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Abstract

Background

Collaborative modeling has been used to estimate the impact of potential cancer screen-

ing strategies worldwide. A necessary step in the interpretation of collaborative cancer 

screening model results is to understand how model structure and model assumptions 

influence cancer incidence and mortality predictions. In this study we examined the rela-

tive contributions of the pre-clinical duration of breast cancer, the sensitivity of screening, 

and the improvement in prognosis associated with treatment of screen-detected cases 

to the breast cancer incidence and mortality predictions of five Cancer Intervention and 

Surveillance Modeling Network (CISNET) models.

Methods

To tease out the impact of model structure and assumptions on model predictions, the 

Maximum Clinical Incidence Reduction (MCLIR) method compares changes in the number of 

breast cancers diagnosed due to clinical symptoms and cancer mortality between 4 simpli-

fied scenarios: 1) no-screening; 2) one-time perfect screening exam that detects all existing 

cancers and perfect treatment (i.e., cure) of all screen-detected cancers; 3) one-time digital 

mammogram and perfect treatment of all screen-detected cancers; and 4) one-time digital 

mammogram and current guideline-concordant treatment of all screen-detected cancers.

Results

The five models predicted a large range in maximum clinical incidence (19%-71%) and in 

breast cancer mortality reduction (33%-67%) from a one-time perfect screening test and 

perfect treatment. In this perfect scenario, the models with assumptions of tumor incep-

tion prior to when it is first detectable by mammography predicted substantially higher 

incidence and mortality reductions than models with assumptions of tumor onset at the 

start of a cancer’s screen-detectable phase. The range across models in breast cancer 

clinical incidence (11%-24%) and mortality reduction (8%-18%) from a one-time digital 

mammogram at age 62 with observed sensitivity and current guideline-concordant treat-

ment was considerably smaller than achievable under perfect conditions.

Conclusions

The timing of tumor inception and its effect on the length of the pre-clinical phase of breast 

cancer had substantial impact on the grouping of the models based on their predictions for 

clinical incidence and breast cancer mortality reduction. This key finding about the timing of 

tumor inception will be included in future CISNET breast analyses to enhance model trans-

parency. The MCLIR approach should aid in the interpretation of variations in model results 

and could be adopted in other disease screening settings to enhance model transparency.
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Introduction

Collaborative modeling can enhance the rigor of modeling research through the use of 

multiple independent models to answer the same research question. The National Can-

cer Institute-funded Cancer Intervention and Surveillance Modeling Network (CISNET) 

was established in 2000 to use collaborative modeling to improve our understanding of 

the impact of cancer prevention, screening, and treatment dissemination on population 

trends in cancer incidence and mortality. The CISNET Breast Cancer Working Group 

includes six modeling teams: Dana-Farber (Model D) [1], Erasmus (Model E) [2], George-

town-Einstein (Model GE) [3], MD Anderson (Model M) [4], Stanford (Model S) [5], and 

Wisconsin-Harvard (Model W) [6]. The modeling groups have collaborated to estimate 

the effects of breast cancer prevention [7], mammography screening [8-11], and systemic 

adjuvant treatment on trends in breast cancer incidence and mortality [12, 13]. Prior 

research has also investigated the impact of different screening scenarios on the balance 

of population-level benefits and harms, and the results have been used by policymakers 

to inform breast cancer screening guidelines [9, 14, 15].

Each of the models is unique in its structure, assumptions, and methods of synthesiz-

ing data. Consequently, they are unique in how they project the impact of screening 

and treatment on breast cancer incidence and mortality. Results that are similar across 

multiple models despite differences in assumptions and modeling approach, enhance 

the credibility of the findings and are more likely to be robust than conclusions obtained 

from a single model. For instance, in prior analyses, the models all closely estimated 

observed trends in US breast cancer incidence and mortality and consistently agreed on 

the ranking of screening scenarios based on several metrics, including mortality reduc-

tions. [9, 15]

Despite the consistency of prior conclusions about the effects of screening across the 

models, there are variations in the magnitude of the effects. [9, 15] For the interpreta-

tion of collaborative modeling results, it is important to understand how different model 

structures and combinations of assumptions contribute to this variation. Detailed model 

descriptions (Table 1) are informative and contribute to model transparency. However, 

conveying between-model differences is not always straightforward for reasons related 

to the nature of modeling disease processes and their interaction with cancer control 

interventions. In particular, breast cancer modeling involves the representation of un-

observable aspects of natural history such as tumor onset and tumor progression upon 

which interventions (e.g., screening and treatment) are overlaid. To do so, models make 

assumptions about the timing of tumor inception, tumor progression (e.g., discrete or 

continuous tumor growth), and progression variability among tumors. These assump-

tions in conjunction with model structure impact the three key determinants of screening 

effectiveness: 1) pre-clinical duration of breast cancer, i.e., the time period during which 
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prevalent undiagnosed cancers could be detected by screening; 2) sensitivity of the 

screening test, i.e., the likelihood that cancers are detected at screening; and 3) improve-

ment in prognosis from treatment, e.g., whether (earlier) treatment reduces (more) breast 

cancer mortality.

Given the complexity of interpreting outcomes from multiple models in a collaborative 

setting, it can be useful to isolate portions of the models to gain greater insight into 

how model structure and natural history assumptions systematically affect model results. 

The maximum clinical incidence reduction (MCLIR) method can be used to isolate the 

effects of tumor onset, tumor progression, screening test sensitivity, and treatment by 

comparing model results before and after imposing a one-time screening intervention 

under varying assumptions about screening performance and treatment effectiveness.

