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Chapter 1

Introduction

The spheres in which government policies perhaps most obviously present themselves in individuals’

everyday lives are those of education and health. In the area of education, vast numbers of policy

decisions govern when children are required to start their schooling, what they learn (and don’t learn),

and innumerable other aspects of their educational experiences. Similarly, health systems in most

countries are heavily shaped and supported by governments. Medical licenses determine who can

provide healthcare, policy makers decide on the availability and price of medication, who gets access

at what cost, and where these costs are borne.

As well as being salient, the policies in these spheres have deeply important and far reaching

consequences for individuals themselves. Both the formal curriculum as well as the socialization

process that occurs during schooling — the so-called hidden curriculum — are vitally important in

shaping individuals and preparing them for adult life. It goes without saying that health, and the

policies governing health care, also have important individual consequences. Good health and well-

being are not only fundamentally enjoyed in their own right, but are also a prerequisite for taking part

in nearly all other aspects of life.

The fundamental importance and the empowering nature of health and education mean that they

are usually placed at the forefront of governments’ agendas. Indeed, Amartya Sen’s “capabilities

approach” (Sen, 1979) advocates a prioritization of policies aimed at maximizing individuals’ capa-

bilities, and good health and a quality education are often presented as among the most fundamental

measures of such capabilities. According to this approach, their delivery should therefore be consid-

ered as a basic obligation of modern governments to their citizens.

At the same time, and as economists will be quick to point out, we cannot devote unlimited

attention and materials to promoting health and education. Resources are limited, and a euro or dollar

spent on one program is a euro or dollar not spent elsewhere. Faced with this scarcity, and also
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with the fundamental importance of health and education, it is imperative that all policies in these

spheres are informed by evidence coming from careful and detailed scientific research. The chapters

of this thesis present the work that I have undertaken (with my co-authors), all with the basic theme

of providing such evidence in an effort to inform education and health policy.

My focus has been on two distinct and important subtopics under the broad umbrella of health

and education. The first of these, addressed in Chapters 2 and 3, is concerned with a crucial part of

students’ educational experiences: their relationship with their peers. Indeed, the friends, acquain-

tances, and classmates encountered during school arguably leave the longest lasting impressions from

our primary and secondary educational experiences. In the previous decades a substantial economic

literature has emerged studying the effect of these peers on a range of outcomes. Peer composition has

been shown to influence a person’s academic performance, behaviours inside and outside of school,

and current and future attitudes and beliefs.

The second of these subtopics, addressed in Chapters 4 and 5, is the phenomenon of income-

related health inequalities (IRHI). Such inequalities describe the pervasive difference in health by

income whereby, in almost every context including the European one, richer individuals live longer

and healthier lives than poorer individuals. Inequalities have become one of the most contentious and

widely discussed political issues today. Because of their importance for social cohesion and solidarity,

as well as basic ethical and fairness concerns, health inequalities are an increasingly important part of

this debate.

Taken together, education and health address some of the most pressing priorities that jurisdic-

tions face. Thus, there is a moral onus not only on governments to commit to organize enabling

circumstances for good health and education, but also for decision makers to design and refine poli-

cies in these public spheres wisely and based on scientific evidence. The chapters contained in this

thesis, based on rigorous economic analysis, go some way to providing such evidence.

Chapter 2

In the study of the effects of peers in education the question that has received most attention is a

simple one: does having smarter peers in school result in better grades? As well as being interesting

from a purely scientific perspective, this question has important policy implications. Depending on

the answers, it may be possible to improve educational outcomes simply by rearranging students

between classrooms. For instance, if the presence of smart students in a classroom helps other smart

students, but hurts low achieving students, then gathering all smart students in their own classroom

will be academically beneficial to everyone.
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Motivated by this, a large number of studies have now provided evidence of small yet meaning-

ful positive effects on individuals’ grades of the academic ability of their peers in a wide range of

educational contexts. Although the specifics do vary somewhat, it can be said that - on average -

having smarter peers seems to increase students’ performances (Sacerdote, 2011). However, despite

the vast literature, researchers have not yet reached the stage at which they can advise policy. At-

tempts to harness and reproduce educational peer effects via interventions have failed, even resulting

in detrimental effects (see Carrell et al. (2013) for an example).

How can the literature move forward to realizing the goal of implementing reliable and pre-

dictable ability peer effect policies? Perhaps the largest obstacle is that the channels through which

academic peer effects occur in the classroom are not well understood. Insights into this black box

would allow policy makers to craft interventions focussing on the crucial mechanisms underlying

peer effects, thereby maximizing their probability of success. In this chapter, we aim to pin down

these mechanisms.

We make a distinction between two broad and exhaustive channels that have been suggested by the

existing literature. The first is peer effects occurring due to social interaction between peers (peer-to-

peer teaching, collaborative studying, etc.), the second is peer effects occurring through the classroom

environment, independent of social interaction between students (a “superstar” student posing good

questions, a disruption-free classroom environment, teachers responding to the ability composition of

the class, etc.).

We test for the importance of each channel by exploiting the structure of year-long tutorial groups

at a large European university. Upon arrival, all first year students are randomly allocated to not only

one of these tutorial classrooms – within which exercises and assignments are completed - but also to

one of two subgroups within their classroom. These subgroups meet frequently in the first months of

university, with the aim of creating bonds and friendships to support students during their transition

to university life. In essence, this system ensures not only that students are randomly allocated to a

classroom, but also that their group of likely friends within this classroom is also randomly allocated.

Taking advantage of this, we examine how the ability (measured by high school grades) of a

student’s peers within each of these groups influences their subsequent academic performance in the

first year. If only the ability of a student’s classroom friend matters for their grades, then this would

imply that peer effects work through social interaction. On the other hand, if the ability of relative

strangers in the classroom has an influence on student’s grades, this would suggest that classroom-

level effect are at work. Our results find a role only for the social interaction channel of peer effects.
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Chapter 3

The effects of university peers are not isolated to grades. Friends can be influential in much more

fundamental ways: for instance, by changing our attitudes, beliefs and even how we view the world

(Sacerdote, 2014).

These more radical effects of peers have been central to recent debates surrounding the increased

admission of foreign students. Especially in the Netherlands, the vast number of international stu-

dents admitted to universities has become controversial; some claim that internationals take resources

and university places away from native students. In response, proponents of the trend towards in-

ternationalization cite the positive effect that interaction with foreigners can have on locals, effects

which are very much in the spirit of the broader peer effects mentioned above. In essence, contact

with foreigners is said to make native students more rounded and globally minded individuals.

However, despite the debate in the Netherlands and elsewhere, there is little evidence on the

actual friendship patterns of native and foreign students, nor evidence on the degree to which such

friendships can be encouraged by universities themselves. If there is little meaningful contact between

these groups, then many of the purported benefits of having an internationally diverse campus will be

absent.

In an effort to better inform this important educational policy debate, this chapter investigates the

actual occurrences of friendships between native and foreign students at a large European university.

To do so, we use a novel technique to elicit friendship ties. Students at this university must register

to study groups with their fellow students. Given that friends prefer to be in study groups together,

we use students’ choice of study groups as a signal from which we uncover the actual ties between

classmates. Our results point to a notable degree of segregation between native and foreign students.

We go on to investigate the degree to which universities may be able to encourage native-foreign

friendships by forcing students to share a close personal space. We study how forcing a native and

foreign student into the same tutorial classroom for a full academic year affects their subsequent

probability of friendship. Our results suggest that while forced exposure may promote native-foreign

friendship and interaction, this depends heavily on the characteristics of both students.

Chapter 4

Disparities in health by income are pervasive and persistent. Drawing on the large, multi-disciplinary

literature concerned with measuring and understanding these disparities, one observes - across vir-

tually all contexts, measures of health, and socio-economic status - sizeable socio-economic differ-
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ences in health in favour of the richer, wealthier and better educated individuals (for instance see

Van Doorslaer et al. (1997) and Mackenbach et al. (2008)).

The attention to these inequalities is based on ethical concerns; many find the concentration of

good health amongst the rich to be objectionable. The reduction of these inequalities has thus long

been a policy goal in many countries, and is considered a vital part of progress towards achieving

greater social inclusion and cohesion in the EU. To the extent that society favours a more equitable

distribution of health, these inequalities must be considered when designing and implementing poli-

cies that may influence this distribution.

The Great Recession has led to a renewed focus on health inequalities. In particular, EU policy

makers have expressed concerns that socio-economic disparities in health may have been exacerbated,

given that the negative effects of economic crises tend to disproportionately affect the most vulnerable

members of society (European Commission, 2009).

Are these concerns warranted? Despite the attention of governments and policy makers, and the

justified alarm about the potential for deepened disparities during this period, evidence on how IRHI

actually evolved during the Great Recession is missing. In this chapter, my co-authors and I seek to

shed some light this evolution.

In order to investigate the link between health inequalities and the Great Recession, we focus

on Spain between 2004 and 2012. Spain was one of the European countries to experience the most

severe consequences of the recession, and therefore serves as an interesting case study. Using a

concentration index to calculate these inequalities over time, we reach a perhaps surprising finding:

while the inequalities in health by income were rising before 2008, they subsequently reduced during

the crisis.

To explain this counter-intuitive finding, we apply a decomposition method in order to shed further

light on the source of these trends. We find that the unequal effects of the crisis by age, and the fact

that the elderly’s incomes were largely protected due to the “sticky” nature of pensions, were crucial

to the evolution of IRHI. The trends appear to be the logical consequence of the income-reducing

effects of the crisis being concentrated amongst the youngest – and therefore healthiest – groups.

Chapter 5

While the insights from the previous chapter into how and why IRHI evolved during the economic

crises are informative for the Spanish context, the findings need not hold for other EU countries. The

impacts of the crisis unfolded in different ways and degrees between countries. Greece, for instance,

was obliged to implement harsh austerity measures as a result of the crisis, while effects in countries
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like Austria were much smaller in comparison. Institutions, welfare policies and initial economic

conditions also differed across Europe, which could all have implications for the evolution of IRHI

during this period.

Motivated by this, chapter 5 continues our investigation into how IRHI responds to economic

conditions by expanding the countries and time frame under investigation. Specifically, we compute

IRHI trends between 2004 and 2013 for Spain, Portugal, Italy, France, Belgium, Austria and Greece.

These trends reveal a distinct pattern separating the so-called “crisis countries”, countries harshly

affected by the crisis, and other European countries, where effects were less severe. In general,

the former countries experienced a drop in IRHI post 2008, while the trends in the latter countries

continued on their pre-crisis trajectory.

To explore these trends, we develop and apply a novel decomposition method based on the find-

ings from the previous chapter suggesting that government transfers play an important role in the

evolution of IRHI. Specifically, our new decomposition seeks to isolate the separate roles of mar-

ket incomes (e.g. wages) and government transfer (e.g. pensions) in determining changes in IRHI.

The variation across countries in the effects of the crisis, the existing government policies, and the

responses to the crisis allows a deeper look at how IRHI is affected by economic conditions. Our

conclusions point to a pro-cyclical pattern of IRHI that is primarily driven by the interplay between

market and government transfer income and their distribution across age groups.



Chapter 2

What Drives Ability Peer Effects?

Joint work with Matthijs Oosterveen

2.1 Introduction

Economists’ ongoing interest in classroom peer effects is not hard to justify; simply by reorganizing

peer groups, and without additional resources, it may be possible to increase aggregate student per-

formance. Taking into account important methodological advances (Manski, 1993), the past decade

of empirical research includes many well-identified studies in primary, secondary, and tertiary edu-

cation (Sacerdote, 2014). While these studies have to a large extent confirmed the existence of small

peer effects in the classroom, little to no credible evidence exists on the mechanisms through which

these effects operate. For instance, it remains unclear whether students benefit from better peers be-

cause of social interaction with these peers, or because the quality of teacher instruction improves in

a classroom with better students, or through another potential mechanism.

This paper is the first to exploit random group assignment to empirically test between two ex-

haustive and policy-relevant channels driving ability peer effects. Based on the current literature, we

distinguish between the following two channels; social proximity and classroom-level effects. So-

cial proximity relates to the degree of familiarity between classroom peers (Foster, 2006), and this

channel captures spillovers that arise due to friendship, bonding, and student-to-student interaction

between classroom peers. Classroom-level effects capture spillovers that stem from the classroom

environment, which are independent of the social proximity between students, e.g. teacher response

to the ability composition of the classroom. The context in which we study these two channels is the

first year of an economics undergraduate program across six cohorts at a large public university in the

Netherlands.
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We exploit the institutional manipulation of the social proximity between students and their class-

room peers. Students are randomly assigned to a tutorial group of approximately 26 students and one

of two subgroups of 13 students within their tutorial group. The university encourages interaction,

bonding, and friendship within, and not between, these subgroups during the first weeks of the aca-

demic year via several informal meetings. From the perspective of one student, the close peers are the

subset of their tutorial peers with whom social proximity is encouraged, whereas their distant peers

belong to the adjacent subset with whom social proximity is not encouraged. For each student, her

close and distant peers together form her tutorial group whom she follows classes with throughout the

first year. By exploiting the differences between these two types of peers, we are able to disentangle

the two broad mechanisms driving ability peer effects. We use high school GPA - which includes

the nationwide final exams before entering university - as a pre-treatment indicator of own and peer

ability. This allows us to avoid problems related to reflection and common shocks. Moreover, Stine-

brickner and Stinebrickner (2006) show that high school GPA (relative to e.g. university and college

entrance exams) is a comprehensive measure of peer quality.

Exploiting the novel within-classroom random assignment we find that peer effects are solely

driven by a student’s close peers; the subset of peers within the classroom with whom students are

socially proximate. We find no role for distant peers. This implies that meaningful social interaction

drives peer effects, whereas classroom-level effects are unimportant. The point estimate from our

linear model implies that a one standard deviation increase in close peer GPA causes student perfor-

mance to increase with 0.026 standard deviations. Using student evaluations we provide suggestive

evidence that students with better close peers change their study behavior by substituting lecture at-

tendance for collaborative self-study with their close peers at university. Examining heterogeneity in

spillovers by ability, we find that high and low ability students benefit (suffer) from social proximity

with high (low) ability close peers. These spillovers, however, diminish over time, and are completely

absent by the end of the first year.

Having shown that peer effects arise due to social proximity, the evolution of the social proximity

between students and their assigned close peers, and the degree to which new friendship are formed,

is of major importance to group assignment policies. We study how students cluster by daily tutorial

attendance in first year and find some evidence that the social proximity between assigned close peers

gradually diminishes. Analysing tutorial choice in second year we confirm that students largely sort

themselves out of their close peer groups. We also show that they sort into new self-chosen peer

groups, which are based on shared characteristics such as gender and ethnicity. We do not find evi-

dence that students sort on ability, though our estimates suggest this could be academically beneficial.

Overall, we believe this sorting behaviour shows that students have strong preferences dictating with
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whom they become socially proximate. The erosion of social proximity between assigned close peers

provides an intuitive explanation for the short-lived spillovers on student performance, though we

cannot provide causal evidence to confirm this intuition.

Our study has three main implications for group assignment policies aiming to exploit spillovers.

First, our results suggest that such policies should focus on fostering social proximity within student

groups. As it stands, attempts to implement alternative group assignment policies using estimates of

peer effects under one particular assignment policy do not lead to predictable results. A well-known

example of this is the study by Carrell et al. (2013), in which the authors use credible estimates of

spillovers to construct “optimal” peer groups at the United States Air Force Academy. They find that

low ability students whom they intended to help with this group assignment policy actually performed

worse than untreated low ability students.1 The importance of social proximity and the absence

of classroom-level effects implies that it may be insufficient to simply place students together in a

classroom. Our results suggest group assignment policies could be more successful if social proximity

within peer groups was fostered. Additionally, such fostering could result in larger spillovers than

those previously observed. Our estimated spillovers in the linear-in-means model are more than twice

the size of those found in very similar contexts, where manipulation of social proximity is absent

(Booij et al., 2017; Feld and Zölitz, 2017).

Second, our results imply that social proximity between diverse assigned peers can indeed be

manipulated by a relatively simple intervention, consisting of several informal meetings.2 However,

the persistence of these bonds in the longer run, especially among students of different backgrounds,

may be low.

Third, given the importance of social proximity to ability peer effects, our results imply that

long-run effects on student performance from group assignment policies may be difficult to sustain.

Individuals have strong homophilic preferences, and over time tend to experience diminishing social

proximity with their assigned peers as they sort into new peer groups based on these preferences.

With respect to the literature on peer effects more broadly, Sacerdote (2014) highlights the large

degree of heterogeneity in the magnitudes of spillovers across the current studies. The findings of this

paper may to some extent help explain this heterogeneity. Given that peer effects crucially depend on

the degree of social proximity, the study-to-study variation in peer spillovers may partly be explained

by the degree that social proximity was present, or perhaps even encouraged.
1In Carrell et al. (2009), data based on ability mixing (natural random variation) suggested that low ability students

would benefit from being mixed with high ability students, were high ability students would not suffer from being paired
with low ability students. Carrell et al. (2013) then create optimal squadrons that consisted of low- and high ability students
(bimodal squadrons) and squadrons with middle ability students only (homogeneous squadrons).

2The analysis on voluntary sorting shows that a student’s close peers are more strongly related to her first-year tutorial
attendance and second-year tutorial registration than distant peers.
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Our results may also provide some suggestions for the literature on theoretical models of peer

effects, which in turn might generate new insights for empirical work. Most of the well-known models

of educational peer effects imply that they take place at the classroom level. Lazear (2001) argues that

a classroom can be considered as a public good, where one disruptive student may impose negative

externalities on all students. The taxonomy of models on peer effects by Hoxby and Weingarth (2005)

also encapsulates this idea, whereby e.g. one superstar student can increase the grades for the rest of

the class. Our results imply more nuanced versions of these existing models; a model which focuses

on social interaction would more realistically capture the processes driving peer effects in tertiary

education.

Apart from their importance for understanding peer effects, the patterns on voluntary sorting be-

haviour of students also provide a rare insight into how friendship formation occurs at university, a

question that has been asked independently by Marmaros and Sacerdote (2006) using data on email

exchanges between students. The exogenous allocation of first year students to close peer groups

allows us to analyse the importance of “manipulated social proximity” against other factors like eth-

nicity and gender. These results are of interest because of the recent emphasis on the importance of

diversity in the education process both by European and American universities.3 To this end, our

results show that the intervention did little to promote long-lasting diversity on campus. We cannot

rule out, however, that a more sustained and focused intervention would deliver larger effects.

