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ABSTRACT

Background

Collaborative modeling has been used to estimate the impact of potential cancer screen-
ing strategies worldwide. A necessary step in the interpretation of collaborative cancer
screening model results is to understand how model structure and model assumptions
influence cancer incidence and mortality predictions. In this study we examined the rela-
tive contributions of the pre-clinical duration of breast cancer, the sensitivity of screening,
and the improvement in prognosis associated with treatment of screen-detected cases
to the breast cancer incidence and mortality predictions of five Cancer Intervention and
Surveillance Modeling Network (CISNET) models.

Methods

To tease out the impact of model structure and assumptions on model predictions, the
Maximum Clinical Incidence Reduction (MCLIR) method compares changes in the number of
breast cancers diagnosed due to clinical symptoms and cancer mortality between 4 simpli-
fied scenarios: 1) no-screening; 2) one-time perfect screening exam that detects all existing
cancers and perfect treatment (i.e., cure) of all screen-detected cancers; 3) one-time digital
mammogram and perfect treatment of all screen-detected cancers; and 4) one-time digital

mammogram and current guideline-concordant treatment of all screen-detected cancers.

Results

The five models predicted a large range in maximum clinical incidence (19%-71%) and in
breast cancer mortality reduction (33%-67%) from a one-time perfect screening test and
perfect treatment. In this perfect scenario, the models with assumptions of tumor incep-
tion prior to when it is first detectable by mammography predicted substantially higher
incidence and mortality reductions than models with assumptions of tumor onset at the
start of a cancer's screen-detectable phase. The range across models in breast cancer
clinical incidence (11%-24%) and mortality reduction (8%-18%) from a one-time digital
mammogram at age 62 with observed sensitivity and current guideline-concordant treat-
ment was considerably smaller than achievable under perfect conditions.

Conclusions

The timing of tumor inception and its effect on the length of the pre-clinical phase of breast
cancer had substantial impact on the grouping of the models based on their predictions for
clinical incidence and breast cancer mortality reduction. This key finding about the timing of
tumor inception will be included in future CISNET breast analyses to enhance model trans-
parency. The MCLIR approach should aid in the interpretation of variations in model results

and could be adopted in other disease screening settings to enhance model transparency.

Erasmus University Rotterdam Za.{uu.g



Maximum Clinical Incidence Reduction | 3
INTRODUCTION

Collaborative modeling can enhance the rigor of modeling research through the use of
multiple independent models to answer the same research question. The National Can-
cer Institute-funded Cancer Intervention and Surveillance Modeling Network (CISNET)
was established in 2000 to use collaborative modeling to improve our understanding of
the impact of cancer prevention, screening, and treatment dissemination on population
trends in cancer incidence and mortality. The CISNET Breast Cancer Working Group
includes six modeling teams: Dana-Farber (Model D) [1], Erasmus (Model E) [2], George-
town-Einstein (Model GE) [3], MD Anderson (Model M) [4], Stanford (Model S) [5], and
Wisconsin-Harvard (Model W) [6]. The modeling groups have collaborated to estimate
the effects of breast cancer prevention [7], mammography screening [8-11], and systemic
adjuvant treatment on trends in breast cancer incidence and mortality [12, 13]. Prior
research has also investigated the impact of different screening scenarios on the balance
of population-level benefits and harms, and the results have been used by policymakers
to inform breast cancer screening guidelines [9, 14, 15].

Each of the models is unique in its structure, assumptions, and methods of synthesiz-
ing data. Consequently, they are unique in how they project the impact of screening
and treatment on breast cancer incidence and mortality. Results that are similar across
multiple models despite differences in assumptions and modeling approach, enhance
the credibility of the findings and are more likely to be robust than conclusions obtained
from a single model. For instance, in prior analyses, the models all closely estimated
observed trends in US breast cancer incidence and mortality and consistently agreed on
the ranking of screening scenarios based on several metrics, including mortality reduc-
tions. [9, 15]

Despite the consistency of prior conclusions about the effects of screening across the
models, there are variations in the magnitude of the effects. [9, 15] For the interpreta-
tion of collaborative modeling results, it is important to understand how different model
structures and combinations of assumptions contribute to this variation. Detailed model
descriptions (Table 1) are informative and contribute to model transparency. However,
conveying between-model differences is not always straightforward for reasons related
to the nature of modeling disease processes and their interaction with cancer control
interventions. In particular, breast cancer modeling involves the representation of un-
observable aspects of natural history such as tumor onset and tumor progression upon
which interventions (e.g., screening and treatment) are overlaid. To do so, models make
assumptions about the timing of tumor inception, tumor progression (e.g., discrete or
continuous tumor growth), and progression variability among tumors. These assump-
tions in conjunction with model structure impact the three key determinants of screening

effectiveness: 1) pre-clinical duration of breast cancer, i.e., the time period during which
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prevalent undiagnosed cancers could be detected by screening; 2) sensitivity of the
screening test, i.e., the likelihood that cancers are detected at screening; and 3) improve-
ment in prognosis from treatment, e.g., whether (earlier) treatment reduces (more) breast
cancer mortality.

Given the complexity of interpreting outcomes from multiple models in a collaborative
setting, it can be useful to isolate portions of the models to gain greater insight into
how model structure and natural history assumptions systematically affect model results.
The maximum clinical incidence reduction (MCLIR) method can be used to isolate the
effects of tumor onset, tumor progression, screening test sensitivity, and treatment by
comparing model results before and after imposing a one-time screening intervention
under varying assumptions about screening performance and treatment effectiveness.