In the absence of screening, breast cancers will only be diagnosed as a result of clinical 

symptoms, i.e., clinical incidence, which is defined as breast cancers diagnosed due to 

symptoms. Screening is assumed to detect some of these cancers prior to symptomatic 

diagnosis, thereby reducing clinical incidence, and possibly cancer mortality. The MCLIR 

method measures this reduction in breast cancer clinical incidence and mortality. While 

all models use the same data on screening sensitivity and breast cancer treatment, the 

implementation of screening and treatment in the models varies as model structures 

are different. Therefore, differences in clinical incidence reduction should reflect model-

specific choices in their portrayal of the pre-clinical detectable phase of breast cancer 

(tumor onset and progression) and mechanisms of screen detection (e.g., how they 

incorporate sensitivity). Differences in breast cancer mortality are expected to capture 

model-specific assumptions about tumor onset and progression and how the implemen-

tation of treatment affects the natural history.

To date, the MCLIR method has been applied to three CISNET colorectal cancer mod-

els to clarify the effect of natural history assumptions and model structure on colorectal 

cancer incidence predictions. [16] In this study, we extended the MCLIR method to 

understand how differences among the CISNET breast cancer models affect predictions 

for screening effectiveness by projecting the clinical incidence and mortality reductions 

after a one-time screening exam at age 62 among women without prior screening or 

a past breast cancer diagnosis. The results are intended to provide a greater under-

standing of how the CISNET breast models depict unobservable processes, and how 

those representations may systematically affect conclusions about screening effects on 

incidence and mortality.
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Methods

This research was approved as exempt by the Georgetown Institutional Review Board 

based on use of de-identified, publically available data. Five of the six CISNET breast 

models (those with natural history components) participated in this analysis.

Model Overview

The general model structure of the five models involves the simulation of women who 

may develop breast cancer in the absence or presence of screening. In all models, the 

majority of women live a breast cancer-free life and eventually die of causes other than 

breast cancer (Figure 1, panel A). For women who develop breast cancer, tumor inception 

is simulated either prior to (models E and S) or at the start of (models D, GE, and W) the 

tumor’s sojourn time. We define the sojourn time as the portion of time in the pre-clinical 

phase between when a cancer can be first screen-detectable (e.g., by mammography) 

and when clinical cancer diagnosis would occur due to symptoms in the absence of 

screening.[17] Tumor sojourn time is also termed ‘pre-clinical screen-detectable phase‘ 

(Figure 1).

The point when a tumor becomes screen-detectable may depend on the sensitivity of 

the screening test, such that more sensitive tests can detect tumors closer to inception, 

and hence in earlier stages or at smaller tumor sizes. Tumor growth is simulated either 

continuously (models E, S, and W) or as movement through discrete stages (models D 

and GE). All models except model S include ductal carcinoma in situ (DCIS). Nonethe-

less, model S simulates the progression of breast cancers prior to clinical symptoms 

based on continuous tumor growth of invasive cancer (Table 1). [5]

In the absence of screening, the models assume that some cancers will eventually 

cause symptoms and be clinically diagnosed (Figure 1, panel B). If a woman participates 

in screening during the cancer’s sojourn time, the cancer may be screen-detected in an 

earlier stage or at a smaller size than would have occurred with clinical diagnosis in the 

absence of screening.

The time period between when a cancer is screen-detected and when it would have 

been clinically diagnosed in the absence of screening is referred to as the lead-time (Fig-

ure 1, panel C). The lead time is part of the sojourn time, and the duration of the sojourn 

time is an important unobservable determinant of screening effectiveness because a 

longer sojourn time implies a longer period during which a screening test can potentially 

detect cancer. The sojourn time is based on assumptions about tumor inception and 

tumor growth, and the start of the sojourn time is determined by the sensitivity of the 

screening test (Figure 1, panel C).
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Table 1 Overview of Key Differences and Similarities Between The CISNET Breast Models Structures 
and Key Model Components

Model D E GE S W

Model type Analytic, Parallel universe Simulation, Parallel universe Simulation, Parallel universe Simulation,
Parallel universe

Simulation, Parallel universe

Tumor progression modeled as State-transition Continuous tumor growth Stage-transition Continuous tumor growth Continuous tumor growth

Incidence in the absence of screening Age Period Cohort model Age Period Cohort model Age Period Cohort model Age Period Cohort model* Age Period Cohort model

DCIS included Yes Yes Yes No Yes

ER/HER2 Included Yes Yes Yes Yes Yes

Individual risk factors for breast cancer Breast density Breast density, obesity Breast density Hormone replacement Breast density

Screen detection conditioned on Modality, age, density, frequency Tumor size, modality, age, 
density, frequency

Modality, age, density, frequency Tumor size, ER status, age, 
hormone repl., frequency

Tumor size, modality, age, density, 
frequency

Implementation of
screen benefit

Stage shift Detection at smaller tumor size Younger age, earlier stage Stage shift, detect at smaller tumor 
size

Younger age, detect at smaller 
tumor size

Estimation of
over diagnosis

Difference screen &
no-screen

Difference screen &
no-screen

Difference screen &
no-screen

Difference screen &
no-screen

Difference screen &
no-screen

Implementation treatment benefit Hazard reduction Cure fraction, larger fatal 
diameter

Hazard reduction, cure fraction Hazard reduction, non-proportional Cure fraction

Death from breast cancer determined by Survival from BC < survival other 
cause mortality