2.1.1 Related Literature and Channels.

Based on the empirical literature, we distinguish between two broad and exhaustive channels driving

peer effects; social proximity and classroom-level effects.

• Social Proximity: peer effects driven by meaningful social interactions between classroom

peers. Peer effects from this channel are restricted to peers who are socially proximate; those

for whom bonds exist and social interactions occur.

• Classroom-Level Effects: peer effects that stem from the overall classroom environment and

are independent of the social proximity between students. They potentially originate from and

have an impact on all students in a classroom, even between students that do not explicitly

interact.
3In the U.K., the former Prime Minister David Cameron and the Universities and Colleges Admissions Service (UCAS)

announced applications to be name-blind from 2017 onward, after which several institutions introduced pilots. In the U.S.,
many leading American institutions, such as MIT and University of Chicago, filed an amicus brief in November 2015 with
the U.S. Supreme Court in Fisher v. University of Texas. This brief stressed the role of government in diversity of higher
education, of which race and ethnicity are components.
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The social-proximity channel would, for instance, include having a high ability peer in the classroom

with whom a student discusses material. This could potentially happen both inside or outside class.

Alternatively, an example of a classroom-level effect is teachers responding to the composition of

students in the classroom. Having many high ability students in a class might induce teachers to

change the level of their instruction. A student posing an insightful question in class that benefits all

other students is another example of a classroom-level effect.4

Several papers rely on social proximity, and thus interaction between peers, as the main expla-

nation for spillovers. Booij et al. (2017) and Feld and Zölitz (2017) use voluntary course evaluation

data and find that students with better tutorial peers reported better interactions with other students. In

attributing the negative results of their experiment to voluntary sorting, Carrell et al. (2013) implicitly

argue that peer effects are generated via the social proximity of peers.5

Other researchers attribute their findings to classroom-level effects. Duflo et al. (2011) argue that

the resulting peer effects of a student tracking experiment can be explained by changes in teaching

behavior based on the ability composition of the class. Lavy et al. (2012a) and Lavy and Schlosser

(2011) explore potential channels using a student survey and find that a higher proportion of low

ability students has negative effects on the quality of student-teacher relationships, on teachers’ ped-

agogical practices, and increases classroom disruptions.6

The strategies used in the empirical literature thus far to explore potential channels is to (i) search

for heterogeneity in the data that supports or refutes certain peer effect channels or (ii) look at addi-

tional outcomes using secondary data sources, such as student evaluations.7 The results using the first

strategy are, however, mostly circumstantial and unable to definitively rule out other competing ex-

planations. An example of this is Carrell et al. (2009), who looks at the heterogeneity of peer effects

between courses to find suggestive evidence of study partnerships as a driver of peer effects. With

the second strategy researchers must often attribute their results to other unobserved factors (see e.g.

Feld and Zölitz (2017)). In both cases, these strategies involve looking for an explanation after the

fact. Researchers have rightly been cautious in interpreting the findings derived from these strategies.
4Because classroom-level effects are defined as the complement of social proximity, together they are exhaustive.

Though our main distinction is between these two broad channels, we also use supplementary data to hint at finer channels
such as those listed by Sacerdote (2011). We find suggestive evidence that spillovers revolve around collaborative self-study
and peer-to-peer teaching.

5Other papers that attribute their results to the social-proximity channel include Garlick (2018); Brunello et al. (2010);
Carrell et al. (2009); Stinebrickner and Stinebrickner (2006); Arcidiacono and Nicholson (2005).

6Other research relying on a classroom-level explanation are Oosterbeek and Van Ewijk (2014); Burke and Sass (2013);
Lyle (2009); Foster (2006); Hoxby and Weingarth (2005).

7For strategy (i) see, among others, Garlick (2018); Oosterbeek and Van Ewijk (2014); Duflo et al. (2011); Brunello
et al. (2010); Carrell et al. (2009); Lyle (2009); Foster (2006); Arcidiacono and Nicholson (2005); Hoxby and Weingarth
(2005); Hoxby (2000). For strategy (ii) see, for example, Booij et al. (2017); Feld and Zölitz (2017); Lavy et al. (2012a);
Lavy and Schlosser (2011); Stinebrickner and Stinebrickner (2006).
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The definition of what constitutes a peer group varies substantially in the literature. It includes

entire schools (Lavy and Schlosser, 2011), classes (Feld and Zölitz, 2017), dorms (Garlick, 2018)

and dorm roommates (Sacerdote, 2001; Zimmerman, 2003), students in the same group during uni-

versity orientation week (Thiemann, 2017), students that share more than a certain number of classes

(De Giorgi et al., 2010), and students who sit next to each other in class (Lu and Anderson, 2014;

Hong and Lee, 2017). It may be that different types of peers deliver spillovers via different chan-

nels. The manipulation of social proximity allows us to cleanly separate two broad and exhaustive

channels in the same context. Furthermore, our results may be of more general interest than many

of the studies mentioned above, as opportunities to manipulate classroom peers arise in almost every

educational setting, while contexts where universities or schools can assign dorm mates or students’

seating arrangements are far more infrequent.

Finally, it is worth noting that the relative importance of the two different channels might vary

across different levels of education. Our focus is on university students and tutorial peer groups,

which are mostly taught by senior students and PhDs. Because of the inexperience of these teachers,

one might reason that teacher response is unlikely. However, evidence from a similar public Dutch

university suggests academic rank of instructors is unrelated to student performance; Feld et al. (2018)

show that full professors are not significantly more effective in tutorial teaching than students or PhDs.

Moreover, since future employment at the university depends largely on their performance in student

evaluations, teaching assistants (TAs) have incentives to teach well and put forth effort. Similarly,

one might argue that disruptive students are not present at the university level. However, personal ex-

perience and interviews with TAs suggest otherwise. Notably, every TA at the university of our study

undergoes a one-day training, part of which teaches them to deal with disruptive student behaviour

through role-playing.8 Thus, we believe that there is a priori little reason to dismiss the presence of

either channel in the university setting, and that our results are not necessarily uninformative for other

education contexts.

2.2 Context

2.2.1 Institutional Setting.

Our setting for studying peer effects is the economics undergraduate program at a large public uni-

versity in the Netherlands. Every year the economics program experiences approximately 400 newly
8A web search reveals that many other universities also provide advice to their teaching staff on how to deal

with disruptive students, indicating that the phenomenon is not absent in higher education. For example, see the fol-
lowing resource page from Stanford University: https://teachingcommons.stanford.edu/resources/
teaching-resources/interacting-students/classroom-challenges.
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enrolled first-year students. During the first two undergraduate years the program is identical for every

student, as they follow the same twenty courses across the two years, covering basic economics, busi-

ness economics, and econometrics. Come the third year, students must choose their own courses. The

program only admits Dutch students. The admission requirement is based on a having a pre-scientific

high school diploma.

The three academic years are divided into five blocks of eight weeks each (seven weeks of teach-

ing and one week of exams).9 Students in the first- and second year have one light and one heavy

course per block, for which they can earn four and eights credits respectively. Sixty credits account

for a full year of study.10 In the first- and second year, courses consist of both lectures and tutorial

sessions. The heavy courses have three large-scale lectures per week, while light courses have two.

Heavy courses have two small-scale tutorials per week, while light courses have one. Lectures and

tutorials both last for 1 hour and 45 minutes. While attendance at lectures is voluntary, first-year

students have to attend at least 70 percent of the tutorials per course. Students who fail to meet the

attendance requirement are not allowed to take the final exam for their course and must wait a full

academic year before they can take the course again.

During tutorial sessions a teaching assistant (TA) typically works through question sets based on

the materials covered in the lectures. Roughly 10 percent of the TAs are PhDs, with some exceptions

the remaining 90 percent are senior students. Unlike lectures, the tutorial sessions often require

preparation and active participation from the student, e.g. via discussion of assignments or related

materials. First-year students follow the tutorials with the same group throughout the whole first year.

To verify whether the 70 percent attendance requirement is met, TAs register attendance at the start

of each session. The requirement ensures that students experience a sizable degree of exposure to

tutorials and their tutorial peers, and are not able to voluntarily attend different groups during the

first year. Appendix Table A.2.1 gives an overview of the first-year courses, their characteristics, and

an accompanying tutorial description. We investigate peer effects originating from these first-year

tutorial peer groups.

Grading is done on a scale that ranges from 1 to 10. Students fail a course if their grade is below

5.5. Most of the courses in first- and second year are (partly) multiple choice and therefore graded

without interference by the instructor or TAs. For exams with open questions, instructors disallow

TAs from grading their own groups.
9At the end of the academic year, at the start of summer, there is a resit period. During two weeks first- and second-year

students have the opportunity to resit a maximum of three courses.
10In this institution credits are measured through ECTS, which is an abbreviation for European Transfer Credit System.

This measure for student performance is used throughout Europe to accommodate the transfer of students and grades
between universities. The guidelines are that one ECTS is equivalent to 28 hours of studying.
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2.2.2 Close and Distant Peers.

A key institutional feature of the economics program is that each first-year tutorial group is divided

into two subgroups. The university induces social proximity, and thus student-to-student interaction,

only within these subgroups of students. For a student we term close peers to be the group with whom

bonds are encouraged, where distant peers are the adjacent group of peers in the tutorial group with

whom interaction is not encouraged. This means that if student S1 and S2 are in the same tutorial

group but in different subgroups, the close peer group of student S1 will be the distant peer group for

student S2 and vice versa.

The main purpose of the close peer group is to facilitate the formation of social ties to help

students adjust to, and get acquainted with, life at university. These ties are primarily facilitated

via five compulsory close peer group meetings during the first block.11 As discussed in more detail

below, these meetings revolve around discussion and active student participation, which the university

aims to foster via the smaller subgroups. The first close peer group meeting is in the first week of

university, before any lectures or tutorials have taken place. As well as meeting each other in the

subsequent tutorial sessions, which also include the set of distant peers, there are weekly close peer

group meetings up until week five. During the first five weeks close peers see each other 20 times;

5 times at the close peer meetings and 15 times at the regular tutorials. There are four remaining

meetings with the close peer groups that are evenly spread out across the year (one per block). An

overview of the first block and the whole undergraduate program can be found in Figure 2.1.

The university assigns senior students as discussion leaders to guide the close peer meetings. The

subjects and the setting of these meetings are less formal than the tutorial groups. The first close

peer meeting is a get-to-know-you session, where students have to introduce themselves to the group.

The subsequent four sessions in the the first block consist of group discussions of the use of study

timetables, exam preparation, fraud and plagiarism, teamwork, and plans concerning the future of

their studies, among other topics. There is an emphasis on active participation of all students during

these discussions. Importantly, course material is not discussed during these meetings.

Given the timing and the nature of their introduction, the close peer groups serve as the first

plausible group of fellow students that a new student will interact with and form friendships with. Our

empirical evidence presented later on implies that the close peer meetings resulted in substantial social

proximity between close peers, at least initially. Conversely, the structure of the program resulted in

comparatively much less, if any, meaningful bonding with members of distant peer groups.
11While the students do not get any credits for these meetings, according to the Teaching and Examination Regulations

students must attend all of these meetings in order to pass the first year. Our administrative attendance data reveals students
attend on average 94 percent of the sessions of the group they have been assigned to.
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Figure 2.1: An overview of the characteristics of the undergraduate Economics program relevant to our study

2.2.3 Assignment of Students to Groups.

During the final year of students’ pre-scientific education, and before the start of the academic year,

students must preregister for the economics program. Those who have done so are requested to come

to campus on the first day of the academic year to confirm their registration.12 This is done by means

of approximately 10 to 15 administrative personnel, who add students’ numbers and names to an

electronic register.

A list containing the information of all students who confirmed their registration is sent to an

administrative worker. This list is then sorted by a randomly assigned ID and group membership is

determined on a rotating basis. The first student on the list is allocated to tutorial group 1, close peer

group 1A; the second student is allocated to tutorial group 2, close peer group 2A; the third student

is allocated to tutorial group 3, close peer group 3A, and so forth. The allocation continues until the

maximum tutorial group has been reached, after which the rotation begins again by allocating the

next unassigned student to tutorial group 1, close peer group 1B, the next student to tutorial group 2,

close peer group 2B, and so forth. The university uses this allocation method to ensure that students

are exposed to new peers and that the groups are roughly of equal size.13

12In this way the university avoids, to a large extent, taking into account no-shows when forming the first-year groups.
13We conducted numerous interviews with the administrative worker and university administrators, and received accom-

panying documentation, in order to confirm that the allocation process occurred as described. The same administrative
worker has been in charge of this process across the six cohorts we study. The allocation process is done with BusinessOb-
jects BI and Microsoft Excel software.
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Figure 2.2: A graphical representation of the allocation to tutorial and close peer groups for a hypothetical cohort

Figure 2.2 clarifies the structure of the tutorial and close peer groups for a hypothetical cohort.

The 144 students, represented by dots, are distributed across 6 tutorial groups and 12 close peer

groups. For a student in close peer group 1A, her distant peers are those students belonging to close

peer group 1B, and vice versa.

A student who wants to follow the program, but did not show up at the first day of the year, is

allocated to a group at the discretion of the administrative worker. Reallocating a student to a different

group only happens in case of special circumstances, such as when a student practices top sports, has

special needs, or has some otherwise unresolvable scheduling conflicts. Again, the groups to which

these students are reallocated to is at the discretion of the administrator. Our data does not allow us

to observe which student registered late or ended up in their group via a reallocation. According to

the administrative worker these cases are rare, but may result in slightly different variation in peer

ability and class size than would have been observed when strictly following the allocation procedure

described above. We present balancing tests in Section 2.4 that cannot reject the final allocation

results in a random assignment of students to tutorial, close, and distant peer groups.

2.3 Data

Our main source of data is the administrative database of the university between the academic years

2009-10 and 2014-15. This database includes the complete history of student outcomes and choices

at university; grades of all courses followed by the student, first-year tutorial attendance, and second-

year tutorial choice. Additionally we observe a rich set of student characteristics; gender, age, resi-
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dential address, high school GPA and zip code, and the groups students have been assigned to in their

first year. Our baseline results are based on almost 19,000 first-year grades from 2,300 students.14

This sample only includes a student’s first attempt at completing a course. Although we also observe

resits, which are taken at the end of the academic year at start of summer, we do not include them in

our analysis as they do not require preparation via tutorials.

High school GPA is a 50-50 weighted average of grades obtained during the last three years

of high school and on the nationwide standardized exams at the end of high school (before entering

university) across all courses. We use high school GPA as a comprehensive proxy for the latent ability

of students and their peers. In case of classical measurement error, our estimate for spillovers would

be attenuated as students are randomized into groups (Feld and Zölitz, 2017).15

2.3.1 Attendance and Student Evaluations.

In the first year all students are required to attend at least 70 percent of the tutorials per course.

To verify whether the attendance requirements are met, TAs register attendance at the start of each

tutorial. This attendance is then uploaded to the university portal and verified at the end of the block

by the exam administration. We merge this attendance data with the administrative database, which

allows us to observe attendance at the student-tutorial-course level for 98.5 percent of the student-

course observations.16

At the end of the course, students are invited by email to fill in student evaluations. A set of

20 questions are asked covering 9 characteristics of the course, which are detailed in Appendix Ta-

ble A.2.2. Merging the student evaluations to the administrative data gives a response rate of roughly

30 percent. Column (1) of Appendix Table A.2.8 reveals that participating in the course evaluation is

selective. Students with a better high school GPA are more likely to respond. However, column (1)

also shows the absence of a relationship between the high school GPA of a student’s close peers and

their response rate. Results using the course evaluations should be interpreted with caution, and we

use them to provide supplementary evidence on the channels of peer influence.
14This sample excludes some students. For 227 students we do not observe high school GPA (225 students) or one of the

main control variables (2 students). Furthermore, to ensure that peer GPA consists of an appropriate number of students,
we dropped fourteen tutorial groups (215 students) for whom we observe less than ten students’ GPA in at least one of the
two close peer groups. Our results are completely robust to the inclusion of these groups. Note that these groups occurred
because of missing data on high school GPA and because some students were reallocated after the initial assignment.

15There are two potential sources of measurement error in our measure of ability. First, for 50 percent high school GPA
is determined via unstandardized school exams. It should be noted, however, that the Dutch Inspectorate of Education pays
strong attention to schools where the grades on school exams deviate more than 0.5 points from grades on the nationwide
standardized exams (DUO, 2014). Second, although students have followed the same level of education in high school
(pre-scientific), entering the last three years of high school students must choose one of four tracks. Though these tracks
share compulsory courses (such as Dutch), some courses between tracks differ. For a subsample we can show that over 70
percent of our students followed the same track.

16For our grade-analysis we use the whole sample. Results are identical for the sample that is matched to the attendance
data. We verified that peer high school GPA cannot explain whether a student is matched.
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2.3.2 Descriptive Statistics.

Table 2.1 shows the descriptive statistics by cohort. Panel A provides an overview of the student

characteristics. Panel B does the same for student outcomes. All student characteristics show similar

values across cohorts. The percentage of women fluctuates somewhat around 20 percent, the students

are on average 19.5 years old halfway into their first year, and their high-school GPA is close to the

nationwide average of 6.7 (scale from 1 to 10, a 5.5 is sufficient). Appendix Figure A.2.1 shows

histograms of student’s own high-school GPA, the leave-out mean for the tutorial- and close peer

group, and the mean for the distant peer group. Notice that, in contrast to the leave-out mean for the

close peer group, the mean for the distant peer group takes upon identical values for everybody in the

same subgroup. This explains the somewhat more discrete nature of this figure. A histogram of the

leave-in mean for the close peer group is similar to the mean for the distant peer group.17

Table 2.1 further shows that the size of the close peer group fluctuates between 12 and 14 students.

In 2009 the groups where somewhat larger due to an unexpectedly high number of enrolled students.

University grades seem to gradually increase, also reflected by the increase in the number of credits

earned. This is most likely the consequence of stricter academic dismissal policies introduced halfway

in our sample. Course dropout occurs if a student does not attend the final exam for that particular

course. Across cohorts, 8 to 19 percent of the students dropped out of both courses in block 5, the

final block of the first year. We refer to this as student dropout.