In the absence of screening, breast cancers will only be diagnosed as a result of clinical
symptoms, i.e., clinical incidence, which is defined as breast cancers diagnosed due to
symptoms. Screening is assumed to detect some of these cancers prior to symptomatic
diagnosis, thereby reducing clinical incidence, and possibly cancer mortality. The MCLIR
method measures this reduction in breast cancer clinical incidence and mortality. While
all models use the same data on screening sensitivity and breast cancer treatment, the
implementation of screening and treatment in the models varies as model structures
are different. Therefore, differences in clinical incidence reduction should reflect model-
specific choices in their portrayal of the pre-clinical detectable phase of breast cancer
(tumor onset and progression) and mechanisms of screen detection (e.g., how they
incorporate sensitivity). Differences in breast cancer mortality are expected to capture
model-specific assumptions about tumor onset and progression and how the implemen-
tation of treatment affects the natural history.

To date, the MCLIR method has been applied to three CISNET colorectal cancer mod-
els to clarify the effect of natural history assumptions and model structure on colorectal
cancer incidence predictions. [16] In this study, we extended the MCLIR method to
understand how differences among the CISNET breast cancer models affect predictions
for screening effectiveness by projecting the clinical incidence and mortality reductions
after a one-time screening exam at age 62 among women without prior screening or
a past breast cancer diagnosis. The results are intended to provide a greater under-
standing of how the CISNET breast models depict unobservable processes, and how
those representations may systematically affect conclusions about screening effects on

incidence and mortality.
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METHODS

This research was approved as exempt by the Georgetown Institutional Review Board
based on use of de-identified, publically available data. Five of the six CISNET breast

models (those with natural history components) participated in this analysis.

Model Overview

The general model structure of the five models involves the simulation of women who
may develop breast cancer in the absence or presence of screening. In all models, the
majority of women live a breast cancer-free life and eventually die of causes other than
breast cancer (Figure 1, panel A). For women who develop breast cancer, tumor inception
is simulated either prior to (models E and S) or at the start of (models D, GE, and W) the
tumor’s sojourn time. We define the sojourn time as the portion of time in the pre-clinical
phase between when a cancer can be first screen-detectable (e.g., by mammography)
and when clinical cancer diagnosis would occur due to symptoms in the absence of
screening.[17] Tumor sojourn time is also termed ‘pre-clinical screen-detectable phase’
(Figure 1).

The point when a tumor becomes screen-detectable may depend on the sensitivity of
the screening test, such that more sensitive tests can detect tumors closer to inception,
and hence in earlier stages or at smaller tumor sizes. Tumor growth is simulated either
continuously (models E, S, and W) or as movement through discrete stages (models D
and GE). All models except model S include ductal carcinoma in situ (DCIS). Nonethe-
less, model S simulates the progression of breast cancers prior to clinical symptoms
based on continuous tumor growth of invasive cancer (Table 1). [5]

In the absence of screening, the models assume that some cancers will eventually
cause symptoms and be clinically diagnosed (Figure 1, panel B). If a woman participates
in screening during the cancer’s sojourn time, the cancer may be screen-detected in an
earlier stage or at a smaller size than would have occurred with clinical diagnosis in the
absence of screening.

The time period between when a cancer is screen-detected and when it would have
been clinically diagnosed in the absence of screening is referred to as the lead-time (Fig-
ure 1, panel C). The lead time is part of the sojourn time, and the duration of the sojourn
time is an important unobservable determinant of screening effectiveness because a
longer sojourn time implies a longer period during which a screening test can potentially
detect cancer. The sojourn time is based on assumptions about tumor inception and
tumor growth, and the start of the sojourn time is determined by the sensitivity of the

screening test (Figure 1, panel C).
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Table 1 Overview of Key Differences and Similarities Between The CISNET Breast Models Structures

and Key Model Components

Model

D

E

Model type

Tumor progression modeled as
Incidence in the absence of screening
DCIS included

ER/HER2 Included

Individual risk factors for breast cancer

Screen detection conditioned on

Implementation of
screen benefit

Estimation of
over diagnosis

Implementation treatment benefit

Death from breast cancer determined by

SEER data used for calibration

Analytic, Parallel universe

State-transition

Age Period Cohort model
Yes

Yes

Breast density

Modality, age, density, frequency

Stage shift

Difference screen &
no-screen

Hazard reduction

Survival from BC < survival other
cause mortality

No

Simulation, Parallel universe

Continuous tumor growth
Age Period Cohort model
Yes

Yes

Breast density, obesity

Tumor size, modality, age,
density, frequency

Detection at smaller tumor size

Difference screen &
no-screen

Cure fraction, larger fatal
diameter

Fatal diameter, survival from BC
< survival OC mortality

Incidence, mortality, stage
distribution

Addition based on MCLIR analyses

Tumor inception point

At the start of pre-clinical screen-
detectable phase

Prior to start of pre-clinical
screen-detectable phase

* Model S uses background breast cancer incidence derived from the APC framework that explicitly
considers the effects of screening and menopausal hormone replacement therapy. [5] Among the
other modeling groups breast cancer incidence in the absence of screening is estimated starting
from a common APC model. [19, 24]

Explanation of Terms Used in Table 1

Model type

Analytic: Analytical approach to estimate the impact of mammography screening and breast cancer
treatment on incidence and mortality of breast cancer.