Fatal diameter, survival from BC 
< survival OC mortality

Survival from BC < survival other 
cause mortality

Survival from BC < survival other 
cause mortality

Survival from BC < survival other 
cause mortality

SEER data used for calibration No Incidence, mortality, stage 
distribution

Incidence, stage distribution Incidence, stage distribution Incidence, mortality

Addition based on MCLIR analyses

Tumor inception point At the start of pre-clinical screen-
detectable phase

Prior to start of pre-clinical 
screen-detectable phase

At the start of the pre-clinical 
screen-detectable phase

Prior to start of the pre-clinical 
screen-detectable

At the start of the pre-clinical 
screen-detectable phase

* Model S uses background breast cancer incidence derived from the APC framework that explicitly 
considers the effects of screening and menopausal hormone replacement therapy. [5] Among the 
other modeling groups breast cancer incidence in the absence of screening is estimated starting 
from a common APC model. [19, 24]

Explanation of Terms Used in Table 1

Model type
Analytic: Analytical approach to estimate the impact of mammography screening and breast cancer 
treatment on incidence and mortality of breast cancer.
Simulation: Stochastic simulation is based on the Monte Carlo method and use of random numbers 
to evaluate the impact of screening on life histories, cancer incidence and mortality.
Parallel universe: Screening and treatment is modeled in a parallel universe, implying that the same 
population is simulated twice: once to determine the impact of breast cancer without screening, and 
once to determine the impact of breast cancer with screening.

Natural history and factors affecting breast cancer onset
APC model: Breast cancer onset and breast cancer in the absence of screening was derived by Gan-
gnon et al. [23] and is driven by an age-period-cohort model:
Age: As women age, their risk of developing breast cancer increases.
Period: Onset of breast cancer is different in certain calendar time periods.
Cohort: Year of birth influences the risk of developing breast cancer.
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Natural history and factors affecting breast cancer onset
APC model: Breast cancer onset and breast cancer in the absence of screening was derived by Gan-
gnon et al. [23] and is driven by an age-period-cohort model:
Age: As women age, their risk of developing breast cancer increases.
Period: Onset of breast cancer is different in certain calendar time periods.
Cohort: Year of birth influences the risk of developing breast cancer.

Breast density: Breast density is associated with different levels of risk for developing breast cancer 
and modifies the operating characteristics of breast cancer screening.
ER/HER2: Onset of breast cancer is different for molecular subtypes ER and HER2.
Tumor stage transition: Tumor progression is modeled as transitions between discrete stages.
Continuous tumor growth: Tumors grow continuously after tumor inception.

Screening mechanism
Sensitivity: Sensitivity can be used directly or indirectly (e.g., when translated to tumor size).
Overdiagnosis: The detection and diagnosis of a condition that would not go on to cause symptoms 
or breast cancer death in a woman’s lifetime in the absence of screening.
Duration of preclinical detectable phase: The period between tumor onset and the start of a cancer’s 
screen-detectable phase.

Treatment effect
Hazard reduction: Reduction in breast cancer mortality hazard, derived from the hazard ratio re-
ported for the different treatment regimens [19].
Cure fraction: If hazard rate reduction is not a direct model input, it can be translated into a cure 
fraction to implement breast cancer treatment.
Death from breast cancer: Once diagnosed with breast cancer, a survival until breast cancer death 
is competing with the other cause mortality survival. That is, breast cancer death occurs only if the 
patient does not die from other causes.
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Mortality reductions from screening may occur via improvements in survival related to 

the earlier stage or smaller tumor size at diagnosis of screened vs. unscreened women, 

given receipt of breast cancer treatment.

MCLIR Analysis

To illustrate the effects of model structure and assumptions about tumor inception, tu-

mor progression, screening test ability to detect tumors, and treatment on breast cancer 

incidence and mortality predictions, the MCLIR analysis consists of comparisons between 

four scenarios. Three scenarios involve a one-time screening test at age 62 and the 

Figure 1 Three versions of a woman’s life history. A: without breast cancer, B: with breast cancer and 
without screening, C: with breast cancer and mammography screening.
In scenario C, the pre-clinical phase is the period of time between tumor inception and clinical diag-
nosis in the absence of screening. The sojourn time for a screening test, e.g., mammography is the 
period of time within the pre-clinical phase that a cancer can be screen detectable; this period can 
also be termed the pre-clinical screen-detectable phase. The point when the cancer is detected by 
screening depends on when the screening test is performed and the sensitivity of the screening test. 
The period before the sojourn time represents a period in which the tumor is present but undetect-
able by mammography. Should the sensitivity of mammography improve, or new types of screening 
tests evolve, the point of screen-detectability would shift to the left and tumors could be detected 
closer to tumor inception.
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remaining no-screening scenario serves as a comparator (Table 2). The study popula-

tion for each scenario is a cohort of average risk women born in 1965, that have never 

been screened or diagnosed with breast cancer prior to age 62. Age 62 was chosen to 

illustrate model differences because it is in the middle of the start and stop ages of the 

generally recommended mammography screening guidelines [14, 18] and there is suf-

ficiently high prevalence of breast cancer at this age to illustrate model differences. While 

all models have the capacity to include risk factors, to isolate model differences these 

analyses focused on the average risk population. Women were followed for 15 years (i.e., 

up to age 77) to capture the immediate and long-term effects of the intervention. Model 

outcomes were breast cancer clinical incidence and breast cancer mortality by age.

