression and involvement in 
biological processes.

Methods

Study design and data sources
We included population-based cohort studies participating in PACE consortium 
with data on epigenome-wide DNA-methylation at birth and lung function in child-
hood.12 We used data from 1,688 Caucasian children aged 7 to 13 years participating 
in the Avon Longitudinal Study of Parents and Children (ALSPAC, United Kingdom), 
Generation R (Netherlands), INfancia y Medio Ambiente Study (INMA) (Spain), Chil-
dren’s Health Study (CHS) and Project Viva (both from the U.S.A.). These data were 
used for the primary discovery epigenome-wide meta-analysis to identify DMRs of 
newborns related to childhood lung function. We aimed to identify DMRs instead 
of single CpGs while differences at any individual CpG may be small, and the use of 
DMRS might minimize the effects of genetic variants in the methylation analysis.13, 14

We used several resources for the secondary analyses. For clinical outcomes, 
we used childhood asthma data (Generation R, mean age 6 years), lung function 
data from adolescents (ALSPAC, mean age 15 years) and adults (Rotterdam Study, 
mean age 66 years, The Netherlands), and COPD data in adults (Rotterdam Study) 
(Figure 1). For gene expression, we used blood samples from children (INMA, at 
birth and mean age 4 years) and adults (Rotterdam Study). Last, we used publicly 
available resources to relate identified DMRs with biological processes.15-17 Parents, 
legal representatives or participants provided informed consent in accordance with 
local ethics policies. Detailed information about the study design and cohorts is 
provided in the Supplementary Appendix.

DNA-methylation
All cohorts extracted DNA from blood samples and used the EZ-96 DNA Methylation 
kit (Zymo Research Corporation, Irvine, USA) for bisulfite conversion. Samples were 
processed with the Infinium HumanMethylation450 BeadChip (Illumina Inc., San 
Diego, USA) followed by cohort-specific quality control, probe exclusion and data 
normalization. Detailed information on cohort-specific data acquisition and quality 
control is provided in the Supplementary Appendix.
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Respiratory outcome assessment
Lung function measures comprised pre-bronchodilator FEV1, FEV1/FVC and FEF75, 
which were converted into sex-, age-, height- and ethnicity-adjusted z-scores.18 
Physician-diagnosed asthma was obtained by questions adapted from the Inter-
national Study on Asthma and Allergy in Childhood.19 COPD was defined as pre-
bronchodilator FEV1/FVC <0.70 in the absence of asthma, or a doctor diagnosis.20

Statistical analyses

Primary meta-analysis on childhood lung function

A detailed description of applied methods is presented in the Supplementary Ap-
pendix. Individual cohorts used robust linear regression models to examine the 
associations of DNA-methylation levels of CpGs with childhood FEV1, FEV1/FVC and 

Figure 1. Overall Study Design. Epigenome-wide meta-analyses were performed to identify meth-
ylated CpGs associated with lung function in children using data from 1,689 children participating 
in ALSPAC, Generation R, INMA, CHS and Project Viva. Identified differentially methylated regions 
(DMRs) were annotated to their nearest gene using PAVIS. Next, we examined if identified DMRs 
were associated with asthma in children participating in Generation R, lung function in adoles-
cents and adults participating in the ALSPAC or Rotterdam Study, or COPD in adults participating 
in Rotterdam Study, and with gene expression levels in children participating in INMA, adults in 
Rotterdam Study, and the GTEx-database. We further explored biological processes and associa-
tions with lung development and respiratory morbidity using publicly available resources (DAVID, 
GeneMania, OMIM and UniProt). N = x: number of participants included for the analysis. N = x/x: 
number of cases / total number of participants included in the analysis.
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FEF75. Analyses were adjusted for maternal age, socio-economic status, smoking 
during pregnancy, parity, asthma or atopy, technical covariates and estimated cell 
counts.21 Results were combined using inverse variance-weighted fixed-effect meta-
analyses. Results from unadjusted models were similar to fully adjusted models 
(Supplementary Appendix Table 1). Using p-values obtained from the meta-anal-
yses, we identified DMRs using the software-tool Comb-p, which is the most robust 
tool to identify DMRs with small effect sizes.9, 22 Regions were defined as a minimum 
of 2 probes within a window size of 500 bases with an FDR-threshold <0.05.9 Comb-
p uses unadjusted p-values for each probe as input, and calculates adjusted p-values 
for each probe that account for the correlation with nearby CpGs.23 Next, the SLK p-
values were adjusted for multiple testing and adjusted into q-values. Comb-p finds 
DMRs based on these q-values and calculates p-values for these DMRs based on 
the original p-values. Finally, the DMR p-values were adjusted for multiple testing 
using the Šidák-correction based on the size of the region and number of possible 
regions of that size. A sliding window identifies a DMR without any predefined 
regional borders, and therefore (theoretically) does not have a maximum number 
of windows and DMRs. A more extensive description of the identification of DMRS 
is provided in the Supplementary Material. Annotation of the genes located nearest 
to the DMRs was performed using Peak Annotation and Visualization (PAVIS).24 We 
limited annotation to a region of 500kb (250kb upstream, 250kb downstream of 
the beginning and end of the region, respectively). All annotations were based on 
human GRCh37/hg19 assembly. Because genetic variants in Infinium probes could 
result in spurious methylation measurements, we performed a sensitivity analysis 
in a subset of high-quality probes (n=294,834) without SNPs, insertions or deletions, 
repeats, polymorphic probes and bisulfite induced reduced genomic complexity.25

Secondary analyses on later life lung function and respiratory diseases

We used linear and logistic regression models to examine the associations of 
CpGs within identified DMRs with asthma in childhood, FEV1, FEV1/FVC and FEF75 
in adolescence and adulthood, and COPD in adulthood. Single CpG p-values were 
used to reconstruct the identified DMRs with Comb-p, applying identical parameter 
settings as in the discovery meta-analyses including false discovery rate (FDR)-
correction.9, 26 We did not apply Šidák-correction because analyses were limited to 
the identified DMRs.

Gene expression analyses

We assessed the associations of CpGs within identified DMRs with gene expression 
in a region of ±250kb in blood samples from children and adults. P-values of CpGs 
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associated with gene expression were combined for each DMR using a modified 
generalized Fisher method and FDR-correction.26, 27 Additionally, we explored 
whether the annotated and differentially expressed genes were expressed in human 
lung specimens of the Genotype-Tissue Expression (GTEx) database.15

Exploration biological processes

The Gene Ontology database implemented in DAVID and Genemania was used to ex-
amine gene function in biological processes.16, 17 We examined pathways for all genes 
annotated to the DMRs and for genes with differential expression in association 
with the identified DMRs. We used the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database in DAVID and Genemania, the OMIM database and the Universal 
Protein Resource (UniProt) to explore whether annotated or expressed genes have 
been related to respiratory development or diseases.28 We used the Ensemble Ge-
nome browser to visualize the genomic structure of the identified DMRs.

Results

Meta-analysis of epigenome-wide association studies on childhood lung 
function
Characteristics of the participating cohorts are given in Table 1 and Supplemen-
tary Appendix Table 2.

We identified 22, 15 and 22 DMRs associated with FEV1, FEV1/FVC and FEF75, re-
spectively (Figure 2, Supplementary Appendix Tables 3 and 4).

A higher mean methylation of CpGs located within 37 (63%) of the identified 
DMRs was associated with higher lung function measures, and within 22 (37%) of 
identified DMRs with lower lung function measures. We observed a high homogene-
ity across the included studies (CpGs with I2 <50: FEV1 140/163 (86%), FEV1/FVC 
82/89 (92%) and FEF75 139/148 (87%)) (Supplemental Tables 4a-c).

Of the top ten significant DMRs associated with childhood lung function, the 5 
DMRs and their annotated genes for FEV1 were located at chr7:27,183,133-27,184,854 
(HOXA5), chr10:135,202,522-135,203,201 (PAOX), chr6:166,418,799-166,419,139 
(LINC00602), chr19:1,063,624-1,064,219 (ABCA7) and chr1:7,887,199-7,887,561 (PER3).  
Three DMRs and their annotated genes for FEV1/FVC were located at chr1:86,968,087-
86,968,544 (CLCA1), chr10:135,051,149-135,051,582 (VENTX), and chr5:102,898,223-
102,898,734 (NUDT12). Two DMRs for FEF75 and their annotated genes were located 
at chr7:158,045,980-158,046,359 (PTPRN2) and chr14:96,180,406-96,181,045 (TCL1A). 
After exclusion of potentially problematic probes containing genomic variants, 41 
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of the 59 previously identified DMRs still contained ≥2 CpGs (supplementary ap-
pendix Table  4). Of these 41 DMRs, 54% (n=22) remained to be associated with 
childhood lung function (Supplementary appendix Table 5).

Identified DMRs and lung function and respiratory diseases across the 
life course
Of all 59 identified DMRs related with childhood lung function, 18 (31%) were associ-
ated with childhood asthma (Figure 3, Supplementary appendix Table 6).

Furthermore, 11 (19%) and 9 (15%) DMRs were associated with lung function in 
adolescence and adulthood, respectively, and 9 (15%) were associated with COPD. 
The DMRs annotated to HOXA5 and PAOX were associated with childhood and ado-
lescence FEV1 and COPD, but not with childhood asthma or adult lung function. The 
DMRs annotated to PER3 and VENTX were associated with childhood and adolescence 
FEV1 and FEV1/FVC, respectively. The DMR annotated to NUDT12 was associated with 
childhood FEV1/FVC and COPD. The DMRs annotated to PTPRN2 and TCL1A were as-
sociated with childhood FEF75 and asthma. The DMRs annotated to LINC00602, ABCA7 
and CLCA1 were associated with childhood lung function but not with other outcomes.

Table 1. Characteristics of Cohorts and Their Participants.

No. of 
participants

Type of 
blood sample 

for DNA-
methylation

No. of 
available 

CpGs

No. of 
subjects 

with 
expression 

data

Age at lung 
function 

measurement
Asthma

COPD

Years (SD) Cases Controls Cases Controls

Primary analyses

ALSPAC (UK) 654 Cord blood 471,193 NA 8·6 (0·2) NA NA NA NA

Generation R 
(NL)

643 Cord blood 436,013 NA 9·8 (0·3) 47 663 NA NA

INMA (Spain) 140 Cord blood 439,306 107 6·9 (0·3) NA NA NA NA

CHS (USA) 75 Cord blood 383,857 NA 13·3 (0·6) NA NA NA NA

Project Viva 
(USA)

176 Cord blood 470,870 NA 7·9 (0·7) NA NA NA NA

Secondary analyses

ALSPAC (UK) 542 Cord blood NA NA 15·4 (0·2) NA NA NA NA

Rotterdam 
Study – I (NL)

488 Peripheral 
blood

NA 488 64·0 (6·3) NA NA 63 425

Rotterdam 
Study – II (NL)

703 Peripheral 
blood

NA 703 67·5 (5·9) NA NA 92 611

Lung function was obtained by spirometry and sex-, age-, height- and ethnicity-adjusted Z-scores 
were calculated. FEV1: Forced Expiratory Volume in 1 second; FVC: Forced Vital Capacity; FEF75: 
Forced Expiratory Flow at 75% of FVC; NA: not applicable. UK: United Kingdom. NL: the Nether-
lands. USA: United States of America.
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Figure 2. Manhattan Plots of Associations of CpGs located in Differentially Methylated Regions with 
Childhood Lung Function Outcomes. Green dots represent p-values from associations of CpGs lo-
cated in differentially methylated regions (DMRs) at birth with childhood (A) Forced Expiratory 
Volume in 1 second (FEV1), (B) FEV1/ Forced Vital Capacity (FVC) and (C) Forced Expiratory Flow 
at 75% of FVC (FEF75). P-values of DMRs ranged from 3·05E-14 to 0·031, and details are provided 
in Supplementary Appendix Table 3. Nearest annotated genes of DMRs are provided. The genes an-
notated to the top ten significant DMRs associated with childhood lung function are written in red. 
Single CpGs are presented as red and blue dots, corrected for correlations with neigboring CpGs.
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Figure 3. Identified Differentially Methylated Regions and Their Location, and Direction of Associations with Child-
hood Lung Function, Childhood Asthma, Adolescent Lung Function, and Adult Lung Function and COPD. Results pres-
ent identified differentially methylated regions (DMRs) from association-analyses of DNA-methylation at birth with 
childhood Forced Expiratory Volume in 1 second (FEV1), FEV1/ Forced Vital Capacity (FVC) and Forced Expiratory 
Flow at 75% of FVC (FEF75), their location, and their direction of association with childhood lung function, childhood 
asthma, adolescent lung function, and adult lung function and COPD. Molecular locations of the top ten significant 
DMRs are presented in bold. Identified DMRs associated with childhood lung function and other respiratory out-
comes are marked in grey, and if not associated with respiratory outcomes in white. Directions of associations are 
marked ↓ if a higher mean methylation of the DMRs was associated with a lower z-score for lung function or lower 
risk of asthma or COPD and marked ↑ if a higher mean methylation of the DMRs was associated with a higher z-score 
of lung function or higher risk of asthma or COPD. Red colored arrows represent disadvantageous effect estimates 
(lower lung function, increased risk of asthma or COPD), and green colored arrows beneficial effect estimates (higher 
lung function, lower risk of asthma or COPD).
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Identified DMRs and Gene Expression
Of the 59 identified DMRs, 32 (54%) DMRs at birth were associated with gene 
expression at age 4 years, and 18 (31%) DMRs with gene expression in adulthood 
(Supplementary Appendix Table 7). The DMR annotated to HOXA5 was associated 
with differential expression of several genes of the HOX-family (Table 2). The DMRs 
annotated to PER3, VENTX, NUDT12 and TCL1A were associated with differential ex-
pression of their respective genes. The DMRs annotated to PAOX, LINC00602, ABCA7, 
CLCA1 and PTPRN2 were not associated with expression of their corresponding 
genes. Genes annotated to 28 (47%) of all identified DMRs were expressed in adult 
lung tissue, including the top significant DMRs annotated to PAOX, ABCA7, CLCA1, 
VENTX and NUDT12 (Supplementary Appendix Table 8).

Identified DMRs and related biological processes
Of all 59 identified DMRs, 43 were annotated to genes not previously associated 
with lung function or respiratory morbidity (Supplementary Appendix Table 7). 
Of the genes annotated to the top ten significant DMRs, HOXA5, CLCA1, TCL1A and 
NUDT12 were previously associated with respiratory development including alveo-
genesis, respiratory diseases and cellular immunity (Table 2). Genes related to the 
identified DMRs, including HOXA5, PER3, CLCA1, NUDT12 and PTPRN2, were located 
in pathways related to regionalization, DNA- and RNA-regulation and embryonic 
development (Supplementary Appendix Tables 9). The genes HLA-DRB4 and 
HLA-DRB5 were enriched in processes including asthma. These genes were associ-
ated with the DMR located at chr6:32,305,068-32,305,146, which was related with 
childhood and adulthood FEV1/FVC and COPD.

Of the top ten significant DMRs, the DMRs annotated to HOXA5, CLCA1 and TCL1A 
contained CTCF-binding sites (Supplementary Figure 2). The DMRs annotated to 
HOXA5, PAOX, PER3 and NUDT12 were located in promotor regions of their respec-
tive genes. The DMR annotated to ABCA7 was located in a CpG-island.

Discussion

We identified 59 DMRs in neonatal cord blood associated with childhood lung func-
tion. Eighteen (31%) of all identified DMRs were also associated with childhood 
asthma, 11 (19%) and 9 (15%) with adolescent and adult lung function, respectively, 
and 9 (15%) with COPD. Differential gene expression was observed for 32 (54%) 
DMRs in childhood and 18 (31%) DMRs in adulthood. Multiple genes related to the 
identified DMRs have previously been associated with respiratory development 
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Table 2. Associations of the top ten significant identified DMRs with gene expression and related 
respiratory outcomes.
Molecular 
location of the 
DMR
(Chromosome: 
start – end)

Lung 
function

Annotated 
gene*

Expressed 
gene†

Gene 
expression

in 
children‡

Gene 
expression in 

adults§

Previously 
associated with 

lung development 
or respiratory 

morbidity‖

chr1: 7,887,199 - 
7,887,561

FEV1 PER3 PER3, RP3-
467l1.4, 
RNA5SP23, 
RP4-726F1.1

↓ -

RP11-431K24.1 - ↑

chr1: 86,968,087 – 
86,968,544

FEV1/FVC CLCA1 no expression - - Lung development, 
asthma, COPD

chr5: 102,898,223 
- 102,898,734

FEV1/FVC NUDT12 NUDT12 ↓ - Smoking behavior in 
COPD

CMBL ↓ -

chr6: 166,418,799 
– 166,419,139

FEV1 LINC00602 no expression - -

chr7: 27,183,133 - 
27,184,854

FEV1 HOXA5 HOXA1, HOTTIP ↓ ↓ Lung development, 
FEV1, FEV1/FVC

EVX1, HOXA4, 
HOXA7

↓ - Lung development, 
asthma, COPD

chr7: 158,045,980 
– 158,046,359

FEF75 PTPRN2 no expression - -

chr10: 135,202,522 
– 135,203,201

FEV1 PAOX no expression - -

chr10: 135,051,149 
– 135,051,582

FEV1/FVC VENTX TUBGCP2, RP11-
122K13.12

↓ -

VENTX, ECHS1 ↑ -

SPRN ↑ ↓

ZNF511 - ↑

chr14: 96,180,406 
– 96,181,045

FEF75 TCL1A TCL1A, 
CCDC85C

↓ - Asthma

chr19: 1,063,624 – 
1,064,219

FEV1 ABCA7 no expression - -

Results present identified differentially methylated regions (DMRs) from association-analyses of DNA-methyla-
tion at birth with childhood Forced Expiratory Volume in 1 second (FEV1), FEV1/ Forced Vital Capacity (FVC) and 
Forced Expiratory Flow at 75% of FVC (FEF75). *DMRs were annotated to their nearest gene. †: Identified DMRs at 
birth were associated with gene expression in: ‡: childhood (INMA; mean age 4 years) and §: adulthood (the Rot-
terdam Study, mean age 66 years). Gene expressions levels were assessed limited to 250kb up- and downstream 
of the outer border of the DMR. Directions of associations are marked ↓ if a higher methylation of the DMR was 
associated with a decreased expression of the specific gene, ↑ if a higher methylation of the DMR was associated 
with an increased expression of the specific gene, and - if no direction of associations were observed. ‖: Associa-
tions of expressed genes with lung development and respiratory morbidity were explored in previous published 
studies the OMIM database and UniProt.
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and morbidity, and many identified DMRs were located within known regulatory 
elements for gene expression.