17Angrist (2014) shows that using leave-in means, rather than leave-out means, would only change the peer-effects
estimate for close peer high school GPA by a factor ofNg/(Ng−1), whereNg is the size of close peer group g. Therefore,
this distinction has little to no importance for our results.
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2.4 Empirical Specification

To derive our empirical model we start with the canonical specification for peer effects as laid out by

Manski (1993):

Yigct = α0 + α1Y (−i)gc + α2GPA(−i)g + α3GPAi + µgct + εigct

Where Yigct is the grade at university of student i in tutorial group g on course c of cohort t. GPAi

is the average grade obtained in high school and the variables Y (−i)gc and GPA(−i)g are leave-

out means for tutorial group g for student i of university grades and high school GPA respectively.

Everything else that is common to tutorial group g is captured by µgct.

In the terminology of Manski (1993), α1 measures the endogenous effect of peers’ outcomes on

the outcome of student i, α2 captures the exogenous effect of pre-determined peer characteristics, and

µ measures the correlated effects capturing, for example, common shocks such as a good TA. The

distinction between α1 and α2 reveals little about the channels, but it does have different implications

for policy, as endogenous effects might generate a social multiplier.18 However, identification of α1

is obscured, mostly due to the well-known reflection problem; did the peers affect student i, or did

student i affect her peers? As such we follow most of the previous peer effects literature and solve for

the reduced form.

2.4.1 Reduced-Form Peer Effects.

The standard linear-in-means reduced form specification is given by:

Yigct = β0 + β1GPA(−i)g + α3GPAi + β2µgct + ε̃igct (2.1)

Where β1 = α2+α1α3
1−α1

. Subsequently a test for whether β1 is different from zero is a test for the

presence of peer effects, may they be exogenous and/or endogenous.

The institutional manipulation of the social proximity between students and their tutorial peers

allows us to extend this standard model. We make a distinction between the leave-out mean of the

close peer groupGPAClose(−i)g and the mean of the distant peer groupGPADistantg. To identify

the separate potential channels we replace GPA(−i)g in Equation (2.1) by the following expression:

GPA(−i)g =
NC − 1

NC +ND − 1
GPAClose(−i)g +

ND

NC +ND − 1
GPADistantg

18When referring to the social multiplier, Manski (1993) uses the example of a tutoring program. If such a program is
provided to only one half of the student population, it might indirectly help the other half of the students as well, as peers’
outcomes affect each other.
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Where NC and ND are the total number of students in the two subgroups within a tutorial group. In

practice, NC = ND = 13. This substitution allows us to arrive at the following specification:

Yigct = β0 + βC1 GPAClose(−i)g + βD1 GPADistantg + α3GPAi + β2µgct + ε̃igct (2.2)

Estimates of this equation allow us to separate the two peer effect channels possibly at work. Equa-

tion (2.2) tests the restriction of Equation (2.1) that the spillovers β1 from close and distant peers are

identical. Recall that the only distinction between an individual’s close and distant peers is that social

proximity was induced with the former, whereas no social proximity exists with the latter.19 Hence,

the difference between βC1 and βD1 captures peer effects through the social proximity channel. If βC1

and βD1 are approximately equal, this indicates that peer effects work solely through classroom-level

effects.20

Consistent with their definitions, the two channels are presented as being substitutes in the pro-

duction of student grades. However, to capture possible complementarity between social proximity

and classroom-level effects, some specifications will also include an interaction between close and

distant peer ability.

The peer group meeting intervention that encouraged social proximity permits the investigation of

the mechanisms underlying peer effects. In order for our results to be generalizable however, we must

assume that the intervention itself does not alter the nature of the mechanisms through which peer

effects operate in the classroom. In the counter-factual scenario in which social proximity between

close peers was not encouraged, we think our finding of no classroom-level effects would hold. It

seems unlikely that a non-invasive intervention of little duration would comprehensively change the

nature of classroom peer effect channels. Instead, our findings suggest that without the intervention

the spillovers from tutorial peers would be smaller than what we observe, and would diminish at a

faster rate.

2.4.2 Balancing Tests.

As the average high school grade is a predefined measure, we avoid the reflection problem and the

estimates for β1 are unlikely to be biased by common shocks. The main identifying assumption,
19In practice, we cannot rule out ex-ante that some social proximity exists between a student and her distant peers. If this

was the case, we would overestimate the importance of classroom-level effects and underestimate the importance of social
proximity. Our finding of zero for βD

1 implies that there was no meaningful social proximity between students and their
distant peers.

20In fact, because the mean GPA from the distant peer group contains one more student than the leave-out mean of
the close peer group, if the spillovers from close and distant peers are identical then βC

1 = βD
1 ( 12

13
). We confirm this in

a simulation, in which we arbitrary re-allocate existing tutorial peer groups into placebo close peer groups 1,000 times.

Estimating Equation (2.2) and taking the average of the estimates we verify that β̂C
1 ≈ β̂D

1 ( 12
13
). For practical testing

purposes we deem this as sufficiently close to equality.
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however, is that peer high school GPA is uncorrelated with other characteristics that might determine

a student’s grade. As we are not able to observe all other characteristics that might be important for

grades, we need the covariance between GPA(−i)g and (µgct, ε̃igct) to be zero. Random assignment

of students to groups makes this identifying assumption likely to hold.

We test this identifying assumption in several ways. First, we analyze whether the treatment, in

the form of assigned peer ability, can be explained by background characteristics (Xi) or high school

GPA:

GPA(−i)g = γ0 + γ1Xi + γ2GPAi + Tt + εigt

We include cohort fixed effects (Tt) as randomization into groups takes place cohort-by-cohort. Esti-

mates of γ1 or γ2 that are different from zero most likely violate the identifying assumption mentioned

above. Table 2.2 shows the results of this test, where column (1) to (3) take tutorial, close, and distant

peer high school GPA as outcome variables respectively. Across the three specifications we find all

student characteristics to be individually and jointly insignificant.21 This stands in stark contrast to

the joint significance of student characteristics in a regression where first-year GPA at university is

taken as an outcome variable (p-value<0.000).

Our second balancing test is more flexible. We regress background characteristics - student num-

ber, gender, age, and distance to university - and high school GPA on close peer group dummies and

cohort fixed effects. Next, in a separate model we regress the student characteristics upon cohort fixed

effects only and perform a F-test on the small versus big model. This test would reveal if students

with certain characteristics cluster together in certain groups. Appendix Table A.2.3 shows the F-test

does not reject the null hypothesis for all student characteristics. In other words, a small model with

cohort fixed effects only is favored above a model that also includes close peer group dummies.

We perform a similar analysis per cohort. We regress each student characteristic on a set of

close peer group dummies separately for each cohort. Appendix Figure A.2.2a plots the histogram

of the p-values of the close peer group dummies obtained from these regressions. As expected under

randomization, the p-values are roughly uniformly distributed, where for instance roughly 10 percent

of the p-values are below 0.10. Figure A.2.2b shows the results for this analysis are identical if close

peer group dummies are replaced with tutorial group dummies. A Kolmogorov-Smirnov equality of

distribution test does not reject the null-hypothesis of a uniform distribution in both cases; the p-
21If we regress student high school GPA on peer high school GPA we reach identical conclusions. Guryan et al. (2009)

argue this balancing test should also control for the mean high school GPA of all peers that can be matched with student
i in group g. In our case this control would be the leave-me-out mean GPA of her cohort. This is infeasible as there is no
variation in the group that student i can be matched too. Indeed, GPAi is related to the mean GPA of her cohort GPAt

and the leave-me-out mean GPA of her cohort, GPA(−i)t, by the following identity: GPAi = N ×GPAt − (N − 1)×
GPA(−i)t.



Table 2.2: Balancing Tests for Peer Ability

Tutorial Close Distant
Peer GPA Peer GPA Peer GPA

(1) (2) (3)

Student Number -0.0157 -0.0187 -0.0077
(0.0410) (0.0451) (0.0401)

Female -0.0339 -0.0319 -0.0212
(0.0376) (0.0457) (0.0504)

Age -0.0081 -0.0024 -0.0100
(0.0220) (0.0232) (0.0191)

Distance to -0.0132 0.0022 -0.0227
University (0.0145) (0.0173) (0.0151)

Own GPA 0.0076 -0.0171 0.0285
(0.0281) (0.0283) (0.0255)

Observations 2296 2296 2296
Adjusted R2 0.151 0.085 0.098

F-test 0.25 0.26 0.77
p-value 0.938 0.933 0.570

Notes:
1. All regressions also include cohort fixed effects.
2. Peer GPA refers to the leave-out mean of high school GPA for
the tutorial- and close peers, and to the mean for distant peers.
All dependent and independent variables are standardized except
for the female dummy.
3. The F-test, and corresponding p-value, refer to a test for the
joint significance of all the independent variables shown in the
table.
4. Standard errors in parentheses, clustered on the tutorial level.
5. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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values are equal to 0.86 and 0.60 for the histograms belonging to the close- and tutorial peer group

dummies respectively.

Allocation of teaching assistants to tutorial groups is done for each course by the instructor of that

specific course. Our analysis would still be compromised if instructors base the TA assignment upon

tutorial group ability. Instructors are unaware of the GPA composition of the tutorial groups and base

the assignment of the TAs upon scheduling restrictions. To confirm this, we code the gender of the

TA and whether he or she was a PhD. If coordinators base their decisions on the difficulty of groups,

they might, for example, assign PhD’s to low GPA groups. Regressing TA type on tutorial peer GPA,

however, shows that coordinators do not base TA assignment on class composition (see Appendix

Table A.2.4). The same assignment method is used for the discussion leaders that guide the close

peer group, though we cannot confirm this empirically as we do not observe these discussion leaders

in our data.

We conclude that we are able to identify reduced-form peer effects and estimate Equation (2.1)

and (2.2) without controlling for µgct. Throughout all specifications we will, however, include course-

cohort fixed effects and background characteristics; student number, gender, age, and distance to

university. The baseline results are identical when we do not control for background characteristics.

We cluster standard errors at the tutorial level, which nests the close-peer-group level cluster. Own

GPA, peer GPA, and the outcome variables (when suitable) are standardized over the estimation

sample, such that the estimates can be interpreted in terms of standard deviations.

2.5 Baseline Results

Before presenting the baseline results for grades and passing rates, we discuss the extent to which

course- and student dropout could potentially bias our estimates. Table 2.1 shows that the student

dropout rate at the end of first year is relatively low; between 8 and 19 percent across the six cohorts.

In Section 2.5.3 we will show that average peer high school GPA has no impact on the number

of courses a student attends the final exam for nor on whether the student dropped out by the end

of first year. We can show, but omit for brevity, that these null-results for number of courses and

student dropout extend to the non-linear model used in Section 2.5.5. Selection bias therefore does

not contaminate the following baseline peer effects estimates.

2.5.1 First-Year Grades and Passing Rates.

Table 2.3 shows our baseline results, where panel A regresses first-year grades upon average peer

high school GPA. Column (1) shows the estimated effect of tutorial peers. The positive coefficient
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has a p-value of 0.11 and shows that a one standard deviation increase in tutorial peer high school

GPA increases a students’ first year grade by 0.019 standard deviations. Columns (2) and (3) show

the effect while separating the tutorial group by one’s close- and distant peers. This reveals that

the positive spillovers are entirely driven by close peers. The estimate for peer GPA when moving

from tutorial to close peers in column (2) increases somewhat in magnitude and precision. It is

statistically significant at the 5%-level. The estimate for distant peers in column (3) is economically

and statistically indistinguishable from zero. Column (4) shows the estimates for close- and distant

peer high school GPA are identical to (2) and (3) respectively when including both peer measures in

one regression. These results imply that peer effects are entirely driven by social proximity.

In terms of the Dutch grading scale, columns (2) and (4) imply that increasing the close peers’

high school GPA from 6.5 to 7 increases a student’s grade from 7 to 7.14. This is economically small,

but 2.1 times the size of Feld and Zölitz (2017), while Booij et al. (2017) find no peer spillovers in

their linear-in-means specification. Both of these studies investigate spillovers in a similar context

as ours; classroom peer effects at a public university in the Netherlands. This suggests that fostering

social proximity has the capacity to generate larger spillovers than previously found in the literature.

Whereas students with good peers obtain higher grades, they are not necessarily better off if

the only goal is to pass courses. We study the probability of passing a first-year course in panel B

of Table 2.3, where the outcome variable is replaced with a pass-fail indicator. Column (1) shows

that a one standard deviation increase in the high school GPA of one’s tutorial peers increases the

probability of obtaining a sufficient grade by 0.9 percentage points. This effect is significant at the

5%-level. Again, columns (2) to (4) show that these spillovers originate entirely from close peers.

Column (5) of both panel A and B includes an interaction effect between high school GPA of

the close and distant peers. This interaction effect tests for possible complementarities between social

proximity and classroom-level effects. For instance, having a superstar student in class posing insight-

ful questions may only increase grades if one has high ability close peers to discuss the questions with.

We find this interaction term is negative for grades and the probability of passing, but insignificant in

both cases. We interpret this as showing that complementarities between both channels are unlikely

to play a role.

2.5.2 Randomization Inference.

The results above use analytic standard errors. In this section we present p-values based on ran-

domization inference for the baseline results on first-year grades, an alternative inference approach

that does not rely on large sample approximations. This method involves re-drawing a large number

(10,000) of randomly assigned hypothetical tutorial and close peer groups, respecting the size of the



Table 2.3: Peer Effects on First-Year Course Grades (Panel A) and Pass or Fail (Panel B)

(1) (2) (3) (4) (5)

Panel A: Grades (Standardized)

Tutorial Peer GPA 0.0191
(0.0118)

Close Peer GPA 0.0255∗∗ 0.0254∗∗ 0.0256∗∗

(0.0104) (0.0106) (0.0109)

Distant Peer GPA 0.0034 0.0008 0.0010
(0.0131) (0.0130) (0.0131)

Close × Distant -0.0150
Peer GPA (0.0122)

Own GPA 0.3427∗∗∗ 0.3434∗∗∗ 0.3427∗∗∗ 0.3433∗∗∗ 0.3433∗∗∗

(0.0119) (0.0119) (0.0118) (0.0119) (0.0120)

Observations 18736 18736 18736 18736 18736
Adjusted R2 0.323 0.323 0.322 0.323 0.323

Panel B: Pass (1) or Fail (0)

Tutorial Peer GPA 0.0090∗∗

(0.0043)

Close Peer GPA 0.0080∗ 0.0075∗ 0.0075∗

(0.0042) (0.0043) (0.0043)

Distant Peer GPA 0.0056 0.0048 0.0048
(0.0049) (0.0049) (0.0049)

Close × Distant -0.0005
Peer GPA (0.0046)

Own GPA 0.1186∗∗∗ 0.1189∗∗∗ 0.1183∗∗∗ 0.1187∗∗∗ 0.1187∗∗∗

(0.0048) (0.0048) (0.0047) (0.0048) (0.0048)

Observations 18736 18736 18736 18736 18736
Pseudo R2 0.187 0.187 0.187 0.187 0.187

Notes:
1. All regressions include course-cohort fixed effects and controls; student number, gender, age,
and distance to university.
2. Peer GPA refers to the leave-out mean of high school GPA for the tutorial- and close peers, and
to the mean for distant peers. Own GPA refers to own high school GPA. All GPA measures are
standardized.
3. Standard errors in parentheses, clustered on the tutorial level.
4. Panel A is estimated with OLS, Panel B uses Probit. Marginal effects are reported.
5. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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original groups. For each of these hypothetical groups, we re-run the models presented in Panel A of

Table 2.3 in order to assess the effect of the hypothetical peers’ high school GPA on students’ first-

year grades. Comparing the actual estimate to the estimates from the simulated groups allows us to

test the sharp null hypothesis that peer effects are equal to zero (Athey and Imbens, 2017). The results

for the corresponding exact p-values are presented in Appendix Table A.2.5 and Figure A.2.3, which

are nearly identical to those presented in Table 2.3. Given the similarity between the two approaches,

the remainder of this paper uses analytic standard errors.

Additionally, these results address one of the concerns of Angrist (2014). He shows that the peer

effects estimate is identical to the (scaled) difference between a 2SLS estimator using peer group

dummies as instruments for individual high school GPA and an OLS estimator of individual GPA. In

some settings this may lead to a spurious, mechanically driven finding of peer effects. In our setting,

however, with random assignment of students to many small groups, there is little reason for this

estimate to be different from zero in the absence of spillovers (Angrist, 2014). This is confirmed by

the fact that the peer effect coefficients from the 10,000 hypothetical groups, containing unconnected

students, are centred around zero.

2.5.3 Additional Outcomes.

In this section we turn our attention to five additional first-year outcomes: credit weighted GPA,

number of credits, number of courses taken, student dropout, and tutorial attendance. We analyse the

first four of these outcomes by estimating our baseline equations on the student level.

Table 2.4 shows the results, where columns (1) and (2) reveal that the positive effects on grades

and passing rates have a cumulative effect on a student’s GPA (p-value<0.01) and the number of

credits she collects (p-value=0.13). The estimates indicate that a one standard deviation increase of

close peer high school GPA increases a student’s credit weighted GPA (total first-year credits) by

roughly 0.04 standard deviations (0.52 credits). Column (3) and (4) reveal this increase in student

performance is not due to the fact that peers impact the number of courses a student writes the final

exam for.22 Column (5) shows that peer GPA does not change the probability of student dropout,

which is measured by an indicator variable that takes the value one if a student was no longer active

in block five of their first year.

Appendix Table A.2.6 shows the results when analysing the impact of peer high school GPA on

the percentage of tutorials attended per course in the first year. These estimates show that peers do

not have an effect on average tutorial attendance. Recall, however, that students are required to attend

70 percent of the tutorials per course, so the scope for any improvement would be limited.
22Note that this also implies that course dropout is not influenced by peer GPA.