Table 2 Description of Maximum Clinical Incidence Reduction (MCLIR) Method

Scenarios Scenario Description Implication Analyses

No Screening

(Scenario 1)

No screening: no screening 
during a woman’s lifetime. 
Diagnosed breast cancers 
will be treated with current 
treatment*

All cancers diagnosed in 
this scenario are diagnosed 
due to clinical symptoms 
and will be treated with 
guideline-concordant 
treatment.

Comparator to calculate 
the screening effect in 
scenarios 2, 3, and 4.

Perfect screening
Perfect treatment

(Scenario 2)

A one-time perfect screen 
with 100% sensitivityᶲ at 
age 62, all screen-detected 
cancers are treated with 
perfect treatment ͌

All existing cancers at age 
62 will be screen-detected 
and cured by perfect 
treatment and will not lead 
to breast cancer death.

Comparison of Scenario 2 
to 1 isolates the effect of 
the pre-clinical detectable 
duration of breast cancer 
and provides the tumor 
progression distribution.

Current sensitivity
Perfect treatment

(Scenario 3)

One-time digital 
mammogram with current 
sensitivity^ at age 62, all 
screen-detected cancers 
are treated with perfect 
treatment

Some of the existing 
cancers at age 62 are 
screen-detected. All 
screen-detected cancers 
are cured and will not lead 
to breast cancer death.

The comparison of 
scenario 3 to 2 isolates 
the effect of digital 
mammography (non-
perfect) sensitivity on 
reductions in clinical 
incidence and breast 
cancer mortality.

Current sensitivity 
Current Treatment

(Scenario 4)

One-time digital 
mammogram with current 
sensitivity at age 62, all 
screen-detected cancers 
are treated with current 
treatment

Some of the existing 
cancers at age 62 are 
screen-detected. All 
screen-detected cancers 
are treated with guideline-
concordant treatment 
and some will not lead to 
breast cancer death.

Comparison of scenario 
4 to 3 isolates the effect 
of guideline-concordant 
(imperfect) treatment 
effectiveness on breast 
cancer mortality reduction.

* Current treatment: All diagnosed breast cancers receive guideline-concordant breast cancer treat-
ment with observed treatment effectiveness. [19]
ᶲ Perfect sensitivity: All existing breast cancers are screen-detected at screening (e.g., Sensitivity is 
100%).
 ͌ Perfect treatment: All diagnosed breast cancers are “cured” and women will not die of breast 
cancer.
^ Current sensitivity: Screening is performed with the observed sensitivity of digital mammography. 
[19]
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MCLIR Scenarios

Scenario 1 is the baseline scenario without screening where all breast cancers will be 

diagnosed due to clinical symptoms. Upon diagnosis, cancers are treated according to 

current guideline recommended treatment. [19] Guideline concordant treatment roughly 

implies that, after surgical removal of the tumor, estrogen receptor (ER)-positive breast 

cancers are primarily treated with hormone therapy and advanced stage ER positive 

tumors may also receive chemotherapy. ER-negative breast cancers are treated with 

chemotherapy only. Tumors that are Human epidermal growth factor Receptor 2 (HER2) 

positive are also treated with Trastuzumab (Herceptin). The effectiveness of breast cancer 

Figure 2 The MCLIR Metrics Explained For Breast Cancer Incidence
Overall Reductions in Breast Cancer Incidence at 15-Year Follow-Up
The light gray area denoted by A is the overall clinical incidence reduction over the 15 years after the 
digital mammogram at age 62. The area B alone represents the proportion of clinical incidence that 
could not be reduced because of the non-perfect sensitivity of the digital mammogram. As a digital 
mammogram does not detect all tumors in existence, the area B provides a measure of the room 
to further reduce breast cancer clinical incidence if better (more sensitive) screening would become 
available. The 2 light gray areas combined (A and B) are the maximum clinical incidence reduction 
from perfect screening. The dark gray area denoted by C, is the proportion of clinical incidence that 
is not reducible by a perfect screen at age 62 because these clinical cancers had a tumor onset after 
age 62.
Age-Specific Reductions in Breast Cancer Incidence
Scenario 1, the no-screening scenario, serves as comparator from which the reductions, as measured 
on the y-axis, are calculated. Scenario 2 (dashed line) is the age-specific percent reduction in clinical 
incidence from one perfect screening test at age 62 with perfect sensitivity relative to the clinical 
incidence in the no-screening scenario. Scenario 4 (solid line) is the age-specific percent clinical inci-
dence reduction from one digital mammogram at age 62 relative to the no-screening scenario. Sce-
nario 3 (also solid line) uses sensitivity of current digital mammography and in contrast to scenario 4 
has perfect treatment effectiveness which only affects breast cancer mortality, and thus, scenario 3 
has the same impact on breast cancer incidence as scenario 4.
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treatment was based on the most recent meta-analyses of randomized clinical trials re-

ported by the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). [20] Scenario 

1 provides baseline information about the number of cancers that will lead to symptoms 

and be clinically diagnosed as well as the number of breast cancer deaths occurring in 

the 15-year follow-up period.

Scenario 2 involves a one-time perfect screening test at age 62 and perfect treat-

ment. The hypothetical perfect screening test assumes that all tumors in existence are 

screen-detected, including those that may not be detectable by digital mammography. 