Simulation: Stochastic simulation is based on the Monte Carlo method and use of random numbers
to evaluate the impact of screening on life histories, cancer incidence and mortality.

Parallel universe: Screening and treatment is modeled in a parallel universe, implying that the same
population is simulated twice: once to determine the impact of breast cancer without screening, and
once to determine the impact of breast cancer with screening.

Natural history and factors affecting breast cancer onset

APC model: Breast cancer onset and breast cancer in the absence of screening was derived by Gan-
gnon et al. [23] and is driven by an age-period-cohort model:

Age: As women age, their risk of developing breast cancer increases.

Period: Onset of breast cancer is different in certain calendar time periods.

Cobhort: Year of birth influences the risk of developing breast cancer.
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GE

S

w

Simulation, Parallel universe

Stage-transition

Age Period Cohort model
Yes

Yes

Breast density

Modality, age, density, frequency

Younger age, earlier stage

Difference screen &
no-screen

Hazard reduction, cure fraction

Survival from BC < survival other
cause mortality

Incidence, stage distribution

Simulation,
Parallel universe

Continuous tumor growth
Age Period Cohort model*
No

Yes

Hormone replacement

Tumor size, ER status, age,
hormone repl., frequency

Stage shift, detect at smaller tumor
size

Difference screen &
no-screen

Hazard reduction, non-proportional

Survival from BC < survival other
cause mortality

Incidence, stage distribution

Simulation, Parallel universe

Continuous tumor growth
Age Period Cohort model
Yes

Yes

Breast density

Tumor size, modality, age, density,
frequency

Younger age, detect at smaller
tumor size

Difference screen &
no-screen

Cure fraction

Survival from BC < survival other
cause mortality

Incidence, mortality

At the start of the pre-clinical
screen-detectable phase

Prior to start of the pre-clinical
screen-detectable

At the start of the pre-clinical
screen-detectable phase

Breast density: Breast density is associated with different levels of risk for developing breast cancer
and modifies the operating characteristics of breast cancer screening.

ER/HER2: Onset of breast cancer is different for molecular subtypes ER and HER2.

Tumor stage transition: Tumor progression is modeled as transitions between discrete stages.

Continuous tumor growth: Tumors grow continuously after tumor inception.

Screening mechanism

Sensitivity: Sensitivity can be used directly or indirectly (e.g., when translated to tumor size).
Overdiagnosis: The detection and diagnosis of a condition that would not go on to cause symptoms
or breast cancer death in a woman'’s lifetime in the absence of screening.

Duration of preclinical detectable phase: The period between tumor onset and the start of a cancer’s

screen-detectable phase.

Treatment effect

Hazard reduction: Reduction in breast cancer mortality hazard, derived from the hazard ratio re-
ported for the different treatment regimens [19].

Cure fraction: If hazard rate reduction is not a direct model input, it can be translated into a cure
fraction to implement breast cancer treatment.
Death from breast cancer: Once diagnosed with breast cancer, a survival until breast cancer death
is competing with the other cause mortality survival. That is, breast cancer death occurs only if the
patient does not die from other causes.

Erasmus University Rotterdam
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A life without breast cancer

Death from
Birth other causes
| |
| 1
B: life with breast cancer cancer
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| | |
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life years lost

C: life with breast cancer & screening

Sojourn time™

due to screening

cancer Death from
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I e N death averted
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I I

< >

Pre-clinical phase

Figure 1 Three versions of a woman's life history. A: without breast cancer, B: with breast cancer and
without screening, C: with breast cancer and mammography screening.

In scenario C, the pre-clinical phase is the period of time between tumor inception and clinical diag-
nosis in the absence of screening. The sojourn time for a screening test, e.g., mammography is the
period of time within the pre-clinical phase that a cancer can be screen detectable; this period can
also be termed the pre-clinical screen-detectable phase. The point when the cancer is detected by
screening depends on when the screening test is performed and the sensitivity of the screening test.
The period before the sojourn time represents a period in which the tumor is present but undetect-
able by mammography. Should the sensitivity of mammography improve, or new types of screening
tests evolve, the point of screen-detectability would shift to the left and tumors could be detected
closer to tumor inception.

Mortality reductions from screening may occur via improvements in survival related to
the earlier stage or smaller tumor size at diagnosis of screened vs. unscreened women,

given receipt of breast cancer treatment.

MCLIR Analysis

To illustrate the effects of model structure and assumptions about tumor inception, tu-
mor progression, screening test ability to detect tumors, and treatment on breast cancer
incidence and mortality predictions, the MCLIR analysis consists of comparisons between

four scenarios. Three scenarios involve a one-time screening test at age 62 and the

Erasmus University Rotterdam
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remaining no-screening scenario serves as a comparator (Table 2). The study popula-
tion for each scenario is a cohort of average risk women born in 1965, that have never
been screened or diagnosed with breast cancer prior to age 62. Age 62 was chosen to
illustrate model differences because it is in the middle of the start and stop ages of the
generally recommended mammography screening guidelines [14, 18] and there is suf-
ficiently high prevalence of breast cancer at this age to illustrate model differences. While
all models have the capacity to include risk factors, to isolate model differences these
analyses focused on the average risk population. Women were followed for 15 years (i.e.,
up to age 77) to capture the immediate and long-term effects of the intervention. Model
outcomes were breast cancer clinical incidence and breast cancer mortality by age.