Reduced lung function in childhood is associated with reduced lung function 
and increased risks of asthma and COPD many decades later.10, 29 Pathways of 
environmental exposures in early life, such as tobacco smoke exposure or lack of 
breastfeeding, that affect lung development and risk of chronic obstructive respira-
tory diseases in later life might be modified by genetic susceptibility. Vice versa, 
genetic susceptibility could partly explain the difference in adverse effects of early 
environmental exposures on the risk of chronic obstructive respiratory diseases in 
later life. Identified genetic variants associated with childhood asthma in large-scale 
GWA studies only account for up to 7.5% of the explained variance.30 Epigenetic 
mechanisms could link environmental exposures with the unexplained heritability 
for childhood asthma.31, 32 Studies that examined associations of DNA-methylation 
with lung function, asthma or COPD are scarce, limited to candidate genes or 
high-risk population and lack replication. An epigenome-wide study among 97 
asthmatics and 97 healthy children aged 6-12 years identified 81 DMRs associated 
with asthma, of which 16 DMRs were also associated with FEV1.8 Of these 81 DMRs, 
19 were located within 500kb of our identified DMRs and may affect the same genes. 
Another epigenome-wide study in 1,454 adults identified 349 CpGs associated with 
COPD.33 Four annotated genes in this adult study (CBFA2T3, PADI4, LST1, KCNQ1) 
were replicated in our study of children. Multiple genes associated with the identi-
fied DMRs have previously been related with asthma and COPD in genome-wide 
association studies. TCL1A has been identified as asthma-susceptibility gene.34 Nine 
(15%) of the 59 DMRs we identified were associated with adult lung function, and 
annotated to, or associated with differential expression of 11 genes. Nine of these 
genes were previously linked with pulmonary structures (CROCC, CLCA1), immunity 
(MARCKS, FOXD2, MEF2C, CMBL, CLCA1), asthma (MARCKS, HCG23, CLCA1), COPD 
(MARCKS, TBX5, CLCA1), and smoking behavior in COPD (NUDT12).28 This suggests 
that genes associated with respiratory diseases could be influenced by differential 
DNA-methylation from early life onwards.

We explored the biological processes of the top significant DMRs for development 
of respiratory morbidity.28 The DMR annotated to HOXA5 was associated with child-
hood and adolescent FEV1, COPD and differential expression of HOXA1, HOXA4 and 
HOXA7. One DMR associated with childhood FEV1/FVC was annotated to VENTX, 
which is a member of the HOX-gene family. The DMR annotated to LINC00602 (Long 
Intergenic Non-Protein Coding RNA (lncRNA) 602) was linked to childhood FEV1. 
LncRNAs influence gene-specific epigenetic regulation and interact amongst oth-
ers with the transcription of HOX-genes. HOX-genes are critical for segmental fetal 
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development, and especially HOXA5  is required for embryonic respiratory tract 
morphogenesis.35, 36 The DMR annotated to PAOX was linked to childhood and adoles-
cence FEV1 and COPD. PAOX is involved in the regulation of intracellular polyamine, 
which is essential for protein synthesis. The DMR linked to ABCA7 was associated 
with FEV1 in childhood and adolescence. ABCA7 is involved in the lipid homeostasis 
in the cellular immune system and is essential for phagocytosis of apoptotic cells by 
alveolar macrophages.37 PER3, annotated to a DMR associated with FEV1 in children 
and adolescents, is a key element in the endogenous circadian rhythm. The DMR 
linked to CLCA1 was associated with childhood FEV1/FVC and FEF75 and expressed 
in adult lung tissue. CLCA1 affects IL-13 driven mucus production in human airway 
epithelial cells and is associated with asthma and COPD.38-40 NUDT12, annotated to 
a DMR associated with childhood FEV1/FVC and COPD, is involved in intracellular 
biochemical reactions. NUDT12 is associated with smoking behavior in COPD.41

PTPRN2, annotated to a DMR associated with childhood FEF75 and asthma is 
member of a gene family regulating cell growth and differentiation, and is involved 
in vesicle-mediated secretory processes. DNA-methylation of PTPRN2 differentiates 
between lung cancer, pulmonary fibrosis and COPD.42 TCL1A, annotated to a DMR 
associated with childhood FEV1/FVC, FEF75 and asthma, is specific to developing 
lymphocytes when expressed and is associated with asthma.34 Thus, many of the 
genes annotated to the top significant DMRs are involved in respiratory develop-
ment, cellular immunity and respiratory morbidity, which warrant further studies.

This is the largest study to date evaluating the associations of newborn epigenome-
wide DNA-methylation with lung function and respiratory disease in children and 
adults, and it provides new insights into the epigenetic changes in fetal life that 
increase the risk of life-time respiratory morbidity. To the best of our knowledge, no 
other cohort studies with data on cord blood DNA-methylation and childhood lung 
function are available. We aimed to strengthen our results using public databases 
on gene expression and biological pathways, which added additional support for the 
observed associations. Ideally, the presence of identified DMRs would be replicated 
in lung cells. However, in cohort studies, this is ethically not done. It is unknown 
whether nasal cells, which are easier to acquire, have a high enough correlation in 
DNA-methylation with lung tissue. Therefore, further studies should aim to examine 
whether DNA-methylation in nasal cells is a good proxy for lung tissue and data 
on DNA-methylation and phenotypes should be shared in consortia to increase 
the statistical power to identify DNA-methylation patterns affecting respiratory 
health across the life course. These results cannot currently be used as predictors 
of disease in individuals but are important from an etiological perspective. Genes 
associated with 29 of the identified DMRs, including HOXA5, PAOX, VENTX, PTPRN2 
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and TCL1A, have been reported to be differentially methylated in relation with 
maternal smoking during pregnancy.12 Genes related with four identified DMRs as-
sociated with childhood lung function were differentially methylated in association 
with maternal folate levels during pregnancy.43 This supports the hypothesis that 
adverse exposures in fetal life may impact DNA-methylation at birth, gene expres-
sion and subsequent respiratory development in the child, predisposing individuals 
for obstructive airway diseases. Further experimental or Mendelian randomization 
studies on the identified DMRs and associated genes might inform strategies in 
early life to improve lung function and lower the lifetime risk of obstructive respira-
tory diseases.

Some limitations should be discussed. We measured DNA-methylation in blood 
because it is easily accessible in large cohort studies. Blood DNA-methylation does 
not necessarily reflect lung epithelial DNA-methylation. However, asthma and COPD 
have systemic manifestations, characterized by increased inflammatory blood 
markers.44, 45 Although the analyses were adjusted for estimated cell counts, we 
cannot rule out residual confounding due to alterations in cell type distribution. Re-
cently, two new reference sets for cell type adjustment in cord blood samples were 
published.46, 47 These reference sets are currently being validated, and future studies 
will shed light on the differences between reference panels. In our secondary analy-
ses, we assessed whether the identified DMRs were associated with lung function 
measured in adolescence and adulthood, similar to the associations identified be-
tween cord blood DNA methylation and childhood lung function. DNA methylation 
patterns and expression of genes vary depending on the developmental stage, and 
these changes could be non-linear.48 We were not able to assess the stability of DNA 
methylation in the identified DMRs in the same individuals from birth to adulthood. 
In a recent study addressing DNA methylation changes in early life, significantly 
reduced or increased methylation of single CpGs between ages 0 to 4 years and 4 to 
8 years occurred in <4% of all CpGs, suggesting only a minor global change in DNA 
methylation in childhood.49 Longitudinal changes in DNA methylation from early life 
until adulthood in relation to respiratory morbidity have not been studied yet. We 
observed similar associations between DNA methylation of a specific genetic region 
with lung function, asthma or COPD observed in early life and adulthood, and this 
strengthens our hypothesis that specific DNA methylation patterns affect respira-
tory health across the life course. Further studies in longitudinal cohort studies 
with repeated measures of DNA methylation from birth into adulthood in the same 
individuals are needed to confirm this.

We presented our primary results including all probes, and provided results of 
analyses excluding potentially problematic probes, namely those with SNPs, inser-
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tions or deletions, repeats and bisulfite induced reduced genomic complexity. These 
underlying variants may affect probe binding and as such, affect the identified asso-
ciations. In our stringent sensitivity analyses, we observed similar size and direction 
of the effect estimates in 54% of the identified DMRs associated with childhood lung 
function. However, the true exact impact of potentially problematic probes on the 
measurement of DNA methylation in our analyses remains unknown.25, 50 Discarding 
probes a priori may discard information. Therefore, we present all results of the 
main and sensitivity analysis.

Genetic variation as opposed to environmental variation might be influencing 
the DMRs associated with respiratory health. A recent study in two ethnic diverse 
adult cohorts in 557 subjects showed that DNA methylation of airway epithelium 
plays a central role in mediating the effects of SNPs and gene expression on asthma 
risk and its clinical course.51 Another study in 115 subjects participating in an adult 
cohort study reported a potential mediating effect of DNA methylation of single 
CpGs on the associations between SNPs located at chromosomal locus 17q21 and 
asthma.52 The study identified 6 CpGs associated with gene expression of ORMDL3 
and GSDMB. The authors did not assess the associations of DNA methylation with 
asthma or lung function. We did not identify any DMR located near the 17q21 locus. 
This could be explained by the young age of our study subjects or differences in 
main respiratory outcomes measurements. The previous studies stepwise assessed 
the effect of DNA methylation with the gene expression, and associations of SNPs 
with asthma, whereas our study focused on the direct associations between DNA 
methylation and respiratory outcomes. Further research is needed to assess this 
potential biological pathway.

Several identified DMRs were associated with gene expression other than the 
nearest and therefore annotated gene, which limits the potential biological effect of 
the annotated genes. The genomic inflation factor for the primary analyses ranged 
from 1.07 to 1.21 (Supplementary Figure 1). Recently, it was shown that the genomic 
inflation factor provides an invalid estimate of test-statistic inflation when the 
outcome of interest is associated with many, small genetic effects.53 Furthermore, 
estimating the inflation factor using the genomic inflation factor results both in 
an overestimation of the actual inflation and in imprecise estimates contributing 
to the previously unexplained, high variability across studies. This might explain 
the genomic inflation in our analyses. The statistical steps in Comb-P limit the final 
number of DMRs identified, and genomic inflation in the identification of DMRs 
could not be tested. Further studies are needed to develop statistical tools dealing 
with genomic inflation in epigenome-wide studies.
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There were no cohort studies available for replication analyses. We included all 
available cohorts in the meta-analysis to obtain the largest possible power to detect 
new associations. A previously published study has shown that in (epi)genome-wide 
association analyses a meta-analysis of all participating cohorts rather than a split 
sample analysis with a properly selected level of (epi)genome-wide significance is 
the most powerful approach to identify new associations.54 The high between-study 
homogeneity observed for the vast majority of CpGs in our meta-analysis (Supple-
mentary Tables 4a-c) also provides support for the stability of the reported as-
sociations. Nevertheless, confirmatory studies are needed.

In conclusion, we identified 59 DMRs in cord blood that were associated with 
childhood lung function. Multiple DMRs were additionally related with childhood 
asthma, adolescent and adult lung function, or adult COPD. Also, multiple DMRs 
were associated with differential gene expression of genes involved in embryonic 
and respiratory tract development or were located in regulatory elements for gene 
expression. These findings suggest that epigenetic changes during fetal life might 
modify the risk of respiratory diseases across the life course.
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Abstract

Importance: Chronic obstructive pulmonary disease (COPD) is a disorder character-
ized by persistent and progressive airflow limitation. Beyond lung function impair-
ments, metabolic changes in the circulation have been reported but their relation 
to the risk factors and prognosis of COPD has not been addressed. Objective: To 
identify metabolic signatures for COPD. Design: A comprehensive metabolic study 
of COPD and lung function was conducted in two large population-based studies 
in the Netherlands, the Rotterdam Study and the Erasmus Rucphen Family study. 
Significant findings were replicated in Lifelines-DEEP study, FINRISK and Prospec-
tive Investigation of the Vasculature in Uppsala Seniors (PIVUS) studies. The data 
were integrated with publicly available data sets. Setting: Multicenter, population-
based setting. Participants: A random sample of 5,557 individuals was included 
in the discovery cohort, whose lung function was characterized by spirometry. 
Exposure: Circulating levels of metabolites as measured by proton Nuclear Magnetic 
Resonance Spectroscopy. Main outcomes and measures: The primary outcome was 
COPD, defined as the ratio of Forced Expiratory Volume in 1 second (FEV1) to Forced 
Vital Capacity (FVC) <0.7. Secondary outcomes were FEV1/FVC (continuous vari-
able), smoking status and pack-years of smoking. Tertiary outcome was all cause 
mortality. Results: There were 602 cases of COPD and 4955 controls used in the 
discovery meta-analysis. Our logistic regression results showed that higher levels 
of plasma Glycoprotein acetyls (GlycA) were significantly associated with COPD 
(OR=1.16, P=5.6×10-4 in the discovery and OR=1.30, P =1.8×10-6 in the replication 
sample). Smoking status (P=1.3×10-22) and pack-years of smoking (P= 2.5×10-16) were 
significantly associated with levels of GlycA. A bi-directional two-sample Mendelian 
randomization analysis has suggested that circulating blood GlycA is not causally 
related to COPD, but that COPD is causally associated with GlycA. Using the pro-
spective data of the same sample of Rotterdam Study in Cox-regression, we show 
that circulating GlycA levels are predictive biomarker of COPD risk (HR=1.42, 95%CI 
1.24-1.63, P=7.61×10-7, comparing those in the highest and lowest quartile of GlycA) 
but are not significantly associated with mortality in patients (HR=1.06, SE=0.06, 
P=0.31). Conclusions and Relevance: Our study shows that circulating blood GlycA is 
a biomarker of preclinical COPD pathology.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung 
disease and currently the third leading cause of death worldwide.1,2 COPD is charac-
terised by chronic airway inflammation, airway remodelling and airflow limitation.3 
A reduced ratio of the Forced Expiratory Volume in 1 second (FEV1) to Forced Vital 
Capacity (FVC) is a measure of obstruction and is used to diagnose COPD but also 
as an endophenotype for preclinical lung function.3,4 Smoking is the most important 
risk factor for COPD and related impaired lung function.2 COPD is a complex hetero-
geneous disease in which systemic features beyond airflow obstruction, including 
systemic inflammation, oxidative stress, muscle dysfunction, cachexia and vascular 
pathology occur.5,6 Understanding these systemic effects may give new insights in 
the pathogenesis and progression of COPD but may alternatively yield important 
clues for preventive research.

Recent developments in metabolomics have made it possible to investigate the 
associations between circulating metabolites and the systemic effects in COPD. 
Glycoprotein acetyls (GlycA) were found to be predictive for several chronic dis-
eases, among which COPD.7 In a previous metabolomics study using proton Nuclear 
Magnetic Resonance (1H-NMR), lower levels of lipoproteins, N,N-dimethylglycine 
and higher levels of glutamine, phenylalanine, 3-methylhistidine and ketone bodies 
were found in the circulation of ex-smoking COPD patients compared with ex-smok-
ing controls.8 In severe COPD patients, branched chain amino acids (BCAAs) were 
found to be lower, compared with controls.8 Interestingly, BCAAs, 3-methylhistidine, 
ketone bodies, and triglycerides were negatively correlated with cachexia and 
positively correlated with systemic inflammation,8 but these findings have not been 
replicated. Another question that remains to be answered is whether the metabolic 
changes are a cause or a consequence of COPD. If the latter is true, the metabolites 
may be relevant for the disease progression and prognosis.

To answer these questions, we performed a comprehensive integrative metabolic 
analysis to identify plasma metabolic measures associated with COPD and lung 
function levels, defined as FEV1/FVC, using the NMR approach in a set of large 
epidemiological studies, in depth characterized for genetic and environmental risk 
factors. The discovery phase of the study was conducted in two population-based 
studies in the Netherlands, the Rotterdam Study (RS)9 and the Erasmus Rucphen 
Family study (ERF).10,11 A replication meta-analysis was conducted in Lifelines-DEEP 
study (LLD),12 two cohorts of FINRISK study13,14 and Prospective Investigation of the 
Vasculature in Uppsala Seniors (PIVUS) study.15,16
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Methods

Study population

Studies included in the discovery sample

The RS is a population-based study of 14,926 people older than 45 years, from the 
Ommoord area of Rotterdam, incorporating three cohorts: RS-I (established in 
1989), RS-II (2000) and RS-III (2006), with multiple subsequent visits.9 Participants 
filled in questionnaires, underwent physical examination and provided fasting 
blood samples at each visit. For this analysis, three independent samples from 
different RS cohorts were enrolled: Sample 1) visit 4 of RS-I (RS-I-4); sample 2) a 
combined sample, which we collectively call RS-E5 in this manuscript, comprising 
of visit 5 of RS-I (RS-I-5), visit 3 of RS-II (RS-II-3), and visit 2 of RS-III (RS-III-2); and 
sample 3) another independent set from RS-III-2.

ERF is a population-based study from the south-west of the Netherlands. It is a 
genetically isolated population comprising 3,465 living descendants of 22 couples 
from the 19th century and their spouses.10 The baseline data collection was per-
formed in 2002-2005 when participants underwent physical examinations, provided 
blood samples and completed questionnaires. A follow-up of the participants was 
performed in 2015-2018, reviewing the medical records at the general practitioner’s 
office.

Both RS and ERF were approved by the Medical Ethics committee of the Erasmus 
Medical Center and all participants gave informed consent for participation in the 
study and for evaluation of the available information from their physicians.

Studies included in the replication sample

LLD is a sub-cohort of the large general population-based cohort study LifeLines, 
which was initiated to study genes, exposures and their interactions in the etiol-
ogy of complex multifactorial diseases and healthy ageing.17,18 LLD consists of 1,500 
LifeLines participants who registered at the LifeLines research site in Groningen 
between April and August 2013. These subjects gave additional biological materials, 
including blood samples for metabolite and inflammation profiling, and extensive 
phenotype information.12 Metabolic and lung function data were available for 717 
LLD individuals and these subjects are included in the current study. LLD was ap-
proved by the ethics committee of the University Medical Center Groningen and all 
participants signed an informed consent prior to enrolment.