Perfect treatment means treatment is curative and that all women will be cured and 

will die from other causes than breast cancer. Comparing results from this scenario with 

the baseline (no-screening) scenario provides the maximum achievable clinical incidence 

and mortality reduction. It is a measure of the pool of cancers that technically could be 

screen-detected at age 62 and thus avoid clinical diagnoses of these cancers at a later 

age when they would cause symptoms. The change in the maximum achievable clinical 

incidence reduction over time as women age provides insight into the distribution of 

sojourn times of the existing tumors at age 62, i.e., key determinant 1 of screening ef-

fectiveness. The mortality results from this scenario provide information on how many of 

the breast cancer deaths between ages 62 and 77 stem from cancers that were present 

at age 62. Relative to the no-screening scenario, it is the maximum achievable mortal-

ity reduction from screening and treatment, and the converse (1 minus the maximum 

mortality reduction) is the portion of unavoidable breast cancer deaths because these 

cancers had tumor onset after age 62 when the screening test was done (Figure 3). The 

age-specific maximum achievable mortality reduction after the screen test at age 62 also 

provides insight into the survival time of pre-clinical cancers in existence at age 62.

Scenario 3 involves a one-time digital mammogram at age 62 with sensitivity based 

on observed mammography performance in the Breast Cancer Screening Consortium [9, 

19] and perfect treatment (i.e., cure) of screen-detected cancers. In this scenario, some 

of the cancers in existence at age 62 will be missed by screening and this will affect 

clinical incidence and mortality at later ages. Because scenarios 2 and 3 vary screening 

performance while holding the treatment effects constant, the comparison of these two 

scenarios isolates the impact of perfect vs. observed sensitivity of screening on reduc-

tions in clinical incidence and breast cancer mortality, i.e., key determinant 2 of screening 

effectiveness. This comparison also illustrates the room for improvement in terms of 

fewer clinically diagnosed cases and cancer deaths should the sensitivity of screening 

would improve (e.g., new radiology technology or circulating tumor DNA detection).

Scenario 4, the realistic scenario, involves a one-time digital mammogram at age 62 

and treatment according to current guidelines [19]. Because scenarios 3 and 4 vary treat-

ment effectiveness while holding the sensitivity of screening constant, the comparison of 

these scenarios isolates the impact of perfect vs. actual treatment effectiveness on breast 
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cancer mortality, i.e., key determinant 3 of screening effectiveness. This comparison 

isolates the portion of cancers that, despite earlier detection by screening, will not be 

cured with current guideline recommended treatment. Also, this provides insight into 

the room for improvement should breast cancer treatment improve in the future, given 

current performance of digital mammography.

For ease of comparison and interpretation of outcomes across the four scenarios for 

five different models, results are reported as percent reductions in clinical incidence and 

breast cancer mortality relative to each model’s clinically diagnosed breast cancers and 

breast cancer deaths in the absence of screening (Figure 2 & 3).

Results

The results for each scenario for the impact of a one-time screen at age 62 among women 

with no prior screening or past diagnosis of breast cancer are presented separately for 

incidence and mortality.

Breast Cancer Incidence

Tumor Onset and Progression

The maximum achievable clinical incidence reduction from a perfect screening test at 

age 62 (scenario 2) relative to the no-screening scenario (scenario 1) illustrates the impact 

of natural history assumptions such as tumor onset and tumor progression on screening 

effectiveness. The maximum clinical incidence reduction ranged from 19% to 71% across 

the five models with models D, GE, and W grouping towards the lower end of the range 

and models E and S towards the top of the range (Table 3). This wide variation was the 

result of differences in the modeling of the timing of tumor inception relative to the start 

of the sojourn time. For example, Model E’s assumption of tumor onset long before 

the start of the sojourn time led to a large screening effect when the perfect screening 

test was applied that detects all tumors from their inception even before the pre-clinical 

screen-detectable phase begins. The majority (71%) of the cancers in this model had an 

onset prior to age 62 and were therefore screen-detected by a perfect screening test 

at age 62, avoiding clinical diagnoses at a later age. The remaining (29%) of cancers 

had an onset after age 62. Model S makes similar assumptions about tumor onset and 

growth as Model E, and has fairly similar patterns in their results as Model E. In contrast, 

in Models D, GE, and W, which simulate tumor inception at the start of the pre-clinical 

screen-detectable phase, only 19% to 27% of cancers were in existence at age 62, lead-

ing to a lower maximum clinical incidence reduction from a perfect screening test than 

Models E and S.
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Figure 3 The MCLIR Metrics Explained For Breast Cancer Mortality
Overall Reductions in Breast Cancer Mortality at 15-Year Follow-Up
The light gray area denoted by A is the overall breast cancer mortality reduction over the 15 years 
after one digital mammogram at age 62 and guideline recommended treatment with observed 
treatment effectiveness. The area B alone represents the proportion of breast cancer mortality that 
could not be reduced because of the non-perfect treatment effectiveness of current guideline rec-
ommended treatment. Since guideline recommended treatment does not cure all screen-detected 
cancers, B provides a measure of the room to further reduce breast cancer mortality if better (more 
effective) treatment would become available.
The area C alone represents the proportion of breast cancer mortality that could not be reduced 
because of the non-perfect sensitivity of currently available digital mammography. As a digital mam-
mogram does not detect all tumors in existence, B provides a measure of the room to further reduce 
breast cancer mortality if better (more sensitive) screening would become available. The 3 areas 
combined (A, B and C) are the maximum mortality reduction from perfect screening and perfect 
treatment where B + C represent the maximum room to further reduce breast cancer mortality if 
screening sensitivity and treatment effectiveness would become improve. The dark gray area, de-
noted by D, is the proportion of breast cancer deaths that is not reducible by a perfect screen at age 
62 and perfect treatment because these breast cancer deaths had tumor onset after age 62.
Age-Specific Reductions in Breast Cancer Mortality
Scenario 1, the no-screening scenario, serves as comparator from which the reductions, as mea-
sured on the y-axis, are calculated. Scenario 2 (dashed line) is the age-specific percent breast cancer 
mortality reduction from one perfect screening test with perfect sensitivity and perfect treatment 
relative to the breast cancer mortality in the no-screening scenario. Scenario 3 (dotted line) is the 
age-specific percent breast cancer mortality reduction from one digital mammogram at age 62 and 
perfect treatment relative to the no-screening scenario. Scenario 4 (solid line) is the age-specific 
percent mortality reduction from one digital mammogram at age 62 and guideline-concordant treat-
ment with observed treatment effectiveness in screen-detected cases relative to the no-screening 
scenario.
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The shape of the maximum clinical incidence reduction curve provides insight into 