Table 2.4: Peer Effects on Additional Outcomes

GPA Number of Number of Followed the Dropout
Weighted Credits Courses Course?
by Credits Balanced Panel

(1) (2) (3) (4) (5)

Close Peer GPA 0.0450∗∗∗ 0.5230 0.0269 0.0034 0.0009
(0.0146) (0.3462) (0.0497) (0.0051) (0.0083)

Own GPA 0.5073∗∗∗ 8.7081∗∗∗ 0.4747∗∗∗ 0.0539∗∗∗ -0.0693∗∗∗

(0.0168) (0.3560) (0.0438) (0.0054) (0.0082)

Observations 2218 2218 2218 22180 2218
R2 0.300 0.241 0.062 0.048 0.056

Binary Outcome No No No Yes Yes

Notes:
1. All regressions include cohort fixed effects and controls; student number, gender, age, and distance to
university.
2. Peer GPA refers to the leave-out mean of high school GPA for the close peer group. Own GPA refers to
own high school GPA. Both GPA measures are standardized.
3. Column (1), (2), (3) and (5) are estimated on the student level. Column (4) creates a balanced panel on
the student-course level, where the outcome variable takes the value one if a student wrote the final exam
for that course and zero otherwise.
4. Column (1) has first-year credit weighted GPA as outcome variable and is based on the number of
courses that the student took. Column (2), (3) and (4) refer to the number of credits obtained or the number
of courses a student wrote the final exam for. Dropout in column (5) is one if a student did not write an exam
in the last block of the first year and zero otherwise. Credit weighted GPA in column (1) is standardized, all
other outcomes are unstandardized. Number of credits range from 1 to 60. Number of courses range from
1 to 10.
5. Across the six cohorts there are 78 students (3.4%) who confirmed their registration on the first day but
for whom we observe no valid grade. These students dropped out before the first exam week. As we cannot
calculate a GPA for them, these students are dropped from this analysis. Results do not change when we
include these students.
6. Column (1), (2) and (3) are estimated with OLS, column (4) and (5) with Probit. Marginal effects are
reported. The R2 refers to the Adjusted and Pseudo R2 respectively.
7. Standard errors in parentheses, clustered on the tutorial level.
8. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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2.5.4 Robustness.

The results above show that peer GPA does not affect dropout, which implies our results are not

contaminated by selection bias. However, the estimate for own GPA in Table 2.4 reveals that low

GPA students take fewer courses and have a higher probability of dropping out by the end of their

first year. This means that a student randomized into a tutorial group with many low ability rather

than high ability students will experience a larger amount of course dropout among her peers, and

thus have a smaller actual class size. This results in a positive correlation between peer GPA and

class size, which could partly explain our baseline results if class size also impacts grades. Appendix

Figure A.2.4 plots the number of students writing the final exam as a fraction of the initial students

per block and separately for high, average, and low GPA close peer groups. This reveals that dropout

increases during the year, being 15 to 20 percent at the end of the first year. It also reveals that dropout

is somewhat larger for low GPA close peer groups.

We investigate whether our results are robust to class size and course dropout in Table 2.5, which

presents the results of our baseline equation while including variables measuring class size and course

dropout as explanatory variables. Column (1) includes a dummy for the assigned number of students

to the close peer group at the start of the first year, column (3) for the actual number of students

that wrote the exam for the course, and column (6) for the difference between the two. The latter

is a measure for dropout per course. All three columns reveal a stable estimate for close peer GPA,

suggesting that class size and course dropout are unlikely to explain our baseline results.



Table 2.5: Robustness of Baseline Peer Effects

Grades (Standardized)

OLS OLS OLS OLS IV OLS OLS

(1) (2) (3) (4) (5) (6) (7)

Close Peer GPA 0.0254∗∗ 0.0253∗∗ 0.0275∗∗ 0.0289∗∗∗ 0.0291∗∗∗ 0.0261∗∗ 0.0387∗∗∗

(0.0112) (0.0107) (0.0107) (0.0108) (0.0113) (0.0103) (0.0146)

Peer GPA × -0.0059
Assigned Class Size (0.0093)

Peer GPA × 0.0042 -0.0043
Actual Class Size (0.0076) (0.0112)

Peer GPA × -0.0056
(Assigned-Actual) (0.0052)

Own GPA 0.3435∗∗∗ 0.3436∗∗∗ 0.3436∗∗∗ 0.3438∗∗∗ 0.3438∗∗∗ 0.3433∗∗∗ 0.3433∗∗∗

(0.0120) (0.0119) (0.0119) (0.0119) (0.0119) (0.0119) (0.0119)

Observations 18736 18736 18736 18736 18736 18736 18736
Adjusted R2 0.324 0.323 0.323 0.323 0.323 0.323 0.323

F-tests on Assigned Class Size: 141.85
Excl. Instruments Its Interaction with Peer GPA: 475.24

Class-Size Dummies Yes No Yes No No Yes No

Robustness Check Assigned Class Size Actual Class Size (Assigned-Actual)

Notes:
1. All regressions include course-cohort fixed effects and controls; student number, gender, age, and distance to university.
2. Peer GPA refers to the leave-out mean of high school GPA for the close peer group. Own GPA refers to own high school GPA.
Both GPA measures are standardized.
3. Column (1) includes dummies for the number of students at the beginning of the year in the close peer group (assigned class size),
column (3) for the number of students that wrote the exam for the course (actual class size on the course-cohort level), and column
(6) for the difference between these two (assigned-actual). The latter is a measure for course dropout.
4. Assigned and actual class size are standardized in column (2), (4) and (5). The difference between the two in column (7) is not
standardized. The coefficient on close peer GPA in column (7) measures spillovers in classes where there has been no course dropout
(assigned-actual=0). Roughly 20 percent of the groups experience no course dropout and have a value of zero, where the average is
2.19.
5. Column (5) uses the assigned number of students and its interaction with close peer GPA as instruments for the actual number of
students and for its interaction with close peer GPA.
6. Standard errors in parentheses, clustered on the tutorial level.
7. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Columns (2), (4), and (7) of Table 2.5 include the assigned class size, actual class size, and

course dropout as continuous variables, while also including their interaction with close peer GPA.

The measures for original and actual class size in column (2) and (4) are standardized, while the

difference between the two in column (7) is unstandardised. As such, the estimate for close peer GPA

in (7) measures the peer effect for groups where there has been no course dropout. Again we find

stable estimates for close peer GPA across all three columns. Moreover, we find the estimates for the

interaction terms between peer GPA, class size, and course dropout to be unimportant. From this we

conclude that the social proximity, and the corresponding nature of spillovers, is not different between

classes of different size.

Whereas assigned class size is exogenous, one may have remaining concerns that actual class size

is an outcome of close peer GPA. Therefore we report an additional specification in column (5) of

Table 2.5, where we use assigned class size as an instrument for actual class size.23 Using only the

variation in actual class size that originates from the original assignment, we find our results to be

virtually unchanged.

2.5.5 Heterogeneity.

Do the baseline estimates of Section 2.5.1 hide heterogeneity by own and peer ability? This question

has important implications for policy. It is only when peer effects are non-linear that aggregate gains

can be generated by reorganising peer groups.

Following Carrell et al. (2013) we test for heterogeneity using a two-way interaction model. We

define low and high ability students to be in the bottom and top quartiles of high school GPA across

the six cohorts. The remaining 50 percent of students are defined as being of average ability. For every

student we calculate the (leave-out) proportion of low, middle, and high ability students separately

for their close and distant peer groups. We estimate models with interactions of student’s own ability

type with the fraction of high and low ability peers. For each ability type, these interactions show

the impact of increasing the proportion of high or low ability students by decreasing the proportion

of average ability students. For example, Own Low × Peer High shows the estimated effect on

student performance for low ability students of increasing the proportion of high ability students by

decreasing the proportion of average ability students in the relevant peer group.24

23The variation in assigned class size comes partly from the original allocation and partly from the cases in which the
administrator reallocates students across tutorial and close peer groups (see Section 2.2).

24Appendix Table A.2.7 repeats the first balancing test described in Section 2.4 while replacing average peer GPA as
the outcome variable separately with the (leave-out) share of low, average, and high ability peers in the close and distant
peer group. We find that student characteristics cannot explain the share of peers by ability type; only two out of the 35
estimated coefficients (γ1 and γ2) are significant, and the characteristics are always jointly insignificant. This result holds
if we perform this balancing test separately for low, average, and high ability students.



Table 2.6: Heterogeneity by High School GPA of Peer Effects

Grades (Standardized) Pass (1) or Fail (0)

Close Distant Close Distant Close Distant

(1) (2) (3) (4) (5) (6)

Share Peer High 0.1774∗ 0.0096
(0.0915) (0.1104)

Share Peer Low -0.0483 0.0171
(0.1064) (0.1108)

Own High × Peer High 0.3659∗∗ 0.0007 0.2258∗∗∗ 0.1069
(0.1456) (0.1701) (0.0730) (0.0789)

Own High × Peer Low -0.3036∗∗ 0.1024 -0.1141∗ 0.0329
(0.1507) (0.1506) (0.0614) (0.0666)

Own Avg × Peer High -0.0257 -0.0687 -0.0081 -0.0153
(0.1086) (0.1239) (0.0434) (0.0508)

Own Avg × Peer Low 0.1063 0.0474 0.0698 0.0506
(0.1196) (0.1272) (0.0463) (0.0509)

Own Low × Peer High 0.3510∗∗ 0.1987 0.1146∗ 0.0884
(0.1503) (0.1624) (0.0593) (0.0655)

Own Low × Peer Low -0.1492 -0.1654 -0.0400 -0.0689
(0.2212) (0.2002) (0.0794) (0.0692)

Observations 18736 18736 18736 18736 18736 18736
R2 0.323 0.322 0.324 0.323 0.188 0.187

Binary Outcome No No No No Yes Yes

Notes:
1. All regressions include course-cohort fixed effects, controls; student number, gender, age, and distance to
university, and own high school GPA.
2. Students are classified into dummies that refer to the bottom 25 percent (low), middle 25 to 75 percent (average),
and top 25 percent (high) of high school GPA. The peer measures are the (leave-out) shares of students in the close
(distant) peer group belonging to each category. The shares are unstandardized.
3. Odd columns include the shares for the close peer group and even columns for the distant peer group.
4. Column (1) to (4) are estimated with OLS, column (5) and (6) with Probit. Marginal effects are reported. The
R2 refers to the Adjusted and Pseudo R2 respectively.
5. Standard errors in parentheses, clustered on the tutorial level.
6. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 2.6 presents our results. Column (1) and (2) first document that our baseline results from

the linear-in-means specifications carry over to a model where we use the share of high and low

ability students, rather than the mean of peer high school GPA, to measure peer ability. Next, column

(3) and (4) show the heterogeneity results on first-year grades for the close and distant peer groups

respectively, where column (5) and (6) do this for a pass-fail indicator. The results in column (3)

and (5) reveal spillovers that are roughly linear in close peer ability, implying that the estimates of

the linear-in-means model are insightful. Specifically, the columns show that the observed close peer

spillovers are driven primarily by low and high ability students benefiting from social interactions

with high ability students. Both high and low ability students are negatively affected by increasing

the share of low ability students, insignificantly so for low ability students. Increasing the share of

either high or low ability students appears to have no impact on average ability students. Conversely,

column (4) and (6) show that the proportion of high and low ability types in one’s distant peer group

has no significant effect on grades or passing rates for any ability type, further supporting the lack of

classroom-level effects.

The coefficient for Own High × Peer High in column (3) reveals that increasing the share of high

ability students by 25 percent, the equivalent of replacing 3 out of 12 average ability students with

3 high ability students, increases the grade of a high GPA student by almost 0.1 standard deviation.

To get a sense of the size of this effect, we follow Marie and Zölitz (2017) and compare it to other

treatments known to have an impact on student performance in higher education. An estimate of 0.1

standard deviation is roughly twice the size of having a same-sex instructor (Hoffmann and Oreopou-

los, 2009), resembles the effect of increasing professor quality by one standard deviation (Carrell and

West, 2010), and is similar to the impact of a temporary restriction of legal cannabis access (Marie and

Zölitz, 2017). It is perhaps useful to remark that 0.1 standard deviation corresponds to approximately

half of the math gender gap in the fifth grade in the U.S. (Fryer Jr and Levitt, 2010).

In an additional analysis, we considered more restrictive definitions of high and low ability stu-

dents to better reflect the concept of having superstar students or bad apples in the classroom. In

particular, we defined superstar students as those having a GPA above 8.25 (cum laude) and bad

apples as those having a GPA below 5.75; both categories form roughly one percent of our sam-

ple. Subsequently we constructed close and distant peer group dummies which are equal to one if the

group contained such a student. Replicating the regression in column (1) of Table 2.6, while replacing

the shares with a close-peer-group superstar and bad-apple dummy, we find the first is significantly

positive and the latter to be insignificantly negative. Similar to column (2), both the superstar and

bad-apples dummy for the distant peer group are smaller and statistically insignificant. Separating

these effects by students’ own ability, we find a similar pattern for low, average, and high ability
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students as documented in column (3) and (4) of Table 2.6. These results further support peer ef-

fects revolve around meaningful social interaction between peers, rather than classroom-level effects

(results available upon request).

2.5.6 Group Assignment Policies.

The previous results imply that alternative assignment policies entail a transfer from one student group

to the other. Therefore it is not possible to provide a Pareto-ranking of different policies. However, we

can use the results in Table 2.6 to estimate the effects of alternative assignment policies. University

administrators that want to maximize student grades can use such an exercise to weigh the grade

benefits of one group against the costs of another.

Following Booij et al. (2017) we consider five alternative group assignment policies; low, average,

high, three-way, and two-way ability tracking. Table 2.7 summarizes, for the average student as

well as per ability type, the estimated change in a first-year course grade when switching from the

current ability mixing regime to one of the five tracking policies. According to these estimates,

the policy that will deliver the largest increase in student performance is the high tracking policy,

whereby high ability students are grouped together and low and average students are mixed to form

the remaining groups. Note however that this policy is predicted to decrease grades for low ability

students compared to mixing.

A potential concern with using estimates based on ability mixing to inform alternative group

assignment policies is that some peer configurations will not be covered by the data.25 Such a problem

was encountered by Carrell et al. (2013), who found that extrapolating from estimates based on ability

mixing failed to predict the results of alternative group assignments. Given that social proximity is

vital for the existence of peer effects, it may well be that such failures can be attributed to social

proximity breaking down in more extreme group configurations. Our results are based on a setting

in which social proximity has been fostered between close peers. If such fostering is achieved in

more extreme group configurations then the results presented here may actually provide an accurate

description of what will occur under alternative assignment policies. Given the lack of support they

should still be treated with caution, however.

25This point has recently been made by Booij et al. (2017). In their study they manipulate the composition of groups to
achieve a wider range of support in peer ability than observed under ability mixing.



Table 2.7: Estimated Effects of Alternative Group Assignments Compared to Mixing

Effect For Student With

Average Low Avg. High
Effect GPA [L] GPA [A] GPA [H]

(1) (2) (3) (4)

Track Low [L],[A,H] -0.0400 -0.2030 -0.0290 0.1009∗∗

(0.0512) (0.1829) (0.0300) (0.0396)

Track Average [A],[L,H] 0.0062 0.0476 -0.0202 0.0177
(0.0115) (0.0589) (0.0432) (0.0502)

Track High [H],[L,A] 0.0686∗∗ -0.1036∗∗ 0.0148 0.3484∗∗∗

(0.0335) (0.0486) (0.0271) (0.1167)

Three-way Tracking [L],[A],[H] 0.0262 -0.2030 -0.0202 0.3484∗∗∗

(0.0556) (0.1829) (0.0432) (0.1167)

Two-way Tracking [L,A],[A,H] 0.0123 -0.1247∗ 0.0011 0.1717∗∗∗

(0.0255) (0.0730) (0.0012) (0.0551)

Notes:
1. For each alternative group assignment, we randomly allocate students depending on their ability
type to groups of 14 to 15 students. The student types are low ability [L], average ability [A], and
high ability [H] defined by the bottom quartile, two middle quartiles, and top quartile of high school
GPA respectively.
2. Low (average or high) tracking involves grouping low (average or high) ability students together,
while mixing the remaining students. Three-way tracking involves separate groups for each ability
type. Two-way tracking involves defining students as either high or low ability, depending on whether
their high school GPA is above or below the median. Groups are then composed of only high or low
ability students.
3. For each student we subtract the actual leave-out ability shares (mixing) from the ability leave-out
shares obtained via the alternative group assignments, denoted by (xtrack − xmixing). Then the
average tracking effects are equal to (xtrack − xmixing)

′
β̂. Note that nearly identical estimates can

be derived directly from column (3) of Table 2.6.

4. Standard errors are equal to
√

(xtrack − xmixing)
′V (β̂)(xtrack − xmixing), and shown in paren-

theses.
5. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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2.6 Nature of Social Interactions

Our results indicate better peers have small positive implications for a student’s grades, passing rates,

cumulative GPA, and credits in first year. These spillovers originate from peers with whom students

are socially proximate and interact with. What is the nature of these social interactions? A possible

answer to this question allows us to speak to the finer categorization of possible peer effect mecha-

nisms listed by Sacerdote (2011), including peer-to-peer teaching or effects on student motivation or

preferences.

We start with the use of course evaluations. Recall that the response rate, which is roughly 30

percent, is unrelated to a student’s close peer GPA (see Appendix Table A.2.8). Hence, we worry

little about sample selection when interpreting the following set of results. Table 2.8 uses data on

self-reported lecture attendance and total study time to investigate whether the beneficial social inter-

actions changed the inputs regarding the study process. Column (1) reports the effect of close peer

high school GPA on an indicator for whether the student attended lectures. Column (2) does this for

total study time (tutorials + lectures + self study). The estimates reveal that a student with better close

peers is less likely to attend lectures, while reported total study time is not impacted. The estimate in

column (1) suggests that a one standard deviation increase in close peer high school GPA decreases

the probability to attend lectures by 1.8 percentage points. Due to the rough (binary) nature of the

question, however, we are inclined to interpret only its sign and significance (p-value=0.019).26 Re-

call that Appendix Table A.2.6 showed that tutorial attendance is unaffected by close peer high school

GPA. Taken together, the estimates in column (1) and (2) suggest that students with better close peers

substituted lecture attendance for additional self study.