Table 2 Description of Maximum Clinical Incidence Reduction (MCLIR) Method

Scenarios Scenario Description Implication Analyses

No Screening All cancers diagnosed in
this scenario are diagnosed
due to clinical symptoms
and will be treated with
guideline-concordant

treatment.

Comparator to calculate
the screening effect in
scenarios 2, 3, and 4.

No screening: no screening

during a woman’s lifetime.
(Scenario 1) Diagnosed breast cancers
will be treated with current

treatment*

Perfect screening
Perfect treatment

(Scenario 2)

Current sensitivity
Perfect treatment

(Scenario 3)

Current sensitivity
Current Treatment

(Scenario 4)

A one-time perfect screen
with 100% sensitivity® at
age 62, all screen-detected
cancers are treated with
perfect treatment”

One-time digital
mammogram with current
sensitivity” at age 62, all
screen-detected cancers
are treated with perfect
treatment

One-time digital
mammogram with current
sensitivity at age 62, all
screen-detected cancers
are treated with current
treatment

All existing cancers at age
62 will be screen-detected
and cured by perfect
treatment and will not lead
to breast cancer death.

Some of the existing
cancers at age 62 are
screen-detected. All
screen-detected cancers
are cured and will not lead
to breast cancer death.

Some of the existing
cancers at age 62 are
screen-detected. All
screen-detected cancers
are treated with guideline-
concordant treatment

and some will not lead to
breast cancer death.

Comparison of Scenario 2
to 1 isolates the effect of
the pre-clinical detectable
duration of breast cancer
and provides the tumor
progression distribution.

The comparison of
scenario 3 to 2 isolates
the effect of digital
mammography (non-
perfect) sensitivity on
reductions in clinical
incidence and breast
cancer mortality.

Comparison of scenario

4 to 3isolates the effect

of guideline-concordant
(imperfect) treatment
effectiveness on breast
cancer mortality reduction.

* Current treatment: All diagnosed breast cancers receive guideline-concordant breast cancer treat-
ment with observed treatment effectiveness. [19]

¢ Perfect sensitivity: All existing breast cancers are screen-detected at screening (e.g., Sensitivity is

100%).

~ Perfect treatment: All diagnosed breast cancers are “cured” and women will not die of breast

cancer.

A Current sensitivity: Screening is performed with the observed sensitivity of digital mammography.

(19]
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= = Scenario 2, 100% sensitivity of screening and 100% treatment effectiveness
—— Scenario 4, Digital mammography sensitivity and observed treatment effectiveness

Figure 2 The MCLIR Metrics Explained For Breast Cancer Incidence

Overall Reductions in Breast Cancer Incidence at 15-Year Follow-Up

The light gray area denoted by A is the overall clinical incidence reduction over the 15 years after the
digital mammogram at age 62. The area B alone represents the proportion of clinical incidence that
could not be reduced because of the non-perfect sensitivity of the digital mammogram. As a digital
mammogram does not detect all tumors in existence, the area B provides a measure of the room
to further reduce breast cancer clinical incidence if better (more sensitive) screening would become
available. The 2 light gray areas combined (A and B) are the maximum clinical incidence reduction
from perfect screening. The dark gray area denoted by C, is the proportion of clinical incidence that
is not reducible by a perfect screen at age 62 because these clinical cancers had a tumor onset after
age 62.

Age-Specific Reductions in Breast Cancer Incidence

Scenario 1, the no-screening scenario, serves as comparator from which the reductions, as measured
on the y-axis, are calculated. Scenario 2 (dashed line) is the age-specific percent reduction in clinical
incidence from one perfect screening test at age 62 with perfect sensitivity relative to the clinical
incidence in the no-screening scenario. Scenario 4 (solid line) is the age-specific percent clinical inci-
dence reduction from one digital mammogram at age 62 relative to the no-screening scenario. Sce-
nario 3 (also solid line) uses sensitivity of current digital mammography and in contrast to scenario 4
has perfect treatment effectiveness which only affects breast cancer mortality, and thus, scenario 3
has the same impact on breast cancer incidence as scenario 4.

MCLIR Scenarios

Scenario 1 is the baseline scenario without screening where all breast cancers will be
diagnosed due to clinical symptoms. Upon diagnosis, cancers are treated according to
current guideline recommended treatment. [19] Guideline concordant treatment roughly
implies that, after surgical removal of the tumor, estrogen receptor (ER)-positive breast
cancers are primarily treated with hormone therapy and advanced stage ER positive
tumors may also receive chemotherapy. ER-negative breast cancers are treated with
chemotherapy only. Tumors that are Human epidermal growth factor Receptor 2 (HER2)

positive are also treated with Trastuzumab (Herceptin). The effectiveness of breast cancer
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treatment was based on the most recent meta-analyses of randomized clinical trials re-
ported by the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). [20] Scenario
1 provides baseline information about the number of cancers that will lead to symptoms
and be clinically diagnosed as well as the number of breast cancer deaths occurring in
the 15-year follow-up period.