the variability of tumor growth and disease progression of tumors in existence at age 62 

(Figure 4). In models D, GE and W, the age-specific clinical reductions from the perfect 

screen declined more rapidly in the first five years than in the other two models, indi-

cating the presence of more quickly progressing tumors relative to the other models. 

The non-steep and slower linear decline of the age-specific maximum clinical incidence 

reduction in Models E and S is the consequence of greater variability in tumor progres-

sion and overall slower tumor growth among the tumors in existence at age 62 than seen 

in the other models.

The models have structural differences in the timing of tumor inception relative to the 

sojourn time and they had the same calibration targets (observed trends in U.S. breast 

cancer incidence and mortality) in their development phase. This explains why Models E 

and S with tumor inception long before the start of the sojourn time have slower overall 

tumor progression and Models D, GE, and W with tumor inception at the start of the 

sojourn time have faster progressing tumors.

Screening Sensitivity

Reductions in clinical incidence based on the observed sensitivity of digital mammogra-

phy varied less across models than when assuming perfect sensitivity, with ranges of 11% 

to 24%. Since assumptions about tumor onset and progression differ, how the models ar-

rive at this result differs and is illustrated by comparison to their predictions for maximum 

reductions achievable (Scenario 3 vs 2). In models D, GE, and W, the differences in clini-

cal incidence reduction were 2%, 3%, and 8%, respectively, and in models E and S these 

were 56% and 27%. While models E and S have more tumors in existence at age 62, the 

majority of tumors were in their pre-sojourn period and not yet screen-detectable with 

Table 3 Percent Reductions in Breast Cancer Incidence after One Mammography Screen at Age 62 
over a 15-Year Follow-Up, %

Scenario Intervention D E GE S W

2 100% screening
sensitivity and 100% treatment 
effectiveness
(vs. no screening)

23 71 27 43 19

4 Current screening
sensitivity and current treatment 
effectiveness
(vs. no screening)

21 15 24 16 11

4 vs. 2 Breast cancer clinical incidence 
not reduced because of imperfect 
(current) screening sensitivity

2 56 3 27 8

Scenario 3 is not shown because this scenario has the same screening sensitivity (digital mammogra-
phy) as scenario 4 and hence has the same clinical incidence reduction as scenario 4.

14 Erasmus Medical Center Rotterdam



a digital mammogram having actual observed sensitivity. On the other hand, in models 

D, GE, and W, the majority of tumors in existence at age 62 were in their sojourn period 

and could be detected by the digital mammogram. Thus, the variations between model 

clusters E and S vs. D, GE, and W indicate that modeling assumptions about the timing 

of tumor inception in relation to the implementation of digital mammography can have 

substantial impact on screen detection and reductions in clinical breast cancer incidence.

Breast Cancer Mortality

Tumor Onset and Progression

Based on one perfect screening test at age 62 and perfect treatment for screen-detected 

cancers, the maximum reductions in breast cancer mortality relative to the no-screening 

scenario ranged from 33% to 67% over 15 years of follow-up (Table 4). Similar to the 

impact of tumor onset on clinical incidence reductions, Models D, GE and W had a 

higher percent (55% to 67%) of breast cancer deaths stemming from cancers with onset 

after age 62 than Models E and S (33% to 38%). These variations reflect interactions 

between assumptions about tumor onset and survival times.

Table 4 Percent Reduction in Breast Cancer Mortality after One Digital Mammography Screen at 
Age 62 with 15-Year Follow-Up, %

Scenario Intervention D E GE S W

2 100% screening sensitivity and 100% 
treatment effectiveness (vs. no 
screening)

40 67 45 62 33

% Breast cancer deaths with onset 
after age 62.*

60 33 55 38 67

3 Current screening sensitivity and 
100% treatment effectiveness (vs. no 
screening)

37 23 40 31 23

3 vs. 2 Breast cancer mortality not reduced 
because of imperfect (current) 
screening sensitivity

3 44 5 31 10

4 Current screening sensitivity and 
current treatment effectiveness (vs. 
no screening)

17 8 17 18 8

4 vs. 3 Breast cancer mortality not reduced 
because of imperfect (current) 
treatment effectiveness

20 15 23 13 15

4 vs. 2 Breast cancer mortality not reduced 
because of imperfect screening 
sensitivity and imperfect treatment 
effectiveness

23 59 23 44 25

* The percent breast cancer deaths that stem from cancers with onset after age 62 is given by 100% 
minus the cancer deaths from cancers with onset before age 62 (Scenario 2).
Scenarios 3 vs. 2, 4 vs. 3, and 4 vs. 2, show the percentage point breast cancer mortality that is not 
reduced due to imperfect screening sensitivity and/or imperfect treatment effectiveness.
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The steep declines of the maximum mortality reduction curves (Figure 4, right panels) 

of models D, GE and W reveal that, on average breast cancers in these models have 

shorter survival times and less variability in survival times relative to models E and S. 