Next we investigate the impact of close peer high school GPA on perceived lecturer and TA

quality, and the perceived usefulness of lectures and tutorials. Column (3) and (4) indicate that having

better close peers significantly decreases the perceived quality of the lecturer and usefulness of the

lectures. This is consistent with, and further reinforces that, students substitute lecture attendance

for additional self study. It seems most likely that this increase in self study involves close peers

studying together. However, an alternative explanation might be that the beneficial student-to-student

interactions only take place during the tutorials, after which individual self study takes place. If this

is the case, we would expect students’ perception of the quality of their TA and the usefulness of

tutorials to increase when having better close peers. Column (5) shows that close peer high school

GPA is unrelated to students’ perceptions of the quality of the TA. Column (6) shows that there are
26For this question students are asked only about the extensive margin of their lecture attendance: “Have you attended

lectures?”. Even students who attended a few lectures may answer this question with yes (1) instead of no (0). As such, it
may well be that these results understate the true reduction in lecture attendance.



Table 2.8: Peer Effects on Time Use and Additional Outcomes using Course Evaluations

Attended Total Lecturer Usefulness TA Usefulness
Lectures Study Time Quality Lectures Quality Tutorials

(1) (2) (3) (4) (5) (6)

Close Peer GPA -0.0180∗∗ -0.1935 -0.0574∗∗∗ -0.0585∗∗ -0.0332 -0.0064
(0.0077) (0.1877) (0.0195) (0.0285) (0.0241) (0.0281)

Own GPA -0.0139 -0.5414∗∗∗ 0.0348∗ 0.0268 0.0029 0.0024
(0.0089) (0.1484) (0.0204) (0.0201) (0.0191) (0.0308)

Observations 4361 4361 3560 2178 3560 2178
R2 0.147 0.268 0.245 0.251 0.079 0.124

Binary Outcome Yes No No No No No

Notes:
1. All regressions include course-cohort fixed effects and controls; student number, gender, age, and distance to
university.
2. Peer GPA refers to the leave-out mean of high school GPA for the close peer group. Own GPA refers to own high
school GPA. Both GPA measures are standardized.
3. The dependent variable in column (1) is the answer to the question “Have you attended lectures?”. The de-
pendent variable in column (2) is the answer to the question “Average study time (hours) for this course per week
(lectures+tutorials+self study)?” where we used the maximum for the interval to convert the categories into hours.
The dependent variables in column (3) and (5) are the mean of the answers to the questions that evaluate the Lec-
turer/TA. The dependent variables in column (4) and (6) are the answers to the questions “Were the lectures/tutorials
useful?”. The dependent variables in column (3) until (6) are standardized.
4. Column (1) is estimated with Probit, the other columns with OLS. Marginal effects are reported. The R2 refers
to the Pseudo and Adjusted R2 respectively.
5. Standard errors in parentheses, clustered on the tutorial level.
6. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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no effects on the perception of the usefulness of the tutorials. Combining these results suggest that

students exposed to better close peers substitute lecture attendance for collaborative self study.27

Next we turn to our data on student gender, high school location, and residence to shed additional

light on the nature of the social interactions. We calculate for each student the leave-out proportion of

females in their close peer group, the number of peers in their close peer group that attended the same

high school as the student, the distance of the student’s residence to the residence of every student in

their close peer group, and the leave-out proportion of a student’s close peers that live in the city in

which the university is located.

Column (1) of Table 2.9 adds the leave-out share of females in the close peer group while interact-

ing it with the female dummy in our baseline equation. The results replicate the finding of Oosterbeek

and Van Ewijk (2014), who also find that the gender composition does not have an effect on student

performance. Column (1) also documents an unchanged estimate for close peer high school GPA.

This implies that the meaningful social interactions do not only take place in certain high ability

groups with a high share of males or females. Column (2) shows that being assigned peers from

one’s former high school in the close peer group does not have implications for spillovers. Given

that high school peers are most likely acquainted before university, this points to spillovers also being

generated between formerly unknown peers.

If collaborative study meetings would take place outside university, we would expect to observe

larger peer effects for students who live closer to their high ability peers. In column (3) we include

the median distance of a student’s residence to her close peers and interact this with close peer high

school GPA. We do not find that a student who lives closer to her peers enjoys larger spillovers. This

suggests that the study meetings take place on the university campus.

The notion that students benefit from collaborative self-study outside class implies that students

would fail to benefit from having better close peers if these peers have other commitments that prevent

such studying. We attempt at investigating this in column (4), which includes a dummy for whether

the student lives in the city of the university and the leave-out share of students within their close

peer group living in the city. First, notice that column (4) documents that city students perform

significantly worse in their first year, scoring on average 0.11 standard deviations lower. Moreover,

with our administrative tutorial attendance data we can show that the percentage of first-year tutorials

attended per course is 0.07 standard deviations lower for city students (p-value=0.001). We conjecture

that these findings partly reflect the large range of extra-curricular activities available to these students,
27Appendix Table A.2.8 reveals no effect of students’ close peers on the remaining questions regarding their perceptions

of the course.



Table 2.9: Peer Effects by Gender, Prior Bonds and Location

Grades (Standardized)

(1) (2) (3) (4)

Close Peer GPA 0.0250∗∗ 0.0286∗∗ 0.0254∗∗ 0.0190∗

(0.0104) (0.0110) (0.0104) (0.0099)

Share of Female Peers -0.0087
(0.0120)

Female × 0.0290
Share of Female Peers (0.0232)

Peer Same High School × -0.0155
Peer GPA (0.0229)

Distance of Peers to Your -0.0091
Residence × Peer GPA (0.0089)

Live in City -0.1113∗∗∗

(0.0294)

Share of Peers that Live -0.0246∗∗

in City × Peer GPA (0.0110)

Own GPA 0.3430∗∗∗ 0.3426∗∗∗ 0.3435∗∗∗ 0.3408∗∗∗

(0.0119) (0.0116) (0.0120) (0.0122)

Observations 18736 18229 18736 18736
Adjusted R2 0.323 0.324 0.324 0.325

Notes:
1. All regressions include course-cohort fixed effects and controls; student number, gender,
age, and distance to university.
2. Peer GPA refers to the leave-out mean of high school GPA for the close peer group. Own
GPA refers to own high school GPA. Both GPA measures are standardized.
3. Column (1) includes the leave-out share of females in the close peer group (standardized)
and its interaction with the gender dummy. Column (2) includes the number of students that
attended the same high school (unstandardized) and its interaction with close peer GPA. For
some students we do not observe their high school address, explaining the somewhat fewer
number of observations. Column (3) includes the median distance of a students’ peers to his
or her residence (standardized) and its interaction with close peer GPA. Column (4) includes
the leave-out share of peers that live in the city where the university is located (standardized)
and its interaction with close peer GPA.
4. Standard errors in parentheses, clustered on the tutorial level.
5. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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most of whom are living outside of their parent’s home for the first time.28 The coefficient for the

interaction of close peer ability with the proportion of close peers living in the city implies that peer

effects vanish if all of one’s close peers live in the city. Although we cannot definitively rule out other

competing explanations, we believe this result is most consistent with the existence of spillovers

depending upon peers not having busy social lives or other distractions outside of class.29

To summarize, these results suggest meaningful social interaction between close peers takes place

on campus, where in place of attending lectures, students study together with their close peers. It

seems that social interaction with high ability peers increases grades by increasing the productivity

of (collaborative) self study. While only suggestive, these findings are consistent with laboratory evi-

dence examining peer effects mechanisms. Kimbrough et al. (2017) find that low ability participants

were able to solve more logic puzzles when allowed to socially interact with high ability partici-

pants, and audio recording revealed that these social interactions generated spillovers via peer-to-peer

teaching.

2.7 Voluntary Sorting and Potential Implications for Group Assign-

ment Policies

Our results indicate that peer effects in the classroom work through social proximity. The extent to

which students sort out of their close peer groups over time, and become socially proximate with

other, self-chosen peers, is therefore crucial to the evolution of peer effects from assigned close peers.

For example, interventions aiming to help low ability students by matching them with high ability

students may not be sustainable if the social proximity between these students wanes over time. Had

classroom-level effects driven peer effects, any changes in social proximity would be of no concern.

In this section we analyze voluntary sorting and discuss its potential implications for group as-

signment policies. First, we track the effect of close peers on grades during the first year. We find

that peer effects from close peers diminish over time; they are strongest in the first block and vanish

by the fourth block of the first year. Second, we use detailed tutorial attendance data and present

some evidence that the social proximity between close peers diminishes in a similar fashion during

the first year. Third, we use second-year tutorial registration and confirm that students largely sort out

of their assigned close peer group. Concurrently, students sort into new peer groups based on prior
28For example, these activities could include a fraternity membership, which is common among our student population

living in the city. From the Dutch student survey “Studenten Monitor” we observe that students living outside of their
parent’s home spend in total roughly twice as much money on fraternity memberships and roughly 1.5 as much money on
leisure activities than students living with their parents (http://www.studentenmonitor.nl/).

29Notice that this result is unlikely to be explained by non-city peers studying together in public transport. Column (3)
in Table 2.9 has shown that spillovers are unrelated to having high ability peers closer to ones’ residence.
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Table 2.10: Peer Effects per Block

Grades (Standardized)

Block 1 Block 2 Block 3 Block 4 Block 5

(1) (2) (3) (4) (5)

Close Peer GPA 0.0404∗∗ 0.0361∗∗ 0.0318∗∗ 0.0080 0.0062
(0.0177) (0.0145) (0.0145) (0.0135) (0.0178)

Own GPA 0.4139∗∗∗ 0.3451∗∗∗ 0.3849∗∗∗ 0.2537∗∗∗ 0.3026∗∗∗

(0.0159) (0.0145) (0.0176) (0.0151) (0.0160)

Observations 4271 4024 3650 3462 3329
Adjusted R2 0.280 0.474 0.264 0.191 0.301

Notes:
1. All regressions include course-cohort fixed effects and controls; student number, gender, age,
and distance to university.
2. Peer GPA refers to the leave out mean of high school GPA for the close peer group. Own
GPA refers to own high school GPA. Both GPA measures are standardized.
3. Standard errors in parentheses, clustered on the tutorial level.
4. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

bonds, ethnicity, and gender, but not on ability. While we cannot know with certainty the reason that

academic spillovers from close peers vanishes during the first year, we believe the degree and type of

voluntary sorting behavior provides an intuitive explanation.

2.7.1 Diminishing Peer Effects.

To study how peer effects evolve over time we repeat the analysis of close peer GPA on grades per

block of the first year. The results are presented in Table 2.10 where the column number refers to

the block being analyzed. Columns (1) and (2) reveal that during the first two blocks the estimates

for close peer GPA are comparatively large (p-value<0.05). The magnitude slightly drops in block 3,

while still being significant at the 5%-level. In blocks 4 and 5 spillovers become statistically indistin-

guishable from zero. Appendix Table A.2.9 shows that distant peers are unimportant throughout all

five blocks. We investigate several potential explanations for the diminishing peer effects in the Ap-

pendix, such as differences in course types across blocks, direct effects of dropout, and measurement

error in peer ability due to dropout. The results imply these explanations are unimportant.

2.7.2 First-Year Tutorial Attendance.

To study whether a reduction in social proximity could be a potential explanation, we analyze whether

a student’s tutorial attendance is associated with the attendance of their close and distant peers. Given

a preference to attend tutorials with ones’ friends, we interpret coordination of tutorial attendance
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among students as being indicative of social proximity. Let Attendanceisgct be a binary variable

taking the value one if student i attended tutorial session s, in group g, for course c, of cohort t. We

run the following regression:

Attendanceisgct = δ0 + δ1AttClose(−i)sgc + δ2AttDistantsgc +Ggct + δ3Xi + εisgct (2.3)

Where AttClose(−i)sgc and AttDistantsgc are the proportions of individual i’s close and distant

peers who attend session s of course c. By running this regression per block, δ1 and δ2 detect any

changes in attendance coordination as the first year progresses. Recall that across the seven weeks

there are fourteen and seven tutorial sessions for large and small courses respectively.

Equation (2.3) regresses attendance on its own group leave-out mean. If one is trying to detect

causal peer effects this model would suffer from the reflection problem. Our goal, however, is to

detect the degree of attendance coordination. Is a student more likely to go to tutorials with her

close than distant peers, and does this change over time? The reflection problem poses no threat to

answering this question. Another concern with such models is that group-level attendance shocks,

such as bad weather, can result in coefficients that suggest peer coordination even if peers do not

deliberately coordinate. Given that such shocks will take place at the tutorial level, both δ1 and δ2

are affected by these shocks. We will only compare their relative sizes and changes across blocks.

Moreover, note that Equation (2.3) includes course-tutorial fixed effects (Ggct) to capture common

shocks. The remaining control variables (Xi) are identical to the baseline regressions.

The results of the δ1 and δ2 coordination coefficients from these regressions per block are pre-

sented visually in Figure 2.3.30 To highlight their potential relevance for the diminishing peer effects,

the figure also contains a similar representation of the close group peer effect on grades during the

first year.

We identify three main patterns. First, the degree of coordination in attendance between a student

and her close peers is higher than between a student and her distant peers. This supports the notion

that the close peer group meetings induced social proximity and further reinforces our results in

Section 2.5. Second, the attendance coordination with close peers falls over time. Notably, the largest

drop occurs after the second block, at which point there is a Christmas break. The timing of the

break is indicated by the dashed vertical line in the figure. This drop is relatively large, significant (p-

value=0.028), and stands in stark contrast to all other changes in coordination across blocks, which

are relatively small and insignificant. Third, this drop in coordination after the second block is not
30The full regression results are presented in Appendix Table A.2.10. The table also presents p-values of a test for the

equality of coefficients between adjacent blocks for close and distant peers separately and p-values of a test for the equality
of the coefficients between close and distant peers within a block.



Figure 2.3: Diminishing Peer Effects in Grades (top graph) and Tutorial Attendance Coordination (bottom graph)

Notes:

1. Top graph shows the point estimates of close-peer effects on first year grades per block
and the corresponding 90% confidence interval. The precise estimates can be found in
Table 2.10.

2. Bottom graph shows the point estimates of first year tutorial attendance coordination for
both close and distant peers and the corresponding 90% confidence interval. The precise
estimates can be found in Appendix Table A.2.10.

3. The vertical dashed line indicates the timing of the first two-week break that occurs during
the students’ first year.
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visible between students and their distant peers. We take this as evidence that, while there was initially

a difference in the degree of social proximity between a student and her close and distant peers, this

diminished over time. The Christmas break might have resulted in a severing of the bonds between

close peers.

The results above provide some evidence that the social proximity between assigned close peers

diminishes as time progresses. Are students sorting out of their close peer group into other groups?

Second-year tutorial registration, which by then is under the purview of the students, provides us with

an opportunity to analyse exactly this.

2.7.3 Second-Year Tutorial Choice.

All students in second year have to register for the tutorials a few weeks before the start of the course.

If we assume that students prefer to be in a tutorial group with one’s friends, then observing joint

tutorial registration allows us to analyze peer group formation. We look for evidence of students co-

registering based on shared characteristics; a phenomenon referred to as homophily. In particular, we

use the following six characteristics: close and distant peer groups, ethnicity, gender, former bonds

based on a student’s high school, and ability (measured by high school GPA). Recall the program only

admits Dutch students, and so students with a different ethnicity than Dutch are either first- or second

generation immigrants. In the Dutch context, the categories European (81%, including Dutch), Arabic

and Turkish (5%, referred to simply as Arabic from hereon in for simplicity), and Asian (14%) are

ex-ante most relevant.31

Similar to the strategy of Marmaros and Sacerdote (2006), we first form all possible pairs of

students who are observed to take course c in the second year of cohort t. Given Nct students this

procedure generates (Nct ×Nct − 1)/2 pairings of students.32 Let SecondY earTutorial(i, j)ct be

an indicator variable taking the value of one if both student i and j registered to the same second-year

tutorial group and zero otherwise. We define a similar set of indicator variables for each of the char-

acteristics listed above, taking the value of one if students i and j share that particular characteristic

and zero otherwise. We then run the following regression per block:

SecondY earTutorial(i, j)ct = π0 + π1SharedCharacteristic(i, j) + Cct + ε(i, j)ct (2.4)

31We determine ethnicity using the surname-based classification algorithm NamePrism (Ye et al., 2017). In the 1960s
and 1970s many “guest workers” arrived to the Netherlands from North Africa and Turkey. Since these immigrants and
their children are often referred to collectively as “allochtonen”, we group students with these backgrounds together under
the Arabic category.

32This is done by crossing the relevant list of student numbers with itself, removing all duplicate pairs (i, i), and keeping
only one instance of the same pairing ((i, j) and (j, i)).
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π1 captures the change in the probability of two students sharing the same tutorial group in second

year if they e.g. share the same gender. Equation (2.4) includes course-cohort fixed effects (Cct),

but, as the unit of observation is a student pair, it does not include other control variables. We cluster

standard errors based on a variable that takes upon unique values for every combination of first-year

tutorial groups of each student pair (i, j).

Table 2.11 reports the results per block of the second year.33 The last row reports the uncondi-

tional mean for the outcome variable, which is approximately 7 percent. The estimates for the shared

characteristics can be compared to this mean, which reflects the probability of any two students reg-

istering together, independent of shared characteristics.34

The results reveal four main patterns. First, the Close Peer Group coefficient indicates that only

some bonds from the close peer groups have remained up until the second year. The coefficient

in block 1 is 0.06, which indicates that sharing a close peer group increases the probability of co-

registration by 6 percent. As any two students have a 7 percent probability to co-register, a student

registers together with 1 out of every 14 students. This becomes 2 out of 14 when the students

originate from the same close peer group. Though this coefficient is significantly different from 0, it

is far away from 1. This confirms the attendance results above and shows that by second year students

have sorted out of their close peer groups to a large extent.

Second, a comparison of the Close Peer Group and Distant Peer Group coefficients reveals that,

across blocks, the former is roughly 1.5 to 2 times larger than the later. The differences are statistically

significant (p-values<0.05) and provide further evidence that the close peer group meetings indeed

manipulated social proximity. Notice, however, that the Distant Peer Group estimates are also positive

and statistically significant. Thus, while distant peers remain less important than close peers, a student

is more likely to form bonds with her distant peers than with someone in a different first-year tutorial

group altogether. Based on the estimate from block 1 of 0.035, on average students co-register with

approximately 1 out of every 10 students from their distant peer group.