Scenario 2 involves a one-time perfect screening test at age 62 and perfect treat-
ment. The hypothetical perfect screening test assumes that all tumors in existence are
screen-detected, including those that may not be detectable by digital mammography.
Perfect treatment means treatment is curative and that all women will be cured and
will die from other causes than breast cancer. Comparing results from this scenario with
the baseline (no-screening) scenario provides the maximum achievable clinical incidence
and mortality reduction. It is a measure of the pool of cancers that technically could be
screen-detected at age 62 and thus avoid clinical diagnoses of these cancers at a later
age when they would cause symptoms. The change in the maximum achievable clinical
incidence reduction over time as women age provides insight into the distribution of
sojourn times of the existing tumors at age 62, i.e., key determinant 1 of screening ef-
fectiveness. The mortality results from this scenario provide information on how many of
the breast cancer deaths between ages 62 and 77 stem from cancers that were present
at age 62. Relative to the no-screening scenario, it is the maximum achievable mortal-
ity reduction from screening and treatment, and the converse (1 minus the maximum
mortality reduction) is the portion of unavoidable breast cancer deaths because these
cancers had tumor onset after age 62 when the screening test was done (Figure 3). The
age-specific maximum achievable mortality reduction after the screen test at age 62 also
provides insight into the survival time of pre-clinical cancers in existence at age 62.

Scenario 3 involves a one-time digital mammogram at age 62 with sensitivity based
on observed mammography performance in the Breast Cancer Screening Consortium [9,
19] and perfect treatment (i.e., cure) of screen-detected cancers. In this scenario, some
of the cancers in existence at age 62 will be missed by screening and this will affect
clinical incidence and mortality at later ages. Because scenarios 2 and 3 vary screening
performance while holding the treatment effects constant, the comparison of these two
scenarios isolates the impact of perfect vs. observed sensitivity of screening on reduc-
tions in clinical incidence and breast cancer mortality, i.e., key determinant 2 of screening
effectiveness. This comparison also illustrates the room for improvement in terms of
fewer clinically diagnosed cases and cancer deaths should the sensitivity of screening
would improve (e.g., new radiology technology or circulating tumor DNA detection).

Scenario 4, the realistic scenario, involves a one-time digital mammogram at age 62
and treatment according to current guidelines [19]. Because scenarios 3 and 4 vary treat-
ment effectiveness while holding the sensitivity of screening constant, the comparison of
these scenarios isolates the impact of perfect vs. actual treatment effectiveness on breast

Erasmus University Rotterdam 24\/»9\9
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cancer mortality, i.e., key determinant 3 of screening effectiveness. This comparison
isolates the portion of cancers that, despite earlier detection by screening, will not be
cured with current guideline recommended treatment. Also, this provides insight into
the room for improvement should breast cancer treatment improve in the future, given
current performance of digital mammography.

For ease of comparison and interpretation of outcomes across the four scenarios for
five different models, results are reported as percent reductions in clinical incidence and
breast cancer mortality relative to each model’s clinically diagnosed breast cancers and
breast cancer deaths in the absence of screening (Figure 2 & 3).

RESULTS

The results for each scenario for the impact of a one-time screen at age 62 among women
with no prior screening or past diagnosis of breast cancer are presented separately for

incidence and mortality.

Breast Cancer Incidence

Tumor Onset and Progression

The maximum achievable clinical incidence reduction from a perfect screening test at
age 62 (scenario 2) relative to the no-screening scenario (scenario 1) illustrates the impact
of natural history assumptions such as tumor onset and tumor progression on screening
effectiveness. The maximum clinical incidence reduction ranged from 19% to 71% across
the five models with models D, GE, and W grouping towards the lower end of the range
and models E and S towards the top of the range (Table 3). This wide variation was the
result of differences in the modeling of the timing of tumor inception relative to the start
of the sojourn time. For example, Model E's assumption of tumor onset long before
the start of the sojourn time led to a large screening effect when the perfect screening
test was applied that detects all tumors from their inception even before the pre-clinical
screen-detectable phase begins. The majority (71%) of the cancers in this model had an
onset prior to age 62 and were therefore screen-detected by a perfect screening test
at age 62, avoiding clinical diagnoses at a later age. The remaining (29%) of cancers
had an onset after age 62. Model S makes similar assumptions about tumor onset and
growth as Model E, and has fairly similar patterns in their results as Model E. In contrast,
in Models D, GE, and W, which simulate tumor inception at the start of the pre-clinical
screen-detectable phase, only 19% to 27% of cancers were in existence at age 62, lead-
ing to a lower maximum clinical incidence reduction from a perfect screening test than
Models E and S.
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Figure 3 The MCLIR Metrics Explained For Breast Cancer Mortality

Overall Reductions in Breast Cancer Mortality at 15-Year Follow-Up

The light gray area denoted by A is the overall breast cancer mortality reduction over the 15 years
after one digital mammogram at age 62 and guideline recommended treatment with observed
treatment effectiveness. The area B alone represents the proportion of breast cancer mortality that
could not be reduced because of the non-perfect treatment effectiveness of current guideline rec-
ommended treatment. Since guideline recommended treatment does not cure all screen-detected
cancers, B provides a measure of the room to further reduce breast cancer mortality if better (more
effective) treatment would become available.