These results for average survival times correspond to the findings about tumor progres-

sion in the models: the relatively slow tumor progression, based on earlier inception of 

tumors, in models E and S relate to longer survival times, and the faster tumor progres-

sion in Models D, GE and W arising from tumor inception at the beginning of the sojourn 

period ultimately lead to shorter survival times on average.

Figure 4 Age-Specific Reductions In Breast Cancer Clinical Incidence And Mortality Over 15 Years 
After A One-Time Screening Test At Age 62 By Model 
The percent marks in the panels of Figure 4 represent the cumulative outcomes for the 15-year 
follow-up period from age 62 to age 77.
The line at the top in the breast cancer incidence panels on the left of Figure 4 is the maximum clini-
cal incidence reduction from a screening test at age 62 with 100% sensitivity and perfect treatment of 
screen-detected cancers (Scenario 2). Just after the screening test, the reduction in clinical incidence 
(panels on the left) is highest and decreases by age as it becomes less likely that clinical cancers at 
later ages were already in existence at age 62 and could have been prevented by a screening test 
at that age.
The percentages in the left-panel figures represent, for example for Model S: 57% of the cancers that 
are clinically diagnosed in the absence of screening between ages 62 and 77 have an onset after age 
62, this implies that 100-57=43% (Scenario 2, Table 3) of the cancers diagnosed in the absence of 
screening could be prevented from becoming clinical diagnosis at later ages by a perfect screening 
test at age 62. The solid line below the dashed line is the clinical incidence reduction from a digital 
mammography screening test: 16% of clinical diagnoses could be prevented by a one-time digital 
mammogram at age 62 (Scenario 3, Table 3). This implies that 27% of clinical incidence between ages 
62 and 77 was not reduced by the one-time digital mammogram at age 62 (Scenario 3 vs 2).
The dashed line at the top in the breast cancer mortality panels on the right of Figure 4 is the maxi-
mum achievable mortality reduction from a screening test with 100% sensitivity combined with per-
fect treatment in screen-detected cases (Scenario 2). The dotted line below the top line represents 
the breast cancer mortality reduction over the 15-years after a current digital mammogram at age 62 
and perfect treatment in the screen-detected cases (Scenario 3). The solid line at the bottom is the 
reduction in breast cancer mortality from a current screening test combined with current treatment 
(Scenario 4).
The percentages in these figures are, for example for Model S: 38% of breast cancer deaths observed 
in the scenario without screening stem from cancers with onset after age 62 and could therefore not 
be screen-detected and prevented from breast cancer death by screening at age 62. This implies that 
100-38=42% of breast cancer deaths could be reduced by perfect screening and perfect treatment of 
screen-detected cases (Scenario 2, Table 4). However, 31% of breast cancer deaths are not prevented 
due to lack of screen-detection if screening is performed with a digital mammogram (Scenario 3 vs 
2, Table 4), and 13% of breast cancer deaths is not prevented because current guideline-concordant 
treatment lacks the effectiveness to cure those screen-detected breast cancers (Scenario 4 vs 3). The 
18% mortality reduction follows from current screening and current treatment (Scenario 4).
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Screening sensitivity

Compared to the maximum achievable mortality reduction, a one-time digital mammo-

gram having actual observed sensitivity missed between 3% (Model D) to 44% (Model E) 

of the avoidable cancer deaths. Overall, the mortality reduction from a one-time digital 

mammogram at age 62 and perfect treatment relative to no-screening (scenario 3 vs. 1) 

was 23% to 40% across models (Table 4, Figure 4). The ability to detect lethal tumors by 

mammography screening was higher among the models (D, GE, and W) with assump-

tions of tumor onset at the start of the sojourn time than the models (E and S) with tumor 

onset prior to the start of the sojourn time.

Treatment effectiveness

Assuming observed guideline-concordant treatment effectiveness in screen-detected 

cancers (scenario 4), the percent breast cancer mortality that was not reduced compared 

to Scenario 3 with perfect treatment was 13% to 23% (Table 4, Figure 4). The difference 

between scenario 3 and 4 show that Models E and GE, have a relatively high percentage 

of cancer deaths that were not averted in the first 3 years after the screen at age 62. This 

illustrates the substantial portion of cancers screen-detected at a relatively advanced 

stage that was not curable with current treatment effectiveness. These findings showed 

that the lethality of the cancers found at screening impacts breast cancer mortality differ-

ently over time and in magnitude by model.

Sensitivity and Treatment

The combination of screening with a digital mammogram at age 62 and guideline-

concordant treatment with current treatment effectiveness (Scenario 4 vs. Scenario 1) 

provides insight into how assumptions about currently available screening and treatment 

interact with breast cancer natural history to affect breast cancer mortality. Models E, W 

and S grouped towards the lower end and models D and GE towards the higher end of 

the clinical incidence reductions (Table 3). But for breast cancer mortality slightly differ-

ent groupings of models were seen: Models D, GE and S predicted 17 to 18% breast 

cancer mortality reduction relative to the no-screening scenario, whereas models E and 

W predicted 8% breast cancer mortality reduction (Table 4).

The lower breast cancer mortality reductions predicted by models E and W were pri-

marily the result of a low screen-detection rate of lethal cancers and the lack of improving 

prognosis with treatment of screen-detected cases: in both models 23% of the cancers 

destined to cause breast cancer death were screen-detected (Scenario 3), and of those 

detected only one-third (8 out of 23; Scenario 4 vs. Scenario 3, Table 4) were cured.