The FINRISK cohorts comprise cross-sectional population surveys that are carried 
out every 5 years since 1972, to assess the risk factors of chronic diseases (e.g. CVD, 
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diabetes, obesity, cancer) and health behaviour in the working age population (25-74 
years of age), in 3-5 large study areas of Finland. The FINRISK surveys are conducted 
by the National Institute for Health and Welfare, THL (previously National Public 
Health Institute, KTL). Extensive information from each participant was collected 
at baseline via questionnaire and health examination with blood collection. The 
cohorts were followed up by linking them to national health registers. The cohorts 
FINRISK 1997 (total of 6898 participants) and an extension of FINRISK 2007, known 
as DIetary, Lifestyle and Genetic determinants of Obesity and Metabolic syndrome 
(DILGOM) study19 (total of 4600 participants) are included in our replication sample 
for COPD analysis. The FINRISK 1997 study was approved by the Ethical Committee 
of the National Public Health Institute, while the DILGOM study was approved by the 
Coordinating Ethical Committee of the Hospital District of Helsinki and Uusimaa. All 
participants have signed an informed consent, allowing the use of their data and 
samples for studying environmental and genetic risk factors of chronic diseases.

The PIVUS study started in 2001 with the aim to investigate endothelial function 
as a prospective cardiovascular risk factor in elderly subjects. A random sample 
of Uppsala city residents were invited from the register of inhabitants within one 
month following their 70th birthday. No exclusion criteria were applied except 
that participants were required to have a Swedish identification number. In PIVUS, 
1,016 agreed to participate, resulting in a participation rate of 50.1% of all invited, 
whereof 51.5 % were female. The participants have undergone a range of physical 
measurements, and given information about their medical history, lifestyle habits 
and regular medication. In addition, blood samples were drawn. The Ethics Com-
mittee of the University of Uppsala approved the study and the participants gave 
informed consent (approval number 00-419).

Assessment of COPD status and lung function measurements
COPD in the RS was defined as pre-bronchodilator FEV1/FVC<0.7, assessed either 
by spirometry at the RS research center or by reviewing medical histories of the 
participants. Spirometry was performed in the RS by trained paramedical per-
sonnel, according to the guidelines of the American Thoracic Society/European 
Respiratory Society (ATS/ERS). When spirometry measurements were absent or 
uninterpretable, all files from specialists and general practitioners were reviewed 
to set a diagnosis of COPD. In total, this analysis included 541 COPD subjects and 
4,407 subjects without COPD from all three RS cohorts.

For the ERF study, the doctor’s diagnosis of COPD was confirmed by reviewing 
medical records based on FEV1/FVC<0.7, with or without medication use. If the in-
formation on FVC was missing, the following criteria for COPD were used: FEV1<80% 
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of predicted, use of respiratory medication and a COPD diagnosis mentioned in the 
report of the respiratory specialist to the general practitioner. In total, 61 COPD 
subjects and 548 subjects without COPD were included from ERF. For ERF partici-
pants, we did not have lung function measurements at the time of the metabolomics 
measurements, so we did not include this cohort in the FEV1/FVC analysis.

For LLD, COPD was defined as a FEV1/FVC below 70%. Pre-bronchodilator spi-
rometry was performed according to the ATS/ERS guidelines using a Welch Allyn 
Version 1.6.0.489, PC-based Spiroperfect with CA Workstation. Technical quality 
and results were assessed by well-trained assistants and abnormal results were 
re-evaluated by lung physicians.

In the FINRISK study the COPD information was extracted based on diagnoses 
and reimbursement information from the National health register, which include 
the Drug Reimbursement Register, the Care Register for Health Care, the Register for 
Prescribed Drug Purchases, the Causes-of-Death Register, and the Cancer Register. 
The maximum retrospective time period available for obtaining prevalent disease 
events was 20 years for DILGOM and 10 years for FINRISK97.

In the PIVUS study FEV1 and FVC were assessed with spirometry using a Vi-
talograph Alpha spirometer (Vitalograph Ltd. Buckingham, UK) according to the 
American Thoracic Society recommendations.20,21 The best value of three acceptable 
recordings was used. FEV1 and FVC expressed as percent of predicted values, were 
adjusted for age, sex and height according to Hedenström’s formula.22,23

Assessment of blood metabolites
Metabolic profiling in RS, ERF and LLD was done as part of the 4th Rainbow Project 
of the BioBanking for Medical Research Infrastructure of the Netherlands (BBMRI-
NL) (https://www.bbmri.nl/omics-metabolomics/). To quantify the metabolite 
biomarkers from all samples fasting EDTA plasma samples were used for quantita-
tive high-throughput 1H-NMR metabolomics platform (Nightingale Ltd, Helsinki, 
Finland). Details and advantages of the NMR-based metabolomics analyses using 
plasma were described elsewhere.24,25 Using this method, we were able to quantify 
a wide range of blood metabolite biomarkers such as lipoprotein fractions, amino-
acids, cholesterol levels, glycerides, phospholipids, fatty acids, ketone bodies and 
metabolites related to inflammation and glycolysis. In total, 161 metabolites, over-
lapping between RS and ERF, were used in the discovery analysis.
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Statistical analyses

Association of COPD and FEV1/FVC with metabolites

The distributions of all metabolites were inspected for normality and natural loga-
rithm or rank transformations were applied. Per cohort, we used transformed me-
tabolite levels as independent variable and COPD status or FEV1/FVC as dependent 
variables in logistic and linear regression models, respectively. The models were 
adjusted for age, sex, BMI (kg/m2), lipid lowering medication use and smoking sta-
tus (current, ex- or never smokers). For the discovery sample, the results from ERF, 
RS-I-4, RS-E5 and RS-III-2 were meta-analysed using fixed effect models in “METAL” 
software.26 As the metabolites are known to be highly correlated, we applied the 
method by Li and Ji27 to assess the number of independent metabolites. Using this 
method, we calculated that for the 161 metabolites, the number of independent tests 
was 45, which resulted in the Bonferroni significance threshold of P=0.001 (0.05/45). 
Significant metabolites were further tested for replication in the meta-analysis of 
LLD, FINRISK1997 and DILGOM studies for the COPD analysis and of LLD and PIVUS 
studies for the FEV1/FVC analysis. Again, the same regression models were used for 
the fixed effect meta-analysis in “METAL” software.

For significant COPD metabolites, we investigated the odds ratios per quartile 
of the metabolite distribution in the discovery sample. To investigate the effects of 
smoking on this association, we used two logistic regression models, one adjusted 
for age, sex, BMI and lipid lowering medication use, and a second model additionally 
adjusted for smoking status (current, ex- and never smokers). Results from each 
cohort were combined using inverse-variance weighted fixed effects meta-analysis 
in “rmeta” package in R.

Association of smoking with metabolites

We further tested if the replicated metabolites from the COPD and FEV1/FVC 
analyses (as dependent variables) were associated with smoking status (current, 
ex- and never smokers) and pack-years of smoking. We used models adjusted for 
age, sex, BMI and lipid lowering medication use in the discovery sample. Associa-
tions with smoking status were further tested for replication in the FINRISK1997 
and DILGOM studies, using same models. All analyses were performed in R (version 
3.2.1.). Replication studies did not have pack-years data to investigate further. Next, 
for comparison, we tested the same models in the discovery cohort after excluding 
the COPD cases.
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Association of genetic variants with metabolites

We have used a bi-directional approach in which we examined whether: 1) the ge-
netic determinants of the significant metabolic measures are associated with COPD 
and lung function, which would lead to the conclusion that the metabolites are 
most likely driving the disease; 2) the genetic determinants of COPD are associated 
with significant metabolites when the metabolites would most likely be altered as 
an integral part of the disease pathophysiology and may be biomarkers. In these 
analyses we use the genes as instrumental variable and a method which is referred 
to in genetics as a bi-directional Mendelian Randomization (MR) approach.28 MR 
was conducted using “gtx” package in R.29 To maximize the statistical power of the 
study28 we used the genetic information from previously published genome-wide 
association studies (GWAS) on metabolites (Model 1)25 and COPD (Model 2).30 
Genetic risk score (GRS), summarizing the effect of the SNPs genome-widely as-
sociated with either the significant metabolites or COPD, were used as instrumental 
variable. In GRS we included unique SNPs (mapped to human genome build hg19) 
in low linkage disequilibrium based on the data in ERF study (within 500Kb and 
R2<0.05). MRs were performed with GRS explaining >1% of the variance, because 
the power of the MR using GRS that explains a lower proportion of the variance is 
too low to yield trustable results. To control for pleiotropic effects, we checked the 
heterogeneity of the SNPs included in the GRS and excluded the SNPs which were 
also genome-wide significantly associated with the outcome.

Association of metabolites with mortality

To investigate whether metabolites have a clinical utility in predicting COPD, we 
constructed classical receiver operating curves (ROC) and compared area’s under 
the curve (AUC).31 To further investigate whether the identified metabolites may act 
as biomarker of the disease prognosis, we performed a survival analysis in SPSS, 
similar to the previous study by Fischer and colleagues for all-cause mortality, 
ignoring any underlying morbidity.32 To check whether the metabolites associated 
with mortality in COPD patients, we performed the Cox proportional hazards model 
in three RS cohorts. Analyses were adjusted for age at sampling, sex and smoking. 
We further performed a similar analysis using four quartiles of metabolite, testing 
in COPD cases and controls.
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Results

Descriptive characteristics of the samples
Descriptive characteristics of all cohorts used in the analysis are presented in 
Table 1. 

Table 1. Discovery population characteristics per cohort

Study

Discovery cohorts Replication cohorts

ERF RS-I-4 RS-E5 RS-III-2 LLD FINRISK97 DILGOM PIVUS

N 609 2777 686 1485 717 6898 4600 854

Age,  
mean (sd)

49.0  
(13.3)

74.8  
(6.5)

68.4  
(5.7)

62.8  
(5.8)

46.0  
(14.3)

48.0  
(13.1)

52.3  
(13.5)

70  
(0)

Women,  
% (n)

55.8  
(340)

58.2  
(1615)

57.6  
(395)

57.8  
(859)

56.3  
(404)

51.6  
(3561)

53.4  
(2458)

48.2  
(412)

COPD cases,  
% (n)

10.0  
(61)

12.1  
(336)

10.3  
(71)

9.0  
(134)

13.8  
(99)

0.6  
(43)

0.8  
(35)

NA

FEV1/FVC, 
mean (sd), %  
of all

NA 0.73  
(0.08), 

48.8

0.76  
(0.07), 

91.3

0.77  
(0.07), 

91.9

0.77  
(0.08),  

100

NA NA 0.76  
(0.11),  

100

BMI, mean  
(sd)

27.2  
(4.85)

27.4  
(4.1)

27.8  
(4.3)

27.4  
(4.5)

25.4  
(4.1)

26.6  
(4.5)

27.2  
(4.8)

27.1  
(4.26)

Current 
smokers, % (n)

43.3  
(264)

12.6  
(349)

9.5  
(65)

13.7  
(203)

20.5  
(147)

23.9  
(1648)

17.6  
(810)

10.2  
(87)

Ex-smokers,  
% (n)

30.0  
(183)

56.1  
(1559)

57.0  
(391)

50.2  
(746)

NA 22.9  
(1577)

26.3  
(1210)

41.5  
(354)

Never smokers,  
% (n)

26.6  
(162)

31.3  
(869)

33.5  
(230)

36.1  
(536)

79.4  
(570)

53.2  
(3673)

56.1  
(2580)

48.2  
(412)

Pack-years of 
smoking,  
mean (sd),  
% of alla

24.9 
(20.4) 
72.7

24.2  
(23.4), 

64.7

22.0  
(20.8)  
66.3

19.5  
(20.3)  
63.8

NA NA NA NA

Lipid lowering 
medication 
users, % (n)

12.3  
(75)

22.4  
(621)

32.5  
(223)

22.2  
(329)

3.9  
(28)

3.4  
(237)

15.7  
(721)

16.5  
(141)

RS-E5: consists of RS-I-5, RS-II-3 and RS-III-2; a Pack-years calculated in current and ex-smokers 
only, so “% of all” excludes never smokers; NA - not applicable;

Comparing the discovery cohorts, ERF participants were younger (mean age 
49.0±13.3) and had a higher percentage of current smokers compared to the partici-
pants of the three RS cohorts (RS-I-4 mean age 74.8±6.5; RS-E5 mean age 68.4±5.7; 
RS-III-2 mean age 62.8±5.8). The RS cohorts had a higher percentage of lipid low-
ering medication users, compared to ERF (Table 1). The mean FEV1/FVC and BMI 
were comparable across the studies. Descriptive characteristics for COPD cases and 
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subjects without COPD separately in the discovery cohorts are provided in eTable 1 
in the Supplement. In general, COPD subjects were older and more often smokers 
compared with subjects without COPD.

Association of COPD and FEV1/FVC with metabolites
In the discovery sample, six plasma metabolites were associated with COPD at a 
significance level of 5% (Table 2, Figure 1).

Table 2. Metabolites associated with COPD in the discovery and replication studies

Metabolite

Discovery meta-analysis Replication meta-analysis

Β SE OR P-value Directiona N β SE OR P-value Directionb N

GlycA 0.152 0.044 1.16 5.6×10-4 ++++ 5557 0.266 0.053 1.30 1.8×10-6 +++ 12205

3-hydroxybutyrate 0.122 0.041 1.13 0.003 ++++ 5002 -0.031 0.057 0.97 0.662 +-- 12173

Histidine -0.097 0.047 0.91 0.037 ---- 5534 -0.153 0.063 0.86 0.020 --- 12200

Free cholesterol in 
med. HDL

0.099 0.049 1.10 0.045 +-++ 5557 0.004 0.063 1.00 0.867 +-- 12208

Acetoacetate 0.084 0.042 1.09 0.047 ++-+ 5551 -0.061 0.059 0.94 0.360 --- 12204

18:2, linoleic acid -0.095 0.048 0.91 0.049 +--- 5546 -0.036 0.057 0.96 0.238 +-+ 12167

Model adjusted for age, sex, BMI, lipid lowering medication and smoking status; GlycA – Glyco-
protein acetyls; HDL - high density lipoprotein; β - effect size; SE - standard error; OR - odds ratio; 
Direction - direction of the effect in individual studies; N - meta-analysis sample size; a Direction of 
the effect in the discovery studies in order: ERF, RS-III-2, RS-E5, RS-I-4; b Direction of the effect in 
the replication studies in order: DILGOM, FINRISK 1997, LLD; In bold: significant results (P<0.001).

Histidine

Valine

Album
in

Glutam
ine

Phenylalanine

Free cholesterol

in m
edium

 HDL 

18:2, linoleic acid

Triglycerides in 

very large HDL 

Acetoacetate

3−hydroxybutyrate

Glycoprotein acetyl

FEV1/FVC

COPD

Higher
concentration

Lower
concentration

*** Multiple testing corrected signi�icance threshold (P<0.001)
* Nominal signi�icance threshold (P<0.05)

****

*

Figure 1. Top metabolites associated with COPD and/or FEV1/FVC. Colors represent standardized 
effect estimates of the metabolite association with corresponding trait (COPD, FEV1/FVC). Red col-
or represents the trait associated with an increase in metabolite concentration, while blue repre-
sents a decrease. For replicated metabolites, replication significance threshold is shown with stars: 
*P<0.05 and ***P<0.001. HDL – high-density lipoprotein.
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At nominal significance, higher levels of GlycA (OR=1.16; P=5.6×10-4), 3-hydroxy-
butyrate (OR=1.13; P=0.003), free cholesterol in medium HDL (OR=1.10; P=0.045) 
and acetoacetate (OR=1.09; P=0.047) were associated with a higher prevalence of 
COPD. Higher levels of histidine and 18:2 linoleic acid (OR=0.91 for both, P=0.04 and 
P=0.05 respectively) were associated with a lower prevalence of COPD. When taking 
into account the multiple testing correction threshold, only GlycA was significantly 
associated with COPD (P= 5.6×10-4).

We tested all six metabolites for replication in the independent samples. The as-
sociation of higher levels of GlycA with COPD was significantly replicated (OR=1.30, 
P=1.75×10-4) in the 12,205 participants of the replication sample, after multiple test-
ing correction.

Findings for the FEV1/FVC ratio were not consistent over the discovery and rep-
lication studies. Adjusting for multiple testing, we found in the discovery cohorts 
that lower levels of valine (β=0.005, P=2.5×10-4) and higher levels of GlycA (β=-0.005, 
P=4.5×10-4) were associated with a lower FEV1/FVC ratio (Table 3, Figure 1). Other 
metabolites that reached nominal significance in the discovery included albumin 
which was positively associated with FEV1/FVC, and glutamine, triglycerides in 
very large HDL and phenylalanine which were negatively associated with FEV1/FVC 
(Table 3, Figure 1).

Only the association of FEV1/FVC to albumin showed nominal significance in the 
replication samples (β=0.005, P=0.03), but none were significantly associated when 
considering multiple testing correction.

Table 3. Top metabolites associated with FEV1/FVC - Results of the discovery and replication studies

Metabolite

Discovery meta-analysis Replication meta-analysis

Β SE P-value Directiona N β SE P-value Directionb N

Valine 0.005 0.001 2.5×10-4 +++ 3324 -0.0015 0.0023 0.5314 -+ 1460

GlycA -0.005 0.001 4.5×10-4 --- 3324 -0.0010 0.0022 0.6438 -- 1463

Albumin 0.004 0.001 0.0047 +++ 3324 0.0045 0.0021 0.0353 ++ 1463

Glutamine -0.003 0.001 0.0097 --- 3323 0.0029 0.0023 0.1923 ++ 1393

Triglycerides in 
very large HDL

-0.003 0.001 0.0160 --- 3324 0.0031 0.0022 0.1491 ++ 1469

Phenylalanine -0.003 0.001 0.0334 --- 3324 -0.0012 0.0023 0.5899 +- 1450

Model adjusted for age, sex, BMI, lipid lowering medication and smoking status; HDL - high density 
lipoprotein; β - effect size; SE - standard error; Direction - direction of the effect in individual stud-
ies; N - meta-analysis sample size; a Direction of the effect in the discovery studies in order: RS-III-2, 
RS-E5, RS-I-4; b Direction of the effect in the replication studies in order: LLD, PIVUS; In bold: sig-
nificant results (P<0.001).
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Association of smoking with metabolites
Although the above analyses were adjusted for smoking, metabolite levels may have 
changed as a consequence of smoking and may be an intermediary in the relation of 
smoking to COPD. We tested the association of smoking status and pack-years with 
the metabolite levels that were significantly associated with COPD. The results are 
presented in the eTable 2 in the Supplement. GlycA was significantly positively as-
sociated with both smoking status (current, ex- or never smoker) and pack-years of 
smoking (β=0.15, P=1.31×10-22 and β=0.006, P=2.52×10-16, respectively). eTable 2 in the 
Supplement also shows the replication of the association between the metabolites 
and smoking status in the FINRISK1997 and DILGOM studies. Data on pack-years 
was not available in these replication studies. When excluding COPD cases from 
the discovery sample, the identified associations of GlycA with smoking status and 
pack-years attenuated, both in the effect size and p-value, yet remained significant 
(eTable 3 in the Supplement).