The area C alone represents the proportion of breast cancer mortality that could not be reduced
because of the non-perfect sensitivity of currently available digital mammography. As a digital mam-
mogram does not detect all tumors in existence, B provides a measure of the room to further reduce
breast cancer mortality if better (more sensitive) screening would become available. The 3 areas
combined (A, B and C) are the maximum mortality reduction from perfect screening and perfect
treatment where B + C represent the maximum room to further reduce breast cancer mortality if
screening sensitivity and treatment effectiveness would become improve. The dark gray area, de-
noted by D, is the proportion of breast cancer deaths that is not reducible by a perfect screen at age
62 and perfect treatment because these breast cancer deaths had tumor onset after age 62.
Age-Specific Reductions in Breast Cancer Mortality

Scenario 1, the no-screening scenario, serves as comparator from which the reductions, as mea-
sured on the y-axis, are calculated. Scenario 2 (dashed line) is the age-specific percent breast cancer
mortality reduction from one perfect screening test with perfect sensitivity and perfect treatment
relative to the breast cancer mortality in the no-screening scenario. Scenario 3 (dotted line) is the
age-specific percent breast cancer mortality reduction from one digital mammogram at age 62 and
perfect treatment relative to the no-screening scenario. Scenario 4 (solid line) is the age-specific
percent mortality reduction from one digital mammogram at age 62 and guideline-concordant treat-
ment with observed treatment effectiveness in screen-detected cases relative to the no-screening
scenario.
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Table 3 Percent Reductions in Breast Cancer Incidence after One Mammography Screen at Age 62
over a 15-Year Follow-Up, %

Scenario Intervention D E GE S w

2 100% screening 23 71 27 43 19
sensitivity and 100% treatment
effectiveness
(vs. no screening)

4 Current screening 21 15 24 16 11
sensitivity and current treatment
effectiveness
(vs. no screening)

4vs. 2 Breast cancer clinical incidence 2 56 3 27 8
not reduced because of imperfect
(current) screening sensitivity

Scenario 3 is not shown because this scenario has the same screening sensitivity (digital mammogra-
phy) as scenario 4 and hence has the same clinical incidence reduction as scenario 4.

The shape of the maximum clinical incidence reduction curve provides insight into
the variability of tumor growth and disease progression of tumors in existence at age 62
(Figure 4). In models D, GE and W, the age-specific clinical reductions from the perfect
screen declined more rapidly in the first five years than in the other two models, indi-
cating the presence of more quickly progressing tumors relative to the other models.
The non-steep and slower linear decline of the age-specific maximum clinical incidence
reduction in Models E and S is the consequence of greater variability in tumor progres-
sion and overall slower tumor growth among the tumors in existence at age 62 than seen
in the other models.

The models have structural differences in the timing of tumor inception relative to the
sojourn time and they had the same calibration targets (observed trends in U.S. breast
cancer incidence and mortality) in their development phase. This explains why Models E
and S with tumor inception long before the start of the sojourn time have slower overall
tumor progression and Models D, GE, and W with tumor inception at the start of the

sojourn time have faster progressing tumors.

Screening Sensitivity

Reductions in clinical incidence based on the observed sensitivity of digital mammogra-
phy varied less across models than when assuming perfect sensitivity, with ranges of 11%
to 24%. Since assumptions about tumor onset and progression differ, how the models ar-
rive at this result differs and is illustrated by comparison to their predictions for maximum
reductions achievable (Scenario 3 vs 2). In models D, GE, and W, the differences in clini-
cal incidence reduction were 2%, 3%, and 8%, respectively, and in models E and S these
were 56% and 27%. While models E and S have more tumors in existence at age 62, the

majority of tumors were in their pre-sojourn period and not yet screen-detectable with
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a digital mammogram having actual observed sensitivity. On the other hand, in models
D, GE, and W, the majority of tumors in existence at age 62 were in their sojourn period
and could be detected by the digital mammogram. Thus, the variations between model
clusters E and S vs. D, GE, and W indicate that modeling assumptions about the timing
of tumor inception in relation to the implementation of digital mammography can have

substantial impact on screen detection and reductions in clinical breast cancer incidence.

Breast Cancer Mortality

Tumor Onset and Progression

Based on one perfect screening test at age 62 and perfect treatment for screen-detected
cancers, the maximum reductions in breast cancer mortality relative to the no-screening
scenario ranged from 33% to 67% over 15 years of follow-up (Table 4). Similar to the
impact of tumor onset on clinical incidence reductions, Models D, GE and W had a
higher percent (55% to 67%) of breast cancer deaths stemming from cancers with onset
after age 62 than Models E and S (33% to 38%). These variations reflect interactions

between assumptions about tumor onset and survival times.

Table 4 Percent Reduction in Breast Cancer Mortality after One Digital Mammography Screen at
Age 62 with 15-Year Follow-Up, %

Scenario Intervention D E GE S w
2 100% screening sensitivity and 100% 40 67 45 62 33
treatment effectiveness (vs. no
screening)
% Breast cancer deaths with onset 60 33 55 38 67
after age 62.*
3 Current screening sensitivity and 37 23 40 31 23
100% treatment effectiveness (vs. no
screening)
3vs. 2 Breast cancer mortality not reduced 3 44 5 31 10

because of imperfect (current)
screening sensitivity

4 Current screening sensitivity and 17 8 17 18 8
current treatment effectiveness (vs.
no screening)

4vs.3 Breast cancer mortality not reduced 20 15 23 13 15
because of imperfect (current)
treatment effectiveness

4vs. 2 Breast cancer mortality not reduced 23 59 23 44 25
because of imperfect screening
sensitivity and imperfect treatment
effectiveness

* The percent breast cancer deaths that stem from cancers with onset after age 62 is given by 100%
minus the cancer deaths from cancers with onset before age 62 (Scenario 2).

Scenarios 3 vs. 2, 4 vs. 3, and 4 vs. 2, show the percentage point breast cancer mortality that is not
reduced due to imperfect screening sensitivity and/or imperfect treatment effectiveness.
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Figure 4 Age-Specific Reductions In Breast Cancer Clinical Incidence And Mortality Over 15 Years
After A One-Time Screening Test At Age 62 By Model

The percent marks in the panels of Figure 4 represent the cumulative outcomes for the 15-year
follow-up period from age 62 to age 77.