Models D and S predicted a similar 17 and 18% mortality reduction as model GE, 

also due to a combination of relatively high screen-detection and high improvement 

of prognosis from treatment. However, the shape of the mortality reduction curve of 
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Model GE, relative to other models, was distinct. The inverted shape of model GE can be 

explained by the presence of more advanced-stage cancers at screen detection, where 

breast cancer death could not be avoided.

Discussion

This study is the first to apply the maximum clinical incidence reduction (MCLIR) method 

to illustrate how model structure and assumptions impact both clinical incidence and 

cancer mortality predictions. To understand variations in model estimates of screening 

effects, the analysis decomposed the relative contributions of model-specific structures 

and assumptions regarding the pre-clinical duration of breast cancer, the ability of a 

screening test to detect cancers, and breast cancer treatment to breast cancer incidence 

and mortality predictions. The results illustrated that models with similar predictions 

for screening effectiveness may use differing assumptions about screening, treatment, 

tumor onset, and tumor progression. Altogether, the key finding was that assumptions 

about the timing of tumor inception and its effect on the pre-clinical duration of breast 

cancer had the greatest impact on the model groupings on predicted clinical breast 

cancer incidence and mortality reductions. As a result of this finding, we now include this 

model-specific tumor attribute in our CISNET model comparison table (Table1).

The MCLIR scenarios showed that models E and S simulate the longest pre-clinical 

duration of breast cancer. While this implies a longer period to detect cancers by screen-

ing and possibly avert cancer deaths, these models showed the greatest difference in 

breast cancer mortality reduction between the scenarios with perfect detection to those 

with (realistic) digital mammography . Again, this was related to those models’ assump-

tions about early tumor onset prior to the start of a cancer’s sojourn time. The loss in 

breast cancer mortality reduction due to digital mammography (imperfect) screening 

provides information about the further reductions in breast cancer mortality should 

screening sensitivity improve in the future, given the current state of the models. On 

the other hand, models D, GE and W had similar and relatively short pre-clinical dura-

tions due to their assumptions of tumor inception at the start of the sojourn time and 

therefore ultimately predicted smaller losses in breast cancer mortality reduction due 

to digital mammography screening. The effect of guideline-concordant treatment with 

actual observed treatment effectiveness on breast cancer mortality reduction differed by 

model structure. In general, greater breast cancer mortality reductions were predicted 

by models that use a hazard-reduction treatment structure than the models with cure 

fractions to implement breast cancer treatment. These types of insights from the MCLIR 

results provide further clarity on the differences and similarities across models and can be 

used to interpret variations in model outcomes.
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The MCLIR analyses also illustrated model variation in the distributions for tumor 

progression assumed in the models, with models D, GE, and W tending to have faster 

progressing tumors than models E and S. This knowledge about the models can help 

interpret model differences in predictions of screening effectiveness by screening 

frequency. For example, one would expect more cancers to be diagnosed with more 

frequent screening in models that have relatively faster tumor progression on average 

and vice versa. This was confirmed in a recent analysis of the impact of screening in-

tervals on breast cancer mortality, with Models D, GE, and W showing greater benefits 

(breast cancer deaths averted preceded by more cancer diagnoses) from more frequent 

screening than models E and S. [9]

The MCLIR methodology was first used to evaluate differences in the CISNET colorectal 

cancer screening models. [16] The colorectal cancer findings indicated that assumptions 

about the duration between adenoma onset and clinical diagnosis were an important 

factor in explaining colorectal cancer model differences. The results of this study were 

similar in demonstrating that models with long pre-clinical durations of breast cancer and 

relatively low screen detection rates project similar screening effects as models with a 

shorter pre-clinical durations and higher screen detection rates.

Usually, models are characterized by describing modeling approach, model inputs and 

assumptions. [19,21,22] In this research, we examined model outcomes to drill down 

to the mechanics of incidence and mortality predictions. There are several caveats that 

should be considered in evaluating this method. First, the effect of a single screen on 

breast cancer incidence and mortality is not the same as the effect of routine screening 

from age 50 to 74. The results in this study are therefore not directly translatable to pro-

jections of the effects of a periodic screening program on overall breast cancer incidence 

and mortality. Second, it was beyond the scope of this paper to perform and evaluate 

the MCLIR scenarios at different ages or at multiple ages across five different models. 

Evaluating the MCLIR scenarios at different ages would provide insight into age-specific 

and between-model differences in tumor inception, progression, and test-characteristics 

and the impact of these on breast cancer incidence and mortality. Third, the MCLIR 

methodology employed did not explicitly allow for formal assessments of the factors 

that account for differences in rates of over-diagnosis. This will be an interesting area for 

future research and extended use of the MCLIR method.

CISNET collaborative modeling predictions are increasingly used by policy makers to 

inform screening guidelines [9, 14], evaluate screening and treatment programs [12, 13], 

and can be used by clinicians to assist in decision-making about breast cancer screening. 

[23] How different models arrive at their predictions of harms and benefits of screening 

and treatment may be perceived as opaque due to the complexity of the models. This 

study complements model descriptions [1-6] by using MCLIR analyses to illustrate and 

compare which structural differences and natural history assumptions may be important 
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to consider by policy makers when using collaborative modeling outcomes. The MCLIR 

approach could be adopted in other comparative modeling research to improve model 

transparency.
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Part Two: Quantifying the harms 
and benefits of age-based breast 

cancer screening in the United States
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