Third, Table 2.11 reveals that students sort into more homogeneous peer groups. Especially mi-

norities, such as Arabic and female students are significantly more likely to appear in the same tutorial

groups. The marginal effect of e.g. the coefficient for Both Arabic in block 2 indicates that two eth-

nically Arabic students are roughly 2 percentage points more likely to register together than e.g. an

ethnic Arab with any other student. The largest predictor of co-registration is having shared the same

high school, which increases the probability of being in the same second-year tutorial by roughly
33Notice that the last year we observe is 2014-15, and we therefore do not observed the second-year tutorial registration

for the 2014 cohort.
34This unconditional mean coincides with our student-level data, where we observe roughly 200 students and 14 tutorials

of 14 students each per course-cohort combination. As such, there is roughly a probability of 1/14 of registering in the same
tutorial with any other student.



Table 2.11: Voluntary Sorting in Second-Year Tutorials (All Blocks)

Same Tutorial in Second Year? Yes (1) or No (0)

Block 1 Block 2 Block 3 Block 4 Block 5

(1) (2) (3) (4) (5)

Close Peer Group 0.0591∗∗∗ 0.0570∗∗∗ 0.0487∗∗∗ 0.0512∗∗∗ 0.0486∗∗∗

(0.0063) (0.0052) (0.0050) (0.0054) (0.0067)

Both Asian 0.0031 0.0029 0.0007 -0.0044 0.0127∗∗

(0.0049) (0.0050) (0.0053) (0.0058) (0.0055)

Both Arabic 0.0128 0.0227∗ 0.0258∗ 0.0578∗∗∗ 0.0273∗

(0.0108) (0.0119) (0.0136) (0.0137) (0.0160)

Both Europe 0.0043∗∗ 0.0044∗∗ 0.0020 0.0033 0.0056∗∗

(0.0019) (0.0021) (0.0019) (0.0021) (0.0023)

Both Female 0.0376∗∗∗ 0.0311∗∗∗ 0.0270∗∗∗ 0.0216∗∗∗ 0.0284∗∗∗

(0.0044) (0.0044) (0.0039) (0.0040) (0.0052)

Both Male 0.0010 0.0018 -0.0007 -0.0011 -0.0004
(0.0021) (0.0023) (0.0022) (0.0022) (0.0028)

Same High School 0.0844∗∗∗ 0.0867∗∗∗ 0.0884∗∗∗ 0.0912∗∗∗ 0.0886∗∗∗

(0.0064) (0.0072) (0.0065) (0.0066) (0.0077)

Distant Peer Group 0.0350∗∗∗ 0.0396∗∗∗ 0.0385∗∗∗ 0.0342∗∗∗ 0.0309∗∗∗

(0.0063) (0.0059) (0.0056) (0.0065) (0.0067)

Both High GPA -0.0009 -0.0023 0.0034 0.0039∗ 0.0030
(0.0019) (0.0025) (0.0025) (0.0024) (0.0029)

Both Average GPA 0.0009 0.0030∗ 0.0015 -0.0017 0.0040
(0.0016) (0.0018) (0.0016) (0.0019) (0.0025)

Both Low GPA -0.0015 0.0000 -0.0012 0.0003 0.0038
(0.0039) (0.0045) (0.0045) (0.0043) (0.0061)

Unconditional Mean 0.0756∗∗∗ 0.0755∗∗∗ 0.0764∗∗∗ 0.0766∗∗∗ 0.0746∗∗∗

(0.0006) (0.0006) (0.0006) (0.0006) (0.0008)

Observations 229428 214691 218183 188896 106630
Pseudo R2 0.010 0.010 0.008 0.009 0.008

Notes:
1. All regressions include course-cohort fixed effects, other controls are excluded.
2. Block 5 has half the number of observations as one course does not have tutorials.
3. The unit of analysis is a student-pair. The outcome variable is one if both students in the pair
registered for the same tutorial and zero otherwise. The explanatory variables are one if both
students in the pair share the given characteristic.
4. Models are estimated with Probit. Marginal effects are reported.
5. Standard errors in parentheses, clustered based on a variable that takes upon unique values
for every combination of first-year tutorial groups of each student pair.
6. Unconditional mean refers to the mean of the outcome variable in that particular block.
Standard error reported in parentheses.
7. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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8 percentage points across blocks. This supports our assumption that students seek to co-register

to tutorial groups with existing friends, and rejects an explanation where student clustering is ob-

served only due to shared preferences on the exact time at which the second-year tutorials are held.35

Comparing the coefficients of the shared characteristic with the baseline unconditional mean of the

outcome variable reveals that these effects are large. Sharing an Arabic ethnicity, or having shared

the same high school, increases the baseline probability to register for the same tutorial by 33 and 110

percent respectively.

Fourth, the estimates for high school GPA reveal little to no co-registration of students with similar

ability. The small degree of ability clustering is in line with the findings of Marmaros and Sacerdote

(2006).36

2.7.4 Long-Term First-Year Bonds.

Which characteristics determine the long-term bonds that persist from the first-year close peer group?

To investigate this, Table 2.12 shows results for a specification which includes interaction terms for

each shared characteristic and the indicator for shared first-year close peer group. It appears that long-

term first-year bonds are especially prevalent among close peers of the same gender; across the second

year a pair of female (male) close peers are roughly 5 (3.5) percentage points more likely to form a

long-term bond than a mixed gender pair. The estimates also reveal that long-term first-year bonds

do not seem to be based on ability, which is consistent with our evidence of little to no clustering by

ability presented above.

Note that in this specification the Close Peer Group coefficient provides a rare insight into the

degree to which friendship groups can be institutionally manipulated against the formation of ho-

mogeneous subgroups based on gender, ethnicity, and prior bonds. More specifically, the coefficient

measures the probability of co-registration among first-year close peers who share no observable

characteristics. While relatively large and statistically significant in the first two blocks, as the second

year progresses the coefficient diminishes in size and significance. This suggests that the manipulated

social proximity further decreases in the long-term among students who differ on a wide range of

characteristics.
35To this end, it is useful to note that across courses there are approximately two to three tutorial groups (of in total

fourteen) taught at identical times. Thus, students with similar preferences regarding tutorial times could still register in
different tutorial groups. We do not, however, observe the time of the second-year tutorial groups.

36We have performed a similar analysis for third-year course choice. The results of the regressions, per characteristic
and for the ten most popular courses, are presented visually in Appendix Figure A.2.5. The conclusions are threefold. First,
we find no evidence that close or distant peers choose the same courses in third year. Second, we find strong evidence of
third-year course clustering based on shared high school, gender, and ethnicity. Third, in contrast to our results with the
second-year tutorial registration, we find strong clustering based on ability. Taken together, this suggests that course choice
also captures that students with some characteristics have preferences for certain topics, rather than reflecting bonding. For
instance, high ability students sort into difficult courses.



Table 2.12: Characteristics of Long-Term First-Year Bonds (All Blocks)

Same Tutorial in Second Year? Yes (1) or No (0)

Block 1 Block 2 Block 3 Block 4 Block 5

(1) (2) (3) (4) (5)

Close Peer Group 0.0409∗∗∗ 0.0332∗∗∗ 0.0090 0.0190∗∗ 0.0129
(0.0107) (0.0093) (0.0095) (0.0091) (0.0115)

Both Asian × -0.0299 -0.0711∗ 0.0122 -0.0069 -0.0808∗∗

Close Peer Group (0.0242) (0.0387) (0.0236) (0.0262) (0.0399)

Both Arabic × 0.0034 -0.0264 0.0453 -0.0531 -0.0013
Close Peer Group (0.0407) (0.0530) (0.0563) (0.0693) (0.0688)

Both European × 0.0175∗ 0.0039 0.0116 0.0117 0.0028
Close Peer Group (0.0097) (0.0093) (0.0079) (0.0095) (0.0106)

Both Female × 0.0480∗∗∗ 0.0615∗∗∗ 0.0562∗∗∗ 0.0534∗∗∗ 0.0536∗∗∗

Close Peer Group (0.0149) (0.0172) (0.0150) (0.0170) (0.0180)

Both Male × 0.0122 0.0283∗∗∗ 0.0391∗∗∗ 0.0351∗∗∗ 0.0416∗∗∗

Close Peer Group (0.0109) (0.0109) (0.0104) (0.0099) (0.0128)

Same High School × 0.0221 0.0377 0.0143 0.0239 0.0537
Close Peer Group (0.0254) (0.0289) (0.0324) (0.0316) (0.0343)

Both High GPA × -0.0175∗ -0.0005 0.0006 -0.0155 -0.0209∗

Close Peer Group (0.0089) (0.0107) (0.0106) (0.0103) (0.0116)

Both Average GPA × -0.0078 -0.0023 0.0061 0.0025 0.0254∗∗

Close Peer Group (0.0086) (0.0084) (0.0089) (0.0090) (0.0102)

Both Low GPA × -0.0538∗∗ -0.0308 0.0089 -0.0209 -0.0046
Close Peer Group (0.0273) (0.0195) (0.0252) (0.0237) (0.0237)

Unconditional Mean 0.0756∗∗∗ 0.0755∗∗∗ 0.0764∗∗∗ 0.0766∗∗∗ 0.0746∗∗∗

(0.0006) (0.0006) (0.0006) (0.0006) (0.0008)

Observations 229428 214691 218183 188896 106630
Pseudo R2 0.010 0.010 0.008 0.009 0.008

Notes:
1. Table shows results of a regression including all observable shared characteristics as predictors
of shared second year tutorial, and with interactions between the shared characteristics and an
indicator for shared first year close-peer group. Only results of shared first year close-peer group
and the interaction terms shown.
2. All regressions include course-cohort fixed effects, other controls are excluded.
3. Block 5 has half the number of observations as one course does not have tutorials.
4. The unit of analysis is a student-pair. The outcome variable is one if both students in the pair
registered for the same tutorial and zero otherwise. The explanatory variables are one if both
students in the pair share the given characteristic.
5. Models are estimated with Probit. Marginal effects are reported.
6. Standard errors in parentheses, clustered based on a variable that takes upon unique values for
every combination of first-year tutorial groups of each student pair.
7. Unconditional mean refers to the mean of the outcome variable in that particular block. Stan-
dard error reported in parentheses.
8. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Policy makers and university administrators in both the U.S. and Europe have recently empha-

sized the importance of diversity in higher education. Table 2.12 implies that the group intervention

mainly formed long-term bonds among students with similar characteristics and did little to promote

long-lasting diversity on campus. We cannot rule out, however, that a more sustained or focused

intervention would be more successful.

2.7.5 Implications of Voluntary Sorting for Peer Effects.

We have provided some evidence that the social proximity between close peers decreases during the

first year. In turn, we have shown that by second year students’ chosen peer groups hardly resemble

their first-year assigned groups; they prefer to become socially proximate with others based on shared

characteristics, such as gender and ethnicity. While we cannot know with certainty the reason that

academic spillovers from close peers vanished during the first year, the voluntary sorting behavior

provides an intuitive explanation. The social proximity between assigned close peers waned over

time, which might have led to the corresponding decline in spillovers.

Another result is that students do not appear to choose their peers based on whether they are ben-

eficial to their performance at university. We find no evidence of sizeable sorting by ability and close

peers that stay together do not appear to base this choice on high school GPA. For instance, we do not

find evidence that high (low) ability students sort into (out of) study partnerships with other high (low)

ability students, though according to our peer effect estimates this would be academically beneficial.

This stands in stark contrast to sorting based on other characteristics. Students are seemingly willing

to trade off potentially higher grades in order to satisfy other preferences when choosing peers. Con-

sistent with this, column (6) of Appendix Table A.2.13 shows that second-year chosen tutorial peers

do not generate spillovers on student performance in second year.37

This might have further implications for group assignment policies. Policy makers may hope that

targeted students would form new friendships with academically beneficial peers, thereby enjoying

persistent peer effects despite sorting away from their assigned peers. Apparently this is not the case.

2.8 Conclusion

The promise of the peer effects literature is that simply reorganizing students among classes could

increase overall student performance. Despite an abundance of papers aiming to properly identify
37Column (6) of Appendix Table A.2.13 shows that high school GPA of second-year chosen tutorial peers, while being

instrumented with first-year assigned close peer GPA, has an insignificant effect on second-year grades.
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spillovers, the literature has not yet delivered on this promise. A primary reason for this is our

inability to understand the channels at work behind the various reduced-form estimates.

Our first set of results address this shortcoming. We focus on first-year student performance

across six cohorts of economics undergraduate students at a large public university in the Netherlands.

Students are randomly assigned to a tutorial group and one of two subgroups within their tutorial

group. We take advantage of a university policy that stimulates social proximity within, and not

between, these subgroups via a series of informal meetings at the start of the first year. We find the

existence of spillovers on student performance that originate from students’ socially proximate peers

only. This implies that social proximity between peers, and the corresponding meaningful social

interactions, are the driving force behind peer effects. Supplementary data suggests that these social

interactions involve collaborative studying outside of class that occurs at university. Our non-linear

estimates imply that alternative group assignment policies may result in aggregate, but not Pareto,

improvements in performance.

The second part of this paper investigates the implications of voluntary sorting for group assign-

ment policies. Given that peer effects arise due to social proximity, who students choose to become

socially proximity with and how this evolves over time is crucially important. We first document

that peer effects from assigned close peers diminish over time, and are completely absent by the end

of first year. Using administrative data on daily tutorial attendance in first year and tutorial choice

in second year we find that students increasingly sort out of their assigned close peer group into

more homogeneous groups. This voluntary sorting behaviour foreshadows, and we argue provides an

intuitive explanation for, the short-lived spillovers on student performance.

Similar to our analysis in Section 2.5, some researchers have used their reduced-form estimates

on student performance to predict the effects of alternative group assignment policies (Booij et al.,

2017) or to estimate the effects of optimal group assignment policies (Carrell et al., 2013). Such a

practice usually assumes that there are no costs accompanying these effects. As our results imply that

spillovers work solely through improving the productivity of (collaborative) self study, rather than

through increasing teacher effort or decreasing leisure time, this assumption may be justifiable.

Our findings carry both good and bad news for those wishing to improve student performance

using spillovers in similar settings. Encouragingly, it appears that a relatively uncomplicated and low

cost intervention - in which social proximity between students was induced via several small meetings

in the first weeks of university - could be used to generate larger spillovers than those previously

observed. On a less encouraging note, we also find that any gains are likely to be short-lived, given

that over time students increasingly sort out of their assigned peer groups. Social interactions appear

to be too powerful to be constrained by a one-time manipulation of peer groups. A more sustained
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or intensive intervention may be necessary to ensure longer lasting benefits of group assignment

policies.



52 What Drives Ability Peer Effects?

2.A Appendix

Potential Explanations for the Decline in Peer Effects

Why do we observe that spillovers gradually diminish during, and become absent at the end of,

the first year? Two overarching factors that vary during the first year, and could potentially drive

the diminishing peer effect, are changes in the type of courses and dropout. Below we explore the

evidence for each of these competing explanations.

Changes in the content, structure, and other characteristics of the courses during the first year

could potentially drive the diminishing peer effect estimates. To explore this possibility, we look at

heterogeneity in peer effects by course type. Following the classification of the university we group

the ten first year courses into three categories: economics, business economics, and econometrics

courses (see Appendix Table A.2.1). Appendix Table A.2.11 replicates our baseline specification

while including an interaction between close peer ability and an indicator for course type, where

economics courses are the baseline. The estimates reveal spillovers are statistically indistinguishable

between the different types of courses. Feld and Zölitz (2017) reach similar conclusions, also at a

public university in the Netherlands. In Lavy et al. (2012b) identification of peer effects is obtained

via individual fixed effects together with the assumption that spillovers are the same across English,

mathematics, and science courses. Note that Appendix Table A.2.11 does reveal the estimate of own

high school GPA differs for the different types of courses. It appears that the returns to peer ability

are disconnected from the returns to students’ own ability.

It may be that the nature of the tutorial sessions changes from course to course, and that this has

consequences for the existence of peer effects. Appendix Table A.2.1 reveals that the nature of the

tutorial sessions is unrelated to the presence of peer effects. For example, tutorial descriptions are

identical in Accounting and Microeconomics situated in block 1 and 2 and Marketing and Organisa-

tion & Strategy situated in block 4 and 5, while spillovers are only found in the former courses.

If courses get progressively easier during the first year, then the potential for peers to improve

students grades could also diminish. To investigate this possibility Appendix Figure A.2.6 displays

the coefficients on own and peer high school GPA per block, separately for small and big courses.

Apart from a drop for the estimate on own high school GPA in block 4 for the big course (Marketing),

the estimate for own GPA does not show a diminishing pattern across blocks. For instance, from block

2 to 3 this coefficient slightly increases, whereas the estimate for peer high school GPA decreases.

Note that this evidence coincides with the results in Appendix Table A.2.11, where the returns to peer
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GPA were detached from the returns to own GPA. Based on the three pieces of evidence presented

above, we conclude changes in course type is an unlikely explanation for the diminishing peer effects.

A second potential explanation of diminishing peer effects is dropout. Indeed, Appendix Fig-

ure A.2.4 shows that dropout gradually increases as the blocks progress. Dropout could potentially

reduce our peer effects estimates for at least two reasons; dropouts might be more responsive to peer

high school GPA, and dropouts change the composition of the actual peer group for the remaining

students. To investigate whether dropout interacts with the decline in peer spillovers, we repeat our

robustness analysis of Section 2.5.4 and interact peer GPA with the number of course dropouts per

close peer group for blocks 1 to 3 and block 4 to 5 separately. The results are presented in Appendix

Table A.2.12. The estimates for close peer GPA imply that the decline in spillovers is present even in

groups that did not experience any course dropout.

A consequence of dropout is that high school GPA of the initial close peer group becomes a

worse measure of the actual ability of close peers. We overcome this potential problem by using an

instrumental variable approach. For each student, per course, we calculate the average close peer

GPA of only those close peers who are also observed to write the final exam for the course. We then

repeat the regression of close peer GPA on first-year grades per block, while instrumenting the actual

close peer GPA with the initially assigned close peer GPA. The first and second stage results of these

regressions are presented in Appendix Table A.2.13. Panel A shows that assigned peer GPA is a strong

instrument for actual peer GPA throughout the first year. Panel B shows that the decline in spillovers

remains when using the variation in actual close peer GPA that originates from the assigned close peer

GPA. From these results, we conclude that dropout is unlikely to be responsible for the diminishing

peer effects during the first year.