Association of genetic variants of circulating GlycA and COPD with 
metabolites
Next, we performed a Mendelian Randomisation experiment investigating the 
hypothesis that: 1) GlycA is increasing the risk of COPD and therefore the genetic 
determinants of GlycA (used as instrumental variables) are also associated with 
COPD and 2) the opposite scenario is true in which (pre)clinical COPD pathology 
increases GlycA levels. The results of both models are presented in Table 4.

Table 4. Results of the bidirectional Mendelian randomization approach on GlycA and COPD.
Model Exposure Outcome R2 nSNP β SE P-value Ors Phet

1 GlycA COPD 0.023 9 -0.001 0.047 0.988 13.6 0.09

2 COPD GlycA 0.03 7 0.165 0.053 0.0018 9.6 0.14

R2 - the explained variance in the exposure by applied genetic risk score; nSNP - number of SNPs 
used to construct the genetic risk score; β - the weighted effect of the genetic risk score of exposure 
on outcome; SE - standard error; Significance threshold = P-value < 0.05; Ors: heterogeneity test 
statistic; Phet: heterogeneity test P-value

The GRS for Model 1 included nine independent SNPs (R2=0.023, eTable 4 in the 
Supplement) and yielded no significant evidence for association (P=0.99). In Model 
2, we found that genes associated with a higher risk of COPD are also associated with 
higher levels of GlycA (Table 4, P=0.002), suggesting that COPD pathology increased 
GlycA levels. This analysis is based on seven independent SNPs in the GRS (R2=0.03, 
eTable 5 in the Supplement). No heterogeneity effect or potential pleiotropic SNPs 
were found in either model.
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Is circulating GlycA predictive biomarker for COPD?
The question to answer next is whether GlycA in the circulation is a biomarker of 
early pathology thus can be used as a predictive or diagnostic biomarker or rather a 
prognostic biomarker for mortality in COPD patients. To this end, we performed an 
analysis in the Rotterdam Study in which we associated GlycA to the future risk of 
COPD. We determined the relative risk by quartile of the GlycA concentrations in the 
circulation, using the lowest quartile as a reference (eTable 6 in the Supplement). 
Only incident patients are included in these analyses; prevalent COPD patients are 
excluded. Compared to the lowest quartile, those subjects in the highest quartile of 
GlycA had a 1.99-fold (95% Confidence interval: 1.52-2.60) higher risk of COPD, after 
adjustment for age, sex, BMI and lipid lowering medication. Smoking accounted for 
a part of the observed association between plasma GlycA and COPD attenuating the 
OR for those in the highest quartile of GlycA to 1.74, while the association remained 
significant (95% Confidence interval: 1.32-2.28). To test whether circulating GlycA 
adds to the predictive value, we compared the AUC curves for the models including: 
1) age and sex (AUC=0.601); 2) age, sex and smoking (AUC=0.670) and 3) age, sex, 
smoking and circulating GlycA levels in blood (AUC=0.675). The AUC comparing 
model 2 and 1 shows that smoking is associated with an increase in AUC by 0.069. 
Adding circulating GlycA increased the AUC further by only 0.005 (eFigure 1).

Is circulating GlycA a prognostic biomarker for mortality in COPD?
Previous study has shown that GlycA is a predictor of mortality.32 We confirm this 
in current study, after adjustment for age, sex and smoking (HR=1.16, P=4.93×10-9) 
(eTable 7). We therefore tested the hypothesis that GlycA is a marker of COPD re-
lated to future mortality. We first compared mortality across the quartiles of GlycA 
and found that those in the highest quartile have 1.42-fold (95% Confidence interval: 
1.24-1.63, P=7.61×10-7) increased risk of mortality during follow-up compared to 
those in the lowest quartile (eTable 7). However, when stratifying these analyses 
by COPD status, we observed that this association is driven by controls (eTable 7, 
eFigure 2). In COPD patients, circulating GlycA levels were not significantly associ-
ated with mortality when studying GlycA as a continuous variable (HR=1.06, P=0.31) 
nor for those in the highest quartile (HR=1.02, P=0.93 in COPD cases). In those 
without COPD, the association of GlycA to mortality was stronger and significant 
(HR=1.18, P=1.32×10-9).
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Discussion

In our metabolome-wide discovery analysis we identified 11 plasma metabolites 
associated with COPD or lung function levels (FEV1/FVC) at marginal significance. 
Of the 11, only higher levels of GlycA were significantly associated with COPD when 
adjusting for multiple testing and this is the only metabolite we could replicate in an 
independent sample. The association of GlycA with COPD remained significant when 
adjusting for smoking. GlycA levels in the circulation were significantly associated 
with smoking. Our MR analysis showed that the genetic predisposition to COPD 
associates with GlycA. Although GlycA was found to be a predictor of mortality in 
the general population,33 the metabolite did not predict mortality in COPD patients.

The most convincing and interesting finding of our study is that of GlycA. We 
recently associated this metabolite with the incidence of a variety of disorders, 
including COPD in our study based on record linkage.7 The record linkage study 
focussed specifically on the relation of GlycA with a wide variety of disorders. Using 
two population-based cohorts, we identified new associations with GlycA including 
incident COPD, alcoholic liver disease, chronic renal failure, glomerular diseases 
and inflammatory polyarthropathies. The GlycA associations were for a large part 
independent of that of high-sensitivity C-reactive protein (hsCRP), but GlycA and 
hsCRP also share contributions to mortality risk, suggesting chronic inflammation 
as the common pathway. GlycA is shown to be a biomarker for chronic inflamma-
tion, neutrophil activity and risk of future severe infection, even superior compared 
with CRP.34,35

The present study extends our findings published previously in that we have 
increased the number of NMR metabolites studied and found that GlycA is the only 
metabolite significantly associated with COPD when adjusting for multiple testing. 
In the present study we also have studied effects of GlycA beyond COPD, and found 
GlycA is consistently associated with smoking status and quantity (pack-years 
of smoking). Smoking is related to GlycA levels in the circulation but it does not  
explain the association between GlycA and COPD. This is compatible with the view 
that smoking, the major driver of COPD risk in the population, is associated with 
GlycA which in turn is associated with COPD risk. In the present paper we used data 
integration approach (MR) to test the hypothesis that GlycA increases the risk of 
COPD causally or rather is a biomarker that is part of the disease pathogenesis. The 
findings of the present paper suggest that the latter is more likely, as the genes as-
sociated with COPD also associate with GlycA levels. No marginally significant sup-
port was found for the hypothesis that GlycA is a determinant of COPD: the genes 
that are known to determine GlycA levels are not associated with the risk of COPD. 
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In the present paper we do not find evidence that GlycA is associated with COPD 
mortality. Such a relationship was seen in our findings for cardiovascular disease. 
GlycA not only increased the risk of incident cardiovascular disease7,36 but was also 
associated with a 5-fold increased 12-year risk of mortality in those with the highest 
GlycA levels.7

GlycA, also called orosomucoid,37 is a positive acute phase protein, and its concen-
tration increases in response to systemic tissue injury, inflammation or infection.38 
GlycA is mainly produced by the liver, but it is also synthesized in myelocytes and 
released by activated neutrophils.39 Being a type I acute phase protein, GlycA is in-
duced by cytokines, interleukins and tumor necrosis factor alpha (TNFα),40,41 which 
among others stimulate a systemic inflammatory response in COPD patients who 
lose weight.42 GlycA is one of the main drug binding proteins, carrying basic and 
neutral lipophilic drugs such as steroid hormones or medications in blood.43

A strength of our study is that it is the largest and most comprehensive metabolic 
study of COPD and lung function. Another strength is the use of the NMR platform, 
which is valued for being non-invasive, non-destructive, fast and for providing 
highly reproducible results.44 Our MR approach allowed us to gain more insight into 
the direction of the effects, yielding a new interpretation of our data suggesting that 
GlycA is an independent risk factor of COPD. Yet we have to acknowledge that a limi-
tation of MR is that our knowledge of the genetic determinants of both COPD and 
GlycA is very limited. In addition, we acknowledge possible limitations of MR due to 
pleiotropy, the lack of trans-ethnic studies and remaining bias due to canalization. 

Altogether, combining the epidemiological data with our MR analyses suggests 
that GlycA is a predictor of COPD and may be a mediator in the causal pathway 
linking smoking to COPD. Further functional studies investigating the role of GlycA 
in COPD will provide more insight into the pathogenesis, prognosis and treatment 
response of COPD and lung function decline. Our study highlights the power of 
cross-omics and epidemiological data integration.
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Abstract

COPD is a complex disease which co-occurs with a range of pulmonary and systemic 
pathologies. The co-occurrence may be explained by common determinants or a 
joint pathogenesis that may in part be driven by genetic factors. We explored the 
genetic overlap between COPD and comorbid conditions. For this study, genome 
wide association study (GWAS) summary statistics for COPD were obtained from 
the International COPD Genetics Consortium (ICGC). Linkage Disequilibrium (LD) 
regression was used to determine the genetic correlation of COPD with phenotypes 
for which GWAS summary statistics data are publicly available at the LD Hub data-
base on 16th February 2019 (http://ldsc.broadinstitute.org/ldhub/). 

As expected, we find marginal significant evidence for genetic correlation of 
COPD with a variety of comorbidities including cardio-metabolic traits (acute myo-
cardial infarction, coronary artery disease, angina pectoris, hypertension, diabetes, 
chronic kidney disease). The strongest association were seen for diabetes based 
on significance and essential hypertension in terms of strength of correlation. An 
unexpected but intriguing finding is the correlation of COPD with family history of 
depression in siblings (most significant finding) and attention deficit hyperactivity 
disorder (strongest correlation). Finally, we find marginal evidence for significance 
of genetic correlation of COPD to female reproductive traits, autoimmune diseases 
of the bowel and aging disorders such as cataract.

This study pinpoints diseases that are genetically correlated with COPD and 
highlights the significance of studying comorbidities of COPD.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a common cause of morbidity and 
mortality worldwide, characterized by persistent and progressive limitation in lung 
function.1,2 COPD often co-occurs with other pulmonary pathology. Co-occurrence 
may be explained by a shared pathogenesis which is part of the COPD pathology 
spectrum or a consequence of COPD.3 The disorders associated with COPD include a 
range of pulmonary pathologies such as asthma, pneumonia, pulmonary hyperten-
sion, pulmonary embolism, obstructive sleep apnoea, idiopathic pulmonary fibrosis 
and lung cancer. However, COPD is also a systemic disorder that is associated with 
non-pulmonary comorbid diseases.4,5 These involve cardio-metabolic pathology, 
loss of bone mass density, depression, among many others.6

Both the pulmonary and non-pulmonary comorbidities may in part be explained 
by common factors such as smoking, sedentary behavior, lcohol, diet, ageing and 
polypharmacy or by shared pathophysiological mechanisms such as the sys-
temic inflammation.4,6 There is evidence for genetic correlation between COPD and 
asthma.7 Although only one of the COPD loci identified to date was also genome 
wide significantly implicated in asthma,7,8 an integrative genomic approach called 
Linkage Disequilibrium (LD) regression brought to surface a strong and significant 
genetic correlation between COPD, asthma and lung function parameters.7 In addi-
tion, there was also a significant evidence for genetic correlation with height and 
smoking.7 To our knowledge, up until now, only these specific traits were tested us-
ing a “candidate-disease” approach based on prior knowledge of COPD comorbidity.

The aim of the present analyses was to explore the genetic overlap between COPD 
and other diseases using LD regression and the wealth of GWAS data available for 
data mining.

Methods

For this study, GWAS results for COPD were obtained from the largest study per-
formed to date by Hobbs et al.7 This study was conducted by the International COPD 
Genetics Consortium (ICGC), in which 22 studies with GWAS and COPD data (case-
control or population based) were included. For the COPD GWAS, the consortium 
performed a genetic association analyses in 15,256 cases and 47,936 controls. To 
benchmark the finding the consortium replicated top results (P < 5×10−6) in 9,498 
cases and 9,748 controls. In the combined meta-analysis, 22 loci were associated to 
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COPD at genome-wide significance. All SNPs, independent of the significance, are 
included in the genetic correlation analysis of the present study.

LD regression exploits data of the GWAS, available in the public domain. For many 
different comorbidities, summary-level GWAS results are publicly available at LD 
Hub for LD regression.9 We evaluated the genetic correlations of COPD with the 126 
diseases on LD Hub (access date: 16th February 2019). For a given pair of traits, LD 
score regression estimates the expected population correlation between the best 
possible linear SNP-based predictor for each trait. The analysis is restricted to 
common SNPs. As pulmonary comorbidities are already investigated and shown to 
have genetic overlap with COPD, we were interested in extra-pulmonary comorbid 
conditions. As we focus on the question whether there is a genetic overlap between 
COPD and extra-pulmonary disorders, we focus on disorders and other determi-
nants that are positively correlated to COPD.

Results

Our LD score regression showed marginal significant positive correlations of COPD 
and 20 different traits. All significant (P<0.05) extra-pulmonary correlations are pre-
sented in Table 1. These and other diseases tested in the analysis are presented in 
Supplementary table 1, which also shows confirmation of the already established 
genetic overlap with pulmonary comorbidities. The most statistically significant ge-
netic correlation of COPD was found for depression of a sibling (rg=0.29; P=0.0007) 
while attention deficit hyperactivity disorder (ADHD) showed a remarkably strong 
correlation (rg=0.51; P=0.0031). Further among neuro-psychiatric diseases, we found 
evidence for correlation of COPD and schizophrenia (rg=0.09; P=0.049).

Various cardio-metabolic diseases were found to be genetically correlated to COPD. 
The strongest association in terms of significance is seen for diabetes diagnosed 
by doctor (rg=0.17; P=0.002). Also diabetes of a sibling and mother (rg=0.16; P=0.02 
and rg=0.17; P=0.02, respectively) is found to be positively correlated as well as high 
blood pressure diagnosed by doctor and essential hypertension (rg=0.11; P=0.01 and 
rg=0.36; P=0.04, respectively). We also see marginal evidence for genetic correla-
tion with acute myocardial infarction (AMI, rg=0.21; P=0.02), syncope and collapse 
(rg=0.23; P=0.03), angina pectoris (rg=0.15; P=0.03) and heart attack diagnosed by 
doctor (rg=0.14; P=0.05). Finally, in this paper, we show significant genetic correlation 
to coronary artery disease (CAD, rg=0.11; P=0.05) which was reported earlier, but was 
not significant.7 We further found evidence for correlation to typical aging disorders 
including, senile cataract (rg=0.32; P=0.03), and chronic kidney disease (rg=0.26; 
P=0.03), which is strongly associated to hypertension and cardiovascular disease.
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Among the other diseases found to show marginal genetic correlation with 
COPD were inflammatory bowel disease (rg=0.14; P=0.01), Crohn’s disease (rg=0.13; 
P=0.02), and female reproductive conditions including excessive frequent and 
irregular menstruation and genital prolapse (rg=0.23; P=0.04 and rg=0.25; P=0.04, 
respectively). Finally, we found that a breast cancer of mother was genetically cor-
related to COPD (rg=0.18; P=0.05).

Table 1. Significant (P<0.05) genetic correlation results of COPD with comorbidities
Comorbidity Study PMID Ethnicity rg SE h2 P

Illnesses of siblings: Severe 
depression

UKBB European 0.289 0.085 0.014 0.0007

Diabetes diagnosed by doctor UKBB European 0.171 0.056 0.043 0.0021

Attention deficit hyperactivity 
disorder

27663945 European 0.510 0.173 0.075 0.0031

Inflammatory Bowel Disease 26192919 European 0.137 0.055 0.321 0.013

High blood pressure diagnosed by 
doctor

UKBB European 0.105 0.043 0.116 0.014

Crohns disease 26192919 European 0.133 0.056 0.493 0.018

Diagnoses - main ICD10: I21 Acute 
myocardial infarction

UKBB European 0.207 0.089 0.010 0.020

Illnesses of siblings: Diabetes UKBB European 0.162 0.071 0.021 0.022

Illnesses of mother: Diabetes UKBB European 0.165 0.072 0.019 0.022

Diagnoses - main ICD10: H25 Senile 
cataract

UKBB European 0.317 0.141 0.004 0.025

Chronic Kidney Disease 26831199 Mixed 0.255 0.114 0.019 0.025

Diagnoses - main ICD10: R55 
Syncope and collapse

UKBB European 0.230 0.108 0.006 0.033

Angina pectoris diagnosed by doctor UKBB European 0.153 0.072 0.022 0.034

Diagnoses - main ICD10: N92 
Excessive frequent and irregular 
menstruation

UKBB European 0.227 0.107 0.008 0.035

Diagnoses - main ICD10: N81 Female 
genital prolapse

UKBB European 0.248 0.121 0.006 0.041

Diagnoses - main ICD10: I10 
Essential (primary) hypertension

UKBB European 0.361 0.179 0.003 0.044

Coronary artery disease 26343387 Mixed 0.110 0.056 0.079 0.047

Heart attack diagnosed by doctor UKBB European 0.144 0.072 0.019 0.047

Schizophrenia 25056061 Mixed 0.091 0.046 0.458 0.049

Illnesses of mother: Breast cancer UKBB European 0.177 0.090 0.010 0.050

Study PMID: PubMed ID for a given GWAS used in the analysis; UKBB: United Kingdom BioBank 
- unpublished GWAS results; rg: genetic correlation coefficient; SE: standard error of rg; h2: SNP 
heritability; P: P-value.
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Discussion

In this study focussing on the question whether there is a genetic overlap between 
COPD and extra pulmonary disorders, we find marginally significant evidence for 
genetic correlation of COPD with psychiatric, cardiovascular, inflammatory disor-
ders of the bowel, age-related disorders such as cataract and female reproductive 
system disorders. Of note is that for three disorders (diabetes, severe depression 
and breast cancer) we find evidence for genetic correlation of COPD with family 
history rather than the co-occurrence of the disease in an individual.