The line at the top in the breast cancer incidence panels on the left of Figure 4 is the maximum clini-
cal incidence reduction from a screening test at age 62 with 100% sensitivity and perfect treatment of
screen-detected cancers (Scenario 2). Just after the screening test, the reduction in clinical incidence
(panels on the left) is highest and decreases by age as it becomes less likely that clinical cancers at
later ages were already in existence at age 62 and could have been prevented by a screening test
at that age.

The percentages in the left-panel figures represent, for example for Model S: 57% of the cancers that
are clinically diagnosed in the absence of screening between ages 62 and 77 have an onset after age
62, this implies that 100-57=43% (Scenario 2, Table 3) of the cancers diagnosed in the absence of
screening could be prevented from becoming clinical diagnosis at later ages by a perfect screening
test at age 62. The solid line below the dashed line is the clinical incidence reduction from a digital
mammography screening test: 16% of clinical diagnoses could be prevented by a one-time digital
mammogram at age 62 (Scenario 3, Table 3). This implies that 27% of clinical incidence between ages
62 and 77 was not reduced by the one-time digital mammogram at age 62 (Scenario 3 vs 2).

The dashed line at the top in the breast cancer mortality panels on the right of Figure 4 is the maxi-
mum achievable mortality reduction from a screening test with 100% sensitivity combined with per-
fect treatment in screen-detected cases (Scenario 2). The dotted line below the top line represents
the breast cancer mortality reduction over the 15-years after a current digital mammogram at age 62
and perfect treatment in the screen-detected cases (Scenario 3). The solid line at the bottom is the
reduction in breast cancer mortality from a current screening test combined with current treatment
(Scenario 4).

The percentages in these figures are, for example for Model S: 38% of breast cancer deaths observed
in the scenario without screening stem from cancers with onset after age 62 and could therefore not
be screen-detected and prevented from breast cancer death by screening at age 62. This implies that
100-38=42% of breast cancer deaths could be reduced by perfect screening and perfect treatment of
screen-detected cases (Scenario 2, Table 4). However, 31% of breast cancer deaths are not prevented
due to lack of screen-detection if screening is performed with a digital mammogram (Scenario 3 vs
2, Table 4), and 13% of breast cancer deaths is not prevented because current guideline-concordant
treatment lacks the effectiveness to cure those screen-detected breast cancers (Scenario 4 vs 3). The
18% mortality reduction follows from current screening and current treatment (Scenario 4).

The steep declines of the maximum mortality reduction curves (Figure 4, right panels)
of models D, GE and W reveal that, on average breast cancers in these models have
shorter survival times and less variability in survival times relative to models E and S.
These results for average survival times correspond to the findings about tumor progres-
sion in the models: the relatively slow tumor progression, based on earlier inception of
tumors, in models E and S relate to longer survival times, and the faster tumor progres-
sion in Models D, GE and W arising from tumor inception at the beginning of the sojourn

period ultimately lead to shorter survival times on average.

Erasmus University Rotterdam 24\—/»9\9

17



18 Erasmus Medical Center Rotterdam

Screening sensitivity

Compared to the maximum achievable mortality reduction, a one-time digital mammo-
gram having actual observed sensitivity missed between 3% (Model D) to 44% (Model E)
of the avoidable cancer deaths. Overall, the mortality reduction from a one-time digital
mammogram at age 62 and perfect treatment relative to no-screening (scenario 3 vs. 1)
was 23% to 40% across models (Table 4, Figure 4). The ability to detect lethal tumors by
mammography screening was higher among the models (D, GE, and W) with assump-
tions of tumor onset at the start of the sojourn time than the models (E and S) with tumor
onset prior to the start of the sojourn time.

Treatment effectiveness

Assuming observed guideline-concordant treatment effectiveness in screen-detected
cancers (scenario 4), the percent breast cancer mortality that was not reduced compared
to Scenario 3 with perfect treatment was 13% to 23% (Table 4, Figure 4). The difference
between scenario 3 and 4 show that Models E and GE, have a relatively high percentage
of cancer deaths that were not averted in the first 3 years after the screen at age 62. This
illustrates the substantial portion of cancers screen-detected at a relatively advanced
stage that was not curable with current treatment effectiveness. These findings showed
that the lethality of the cancers found at screening impacts breast cancer mortality differ-

ently over time and in magnitude by model.

Sensitivity and Treatment

The combination of screening with a digital mammogram at age 62 and guideline-
concordant treatment with current treatment effectiveness (Scenario 4 vs. Scenario 1)
provides insight into how assumptions about currently available screening and treatment
interact with breast cancer natural history to affect breast cancer mortality. Models E, W
and S grouped towards the lower end and models D and GE towards the higher end of
the clinical incidence reductions (Table 3). But for breast cancer mortality slightly differ-
ent groupings of models were seen: Models D, GE and S predicted 17 to 18% breast
cancer mortality reduction relative to the no-screening scenario, whereas models E and
W predicted 8% breast cancer mortality reduction (Table 4).

The lower breast cancer mortality reductions predicted by models E and W were pri-
marily the result of a low screen-detection rate of lethal cancers and the lack of improving
prognosis with treatment of screen-detected cases: in both models 23% of the cancers
destined to cause breast cancer death were screen-detected (Scenario 3), and of those
detected only one-third (8 out of 23; Scenario 4 vs. Scenario 3, Table 4) were cured.