Finally, Appendix Table A.2.14 repeats the analysis on lecture attendance and total study time

for blocks 1 to 3 and blocks 4 to 5 separately. The negative estimate for close peer GPA on lecture

attendance is only present in blocks 1 to 3. This suggests that the channel put forward in Section 2.6

- collaborative self study - is only present in the period for which we find significant peer effects.
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Table A.2.2: Overview of Categories and Questions in Course Evaluations

Question Measurement Category Std.?
scale

Objectives of course are clear 1-5 General
Course is relevant for my studies 1-5 General Yes
Course is interesting 1-5 General

Course is well organized 1-5 Structure Yes
Course material is understandable 1-5 Structure

Can be completed within allocated study points 1-5 Fairness
Time needed to complete exam is enough 1-5 Fairness Yes
Exam reflects course content 1-5 Fairness
Exam questions are clearly defined 1-5 Fairness

Total study time (lectures+tutorials+self study) 1-10 Total study time No

Have you attended lectures? 0-1 Lecture attendance No

Lectures are useful 1-5 Lectures useful Yes

Tutorials are useful 1-5 Tutorials useful Yes

Lecturer is competent 1-5 Quality lecturer(s)
Lecturer makes you enthusiastic 1-5 Quality lecturer(s) Yes
Lecturer can be easily contacted 1-5 Quality lecturer(s)
Lecturer provides sufficient assistance 1-5 Quality lecturer(s)

TA gives good tutorials 1-5 Quality TA
TA can be easily contacted 1-5 Quality TA Yes
TA provides sufficient assistance 1-5 Quality TA

Notes: Questions are measured on a Likert scale, where 1 equals strongly disagree and 5 equals strongly agree,
with the two exceptions being total study time (1 being 0 hours, 2 being [1− 5] hours, 3 being [6− 10] hours and
10 being ≥ 40 hours) and lecture attendance (1 being yes and 0 being no). We take the mean for questions within
a category, ignoring potential missing values within a category. Std. refers to whether the (mean of a) category
was standardized before the analysis.



Figure A.2.1: Histograms of High School GPA (Unstandardized)

(a) Own High School GPA (Left) and Tutorial Peer High School GPA (Right)

(b) Close Peer High School GPA (Left) and Distant Peer High School GPA (Right)

Notes:

1. Figure shows histograms of student’s own high school GPA, the leave-out mean for the tutorial- and close peer
group, and the mean for the distant peer group.

2. In contrast to the leave-out mean for the close peer group, the mean for the distant peer group takes upon identical
values for everybody in the same subgroup. This explains the somewhat more discrete nature of this figure. A
histogram of the leave-in mean for the close peer group is similar to the mean for the distant peer group, where it
would only change the peer-effects estimate on close peer high school GPA by a factor of Ng/(Ng − 1), where Ng

is the size of close peer group g (Angrist, 2014).



Table A.2.3: Balancing Tests for Background Characteristics

Student Gender Age Distance to High School
Number University GPA

(1) (2) (3) (4) (5)

Close Peer Group 1 855.7164 0.0117 -0.7190 -5.8792 0.1693
(3904.3123) (0.1363) (0.4737) (9.0781) (0.1668)

Close Peer Group 2 1578.1608 0.0117 -0.1796 -2.5438 0.0331
(3904.3123) (0.1363) (0.4737) (9.0781) (0.1668)

Close Peer Group 3 -2206.2697 -0.0855 -0.3141 -7.1964 0.0785
(4027.6709) (0.1406) (0.4887) (9.3649) (0.1721)

Close Peer Group 4 2209.5719 -0.0772 -0.5452 -3.3456 0.0247
(4099.9048) (0.1431) (0.4975) (9.5329) (0.1752)

Close Peer Group 5 683.0497 0.0117 0.4360 13.8007 -0.0804
(3904.3123) (0.1363) (0.4737) (9.0781) (0.1668)

Close Peer Group 6 257.0553 -0.1105 1.0621∗∗ -1.9330 0.2936∗

(3802.7454) (0.1327) (0.4614) (8.8419) (0.1625)

Close Peer Group 7 -598.4830 0.0248 -0.3997 -1.4188 0.2320
(3962.8418) (0.1383) (0.4808) (9.2142) (0.1693)

Close Peer Group 8 2902.1579 -0.0000 -0.5621 1.2335 0.3371∗∗

(3851.1900) (0.1344) (0.4673) (8.9546) (0.1646)

Close Peer Group 9 1121.8830 0.0117 -0.6279 0.0155 0.2005
(3904.3123) (0.1363) (0.4737) (9.0781) (0.1668)

...
...

...
...

...

Observations 2296 2296 2296 2296 2296
Adjusted R2 0.832 -0.013 -0.005 -0.003 0.001

F-test 0.75 0.85 0.93 0.87 0.94
p-value 0.993 0.921 0.728 0.878 0.687

Notes:
1. Regressions include cohort fixed effects and dummies for the close peer group. No further controls are
included.
2. The dependent variable is shown at the top of each column.
3. The F-test, and corresponding p-value, refer to a test for the joint significance of the close peer group
dummies. It tests whether a large model with both cohort dummies and close peer group dummies can
explain the background characteristics better than a small model with only cohort dummies.
4. Standard errors in parentheses.
5. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Figure A.2.2: Histograms of p-values of Balancing Tests

(a) p-values of Close Peer Group Dummies

(b) p-values of Tutorial Group Dummies

Notes:

1. Figures display histograms of the p-values of group dummies that
originate from regressions where student characteristics are ex-
plained by group dummies.

2. The regressions were estimated for all student characteristics (stu-
dent number, gender, age, distance to university, and high school
GPA) separately for each cohort. The histograms include the p-
values of all years and student characteristics combined.



Table A.2.4: Balancing Tests for TA Characteristics

Is TA a PhD? Is TA Female?

Yes (1) or No (0)

(1) (2)

Tutorial Peer GPA -0.0041 -0.0148
(0.0120) (0.0199)

Own GPA 0.0005 -0.0042
(0.0024) (0.0036)

Observations 17535 6921
Adjusted R2 0.254 0.345

Notes:
1. All regressions include course-cohort fixed effects and con-
trols; student number, gender, age, and distance to university.
2. Peer GPA refers to the leave-out mean of high school GPA
for the tutorial peers. Own GPA refers to own high school
GPA. Both GPA measures are standardized.
3. Despite the two binary outcomes, we estimate the models
with OLS. In some cases the course-cohort dummies predict
the outcome variable perfectly, which means the Probit esti-
mates for these dummies must be (minus) infinity.
4. Standard errors in parentheses, clustered on the tutorial
level.
5. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.2.5: Randomization Inference and Exact p-values

Simulated Mean (SD) Estimated Value Exact p-value

Panel A: Separate Models

Tutorial Peer GPA -0.0002 (0.0128) 0.0191 0.1387
Close Peer GPA -0.0001 (0.0123) 0.0255 0.0392
Distant Peer GPA -0.0002 (0.0123) 0.0034 0.7852

Panel B: Simultaneous Model

Close Peer GPA -0.0001 (0.0123) 0.0254 0.0408
Distant Peer GPA -0.0002 (0.0123) 0.0008 0.9489

Panel C: Simultaneous Model with Interaction

Close Peer GPA -0.00003 (0.0124) 0.0256 0.0412
Distant Peer GPA -0.0002 (0.0124) 0.0010 0.9341
Close × Distant -0.00003 (0.0126) 0.0150 0.2326
Peer GPA

Notes:
1. Table summarizes the results of a randomization inference analysis of our baseline results
presented in Table 2.3, in which we re-draw 10,000 alternative close- and tutorial peer group
assignments. The table presents the mean and standard deviation of the coefficients under the
10,000 re-draws, the coefficient values under the actual assignment, and the exact p-value based
on the randomization inference.
2. Panel A displays the results for models in which the peer GPA measures have been included
separately. Panel B displays the results for a model in which the close and distant peer GPA
measures have been included simultaneously. Panel C shows the results for a model in which
the close and distant peer GPA measures, as well as their interaction, have been included si-
multaneously. Panels A, B and C correspond to columns (1) to (3), (4) and (5) of Panel A of
Table 2.3, respectively.
3. The exact p-value shows the proportion of coefficients under the 10,000 re-draws for which
a value at least as extreme as the actual value is observed.



Figure A.2.3: Histograms of Estimates Under 10,000 Group Assignment Re-draws

(a) Close Peer GPA (Left) and Distant Peer GPA (Right) on First Year Grades, Separate Models

(b) Close Peer GPA (Left) and Distant Peer GPA (Right) on First Year Grades, Simultaneous Model

Notes:

1. Figures show histograms of the estimates of close and distant peer GPA on first-year grades under 10,000 alternative
group assignments.

2. Top figures (a) show results for models in which the peer GPA measures have been included separately. Bottom
figures (b) show results for a model in which peer GPA measures have been included simultaneously.

3. Red dashed lines indicate the observed estimate under the actual assignment.



Table A.2.6: Peer Effects on First-Year Tutorial Attendance

Attendance (% Tutorials Attended; Standardized)

(1) (2) (3) (4) (5)

Tutorial Peer GPA -0.0122
(0.0176)

Close Peer GPA -0.0030 -0.0017 -0.0016
(0.0131) (0.0123) (0.0121)

Distant Peer GPA -0.0128 -0.0126 -0.0124
(0.0149) (0.0143) (0.0143)

Close × Distant -0.0146
Peer GPA (0.0189)

Own GPA 0.0378∗∗∗ 0.0377∗∗∗ 0.0381∗∗∗ 0.0381∗∗∗ 0.0380∗∗∗

(0.0090) (0.0092) (0.0090) (0.0091) (0.0092)

Observations 18445 18445 18445 18445 18445
Adjusted R2 0.122 0.122 0.122 0.122 0.123

Notes:
1. All regressions include course-cohort fixed effects and controls; student number, gender, age,
and distance to university.
2. Peer GPA refers to the leave-out mean of high school GPA for the tutorial- and close peers, and
to the mean for distant peers. Own GPA refers to own high school GPA. All GPA measures are
standardized. The outcome variable is the standardized percentage of tutorials attended per course.
3. Standard errors in parentheses, clustered on the tutorial level.
4. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Figure A.2.4: Course Dropout per Block

Notes:

1. This figure plots the number of students writing the final exam as a fraction of the ini-
tial students per block, separately for high, average, and low GPA close peer groups.

2. Low and high ability groups are in the bottom and top quartiles of close peer high
school GPA. The average group refers to the middle 50 percent.



Table A.2.7: Balancing Tests for Non-linear Peer Ability

Close Peer Group Distant Peer Group

Share Low Share Avg Share High Share Low Share Avg Share High

(1) (2) (3) (4) (5) (6)

Student Number 0.0017 -0.0007 -0.0010 0.0031 -0.0076 0.0045
(0.0050) (0.0071) (0.0064) (0.0047) (0.0060) (0.0052)

Female 0.0027 -0.0056 0.0029 0.0105∗∗ -0.0085 -0.0021
(0.0059) (0.0074) (0.0059) (0.0048) (0.0067) (0.0063)

Age -0.0008 -0.0001 0.0008 0.0007 -0.0025 0.0018
(0.0027) (0.0034) (0.0029) (0.0026) (0.0030) (0.0022)

Distance to 0.0025 -0.0027 0.0002 0.0029 -0.0019 -0.0010
University (0.0021) (0.0027) (0.0023) (0.0019) (0.0024) (0.0021)

Own GPA 0.0058∗∗ -0.0050 -0.0008 -0.0032 0.0037 -0.0006
(0.0024) (0.0032) (0.0036) (0.0026) (0.0025) (0.0029)

Observations 2296 2296 2296 2296 2296 2296
Adjusted R2 0.076 0.071 0.070 0.073 0.086 0.093

F-test 1.61 0.87 0.10 1.44 0.92 0.18
p-value 0.154 0.502 0.992 0.207 0.468 0.972

Notes:
1. All regressions also include cohort fixed effects.
2. The outcome variables are the (leave-out) proportion of low, middle, and high ability students separately for close
and distant peer groups. Low and high ability students are defined as students in the bottom and top quartiles of high
school GPA across the six cohorts, the remaining 50 percent is referred to as average ability. The dependent variables
are unstandardized, where the independent variables are standardized except for the female dummy.
3. The F-test, and corresponding p-value, refer to a test for the joint significance of all the independent variables shown
in the table.
4. Standard errors in parentheses, clustered on the tutorial level.
5. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.2.8: Peer Effects on Perceptions of Course using Course Evaluations

Completed the General Structure Fairness
Evaluation?

(1) (2) (3) (4)

Close Peer GPA 0.0021 -0.0198 -0.0327 -0.0244
(0.0084) (0.0183) (0.0254) (0.0179)

Own GPA 0.0494∗∗∗ 0.0620∗∗∗ 0.0657∗∗∗ 0.1087∗∗∗

(0.0059) (0.0151) (0.0171) (0.0165)

Observations 18736 3352 3352 3352
R2 0.058 0.156 0.147 0.272

Binary Outcome Yes No No No

Notes:
1. All regressions include course-cohort fixed effects and controls; student number,
gender, age, and distance to university.
2. Peer GPA refers to the leave-out mean of high school GPA for the close peer group.
Own GPA refers to own high school GPA. Both GPA measures are standardized.
3. The dependent variable in column (1) equals one if the student completed the course
evaluation and zero otherwise. The dependent variables in column (2) until (4) are the
means of the answers to questions that embody the course characteristic showed in the
top of the column. The dependent variables in column (2) until (4) are standardized.
4. Column (1) is estimated with Probit, the other columns with OLS. Marginal effects
are reported. The R2 refers to the Pseudo and Adjusted R2 respectively.
5. Standard errors in parentheses, clustered on the tutorial level.
6. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.2.9: Peer Effects for Distant Peers per Block

Grades (Standardized)

Block 1 Block 2 Block 3 Block 4 Block 5

(1) (2) (3) (4) (5)

Distant Peer GPA -0.0159 -0.0014 0.0167 0.0064 0.0180
(0.0199) (0.0179) (0.0168) (0.0147) (0.0184)

Own GPA 0.4133∗∗∗ 0.3442∗∗∗ 0.3836∗∗∗ 0.2534∗∗∗ 0.3021∗∗∗

(0.0159) (0.0143) (0.0176) (0.0151) (0.0158)

Observations 4271 4024 3650 3462 3329
Adjusted R2 0.279 0.473 0.263 0.191 0.301

Notes:
1. All regressions include course-cohort fixed effects and controls; student number, gender, age,
and distance to university.
2. Peer GPA refers to the mean of high school GPA for the distant peer group. Own GPA refers
to own high school GPA. Both GPA measures are standardized.
3. Standard errors in parentheses, clustered on the tutorial level.
4. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.2.10: Coordination of First-Year Tutorial Attendance

Attended Tutorial? Yes (1) or No (0)

Block 1 Block 2 Block 3 Block 4 Block 5

(1) (2) (3) (4) (5)

Mean Attendance Close Peers 0.3690∗∗∗ 0.4089∗∗∗ 0.2598∗∗∗ 0.2890∗∗∗ 0.3007∗∗∗

(0.0355) (0.0573) (0.0345) (0.0258) (0.0310)

Mean Attendance Distant Peers 0.2956∗∗∗ 0.2326∗∗∗ 0.2647∗∗∗ 0.2247∗∗∗ 0.2293∗∗∗

(0.0314) (0.0510) (0.0350) (0.0295) (0.0285)

Observations 40321 40045 32920 33882 19654
Adjusted R2 0.079 0.086 0.136 0.059 0.060

p-value Block t = (t− 1) Close 0.556 0.028 0.486 0.776
p-value Block t = (t− 1) Distant 0.287 0.578 0.335 0.908

p-value Close = Distant 0.173 0.078 0.889 0.107 0.133

Notes:
1. All regressions include course-tutorial fixed effects and controls; student number, gender, age, and distance to
university.
2. Mean attendance refers to leave-out mean attendance per tutorial session for close peers and to the mean attendance
per tutorial session for distant peers. The unit of analysis is on the student-tutorial-course level.
3. Block 5 contains somewhat less observations because the big course has 6 tutorials (one every week) instead of 13
to 14 tutorials (two every week).
4. The p-value “Block t = (t − 1)” refers to a test for the equality of coefficients between adjacent blocks for close
and distant peers separately. The p-value “Close = Distant” tests the equality of the coefficients between close and
distant peers within a block.
5. The outcome is a binary variable, where the regressions are estimated with OLS. Our goal is to detect coordination
in first-year attendance by relating the attendance of a student to her peers, we do not aim to estimate a causal peer
effects regression. Probit estimates, and corresponding marginal effects, show qualitatively similar results.
6. Standard errors for the coefficients in parentheses, clustered on the tutorial level.
7. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Figure A.2.5: Voluntary Sorting in Third-Year Courses

Notes:

1. Figures display marginal effects and 90% confidence intervals of a Probit model that explains whether a student pair
enrolled in the same course with their shared characteristics (e.g. both students in the pair are female).

2. The models are identical to the ones displayed in Table 2.11, only the binary outcome variable in this model is equal
to one if a student pair enrolled in the same course and zero otherwise.

3. Significant marginal effects are made bold.



Table A.2.11: Peer Effects by Course Type

Grades (Standardized)

(1)

Close Peer GPA 0.0205∗

(0.0115)

Business Economics × Peer GPA 0.0002
(0.0116)

Econometrics × Peer GPA 0.0120
(0.0147)

Own GPA 0.3712∗∗∗

(0.0136)

Business Economics × Own GPA -0.0535∗∗∗

(0.0115)

Econometrics × Own GPA -0.0292∗∗

(0.0123)

Observations 18736
Adjusted R2 0.323

Notes:
1. The regression includes course-cohort fixed effects and controls;
student number, gender, age, and distance to university.
2. Peer GPA refers to the leave-out mean of high school GPA for the
close peer group. Own GPA refers to own high school GPA. Both GPA
measures are standardized.
3. The dummy business economics is one for business-economics
courses and the dummy econometrics is one for econometrics courses.
The baseline consists of economics courses. Appendix Table A.2.1
shows which courses belong to which category.
4. The course dummies are not included as separate variables as they
are a linear combination of the course-cohort dummies.
5. Standard errors in parentheses, clustered on the tutorial level.
6. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Figure A.2.6: Effect of Peer GPA and Own GPA per Block

Notes:

1. Top graph shows the point estimates of close peer high school GPA on first year
grades per block for big (8 ECTS) and small (4 ECTS) courses separately, and the
corresponding 90% confidence intervals.