COPD is genetically correlated to wide range of cardiovascular disorders (AMI, 
CAD and angina pectoris) and their risk factors (hypertension, diabetes, chronic 
kidney disease). The genetic correlation of COPD to cardiovascular disease is ex-
pected based on the findings that COPD and cardiovascular comorbidities may have 
common pathogenic mechanisms and that cardiovascular mortality accounts for 
20-30% of deaths in COPD.10,11

Lung function has been found to be a better predictor of cardiovascular mortality 
than cholesterol.12 Yet, previous study failed to show significant genetic overlap of 
COPD with cardiovascular disease.7 Using larger genome wide association studies, 
we confirm the genetic overlap with cardiovascular disease and its risk factors. Of 
note is that diabetes shows the strongest genetic correlation in term of statistical 
significance. Not only diabetes of the person but also the family history of diabetes 
in siblings and the mother are found to be genetically correlated to COPD. Such cor-
relations with family history strongly suggests a joint genetic aetiology. Although 
not the most significantly correlated, the strongest genetic correlation with COPD 
and cardiovascular pathology is seen for essential hypertension.

COPD is more strongly genetically correlated to neuropsychiatric pathology than 
to cardiovascular pathology, both in terms of statistical significance (family history 
of depression in a sibling) and strength of correlation (ADHD). These findings are 
both puzzling and intriguing, in particular for ADHD, which is not only the third 
most significantly associated disorder but shows an extremely strong association 
to COPD, a disorders with a typically late onset and a strong link to smoking. It is 
tempting to speculate that, as both disorders show a strong association to smoking, 
ADHD is also significantly genetically correlated to lung cancer. However, ADHD 
is also genetically correlated to diabetes and related traits, which may be another 
logical pathway.

The strong genetic correlation between COPD and family history of depression 
in a sibling is of interest since the prevalence of depression in COPD is high.13,14 Also 
it has been suggested that relationship between depression and COPD is likely to 
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be bidirectional, in that COPD may increase the risk of depression and vice versa, 
depression may increase the risk of COPD.15 However, we found no significant ge-
netic overlap between depression and COPD in the same person which is difficult 
to explain. This is why we further tested the correlation of COPD and major depres-
sive disorder using results of the largest to date GWAS on depression17 and showed 
borderline significant correlation (rg=0.25, P=0.058). This can mean that increasing 
sample sizes further we can reach enough power to detect true risk variants which 
play a role in the overlapping pathways. However, at this point we cannot exclude a 
false positive finding. The same holds for the genetic correlation of COPD to schizo-
phrenia, which is a disease associated with many loci in the genome, which may 
generate false positive findings.

There are two other disorders for which we also only find a positive family his-
tory is genetically associated to COPD: diabetes and breast cancer in the mother. 
The genetic overlap with diabetes is very consistent for the person her/himself and 
the family history. For breast cancer the same problem occurs as with depression: 
no genetic correlation is found with the disease itself. These finding should be fol-
lowed up in the near future. Finally, to our knowledge, we found for the first time 
evidence for a genetic correlation between COPD and cataract and inflammatory 
gastrointestinal disorders. Also this finding raise interesting hypothesis: the genetic 
correlation of COPD and cataract may be related to diabetes while the genetic cor-
relation of COPD and inflammatory gastrointestinal disorders may be explained by 
common immune pathways.

Although we both confirmed long expected genetic correlations with cardiovas-
cular disease and found new intriguing ones, this study is by no means an endpoint. 
Our finding provide new leads into the comorbidity research. There may be various 
explanations for the genetic correlation including the genetic localization on the 
same chromosome, pleiotropy, i.e., the protein encoded by a gene has a biological 
function in the lung but also in other tissues, shared pathogenesis which may be 
partial, and/or that one trait is in the causal pathway of the other.
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Abstract

Importance: Depressive disorders arise from a combination of genetic and envi-
ronmental risk factors, however, the pathophysiology and underlying molecular 
events leading to depression remain elusive. Epigenetic disruption provides a 
plausible mechanism through which gene-environment interactions lead to depres-
sion. Large-scale epigenome-wide studies on depression are missing, hampering 
the identification of potentially modifiable biomarkers. Objective: To identify robust 
epigenetic mechanisms underlying depression in middle-aged and elderly persons 
using DNA methylation in blood. Design: We performed the first cross-ethnic meta-
analysis of epigenome-wide association studies (EWAS) within the framework of 
the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 
Consortium. Setting: Discovery EWAS was performed in nine population-based 
cohorts. Results of the EWAS from all cohorts were pooled using sample-size 
weighted meta-analysis. Replication of the top epigenetic sites from the discovery 
stage was performed in two independent population-based cohorts. Participants: 
The discovery sample included 7,948 individuals of European origin and the 
replication sample included 3,308 individuals of African-American and European 
origin. Only participants that were assessed for both depressive symptoms and 
whole blood DNA methylation were included in the study. Outcome: Whole blood 
DNA methylation levels were assayed with Illumina-Infinium Human Methylation 
450K BeadChip and depressive symptoms were assessed by questionnaire. Results: 
The discovery cohorts consisted of 7,948 individuals (48% female) with a mean age 
of 65.4 (SD=5.8) years. The replication cohort consisted of 3,308 individuals (74% 
female) with a mean age of 60.3 (SD=6.4) years. The EWAS identified methylation of 
three CpG sites including cg04987734 (p-value=1.57×10-8, n=11256, CDC42BPB gene), 
cg12325605 (p-value=5.24×10-9, n=11256, ARHGEF3 gene) and an intergenic CpG site 
cg14023999 (p-value=5.99×10-8, n=11256, chromosome=15q26.1) significantly associ-
ated with increased depressive symptoms. The predicted expression of CDC42BPB 
and ARHGEF3 was significantly associated with major depression in brain and fibro-
blasts, respectively. Conclusion: We report the first robustly associated methylated 
sites for depressive symptoms. All three findings point towards axon guidance as 
the common disrupted pathway in depression. Our findings provide new insights 
into the molecular mechanisms underlying the complex pathophysiology of depres-
sion. Further research is warranted to determine the utility of these findings as 
biomarkers of depression and evaluate any potential role in the pathophysiology of 
depression and their downstream clinical effects.
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Introduction

Depression is one of the most common mental health disorders that is projected 
to play a leading role in disease burden by the year 2030.1 In later life, depression is 
associated with disability, increased mortality, dementia and poor outcomes from 
physical illness.2 Further, more people aged over 65 years commit suicide than in 
any other age group, and most have major depression.3 Limited understanding of 
the molecular mechanisms underlying depression is a major bottleneck in the de-
velopment of innovative treatment, prognostic markers, and prevention strategies.

Studying depression is challenging, as it is a heterogeneous disorder with a multi-
factorial etiology.4 This heterogeneity increases with age as the incidence of chronic 
diseases and disability rises. The contribution of genetics to the risk of depression 
is moderate with heritability estimates ranging from 40 to 50%5 and modest (18%) 
in the elderly.6 Genome-wide association studies (GWAS) have recently identified 
numerous rare and common genetic variants associated with depression and 
related traits.7-10 However, genetic variation alone does not completely explain an 
individual’s risk for developing depression. Among environmental factors, adverse 
life-events and stress are major risk factors for depression.11 Converging evidence 
from animal and human studies suggest that psychosocial stressors trigger 
depression onset by inducing elevations in pro-inflammatory cytokines.12 These 
psychosocial stressors are also known to influence epigenetic mechanisms, such 
as DNA methylation13 that can drive sustained changes in gene expression.14 The 
high contribution of environmental factors to depression in the elderly makes DNA 
methylation an interesting candidate mechanism for studies of the molecular basis 
of late-life depression.

DNA methylation may be global or tissue-specific.15 Tissues likely to be involved 
in complex psychiatric disorders, such as brain, are not directly accessible from 
living patients. The, use of post-mortem brain tissue to study DNA methylation is 
a possible solution, although obtaining a sufficient sample size is challenging.16 To 
study differential DNA methylation associated with mental health symptoms on a 
large scale, peripheral tissues such as blood constitutes a useful proxy for detecting 
trans-tissue changes and the most appropriate tissue for biomarkers.16,17 Moderate 
correlation has been demonstrated between blood and brain tissues at non-tissue 
specific regulatory regions across the methylome.18 To date, several studies have 
assessed the correlation between depression and blood DNA methylation.19,20 How-
ever, these studies have been limited to a small number of DNA methylation sites 
(CpGs) and/or small samples. For instance, the largest published epigenome-wide 
association study (EWAS) assessed brain DNA methylation in 76 cases persons who 
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died during a depressive episode and 45 controls.21 Moreover, these studies com-
pared depressed cases with healthy controls. Depression represents an arbitrarily 
selected extreme of the continuum of varying severity and duration,22 whereas a 
broad phenotype approach can be more representative for the general population. 
In a large study consisting of 252,503 individuals from 68 countries showed that 
sub-threshold depressive disorders produce significant decrements in health and 
do not qualitatively differ from full-blown episodes of depression.23 A meta-analysis 
in individuals aged over 55 found two to three times higher prevalence of sub-
threshold depressive symptomology than major depression.24 Use of rating scales 
have therefore been recommended for the assessment of depressive problems in 
the elderly.2

In the current study, we performed EWAS of depressive symptoms using whole 
blood samples of 7,948 individuals of European ethnicity from the Cohorts for Heart 
and Aging Research in Genomic Epidemiology (CHARGE) consortium. We replicated 
our findings in 3,308 individuals of African-American and European ancestry. Finally, 
we used publicly available expression quantitative methylation (eQTM) loci and 
expression quantitative loci (eQTL) databases to identify the downstream effects of 
the associated methylation loci.

Materials and Methods

Study population
The study sample for the discovery analysis included a total of 7,948 participants of 
European ancestry from nine population-based cohorts of the CHARGE consortium 
(Table 1): Cardiovascular Health Study (CHS),25 Framingham Heart Study (FHS),26 
Helsinki Birth Cohort Study (HBCS),27 Cooperative Health Research in the Augsburg 
Region (KORA) study,28 two sub-cohorts from Lothian Birth-Cohort born in 1921 
(LBC1921)29 and 1936 (LBC1936),30 two sub-cohorts from Rotterdam Study (RS-III 
and RS-BIOS)31 and Generation Scotland: Scottish Family Health Study (GS) study.32 
These cohorts included community dwelling individuals, who were not selected 
based on disease status. Informed consent was obtained from all participants. The 
same cohorts have been successfully used to identify differentially methylated sites 
associated with cognitive traits,33 inflammation34 and smoking.35 The protocol for 
each study was approved by the institutional review board of each institution.

The replication sample included 3,308 participants, largely of African American 
origin from the Atherosclerosis Risk in Communities Study (ARIC)36 and European 
origin from the Women’s Health Initiative - Epigenetic Mechanisms of PM-Mediated 
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Cardiovascular disease (WHI-EMPC) that joined the consortium later for the repli-
cation phase of the study.37 Detailed information for each cohort is provided in the 
Supplementary Text.

Depressive symptoms assessment
Depressive symptoms were measured using self-reported questionnaires or struc-
tured interview performed by a trained researcher, psychologist, or psychiatrist 
at the same time point when blood samples were obtained for DNA methylation 
quantification (Table 1). Four cohorts (FHS, HBCS, RS-III, and RS-BIOS) assessed de-
pressive symptoms using the 20-item Centre for Epidemiologic Studies Depression 
(CES-D) scale,38 while CHS used the 10-item CES-D scale. Participants could score 
from zero to 60 (or 30 for CHS) points, where higher scores suggest more depres-
sive symptoms. WHI-EMPC used a cohort specific CES-D/DIS screening instrument, 
which is described in detail in the Supplementary Text. The LBC1921 and LBC1936 
assessed self-reported depressive symptoms using the Hospital Anxiety and 
Depression Scale-depression subscale (HADS-D),39 which consists of seven items. 
Participants could score from zero to 21. The KORA study used the self-administered 
Patient Health Questionnaire (PHQ-9)40 representing a depression module that 
scores each of the nine Diagnostic and Statistical Manual of Mental Disorders, 4th 
Edition (DSM-IV) criteria for depression from zero to three. The GS study assessed 
life-time history of depression using the Structured Clinical Interview for DSM-IV 
Disorders (SCID).41 The ARIC study assessed depressive symptoms using the 21-
item Maastricht Questionnaire (21-MQ). In all cohorts, depressive symptoms were 
analyzed as continuous variable except for GS, which studied depression status as 
binary trait.

DNA methylation sample and measurement
In all cohorts, DNA was extracted from whole blood and methylation levels were 
assessed using the Illumina-Infinium Human Methylation 450K BeadChip (Illumina 
Inc., San Diego, CA, USA) using standard manufacturer’s protocols. The 450K array 
includes more than 450,000 CpGs and is enriched for genic regions, covering 99% 
of all genes. DNA methylation data pre-processing, including quality control (QC) 
and normalization, was conducted per cohort using study-specific methods. In all 
cohorts, DNA methylation levels were quantified as β-values, which range from 
zero to one, and indicate the proportion of DNA strands in a sample methylated at 
a specific CpG. Detailed information about cohort specific DNA extraction, bisulfite 
conversion, DNA methylation profiling, normalization and QC is described in detail 
in the Supplementary Text.
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Statistical analysis

Epigenome-wide association analysis

In all cohorts, the association between depressive symptoms and CpG sites was as-
sessed using linear regression analysis in the R software. In the regression analysis, 
DNA methylation β-value at each CpG site was specified as the dependent variable 
and the depressive symptoms/depression as the predictor of interest. Association 
analysis was adjusted for age,42 sex,43 smoking35 (assessed at the time of blood 
sampling for methylation), methylation batch effects, white blood cell composition 
(imputed or directly measured), principal components estimated using genome-
wide genotype data to control for population stratification and familial relation-
ships when required. Cohort specific details of these analyses are provided in the 
Supplementary Text. Further, sensitivity analysis was performed by adjusting the 
initial model for antidepressant medication use at the time of sample collection.

To pool the results from independent studies we performed sample-size weighted 
meta-analysis in METAL.44 We chose the ‘sample-size weighted’ method because of 
the differences in the measurement scales of depressive symptoms across studies. A 
drawback of using sample-size weighted method is that no pooled effect estimates 
are generated. To obtain pooled effect estimates we additionally performed inverse-
variance weighted meta-analysis for the top sites in cohorts that used CES-D 20 item 
scale for the assessment of depressive symptoms. CpG sites missing in more than 
three of the participating cohorts were removed. In total, 484,516 probes were tested 
for association, giving a Bonferroni-corrected genome-wide significance threshold 
of 0.05/484,516 = 1.03×10-7. All CpG sites suggestive of association (p-value ≤ 10-5) 
were tested for association in the independent replication cohorts using the same 
model as used in the discovery EWAS. Finally, a sample size weighted meta-analysis 
was performed for all cohorts included in the discovery and replication phases in 
METAL. To evaluate the contribution of each study to the association results we 
generated posterior probabilities of the effects in each study (M-values) using the 
METASOFT package.45 M-value and Forest plots for z-scores were generated using 
custom-made scripts in R. For annotating CpG sites we used the annotation pro-
vided by Illumina and the UCSC database (GRCh37/hg19).

Gene expression analyses

To evaluate the downstream effects of the three identified CpG sites in blood we 
used the BIOS database to search for eQTM.46 To evaluate whether the expression of 
the genes associated with or harbored the significant methylation site is associated 
with major depression (also smoking and inflammation to check specificity) we 
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used the MetaXcan package.47,48 MetaXcan associates the expression of the genes 
with the phenotype by integrating functional data generated by large-scale efforts, 
e.g., Genotype-Tissue Expression (GTEx) with that of the GWAS. MetaXcan is trained 
on transcriptome models in 44 human tissues from GTEx and is able to estimate 
their tissue-specific effect on phenotypes from GWAS. We used the GTEx-V6p-
HapMap-2016-09-08 database and the publicly available GWAS datasets of major 
depression,49 and C-reactive protein50 and smoking,51 which represent important 
potential confounders in the present study.

Causal inference analysis

To help infer causal relationships, we studied the cis-SNPs identified by the BIOS 
consortium46 as instrumental variables for the CpG sites as proposed by Smith et 
al.52 We checked the association of these cis-SNPs with depression, smoking and 
inflammation in the published GWAS of these traits. Similarly, we checked whether 
the single nucleotide polymorphisms (SNPs) associated with inflammation (CRP 
levels),50 smoking51 and depression7 were associated with the identified CPG sites 
using the BIOS consortium database. We chose smoking and inflammation as these 
are highly correlated with both depression and DNA methylation and thus could 
influence the relationship between depression and DNA methylation.

Results

The mean age in the discovery cohorts ranged from 52.4 years (SD=8.1) in GS to 79.1 
years (SD=0.57) in LBC1921. Forty-eight percent of the total discovery sample were 
female. The replication cohort comprised 74% women and had an average age of 
60.3 years (SD=6.4) (Table 1).

Epigenome-wide association analysis

In the meta-analysis of depressive symptoms of European ancestry, we identified 
one CpG site on chromosome 14q32.32 (cg04987734, CDC42BPB, p-value=4.93×10-8, 
n=7948) that passed the Bonferroni threshold for significance (Table 2, eFigure 1). 
Further, suggestive association was observed at 19 additional CpG sites (Table 2).

Adjusting for anti-depressive medication use did not meaningfully change the 
results (eTable  1). No inflation in the test statistic was observed (Lambda=1.03, 
eFigure  2). We tested all 20 CpG sites for association in the replication sample. 
The top CpG site from the discovery (cg04987734) showed nominal association (p-
value<0.05, n=3308) with depressive symptoms in the validation data set (Table 2). 
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In addition, significant association of a CpG site (cg12325605; p-value=9.17×10-05, 
n=3308, Table 2) annotated to the ARHGEF3 gene with depressive symptoms was 
observed in the replication sample.

Meta-analysis of discovery and replication cohorts showed a significant association 
of both cg04987734 (p-value=1.57×10-08, n=11256) and cg12325605 (p-value=5.24×10-09, 
n=11256) with depressive symptoms (Table 2; Figures 1 and 2).