Models D and S predicted a similar 17 and 18% mortality reduction as model GE,
also due to a combination of relatively high screen-detection and high improvement
of prognosis from treatment. However, the shape of the mortality reduction curve of
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Model GE, relative to other models, was distinct. The inverted shape of model GE can be
explained by the presence of more advanced-stage cancers at screen detection, where

breast cancer death could not be avoided.

DISCUSSION

This studly is the first to apply the maximum clinical incidence reduction (MCLIR) method
to illustrate how model structure and assumptions impact both clinical incidence and
cancer mortality predictions. To understand variations in model estimates of screening
effects, the analysis decomposed the relative contributions of model-specific structures
and assumptions regarding the pre-clinical duration of breast cancer, the ability of a
screening test to detect cancers, and breast cancer treatment to breast cancer incidence
and mortality predictions. The results illustrated that models with similar predictions
for screening effectiveness may use differing assumptions about screening, treatment,
tumor onset, and tumor progression. Altogether, the key finding was that assumptions
about the timing of tumor inception and its effect on the pre-clinical duration of breast
cancer had the greatest impact on the model groupings on predicted clinical breast
cancer incidence and mortality reductions. As a result of this finding, we now include this
model-specific tumor attribute in our CISNET model comparison table (Table1).

The MCLIR scenarios showed that models E and S simulate the longest pre-clinical
duration of breast cancer. While this implies a longer period to detect cancers by screen-
ing and possibly avert cancer deaths, these models showed the greatest difference in
breast cancer mortality reduction between the scenarios with perfect detection to those
with (realistic) digital mammography . Again, this was related to those models’ assump-
tions about early tumor onset prior to the start of a cancer’s sojourn time. The loss in
breast cancer mortality reduction due to digital mammography (imperfect) screening
provides information about the further reductions in breast cancer mortality should
screening sensitivity improve in the future, given the current state of the models. On
the other hand, models D, GE and W had similar and relatively short pre-clinical dura-
tions due to their assumptions of tumor inception at the start of the sojourn time and
therefore ultimately predicted smaller losses in breast cancer mortality reduction due
to digital mammography screening. The effect of guideline-concordant treatment with
actual observed treatment effectiveness on breast cancer mortality reduction differed by
model structure. In general, greater breast cancer mortality reductions were predicted
by models that use a hazard-reduction treatment structure than the models with cure
fractions to implement breast cancer treatment. These types of insights from the MCLIR
results provide further clarity on the differences and similarities across models and can be

used to interpret variations in model outcomes.
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The MCLIR analyses also illustrated model variation in the distributions for tumor
progression assumed in the models, with models D, GE, and W tending to have faster
progressing tumors than models E and S. This knowledge about the models can help
interpret model differences in predictions of screening effectiveness by screening
frequency. For example, one would expect more cancers to be diagnosed with more
frequent screening in models that have relatively faster tumor progression on average
and vice versa. This was confirmed in a recent analysis of the impact of screening in-
tervals on breast cancer mortality, with Models D, GE, and W showing greater benefits
(breast cancer deaths averted preceded by more cancer diagnoses) from more frequent
screening than models E and S. [9]

The MCLIR methodology was first used to evaluate differences in the CISNET colorectal
cancer screening models. [16] The colorectal cancer findings indicated that assumptions
about the duration between adenoma onset and clinical diagnosis were an important
factor in explaining colorectal cancer model differences. The results of this study were
similar in demonstrating that models with long pre-clinical durations of breast cancer and
relatively low screen detection rates project similar screening effects as models with a
shorter pre-clinical durations and higher screen detection rates.

Usually, models are characterized by describing modeling approach, model inputs and
assumptions. [19,21,22] In this research, we examined model outcomes to drill down
to the mechanics of incidence and mortality predictions. There are several caveats that
should be considered in evaluating this method. First, the effect of a single screen on
breast cancer incidence and mortality is not the same as the effect of routine screening
from age 50 to 74. The results in this study are therefore not directly translatable to pro-
jections of the effects of a periodic screening program on overall breast cancer incidence
and mortality. Second, it was beyond the scope of this paper to perform and evaluate
the MCLIR scenarios at different ages or at multiple ages across five different models.
Evaluating the MCLIR scenarios at different ages would provide insight into age-specific
and between-model differences in tumor inception, progression, and test-characteristics
and the impact of these on breast cancer incidence and mortality. Third, the MCLIR
methodology employed did not explicitly allow for formal assessments of the factors
that account for differences in rates of over-diagnosis. This will be an interesting area for
future research and extended use of the MCLIR method.

CISNET collaborative modeling predictions are increasingly used by policy makers to
inform screening guidelines [?, 14], evaluate screening and treatment programs [12, 13],
and can be used by clinicians to assist in decision-making about breast cancer screening.
[23] How different models arrive at their predictions of harms and benefits of screening
and treatment may be perceived as opaque due to the complexity of the models. This
study complements model descriptions [1-6] by using MCLIR analyses to illustrate and

compare which structural differences and natural history assumptions may be important
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to consider by policy makers when using collaborative modeling outcomes. The MCLIR
approach could be adopted in other comparative modeling research to improve model

transparency.
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PART TWO: Quantifying the harms
and benefits of age-based breast
cancer screening in the United States
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