Also, an additional intergenic CpG site (cg14023999; p-value=5.99×10-08, n=11256) 
at chromosome 15q26.1 locus showed genome-wide significant association with de-
pressive symptoms (eTable 2, eFigures 3 and 4). The independent contributions of 
each cohort to the association signals of the three CpG are depicted in eFigure 5 and 
also provided in eTable 3. For all three CpG sites the association signals were not 
driven by a single cohort but appeared to be linearly related to the sample size, sug-

Table 1. Descriptive statistics of the discovery and replication cohorts.

Study Ethnicity N Female (%)
Mean Age 

(SD)
Current 

smokers (%)
Depressive 
symptoms

Antidepressant 
medication use 

(%)

Discovery (N = 7948)

CHS European 323 194 (60.1) 75.6 (5.2) 173 (53.6) CESD1 (10 item) 19 (5.9)

FHS European 2722 1508 (53.6) 58.5 (11.6) 948 (34.8) CESD2 (20 item) 251 (16.1)

HBCS European 122 0 (0) 65.2 (2.7) 24 (19.7) CESD2 (20 item) 11 (9.0)

KORA European 1727 882 (51.1) 61.0 (8.9) 250 (14.5) PHQ-93 82 (4.7)

LBC 1921 European 432 261 (60.4) 79.1 (0.6) 194 (44.9) HADS4 15 (3.5)

LBC 1936 European 916 452 (49.3) 69.6 (0.8) 504 (55) HADS4 30 (3.3)

RS III European 722 391 (54.2) 59.8 (8.1) 167 (23.1) CESD2 (20 item) 38 (5.3)

RS BIOS European 757 319 (42.1) 67.6 (5.9) 78 (10.3) CESD2 (20 item) 51 (6.7)

GSa European 227 151 (64.5) 52.4 (8.1) 46 (19.7) SCID5 44 (18.8)

Total 7948 4158 (48.4) 65.4 (5.8) 2384 (30.6) - 541 (8.1)

Replication (N = 3308)

ARIC African 2297 1445 (63) 56.1 (5.7) 584 (25.4) 21-MQ6 74 (3.3)

WHI-EMPC European 1011 1011 (100) 64.6 (7.1) 509 (50.3) CES-D/DIS7 61 (6.0)

Total 3308 2456 (74.2) 60.3 (6.4) 1093 (37.9) - 135 (4.7)

Characteristics are depicted as mean (SD), unless otherwise specified. CHC Cardiovascular health 
cohort, FHS Framingham Heart Study, HBCS Helsinki Birth Cohort Study, KORA Cooperative Health 
Research in the Augsburg Region, LBC Lothian Birth Cohort, RS Rotterdam Study, GS Generation 
Scotland Study, and a CASE-CONTROL STUDY, ARIC Atherosclerosis Risk in Communities Study and 
WHI-EMPC the Women’s Health Initiative - Epigenetic Mechanisms of PM-Mediated Cardiovascular 
disease; “(in brackets we state number of item of the questionnaires)”. 1 Irwin, M. et al. 1999. 2 
Radloff, LS. et al. 1977. 3 Kroenke, K. et al. 2001. 4 Zigmond, AS. et al. 1983. 5 First, MB. et al. 1996. 6 
Wattanakit,K. et al. 2005. 7 Burnam, MA. et al. 1988.
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gesting stronger association in larger studies (eFigure 5). Pooled effect estimates in 
cohorts that used CES-D scale suggest that a 1-unit increase in CES-D score increases 
methylation by 0.05% at cg04987734, 0.04% at cg12325605, and 0.03% at cg14023999.

Gene expression analyses

Cg04987734 was significantly associated with increased expression of CDC42BPB 
gene (FDR p-value=7.7×10-04, n=2101) and cg14023999 was significantly associated 
with decreased expression of SEMA4B (FDR p-value=4.7×10-03, n=2101) in blood 
(eTable 4). No significantly associated gene expression probes were identified for 
cg12325605 in blood. Further, the predicted expression of CDC42BPB gene in the 
brain (basal ganglia) (effect=0.14, p-value=2.7×10-03) and of ARHGEF3 in fibroblasts 
(effect=-0.48, p-value=9.8×10-04) was associated with major depression (eTable 5). 
No association was observed with either smoking or inflammation.

Table 2. Top DNA methylation sites associated with depressive symptoms in the discovery EWAS.

CpG site ID

Discovery
(N=7948)

Replication
(N=3308)

Meta-analysis
(N=11256)

Chr Location Gene symbol P-value P-value P-value

cg04987734 14 103415873 CDC42BPB 4.93×10-8 4.82×10-02 1.57×10-08

cg07012687 17 80195180 SLC16A3 3.47×10-7 1.58×10-01 4.45×10-06

cg08796240 16 70733832 VAC14 7.43×10-7 2.56×10-01 1.80×10-06

cg06096336 2 231989800 PSMD1; HTR2B 8.06×10-7 3.01×10-01 2.51×10-06

cg16745930 10 100220809 HPSE2 1.34×10-6 4.01×10-01 6.26×10-06

cg09849319 5 1494983 LPCATI1 1.81×10-6 4.64×10-01 1.04×10-04

cg17237086 22 40814966 MKL1 3.44×10-6 2.51×10-01 6.10×10-06

cg03985718 2 105924245 TGFBRAP1 3.61×10-6 8.54×10-01 6.53×10-05

cg21098005 20 44538605 PLTP 4.36×10-6 9.60×10-01 1.01×10-04

cg16466652 19 6271960 MLLT1 4.39×10-6 3.97×10-01 1.57×10-05

cg07884764 11 64107517 CCDC88B 5.03×10-6 9.99×10-01 1.25×10-04

cg01541347 7 4729920 FOXK1 5.64×10-6 3.77×10-01 8.46×10-04

cg02341197 21 34185927 C21or62 5.84×10-6 2.02×10-01 6.80×10-06

cg01947751 3 196728969 - 6.23×10-6 6.63×10-01 3.68×10-04

cg13747876 17 80195402 SLC16A3 6.32×10-6 1.04×10-01 2.93×10-06

cg12764201 1 105101123 CORT; APITD1 7.15×10-6 7.20×10-01 7.29×10-05

cg08295111 5 133866097 PHF15 7.87×10-6 5.76×10-01 5.64×10-04

cg18030453 3 45506216 LARS2 9.16×10-6 3.87×10-03 1.20×10-07

cg12325605 3 56810151 ARHGEF3 9.62×10-6 9.17×10-05 5.24×10-09

cg23282441 10 73533927 C10orf54; CDH23 9.69×10-6 1.77×10-01 8.63×10-06
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figure 1: regional association plot for the top cpG site cg04987734. The horizontal axis de-
picts the position in base pair (hg19) for the entire CDC42BPB gene region. The Vertical axis indi-
cates the strength of association in terms of negative logarithm of the association p-value. Each cir-
cle represents CpG site. Red dashed line indicates the genome-wide significance threshold. Below 
the horizontal axis the figure shows the regulatory information and correlation matrix of other CpG 
sites in the region with the top hit. Color intensity marks the strength of the correlation and color 
the direction of the correlation. Figure is made using web-based plotting tool and R-based package 
“CoMET” (http://comet.epigen.kcl.ac.uk:3838/coMET1/).
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figure 2: regional association plot for the top cpG site cg12325605. The horizontal axis de-
picts the position in base pair (hg19) for the entire ARHGEF3 gene region. The Vertical axis indicates 
the strength of association in terms of negative logarithm of the association p-value. Each circle 
represents CpG site. Red dashed line indicates the genome-wide significance threshold. Below the 
horizontal axis the figure shows the regulatory information and correlation matrix of other CpG 
sites in the region with the top hit. Color intensity marks the strength of the correlation and color 
the direction of the correlation. Figure is made using web-based plotting tool and R-based package 
“CoMET” (http://comet.epigen.kcl.ac.uk:3838/coMET1/). 
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Blood and brain correlation

We checked the correlation between methylation in blood and various brain regions 
at the three identified sites using a web-based tools, BECon18 and a blood brain DNA 
methylation comparison tool (http://epigenetics.essex.ac.uk/bloodbrain/). BECon 
showed strong correlation between blood and brain DNA methylation, e.g. methyla-
tion at cg04987734 in the CDC42BPB gene was highly correlated (r=0.81) between 
blood and the Brodmann area 7 that spans the medial and lateral walls of the pari-
etal cortex (eFigure 6). Methylation at the other two sites was negatively correlated 
with methylation in the Brodmann area 10 than spans anterior prefrontal cortex 
(cg12325605, r=-0.39; cg14023999, r=-0.42) suggesting strong but reverse methyla-
tion patterns in blood and brain (eFigures 7 and 8). However, the blood brain DNA 
methylation comparison tool that compares DNA methylation between blood and 
prefrontal cortex, entorhinal cortex, superior temporal gyrus and cerebellum, 
showed only modest correlations. For instance, methylation in blood at cg04987734 
showed the strongest correlation with methylation in superior temporal gyrus (r = 
0.18; http://epigenetics.essex.ac.uk/bloodbrain/?probe nameg=cg04987734), while 
methylation in blood at cg12325605 (http://epigenetics .essex.ac.uk/bloodbrain/?p
robenameg=cg12325605) and cg14023999 (http:// epigenetics.essex.ac.uk/bloodbr
ain/?probenameg=cg14023999) showed strongest correlation with methylation in 
cerebellum (r = 0.16 and 0.19 respectively). Nevertheless, the findings from the two 
databases suggest some degree of correlation between methylation in blood and 
methylation in brain for the three identified CpG sites.

Causal inference

In the BIOS database we identified two cis-SNPs for cg04987734 and 4 cis-SNPs for 
cg12325605 (eTable 6) and none for cg14023999. We took the most significant cis-
SNP as the proxy for the CpG sites if available. For cg04987734 we used rs751837 as 
a proxy and for cg12325605 we used rs3821412 as a proxy (top cis-SNP rs9880418 
was not available in the GWAS of depression, smoking or inflammation). Rs751837 
was suggestively associated with major depression (p-value=0.07; albeit in opposite 
direction) (eTable  7). Rs3821412 was not associated with any of the three tested 
phenotypes. None of the SNPs associated with depression, inflammation or smok-
ing was associated with any of the three CpG sites.
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Discussion

In this large-scale EWAS of depressive symptoms, we identified methylation at three 
CpG sites (cg04987734, cg12325605 and cg14023999) associated with depressive 
symptoms in the middle-aged and elderly persons. Cg04987734 is annotated to the 
CDC42BPB gene, cg12325605 to the ARHGEF3 gene, and cg14023999 lies in an inter-
genic region on chromosome 15q26.1 locus. The predicted expression of CDC42BPB 
and ARHGEF3 genes associate with major depression in brain and fibroblasts re-
spectively.

CDC42BPB (CDC42 Binding Protein Kinase Beta) encodes a member of the ser-
ine/threonine protein kinase family, which is an important downstream effector 
of CDC42 and plays a role in the regulation of cytoskeleton reorganization, cell 
migration and regulation of neurite outgrowth.53 CDC42BPB is highly expressed 
in the brain https://www.proteinatlas.org/ENSG00000198752-CDC42BPB/tissue. 
Hyper-methylation of cg04987734 has been associated with increased expression of 
CDC42BPB in blood.46 Interestingly, methylation levels at this CpG site (cg04987734) 
in CDC42BPB gene were also previously associated with C-reactive protein (CRP) 
levels in blood;34 and smoking.35 In our study, however, we adjusted for smoking 
in the regression model; therefore, the association between depression and DNA 
methylation of this CpG site may be independent of smoking habits. Also, our causal 
inference analyses provide no support for the possibility that smoking, or inflam-
mation explained the observed association with depressive symptoms nor the pre-
dicted expression of the gene showed an association with smoking or inflammation.

ARHGEF3 encodes for Rho Guanine Nucleotide Exchange Factor 3 protein. The 
gene is highly expressed (https://www.proteinatlas.org/ENSG00000163947-
ARHGEF3/tissue) in adrenal glands, brain and uterus. Both ARHGEF3 and CDC42BPB 
are co-expressed with several members of the Rho subfamily (RHOA, RHOB and 
RHOC; eFigures 9 and 10) of the Rho GTPase family that also includes CDC42.54 
The Rho family of GTPases is a family of small signaling G proteins involved in p75 
neurotrophin receptor (p75NTR)-mediated signaling55 and semaphorin signal-
ing pathways.56 P75NTR is a transmembrane receptor for neurotrophic factors of 
the neurotrophin family, which includes the brain-derived neurotrophic factor 
(BDNF).57 P75NTR is widely expressed in the developing central and peripheral ner-
vous system during the period of synaptogenesis and developmental cell death.58 
Both p75NTR and semaphorins are implicated in axon guidance.59,60 In this context, 
the third associated CpG site cg14023999 that lies in an intergenic region on chromo-
some 15q26.1 is also interesting. Cg14023999 is associated with decreased expression 
of SEMA4B gene in blood. SEMA4B encodes for Semaphorin 4B protein. Sema4B is 
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believed to function through a direct interaction with post-synaptic density protein 
PSD-9561 to promote synapse maturation.61-63 The knock-down of Sema4B causes 
a decrease in GABAergic synapse number62 suggesting a role in the assembly of 
excitatory and inhibitory postsynaptic specializations.63 Previously cg14023999 was 
found to be significantly correlated with Parkinson’s disease64 and significant as-
sociation of a CpG site in SEMA4B was observed in individuals with schizophrenia 
carrying the 22q11.2 deletion.65 These findings point towards a functional of SEMA4B 
in neuro-psychiatric disorders. When comparing our findings with that of the previ-
ous EWAS of depression, we did not find an overlap. These studies were small (<100 
individuals) and did not report reproducible results.20

To summarize, we report the first EWAS of depressive symptoms. We identified 
and replicated association of two methylation sites in the genome with depressive 
symptoms. A third site was identified in the meta-analysis of discovery and replica-
tion cohorts, which requires further replication. All three findings point towards 
axon guidance as the common disrupted pathway in depression (http://www.
genome.jp/kegg/pathway/hsa/hsa 04360.html). Our findings provide new insights 
into the molecular mechanisms underlying the complex pathophysiology of depres-
sion.

Strengths and limitations of the study
This is the largest epigenome-wide study of depressive symptoms reported to 
date. Our major strength is the sample size that enabled detection of a replicable 
epigenome-wide significant locus, which suggests that in blood, DNA methylation 
signatures associated with depression may be subtle and will require large samples 
to be detected. Using peripheral blood tissue for DNA methylation profiling 
is a limitation of this study, as DNA methylation is known to be tissue specific.66 
While peripheral blood is not considered to be the most relevant tissue for the 
pathophysiology of depression, some sites show correlated methylation profiles 
between-tissues.15,66 The three sites identified in our study show some degree of 
correlation between methylation in blood and various brain regions. Second, while 
replication in African-American samples suggests that some depressive symptoms 
related differences in DNA methylation may be similar across ethnicities,67-69 it may 
also have resulted in false negatives due to different genetic background. Third, 
in these analyses we mostly used quantitative measures of depressive symptoms. 
Quantitative endo-phenotypes provide powerful alternatives for several complex 
outcomes, for example, hypertension.70 This is likely to be especially true for a trait 
such as depressive symptoms, for which the severity and duration of illness can be 
highly heterogeneous.22 Genome-wide studies of depressive traits, using quantita-
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tive endo-phenotypes, have been suggested to improve statistical power.22 However, 
the use of different phenotypic measures by different cohorts means that there 
may be some loss of statistical power due to the heterogeneity in the phenotype 
assessment. Nevertheless, the top three sites in our study were robustly associated 
with depressive symptoms independent of the depressive symptom measure used. 
Fourth, although we adjusted for potential confounders, the possibility of residual 
confounding cannot be excluded. Antidepressant medication indicates treated 
depression but itself may result in epigenetic modifications involved in depression 
pathophysiology.71 Antidepressants can thus mediate or confound the relation 
between DNA methylation and depression. However, in sensitivity analysis addi-
tionally adjusted for antidepressant medication, our results did not change. Fifth, 
most cohorts included in this EWAS are cohorts of elderly persons. The aetiology 
of depression is more heterogeneous in elderly people than in younger and often 
hidden behind somatic symptoms, either because of somatization of the disorder or 
because of accentuation of symptoms of concomitant illness.72 This may affect the 
generalizability of the results to younger populations. Finally, we made an attempt 
to disentangle cause and consequence using SNPs associated with the identified 
CpG sites and depression, inflammation and smoking as instrumental variables. The 
results did not support a causative role yet the association of the predicted gene 
expression of CDC42BPB in brain and ARHGEF3 in fibroblasts with major depres-
sion does suggest a possible causal role of the regulatory effects of these genes.47
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This thesis aimed to identify novel risk factors for COPD, lower lung function, asthma 
and depression and to perform integrative studies to investigate the functional role 
and interaction of multiple omics layers. This chapter will emphasize the main find-
ings, discuss challenges, possible clinical implications and future directions of COPD 
research.

Findings of this thesis

COPD as a common and complex disease is a major public health burden.1,2 The aim 
of this thesis has been to identify novel molecular determinants of COPD, lower lung 
function and related pathology such as depression and to perform integrative stud-
ies to investigate the functional role and interaction of multiple omics layers. GWAS 
identified common genetic variants to be associated with COPD, however, they exert 
small effects and their functional role is unknown. In Chapter 2.1 of this thesis, I 
performed a genome-wide linkage scan to identify rare genetic variants associated 
with COPD. Genetic linkage analysis is a powerful tool to identify genomic regions 
shared among the affected family members. This was done in the large genetically 
isolated Erasmus Rucphen Family study. Using a genetic isolate, characterized with 
shared lifestyle and environment effects as well as less genetic variance, increases 
the power of the analysis. I found significant evidence for extensive linkage of COPD 
to the known COPD GWAS region, chromosome 15q14-15q25 and to two novel regions, 
11p15.4-11q14.1 and 5q14.3-5q33.2. More importantly, I was able to identify four patho-
genic, rare variants, shared by family members with COPD using exome-sequence 
data. They belong to the chromosome 11 peak, genes AHNAK, PLCB3, SLC22A11 and 
MTL5. The variants in SLC22A11 and MTL5 were confirmed in association with COPD 
in our meta-analysis of 9,888 cases and 27,428 controls. These two genes are both 
expressed in lung tissue and are interesting candidates. Further functional studies 
should confirm their role in respiratory pathology in general population. Although 
I confirm the linkage of chromosome 15 region, I could not identify any shared rare 
variants by means of exome-sequence data. This may be explained by the fact that 
only common variants are relevant, or, alternatively that common or rare regula-
tory variants outside of exons may play a key role in COPD. Future candidate-gene 
studies using whole-genome sequencing should further investigate the regions on 
chromosomes 5 and 15. Also, possible gene interaction studies are promising avenue 
for future of genetic COPD research.

It has been postulated that epigenetic modifications are in part driven by genetic 
variants.3 In attempt to integrate multiple -omics layers, I focused on the effects of 
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known COPD genetic variants from chromosomes 15q25.1 (Chapter 2.2) and 19q13.2 
(Chapter 2.3) on genome-wide DNA methylation in blood and gene expression 
in blood and lungs. Overall, findings of these two chapters highlight the need for 
integration of multi-omics data to further understand the role of GWAS loci.

In Chapter 2.2 I performed meQTL and eQTL study and showed evidence sug-
gesting that genetic variations underlying genes in the chromosome 15q25.1 region 
(in IREB2, HYKK and CHRNA3) influence COPD susceptibility through changes in 
blood DNA methylation of IREB2, PSMA4 and CHRNA3. Furthermore, I observed the 
association of the same variants with several cis and trans gene expression changes 
in the lung tissue. These results suggest a disease model in which COPD risk allele 
of CHRNA3 variant lowers DNA methylation and increases expression of IREB2 in 
COPD patients. We suggest mediation by DNA methylation levels in this region, but 
future studies using the data from the same tissue should confirm this hypothesis. 
Even though genetic variants in chromosome 15q25.1 (encompassing the nicotinic 
receptor genes - CHRNA3, CHRNA5 and CHRNB4) were also previously associated 
with smoking and smoking has a known effect on DNA methylation, our findings 
were independent of smoking, making the mediation by smoking not a necessary 
mechanism driving the relation between DNA methylation and COPD. Both smoking 
and genetic determinant may lead independently to differential DNA methylation. 
However, targeted studies in lung tissue should verify these findings.

Similarly, Chapter 2.3 shows that the top COPD GWAS variant in chromosome 
19q13.2 region (rs7937 in RAB4B, EGLN2) is associated with lower blood DNA 
methylation of EGLN2, independent of smoking and of COPD. I further showed that 
this DNA methylation site in EGLN2 is associated with COPD, again independent of 
smoking. Having both DNA methylation and expression data in blood, I performed 
a mediation analysis and showed that differential DNA methylation mediates 42% 
of the association between the genetic variant and differential expression of EGLN2. 
I also showed the effect of the variant on cis and trans gene expression changes 
in lung tissue of NUMBL, AK097370 (EGLN2), LOC101929709, DNMT3A and PAK2. Our 
findings are in line with our hypothesis that the life-long change in the DNA meth-
ylation is involved in the pathogenesis and onset of COPD in older age, yet further 
longitudinal studies are needed, testing this hypothesis in large set of lung tissue 
characterized for multi-omics data.

As smoking plays an important role in the disease development and has a known 
effect on epigenetic landscape, it is crucial to take this determinant into account in 
epidemiological studies of COPD.3,4 In lack of better assessment, self-reported cur-
rent smoking status (current-, ex- and never-smokers) is widely used variable. To 
truly remove smoking effects from the equation, the analyses should be performed 
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in never-smokers only. However, such stratification would significantly reduce the 
statistical power and the analysis would require large sample sizes to show the real 
effects. With the aim to investigate DNA methylation signature of airflow obstruc-
tion, independent of smoking effects, I performed the largest to date EWAS on lung 
function levels in never smokers only, presented in Chapter 2.4. I identified 36 DNA 
methylation sites that were highly significantly associated with FEV1/FVC. This 
chapter importantly contributes to the current understanding of epigenetic changes 
in COPD, when smoking effect is excluded. Moreover, this chapter presents current 
literature on blood DNA methylation in COPD and smoking and shows that the ma-
jority of the identified 36 DNA methylation sites are unique for never smokers. DNA 
methylation of KLHL32 and LTV1 genes, among others, indeed may play a role in the 
disease development in subjects with COPD that never smoked. Although we see as-
sociations in blood, many of the methylated genes are expressed in the lung tissue. 
Genetic variants in KLHL32 have been associated with post-bronchodilator FEV1 and 
FEV1/FVC in COPD.5 LTV1 is shown to be an enhancer of two genes identified in GWAS 
of FEV1/FVC response to bronchodilators (PLAGL1)5 and lung cancer (PHACTR2)6 in 
GeneHancer database.7 These findings propose a possible new regulatory pathway, 
independent of smoking, through which DNA methylation of LTV1 influences genetic 
susceptibility of COPD. Of course, this is just a hypothesis based on our findings and 
future functional studies of causality should investigate it further.

Chapter 3 of this thesis is investigating comorbidities of COPD which are known 
to influence the severity of the disease.8 Asthma is considered the most common 
comorbidity, being both a risk factor for COPD and a co-existing disease in the elder-
ly.9,10 There is a significant overlap between genetic risk factors of asthma and COPD, 
but the regulatory mechanisms are unknown.11 It is shown that lower lung function 
in childhood with subsequent normal or accelerated decline had increased risk of 
COPD.12 Early life allergic diseases, lung infections, parental asthma, and maternal 
smoking predicted worse lung function, while personal smoking amplified the effect 
of maternal smoking.12 In Chapter 3.1 we hypothesized that umbilical cord blood 
DNA methylation influences childhood lung function, lung development and gene 
expression, and increases the risk of asthma and COPD in later life. We performed 
large EWAS meta-analyses of FEV1, FEV1/FVC and Forced Expiratory Flow at 75% of 
FVC (FEF75). EWAS results were pooled into differentially methylated regions (DMRs) 
and 59 such DMRs in neonatal cord blood were associated with childhood lung func-
tion. Multiple DMRs were additionally associated with childhood asthma, adolescent 
and adult lung function, COPD and with differential gene expression. These findings 
suggest that epigenetic changes during foetal life might modify the risk of respira-
tory diseases across the life course. As epigenetic landscape of a foetus is highly 
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influenced by environment and maternal behaviour,13 identifying and reducing risk 
factors in pregnancy, may become a future strategy for prevention of lung diseases.

As COPD is a systemic disease, there are manifestations beyond the airflow ob-
struction, such as systemic inflammation, muscle degeneration and oxidative stress, 
which can result in a specific plasma biomarkers profile.14–16 The identification of 
these specific biomarker changes can identify or differentiate disease phenotypes 
even in the early stages of COPD.17 Therefore, in Chapter 3.2 I performed a hypoth-
esis-free analysis and identified and replicated the association of Glycoprotein 
acetyls (GlycA) with COPD, the only association that passed the multiple testing 
correction. The Rotterdam study and other epidemiological follow-up studies show 
that GlycA, as measured before the disease onset, increased the risk of COPD and 
may thus be a risk factor of the disease rather than a consequence. To validate the 
causal pathway, I further performed Mendelian Randomization (MR) analysis. This 
analysis clearly showed that the genes driving the risk of COPD, are also associated 
with GlycA. No evidence was found for the risk factor model in which the genes 
driving GlycA associate significantly to COPD. This finding suggest that GlycA is an 
early marker of COPD pathology. It is of interest that Chapter 3.2 shows that GlycA 
which is a marker of the acute phase response, also strongly associates to smok-
ing and may thus be a part of an inflammation pathway linking smoking to COPD. 
However, further functional studies should investigate the specific role of GlycA in 
COPD pathogenesis, prognosis, severity and treatment response.

Aside from asthma and other pulmonary conditions, many different comorbid 
diseases add to the burden of COPD. In attempt to identify common pathophysi-
ology and decipher the co-occurrence of those diseases, I performed the genetic 
correlation analysis of COPD with 126 diseases available on the LD hub database, 
presented in Chapter 3.3. I describe the significant correlation of neuro-psychiatric 
and cardio-metabolic pathology, as well as female reproductive conditions autoim-
mune diseases of the bowel and aging disorders such as cataract. Of note is, for 
the first time shown, significant correlation of coronary artery disease, acute myo-
cardial infarction, angina pectoris, hypertension, diabetes, chronic kidney disease, 
attention deficit hyperactivity disorder, schizophrenia, family history of depression 
(depression in sibling) and suggestive correlation with major depressive disorder.

The understudied comorbidity of COPD is depression, investigated in Chapter 3.4. 
As genetic risk factors of depression and COPD do not seem to overlap strongly (in 
Chapter 3.3), I studied different omics layers to try to identify common mechanisms 
explaining this co-occurrence. Depression related DNA methylation changes have 
poorly been studied, hence, we have performed largest to date EWAS of depressive 
symptoms. This chapter presents the identified DNA methylation sites annotated 
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to the CDC42BPB gene, ARHGEF3 gene, and one intergenic region on chromosome 
15q26.1 locus. All three findings point towards axon guidance as the common dis-
rupted pathway in depression. DNA methylation site in CDC42BPB gene was also 
associated with inflammation,18 smoking status3 and pack-years of smoking19 in two 
independent studies. It has been speculated that CDC42BPB may be a future bio-
marker of COPD20 and CDC42BPB is a downstream target of CDC42, whose expression 
is altered in obese children with astma.21 At the genetic level, CDC42BPB is associated 
with gamma-glutamyl transferase (http://atlas.ctglab.nl/phewas), which have been 
found to be differentially expressed in COPD mouse models.22 Identifying depres-
sion related DNA methylation sites was a first step towards unravelling the complex 
mechanisms underlying depression, but may also shed light on the co-occurrence of 
depression and COPD and the role of smoking. Future studies should investigate the 
role of identified genes in COPD and other way around. Using multi-omics approach 
for investigating comorbidities has a potential to disentangle these relations and 
provide better treatment options and prognosis for both diseases.

Methodological considerations

All studies in this thesis were performed using participants’ data from Rotterdam 
Study, a population-based cohort study consisting of 45 years or older people form 
Rotterdam. In addition, genetic linkage study (Chapter 2.1) and metabolic study 
(Chapter 3.2) used data from the Erasmus Rucphen Family study, a genetic isolate 
from southwest of the Netherlands. Aside from the two studies we also used several 
Dutch and international studies as part of collaborative efforts of big consortiums. 
Details and methodological issues of each study are discussed in each chapter of this 
thesis. Here I would like to mention several general issues important to be considered.

Smoking assessment
Tobacco smoking is one of the major risk factors for many chronic diseases and 
different types of cancers (Figure  1). Therefore, it is one of the most investi-
gated risk factors in epidemiological studies, yet the assessment of smoking has 
not been standardized. The effects of smoking are commonly assessed using self-
administered questionnaires and studied as different variables: smoking behaviour 
(current smoking status, ever smoking status), smoking quantity (pack-years of 
smoking, cigarettes per day), nicotine dependence (time from waking up until first 
cigarette),23 age of smoking initiation, smoking cessation, second-hand smoke and 
other. Also, tobacco is used in different ways: in form of cigarettes (different brands 
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vary in the amount of nicotine and noxious particles), smoked in pipes and chewed. 
Using self-administered questionnaires to assess very heterogeneous exposure 
may introduce information bias, due to the erroneous classification of subjects. 
Specifically, patients with lung diseases are shown to likely falsely report their 
smoking behaviour.24 The reason for this is often inaccurate memory of past events 
(recall bias) or deliberately understating as people tend to diminish the adverse 
behaviour.25 This leads to frequent underestimation of smoking rates and, when 
used as a confounder in regression analysis, to over- or underestimation of effect 
estimates. This is especially important in epigenetic and transcriptomic studies of 
lung diseases as DNA methylation and gene expression is known to be affected by 
smoking.3,26 Genetic studies have been identified risk loci associated with smoking, 
such as nicotinic receptors on chromosome 15, studied in Chapter 2.2 of this thesis. 
In attempt to exclude the smoking effect, in Chapter 2.4 I study DNA methylation 
in never smokers only. In Chapter 3.2 I investigate the role of smoking in the 
identified COPD-GlycA associations. When studying multi-omics of lung diseases, 
where smoking plays an important role, it is imperative to take real smoking ef-

Risks from Smoking
Smoking can damage nearly every part of your body

Figure 1. Diseases causally linked to smoking. Source: US Centers for Disease Control and Preven-
tion (https://www.cdc.gov/). In red: a new disease causally linked to smoking in the 2014 Surgeon 
General’s Report: The Health Consequences of Smoking—50 Years of Progress.
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fects into account. However, in most of the cohorts used in this thesis, in absence 
of a better assessment, smoking behaviour is measured using self-administered 
questionnaires as current smoking status (current, ex or never smokers) and pack-
years of any smoking (including cigarettes and pipes). Although self-administered 
questionnaire is quick, easy and cheap way of assessing smoking and thus widely 
used, the question remains whether it captures the real smoking exposure. Objec-
tive assessment of smoking biomarkers, such as nicotine, cotinine and the exhaled 
carbon monoxide concentrations, is available but is more expensive and less used 
in population-based studies.27 These methods would undoubtedly report actual cur-
rent smoking exposure, even in never-smokers exposed to second-hand smoke, but 
would not show difference between never-smokers and ex-smokers.28 It is shown 
that there is a big discrepancy between self-reported and objectively measured 
current smoking status.24,29 While the next generation technologies for assessment 
of omics data are developing fast and large datasets are readily available through 
national biobanks and large consortia, phenotyping of smoking exposure is still 
plummeted with misclassification of subjects. Therefore, it is of utmost importance 
for objective smoking assessment methods to become more widely used, especially 
in the next-generation multi-omics studies of lung diseases.

DNA methylation assessment
All cohorts included in the epigenetic studies of this thesis were quantifying DNA 
methylation using Infinium Human Methylation 450 Bead Chip from llumina, the 
array with more than 450 thousand CpG sites. It is known that 450K array measures 
only 1.7% of all CpGs mostly covering CpG-islands.30 CpG island is a stretch of DNA 
with the highest frequency of CpGs, mostly located in the gene promotor regions 
and gene bodies. Therefore, when analysing data, limited genome coverage should 
be considered, as enhancer regions are almost completely missing. Furthermore, 
it has been discovered that some hybridization probes of 450K array co-hybridize 
to similar genomic sequences (cross-reactive CpGs) or target CpGs that overlap 
with genetic polymorphisms (polymorphic CpGs), so the measured methylation 
levels may reflect the underlying SNPs.31 Potentially cross-reactive and polymorphic 
CpGs can cause a measurement bias and have been annotated previously.31 This can 
confound the data, though unknown to which extent, and found associations should 
be interpreted with caution. Being a technical issue, adjusting for the underlying 
SNPs would not correct this error, while excluding the biased sites would possibly 
generate false-negative findings. To be stringent and sure of the validity of our find-
ings, in most of our epigenetic studies we have excluded both cross-reactive and 
polymorphic CpGs. Future studies using the new Illumina 850K EPIC array, in which 
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problematic CpGs are corrected and many more added, covering the enhancer 
regions, this issue should be solved.32

Tissue of interest
For the quantification of the multi-omics data, blood is the most commonly used 
tissue as it is easily obtained and cheap. However, when using blood in studying 
epigenetics, transcriptomics and metabolomics of lung diseases the question arises 
whether changes identified in blood represent the processes in the tissue of interest 
– the lungs. On the other hand, COPD represents more of a syndrome than a single 
disease including different phenotypes and underlying processes which we are still 
trying to comprehend. Those are airway obstruction in bronchitis, loss of lung pa-
renchyma in emphysema, as well as systemic effects such as the inflammation and 
oxidative stress as a response to the noxious particles, muscle wasting and changes 
in metabolism.33 It has been shown that those systemic effects are detectable in 
plasma e.g. through the role of the macrophage and neutrophils in the pathogenesis 
of COPD (Figure 2),34 justifying the use of blood as the tissue of interest.35,36 In this 

Figure 2. Summary of inflammatory and cellular interactions linking chronic cigarette exposure 
to the chronic inflammation of chronic obstructive pulmonary disease (COPD). Ab: antibody; Th: 
T-helper cell; MHC: major histocompatibility complex; TCR: T-cell receptor; CXCL: CXC chemokine 
ligand; IP: interferon (IFN)-γ-inducible protein; CCL: CC chemokine ligand; RANTES: regulated on 
activation, normal T-cell expressed and secreted; TSLP: thymic stromal lymphopoietin; IL: inter-
leukin; TNF: tumour necrosis factor; MCP: monocyte chemotactic protein; LT: leukotriene; CRP: 
C-reactive protein; TGF: transforming growth factor; EGF: epidermal growth factor; VEGF: vascular 
endothelial growth factor; MMP: matrix metalloproteinase. Source: Chung KF, Adcock IM. Eur Respir 
J. 2008;31(6):1334-1356. doi:10.1183/09031936.00018908.
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thesis blood was used for quantification of DNA methylation levels as well as gene 
expression and metabolic levels. However, for gene expression analyses described 
in Chapters 2.2 and 2.3 we confirmed the regulation of gene expression by the 
COPD-associated genetic variants in lung tissue. When integrating multi-omics lev-
els, it is very important to have all the data in lung tissue so that causal relationships 
involved in COPD pathophysiology can be investigated.

An important drawback to be discussed about the use of expression in blood is 
that it is quite heterogeneous tissue, consisting of many cell types, whose propor-
tions may vary in different people and with disease severity. In whole blood DNA 
methylation studies, such as those described in this thesis, different types of leu-
kocytes are used (lymphocytes, monocytes and granulocytes). As DNA methylation 
can be cell-specific, using a mix of cell types prone to inter-individual variability can 
give biased results.37 Therefore, these analyses should be adjusted for cell propor-
tions, either measured within the study or predicted based on the DNA methylation 
data using computational methods.38 In the chapters of this thesis we have used 
both measured cell proportions and estimated proportions utilizing Houseman 
method.39 However, it is important to consider that, while Housman estimation is 
good method to use for consistency in the big consortium efforts, it is based on half 
a dozen reference individuals and may not completely represent the proportions in 
the general population.

Causality
In this thesis we often performed cross-sectional association analyses, disabling us 
to claim any causal relationships between the studied exposure and the outcome. 
Even the variants identified in linkage analysis of Chapter 2.1 may not be causal 
for COPD but simply in a linkage disequilibrium with the causal variant which is 
not genotyped. The fact that the identified genes are expressed in the lung tissue, 
may suggest that the real causal variant is within the gene. However, any claims 
of causality should be taken with caution and confirmed by functional studies us-
ing knockout models. On the other hand, DNA methylation is a dynamic process 
subjected to change and influenced by both external and internal effects. In this 
thesis I have reported associations of GWAS SNPs with blood DNA methylation, 
further associated with COPD (Chapters 2.2 and 2.3), yet it may be that having 
COPD changes DNA methylation at those sites. I have also showed association of 
new-born cord blood DNA methylation with lung function and asthma and COPD in 
later life in Chapter 3.1. In this chapter, using different time points for measuring 
the data could suggest that reverse causality may not be possible, but this should 
be confirmed in future longitudinal studies on the same people. In Chapter 2.3, 
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having both DNA methylation and gene expression data derived from blood, I could 
perform mediation analysis and I showed that DNA methylation of EGLN2 mediates 
42% of the association between rs7937 and expression of EGLN2. This may suggest 
a direction of the effect, but the reverse causality may also happen, as differential 
gene expression can affect DNA methylation levels of EGLN2.

The Holy Grail for testing causality in observational epidemiological research is 
to conduct (nested) follow-up studies in which the exposure is measured before 
the disease. We conducted a nested follow-up study of various metabolites and 
COPD (Chapter 3.2) and found evidence that that Glycoprotein acetyls (GlycA) were 
associated with an increased risk of COPD. Recent development in genetics have 
made it possible to use genes as instrumental variable (IV) to test for causality using 
Mendelian Randomisation (MR; explained in Chapter 1). In Chapter 3.2 I tested 
the most likely causal pathway underlying the association of COPD with GlycA. I 
showed in this chapter that COPD is causally related to the elevated levels of GlycA, 
rather than other way around. Although the conclusion is important, it is important 
to consider the possibility that the assumptions underlying MR are violated. These 
include:
1.	 The IV has to be associated with the exposure;
2.	 The IV has to be independent of any confounders of the exposure-outcome as-

sociation and
3.	 The IV has to be related to the outcome only through the exposure.

However, as genetic variants used as IV may associate with other unknown con-
founders of the COPD-GlycA association, the condition two may have been violated. 
The finding that the genes predicting GlycA do not predict COPD makes it unlikely 
that GlycA is a risk factor. However, the hypothesis that GlycA is a biomarker of 
COPD pathology remains to be studied further prospectively.

External validity
External validity, the extent to which the results can be generalized to other situa-
tions and to other people, is an important factor to consider in epidemiological study. 
This issue should be taken into account when interpreting the results of Chapter 
2.1 of this thesis. Identified rare variants, identified in the genetic isolate, may be 
population-specific thus rare or non-existent in other populations.40 This especially 
stands for the two variants which we could not replicate in the population-based 
setting. Furthermore, the replication cohorts were mainly of European ancestry, 
questioning the generalizability to other ancestries, since it is known that genetic 
variants have different effects in different ethnic populations. Utilizing large datas-



199

General discussion

4

ets to replicate our findings is required before speculating on the external validity 
of these findings.

Differentially methylated regions
It has been postulated that differential DNA methylation at a single CpG site has 
a small effect on the risk for the disease and it should be evaluated considering 
the effects of the neighbouring sites or the whole region,41 which makes sense 
from the biological point of view. These differentially methylated regions (DMR) 
are estimated using Comb-p method in Chapter 3.1 of this thesis.42 This method 
calculates auto-correlation, combines neighbouring P-values, corrects for false 
discovery rate, finds regions of enrichment and assigns a P-value to those regions.42 
The number of identified DMRs is much larger than identified single sites since 
this method increases power to identify region of interest. We identified 59 DMRs 
associated with childhood lung function, of which 31% were associated with child-
hood asthma, 19% with adolescent lung function, 15% with adult lung function, and 
15% with COPD while 54% were influencing gene expression in childhood and 31% 
in adulthood. However, as Illumina 450K array is known to have unequable cover-
age of CpG sites throughout the genome, this method has its limitations. Therefore, 
simply pooling the CpG sites using computational methods, without any a-priori 
knowledge is questionable and the results should be interpreted with caution. The 
use of EPIC 850K array in the future, which has much better coverage of CpGs across 
the genome, may bridge this limitation.

Potential implications and future directions

Clinical implications and directions for future research were discusses in detail in 
every chapter of this thesis. Here I will highlight my most important ideas for the 
future.

Development of technical means which can withstand computationally demand-
ing analyses opened new avenues for research of complex diseases. COPD, as a 
complex disease, already benefitted from the use of hypothesis-generating -omics 
approaches. GWAS identified over 40 loci associated with either lung function or 
COPD, yet the reproducibility of these findings is very low and the heritability is still 
largely missing.43 GWAS variants are usually common with very small effect size. Us-
ing stringent, genome-wide significant thresholds we will need to increase sample 
sizes to reach enough statistical power to discover new common genetic variants. 
In the future, this can be done using large biobanks, collections of nation-wide data, 
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lately developing in several countries. It will be crucial to include information on 
different ancestries, as currently most of the findings are identified on Caucasians, 
and is has been speculated that this is leading to a disparity in future health care. 
Worldwide collaborations would also facilitate these efforts through large consor-
tiums such as CHARGE and PACE consortiums, used in Chapter 3 of this thesis. In 
order to confirm the role of rare variants on chromosome 11, described in Chapter 
2.1, and to generalize findings to the general population, larger candidate-gene stud-
ies will be useful. Furthermore, large studies utilizing whole-exome and -genome 
sequencing should investigate the role of linked regions in chromosomes 5 and 15 in 
COPD. Such studies are now feasible and affordable at a large scale for instance the 
UK biobank. Gene-gene and gene-environment interactions should be investigated 
in further attempt to explain the missing heritability in the future. There has been 
little success up until now and this field awaits advances through upscaling the size 
of studies and the development of new computational approaches (e.g. deep learn-
ing). Functional studies are further needed to definitely confirm the role of novel 
variants in the disease pathogenesis.

Further, we show usefulness of investigating metabolic profiles of the disease to 
hopefully differentiate molecular processes in specific tissues. I found that GlycA is 
a biomarker of early COPD pathology that is elevated before the diagnosis of COPD 
and future studies widening the net of metabolites studied are likely to find other 
metabolites, improving the prediction of disease and yielding new information that 
in combination can empower future (preventive) trials.

In the future, multi-omics studies of COPD would benefit from longitudinal design, 
measuring multiple omics layers in the lung tissue of the same people in multiple 
time points. Basing the study in well characterized epidemiological cohorts will al-
low to remove the confounding effects of smoking and medication. This would lead 
to better inferences on causality and direction of the effects. MR is a useful method 
to infer causality and disentangle complex relations of multiple omics layers and 
should be used in the future research. Such studies would also allow to derive ob-
jective smoking assessment based on methylation, transcription and metabolomics 
profiles. Similarly, one can aim to capture the effect of air pollution and other risk 
factor of COPD in omics signatures.

Improved and more discrete phenotyping of COPD and its confounders, such as 
smoking behaviour, is required in order to understand the genetic architecture of 
the disease. This includes investigating comorbidities of COPD and their shared and 
overlapping risk factors. As comorbidities are influencing disease severity, progno-
sis and treatment response and complete well-being of the patient, it is imperative 
to determine to what extend these can be prevented.
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Large scale genome-wide multi-omics studies in the lung tissue are the next 
phase in the respiratory research, integrating data in the context of a network 
medicine.44 This may improve understanding of the disease heterogeneity, improve 
classification and identification of individuals in high risk and translate the findings 
to clinical care and prevention (Figure 3). This may open new avenues for precision 
medicine in the future.45

The final aim of the network medicine, the identification of important disease 
determinants and reclassification of complex disease, such as COPD, is to have novel 
drug development strategies in the future and improve clinical care (Figure 4).46,47

Figure 3. Potential Approaches to Reclassify Complex Diseases in Network Medicine. Adapted from 
Silverman and Loscalzo Discov Med. 2012;14(75):143-152.
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Conclusion
In this thesis I studied COPD using several omics layers in attempt to elucidate 
the molecular mechanisms underlying the disease. I have identified several novel 
risk factors for COPD and its comorbidities, proposed regulatory pathways and 
highlighted the need for integration of the multi-omics data. Furthermore, I have 
discussed methodological challenges and ideas from which the future respiratory 
research could benefit. Findings of this thesis require functional confirmation, but I 
am confident that it represents another important step on a path towards improved 
clinical care and prevention of COPD, based on precision medicine.

Figure 4. Current and Network Medicine Approaches to Drug Development for Complex Diseases. 
Adapted from Silverman EK, Loscalzo J. Clin Pharmacol Ther. 2012;93(1):26-8.
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Summary

COPD is the most common respiratory disease and a third leading cause of death 
worldwide. It is a complex disease with overlapping sub-phenotypes and epidemio-
logical studies suggest that COPD is a consequence of the combination of cumula-
tive exposure to external and internal factors and their interactions. Therefore, in 
order to understand the pathophysiology of COPD, I performed integrative studies 
to empower the development of preventive, diagnostic and therapeutic tools. The 
main aim of this thesis is to gain insight in the biological mechanisms by studying 
the functional role and interaction of multiple omics layers.

In Chapter 2.1 I describe a genome-wide linkage scan, in search for rare genetic 
variants which have a role in familial COPD. I show that there is a significant linkage 
of genomic regions in chromosomes 5, 11 and 15 and identify novel rare variants in 
chromosome 11 region, shared among the COPD cases of the family (in SLC22A11 and 
MTL5) which play a role in the disease. This study shows the importance of studying 
rare variants, which may have large effects, even if they are population specific. In 
Chapter 2.2 I present a study, which investigates a functional role of chromosome 
15q25 region variants, one of the most replicated COPD GWAS loci. I show that vari-
ants in IREB2, HYKK and CHRNA3 genes exert effects on DNA methylation in blood, 
relevant to COPD, and gene expression in lung tissue. Similarly, Chapter 2.3 I investi-
gate a top variant from novel locus on 19q13 (EGLN2 gene), identified in COPD GWAS, 
and show that genetic variations underlying EGLN2 DNA methylation contribute to 
the risk of developing COPD, by mediating the genetic effects on EGLN2 expression. 
The associations identified in Chapters 2.2 and 2.3 are independent of smoking, 
which puts forward a genetic driven pathway of DNA methylation implicated in 
COPD which may be used as a target for a more personalized and focused treatment 
approach. In Chapter 2.4 I describe a study of lung function levels in relation to DNA 
methylation in never-smokers and show a specific DNA methylation pattern, again 
independent of smoking.

In Chapter 3.1 I describe a large meta-analysis of epigenome-wide DNA methyla-
tion studies of lung function at birth and show that 59 DMRs associate with lung 
function at birth of which some also affect lung function, asthma and COPD in later 
life. This study goes in line with the hypothesis that DNA methylation landscape at 
birth can predispose a person for COPD in later life. In Chapter 3.2 I study circulat-
ing metabolites in relation with COPD and FEV1/FVC and show importance of Gly-
coprotein acetyls (GlycA). The MR results show, for the first time, that higher levels 
of GlycA are a pre-diagnostic biomarker of COPD. The results suggest that COPD 
shows a specific metabolomics signature related to systemic inflammation. This 
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study underlines that metabolomics studies are important to provide a rationale for 
innovative personalized treatments in patients with COPD. In Chapter 3.3 I briefly 
highlight significant genetic overlap between COPD and several comorbid diseases. 
COPD was not only positively correlated with pulmonary comorbidity, but also to 
various cardio-metabolic diseases (carotid artery disease, heart attack, hyperten-
sion, and diabetes), psychiatric diseases (depression, attention deficit hyperactivity 
disorder and schizophrenia) and autoimmune intestinal diseases. I further study 
the epigenetic mechanisms which play a role in the COPD and depression and may 
explain their co-occurrence. In Chapter 3.4 I further investigate DNA methylation 
patterns specific for depression in a largest to date EWAS study in Cohorts for Heart 
and Aging Research in Genomic Epidemiology (CHARGE) consortium. I identify 
three DNA methylation sites associated with depressive symptoms, which point 
towards the axon guidance as the common disrupted pathway in depression. One 
of the genes differentially methylated in depression (CDC42BPB) has also been 
implicated in COPD.

Finally, in the Chapter 4 I discuss the main findings of this thesis, challenges, 
possible clinical implications and future directions. In general, the findings of this 
thesis identify and improve the understanding of the role of specific risk factors 
for COPD and hopefully highlight the importance of combining the knowledge on 
multiple omics layers to investigate such a complex and important disease. I hope 
that such studies can lead to the development of better and more precise prevention 
of COPD.
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Samenvatting

COPD (Chronische Obstructieve Longziekte) is de meest voorkomende longziekte 
en wereldwijd komt COPD op de derde plaats van ziekten die de hoogste sterfte 
veroorzaken. Het is een complexe ziekte met overlappende subfenotypen en 
epidemiologische studies suggereren dat COPD een gevolg is van de combinatie 
van cumulatieve blootstelling aan externe en interne factoren en hun interacties. 
Daarom heb ik, om de pathofysiologie van COPD te begrijpen, integratieve studies 
uitgevoerd om de ontwikkeling van preventieve, diagnostische en therapeutische 
hulpmiddelen mogelijk te maken. Het belangrijkste doel van dit proefschrift is 
om inzicht te krijgen in de biologische mechanismen door het bestuderen van de 
functionele rol en interactie van meerdere omics-lagen.

In Hoofdstuk 2.1 beschrijf ik een genoomwijde linkage scan, waarbij ik op zoek 
ging naar zeldzame genetische varianten die een rol spelen bij familiaire COPD. Ik 
laat zien dat er een significante koppeling van genomische gebieden op chromo-
somen 5, 11 en 15 is. Daarnaast heb ik aangetoond dat nieuwe zeldzame varianten op 
chromosoom 11 (in SLC22A11 en MTL5) een rol spelen in de ziekte. Deze zelzame vari-
anten komen voor bij alle COPD patiënten van de familie die ik heb onderzocht. Deze 
studie toont hiermee het belang aan van het bestuderen van zeldzame varianten die 
grote effecten kunnen hebben, zelfs als ze populatiespecifiek zijn. In Hoofdstuk 2.2 
laat ik een studie zien waarin ik een functionele rol onderzoek van varianten op 
chromosoom 15q25, een van de meest gerepliceerde COPD genoomwijde associatie 
studies (GWAS) loci. Ik laat zien dat varianten in IREB2, HYKK en CHRNA3 genen 
effect hebben op de DNA-methylatie in het bloed, wat relevant is voor COPD en 
genexpressie in longweefsel. Evenzo onderzoek ik in Hoofdstuk 2.3 een topvariant 
van een nieuw gevonden locus op 19q13 (EGLN2 gen) in een COPD GWAS, en laat 
zien dat genetische variaties die ten grondslag liggen aan DNA-methylatie in EGLN2 
bijdragen aan het risico op het ontwikkelen van COPD, door hun rol als mediators 
op de genetische effecten op EGLN2-expressie. Vervolgens laat ik in Hoofdstuk-
ken 2.2 en 2.3 zien dat de gevonden associaties onafhankelijk zijn van roken, wat 
duidt op een pathway gedreven door genetische varianten die belangrijk zijn bij 
DNA methylatie in COPD. Deze bevinding kan mogelijk gebruikt worden voor een 
meer gepersonaliseerde en gerichte behandeling. In Hoofdstuk 2.4 beschrijf ik een 
studie van longfunctieniveaus in relatie tot DNA-methylatie bij niet-rokers en laat 
ik een specifiek DNA-methylatiepatroon zien, wederom onafhankelijk van roken.

In Hoofdstuk 3.1 beschrijf ik een grote meta-analyse van epigenoomwijde 
DNA-methylatiestudies van de longfunctie bij de geboorte. Ik laat zien dat er 59 
gebieden zijn met verschillen in DNA methylatie die associëren met de longfunctie 
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bij de geboorte. Hiervan beïnvloeden sommige ook de longfunctie, astma en COPD 
op latere leeftijd. Deze studie sluit aan bij de hypothese dat het DNA-methylatie 
landschap bij de geboorte een persoon vatbaarder kan maken voor het ontwik-
kelen van COPD op latere leeftijd. In Hoofdstuk 3.2 onderzoek ik de relatie tus-
sen circulerende metabolieten in het bloed en COPD en FEV1/FVC en toon ik het 
belang aan van Glycoproteïne acetyls (GlycA). De resultaten van de Mendeliaanse 
randomisatie studie laten voor het eerst zien dat hogere GlycA concentraties een 
pre-diagnostische biomarker van COPD zijn. De resultaten suggereren dat COPD een 
specifieke metabolomische signatuur vertoont die samenhangt met systemische 
ontsteking. Deze studie benadrukt dat metabolomische onderzoeken belangrijk 
zijn voor innovatieve gepersonaliseerde behandelingen bij patiënten met COPD. 
In Hoofdstuk 3.3 belicht ik kort een significante genetische overlap tussen COPD 
en verschillende comorbide aandoeningen. COPD was niet alleen positief gecor-
releerd met pulmonale comorbiditeit, maar ook met verschillende cardio-metabole 
ziekten (halsslagaderziekte, hartaanval, hypertensie en diabetes), psychiatrische 
ziekten (depressie, attention deficit hyperactivity disorder en schizophrenia) 
en auto-immuunziekten van het gastro-intestinale stelsel. Verder bestudeer ik 
in dit hoofdstuk de epigenetische mechanismen die een rol spelen bij COPD en 
depressie en die mogelijk hun gelijktijdig voorkomen verklaren. In Hoofdstuk 3.4 
onderzoek ik DNA-methylatiepatronen specifiek voor depressie in de tot nu toe 
grootste epigenoom-wijde associatie studie in het CHARGE (Cohorten voor Hart- en 
Verouderingsonderzoek in Genomische Epidemiologie) consortium. In deze studie 
identificeer ik drie DNA-methylatie posities die geassocieerd zijn met depressieve 
symptomen. Dit wijst erop dat de geleiding van axonen vaak verstoord is bij de-
pressie. Daarnaast is één van de genen met verschillen in DNA methylatie status in 
depressie (CDC42BPB) ook betrokken bij COPD.

Tot slot bespreek ik in Hoofdstuk 4 de belangrijkste bevindingen van dit proef-
schrift, de uitdagingen, de mogelijke klinische implicaties en de toekomstige richt-
ingen. In het algemeen vergroten en verbeteren de bevindingen van dit proefschrift 
ons begrip in de rol van specifieke risicofactoren voor COPD. Hopelijk benadrukt 
dit het belang van het combineren van de kennis verkregen via meerdere omics-
lagen bij het onderzoeken van deze complexe en belangrijke ziekte. Ik hoop dat 
zulke studies tot de ontwikkeling van een betere en preciezere preventie van COPD 
kunnen leiden.
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