2. Bottom graph shows the point estimates of own high school GPA on first year grades
per block for big and small courses separately, and the corresponding 90% confidence
intervals.



Table A.2.12: Robustness of Peer Effects to Dropout Per Blocks

Grades (Standardized)

Block 1-3 Block 4-5

(1) (2)

Close Peer GPA 0.0514∗∗∗ 0.0007
(0.0162) (0.0203)

Peer GPA × (Assigned-Actual) -0.0092 0.0027
(0.0061) (0.0068)

Own GPA 0.3819∗∗∗ 0.2779∗∗∗

(0.0130) (0.0138)

Observations 11945 6791
Adjusted R2 0.352 0.257

Notes:
1. All regressions include course-cohort fixed effects and controls;
student number, gender, age, and distance to university.
2. Peer GPA refers to the leave-out mean of high school GPA for the
close peer group. Own GPA refers to own high school GPA. Both
GPA measures are standardized.
3. The regressions include a measure for the difference between the
number of students at the beginning of the year in the close peer
group (assigned class size) and the number of students that wrote
the exam for the course per close peer group (actual class size). This
is a measure for course dropout and is not standardized.
4. The coefficient on close peer GPA measures spillovers in classes
where there has been no course dropout (assigned-actual=0).
5. Standard errors in parentheses, clustered on the tutorial level.
6. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.2.13: Instrumental Variable Analysis. Assigned Peer GPA is used as an Instrument for Actual Peer GPA

First Year Second Year

Block 1 Block 2 Block 3 Block 4 Block 5 Pooled

(1) (2) (3) (4) (5) (6)

Panel A: Actual Peer High School GPA (First Stage)

Assigned Close 0.8520∗∗∗ 0.8647∗∗∗ 0.8996∗∗∗ 0.8985∗∗∗ 0.9032∗∗∗ 0.0660∗∗∗

Peer GPA (0.0229) (0.0223) (0.0321) (0.0360) (0.0395) (0.0214)

Own GPA -0.0028 -0.0013 0.0006 0.0046 0.0043 0.0251∗

(0.0067) (0.0063) (0.0110) (0.0129) (0.0143) (0.0139)

Adjusted R2 0.918 0.865 0.801 0.745 0.723 0.166

F-test on 1386.07 1498.46 784.00 622.00 521.67 9.49
Excl. Instrument

Panel B: Grades (Standardized; Second Stage)

Actual Peer 0.0475∗∗ 0.0418∗∗ 0.0353∗∗ 0.0089 0.0069 0.1850
GPA (0.0205) (0.0165) (0.0162) (0.0149) (0.0196) (0.3411)

Own GPA 0.4140∗∗∗ 0.3451∗∗∗ 0.3849∗∗∗ 0.2537∗∗∗ 0.3026∗∗∗ 0.3091∗∗∗

(0.0158) (0.0144) (0.0176) (0.0150) (0.0158) (0.0203)

Observations 4271 4024 3650 3462 3329 10470
Adjusted R2 0.280 0.474 0.263 0.190 0.301 0.196

Notes:
1. All regressions include course-cohort fixed effects and controls; student number, gender, age, and distance to
university.
2. Own GPA refers to own high school GPA. All GPA measures are standardized.
3. In Panel A, the independent variable (Assigned Peer GPA) refers to the leave-out mean of high school GPA for
the close peer group at the start of the first block in first year. This variable is used as an instrument for Actual Peer
GPA, which is calculated on the course-cohort level and is equal to the leave-out mean of high school GPA for the
close peer group in column (1) to (5) or for the tutorial peer group in column (6) while only taking into account the
students who wrote the final exam of that course.
4. Panel B shows the results for the second stage, where Actual Peer GPA is the independent variable and has been
instrumented with Assigned Peer GPA. The outcome variables are the standardized course grades for the first year
per block in column (1) to (5) and for the second year pooled in column (6).
5. The number of observations for the second year in column (6) is lower than the baseline results for the first year.
This is for three reasons; we do not observe the second-year grades of the 2014 cohort, students do not take all
second-year courses in their second year, and for a small percentage we do not observe second-year tutorial choice.
6. Standard errors in parentheses, clustered on the tutorial level.
7. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.2.14: Peer Effects on Time Use per Blocks using Course Evaluations

Attended Lectures Total Study Time

Block 1-3 Block 4-5 Block 1-3 Block 4-5

(1) (2) (3) (4)

Close Peer GPA -0.0223∗∗∗ -0.0072 -0.1239 -0.3454
(0.0083) (0.0112) (0.1922) (0.2989)

Own GPA -0.0118 -0.0176 -0.4963∗∗∗ -0.6343∗∗∗

(0.0098) (0.0124) (0.1730) (0.2050)

Observations 2995 1366 2995 1366
R2 0.192 0.048 0.297 0.204

Binary Outcome Yes Yes No No

Notes:
1. All regressions include course-cohort fixed effects and controls; student number,
gender, age, and distance to university.
2. Peer GPA refers to the leave-out mean of high school GPA for the close peer
group. Own GPA refers to own high school GPA. Both GPA measures are standard-
ized.
3. The dependent variable in column (1) and (2) is the answer to the question “Have
you attended lectures?”. The dependent variable in column (3) and (4) is the an-
swer to the question “Average study time (hours) for this course per week (lec-
tures+tutorials+self study)?” where we used the maximum for the interval to convert
the categories into hours.
4. Column (1) and (2) are estimated with Probit, column (3) and (4) with OLS.
Marginal effects are reported. The R2 refers to the Pseudo and Adjusted R2 respec-
tively.
5. Standard errors in parentheses, clustered on the tutorial level.
6. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.





Chapter 3

Going Dutch? Friendship Between

Natives and Foreigners at University

Joint work with Matthijs Oosterveen

3.1 Introduction

Modern tertiary education can be characterized by an increased focus on internationalization. In ad-

dition to the development of international curriculum and an adoption of English as the language of

instruction, the most notable consequence of this trend is a large increase in the admission of inter-

national and exchange students. In 2016, for instance, there were more than 1.6 million international

students enrolled in universities across the EU.

However, the increased admittance of international students has not been without controversy.

Critics hold that the vast increase in foreign students has led to less university places for native stu-

dents, has put a strain on resources such as student housing, and that a switch to instruction in English

in countries where it is not the native language puts local students at a disadvantage.

Conversely, supporters cite the large number of pro-social and educational benefits that foreign

students transfer to local students. It is said that exposure to foreign students, and the accompanying

cultural diversity, helps to reduce in-group bias, promotes international networks, and aids the devel-

opment of intercultural skills. In the Netherlands for instance — one of the few EU countries where

international student now make up more than 10% of the student population — the education minister

wrote in a recent letter to parliament that the admission of international students helps native students

deal with diversity, gain intercultural skills, and develop a global outlook (van Engelshoven, 2018).

In a call to further promote internationalization in the sector, the Dutch education union claimed that
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through exposure to international students, local students “learn to deal with other cultures, become

familiar with traditions for other countries and are better off on the international labor market”.1

The scientific evidence for these arguments comes from the so-called contact hypothesis, a con-

cept from psychology positing that interpersonal contact between individuals from different groups

can reduce prejudice, promote friendships across a social divide, and aid inter-group relations (All-

port et al., 1954). However, as the name suggests, any existence of these effects will depend crucially

on the degree of contact between native and foreign students. If students self-segregate into homoge-

neous groups and have little meaningful contact with others from different backgrounds, then many

of the purported benefits of an international campus will not be realized. Despite the lively debate sur-

rounding the merits of the internationalization of education, there exists little evidence on the degree

to which international and local students actually interact and form meaningful bonds, nor the degree

to which universities themselves may be able to forge bonds between native and foreign students.

This paper aims to address this gap in the literature. Using administrative university data we

seek to document the degree of interaction between native and foreign students. Rather than rely on

self-reported measures of friendship, we elicit information about student friendships through their

observed choices at university. Using actual student choices to infer dyadic ties avoids issues related

to commonly used self-reported measures, such as miss-reporting and low response rate.

In addition, our setting allows us to study the extent to which universities can encourage native-

foreign friendships through forced exposure. Opportunities to enforce exposure between students,

such as in lectures halls and classrooms, are common at universities. These opportunities may there-

fore act as a natural remedy against self-segregation on campus. Similar interventions have been

shown to aid inter-group student friendships in other contexts. We investigate the likely efficacy of

such an intervention in encouraging native-foreign friendships.

Our administrative data comes from an economic bachelor program at a large university in the

Netherlands, a country where the issue of the internationalization of higher education is being hotly

debated. This program is taught in English and admits both students with a Dutch nationality as well

as a sizable number of international students from a range of countries worldwide.2

The program has a unique structure that we exploit in order to elicit whether two students share

a friendship. During the second year of this program, for each course, students must chose study

groups; small groups in which course material is discussed. We observe both the study group choices

of students for each course, as well as the exact time and date that these choices were made. Under the

assumption that students who are friends will coordinate to register in multiple study groups together,
1https://www.aob.nl/nieuws/kom-maar-op-met-die-buitenlandse-studenten-zegt-hoger-onderwijs
2Our sample includes international students from 56 different countries. The three most frequent foreign countries are

China (10.37%), Germany (9.86%), and Bulgaria (4.10%).
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and that these coordinated choices will likely be made within a short period of time from one another,

this data allows us to elicit proxies for the actual dyadic ties between students. In contrast to the

second year, the first year study groups are allocated at random by the university, and do not differ per

course. We use this random assignment to investigate the degree to which a year-long forced exposure

within the close geographic proximity of the study groups can encourage subsequent native-foreign

friendships that would otherwise not have occurred.

Our findings suggest that universities may be missing out on the full extent of the proposed ben-

efits of the internationalization of education; interaction between local and international students

should not be assumed to occur by default. When studying what appear as students’ best, and likely

most influential, friends we find that 40% (50%) of native (foreign) students have only native (for-

eign) best friends, far more than we would expect given the proportions of both student types on

campus. Studying all dyadic ties, we find that native students are on average 20% less likely to form

a friendship with a foreign student than a fellow native student. This preference remains even after

controlling for potential differences in ability, gender, and other characteristics of the students.

Our study of the effects of the year-long first-year study group exposure shows that while be-

ing forced to share a small geographic proximity does increase the probability that a native-foreign

friendship will occur, this only holds for the most “compatible” pairs of students. The more culturally

distinct from the Netherlands the country of origin of the foreign student, the less likely it is that a

friendship forms through exposure. Native students from municipalities with a high share of votes

for a far-right anti-immigrant political party sort away from foreign students they are exposed to in

their first year. Finally, we find no evidence that native (foreign) students forced into first year study

groups with a large number foreign (native) students go on to make friends with foreign (native)

students outside of this study group.

While relevant for the debate surrounding the internationalization of education, we believe these

results also hold importance for broader topics. Firstly, a large body of research has shown the impor-

tance of friends in determining various outcomes, academic and otherwise. Insights into the mech-

anisms governing interaction between individuals are therefore crucial to policies aiming to induce

peer effects. Indeed, attempts at harnessing peer effects have failed due to a lack of understanding

about the degree to which policies can encourage friendships between diverse peers (Carrell et al.,

2013).

Second, these results relate to the literature concerned with the effects of exposure to diversity at

university, one aspect of which is diversity based on nationality. Studies have shown that friendships

between students of different backgrounds can result in pro-social changes in attitudes and behav-

ior (Boisjoly et al., 2006; Carrell et al., 2019). However, little is known about how to encourage
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bonds between such students, especially students of different nationalities. This paper adds important

evidence on the formation of native-foreign ties.

Finally, we believe these results speak to the recent discussions surrounding migration trends

and the rise in xenophobic sentiments. For countries within the Europe Union, for instance, the free

movement of people and an influx of asylum seekers has meant that these societies have become

increasingly international and multicultural. As evidenced by the rise of far-right anti-immigration

parties across Europe, there exists a sizable amount of animosity to foreigners in some countries.3

The negative economic and social impacts of such animosity can be widespread. Insights which can

inform policies aiming to reduce xenophobia - such as this paper’s investigation into the degree to

friendships between diverse individuals can be encouraged - are therefore important.

The remainder of this paper is structured as follows. The subsequent section briefly summarizes

the existing evidence on student sorting behaviours at university and other closely related literature.

Section 3.3 describes the institution context. Section 3.4 outlines the data used in this paper, and our

method for eliciting friendship information from student choices. Section 3.5 presents results on the

sorting behaviour of natives and foreign students. Section 3.6 investigates the effect that a year-long

forced exposure has on the occurrence of native-foreign friendships. Section 3.7 concludes.

3.2 Existing Research

To the best of our knowledge, there is currently no quantitative research documenting the general

friendship patterns of students in European countries, and no evidence on the sorting patterns of

native and foreign students. Existing evidence in the economics literature has so far come only from

students in US universities, and has focused on interactions between “white” a “black” students.

In a discussion that mirrors the disputes around international students highlighted in this paper,

the benefits of so-called “affirmative action” admission policies in the US have also been debated.

Proponents of such policies claim that increased racial diversity is beneficial to all students, through a

reduction in segregation, increased understanding between groups and reduced discrimination.4 Mo-

tivated by the fact that such benefits will not be realized if black and white students have little actual

interaction, researchers have set out to document the level of friendship between students belonging
3The average vote share for such parties in Europe has risen from 5% in 1997 to 16% in 2017 (https://www.

bloomberg.com/graphics/2017-europe-populist-right/).
4In a recent United States Supreme Court decision that ultimately ruled in favor of affirmative action policies (Fisher vs.

University of Texas), the majority judges wrote that the affirmative action admission requirements were justified based on
their “destruction of stereotypes”, their promotion of “cross-racial understanding” and because they prepare students “for
an increasingly diverse work force and society”.
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to these groups. Given the similarity to the current paper in both motivation and methodology, a

selection of important papers in this literature are summarized below.

A seminal paper examining student sorting patterns is Marmaros and Sacerdote (2006). Using

the volume of email communication between students to elicit friendship ties, the authors aim to

document the determinants of student friendship at a US university. Their findings are consistent

with homophily; students tend to form bonds with those who are similar to them. In particular their

results suggest a large degree of racial segregation. On average, two white students will interact three

times as much as a black-white pair. Students at this university are also allocated to college dorms in a

random fashion. Exploiting this, the authors highlight the importance of forced exposure to friendship

formation. Two students randomized into the same dorm, regardless of race, become three times more

likely to form a friendship.

Foster (2005) and Mayer and Puller (2008) also document student sorting patterns at university.

The former uses students’ roommate choice to study the determinants of friendship. The latter use

friendship data from Facebook to simulate the likely effectiveness of policies aimed at reducing social

segmentation. Both papers’ results largely confirm those of Marmaros and Sacerdote (2006); they

document large racial sorting patterns, and highlight the role of exposure for subsequent friendship.

Others have sought to provide some explanations for the high levels of sorting between diverse

students. Using data from selective universities in the US, Arcidiacono et al. (2013) suggest that the

academic miss-match between black and white students drives a wedge between the groups and limits

interaction. Camargo et al. (2010), however, show that segregation persists even when controlling for

potential differences in ability between students. Using roommate allocation, their analysis shows that

black and white students are in fact highly compatible as friends once introduced. They tentatively

suggest that misperceptions about friendship compatibility between students of different groups may

drive segregation.

There is also a highly related strand of literature that goes one step further by investigating if the

purported benefits of exposure to diversity at university exist at all. This emerging literature examines

if exposure to minorities or marginalized groups changes students’ attitudes, behaviors or preferences

in a manner consistent with the contact hypothesis. While we do not explicitly examine changes in

attitudes or preferences, the current paper also contributes to this larger literature by examining the

effects of diversity on friendship formation at university.

For instance, both Boisjoly et al. (2006) and Burns et al. (2013) use roommate assignment to study

how being matched with a minority black student changes the beliefs of white students. Carrell et al.

(2019) study how exposure to black squadron members during their first year affects the second-year
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roommate choice of white squadron members at the U.S Air Force Academy. In general, these studies

consistently find evidence in line with the predictions of the contact hypothesis.5

3.3 Institutional Context

We study the sorting patters of native and foreign students within a three year economics undergradu-

ate program at a large Dutch public university. This program is taught in English, and is open to both

Dutch and foreign students. The academic years are divided into five blocks. One block lasts eight

weeks; seven weeks of teaching and one week of exams.6

3.3.1 First Year.

During the first year, students have to follow ten compulsory courses covering the basics of eco-

nomics, business, and econometrics. Students have to follow one light and one heavy course per

block, which make up four and eight credits respectively. Sixty credits account for a full year of study

(5 blocks × 12 credits).7 Instruction takes place via lectures and study groups, which both last for 1

hour and 45 minutes. Lectures are of large scale, where the course material is explained with little

to no interaction between students and lecturer or between students themselves. The study groups

contain roughly 24 students, are guided by a teaching assistant (TA), and mostly consist of active

discussion about course related assignments. The TA’s are either senior students or PhD students.

Students are assigned to a first-year study group in a random fashion, and must follow all study

groups for all first-year courses with this group. Details of this allocation process are presented in

Appendix Section 3.A.8 Also presented are balancing tests that cannot reject that the final allocation

of students to first year study group was random.

There are two study group sessions per week and one study group session per week for the heavy

courses and light course, respectively. This amounts to 5 hours and 15 minutes of forced exposure

time to study group peers per week. Students must attend 70 percent of the study group sessions per

course. If they do not meet this requirement, they are prohibited from taking the exam and must wait

a full year before they can take the course again. Our data shows that compliance with the 70 percent
5Recent economic investigations of the contact hypothesis have also taken place in contexts outside the university.

See for instance Dahlberg et al. (2012); Nekby and Pettersson-Lidbom (2017); Steinmayr (2016); Schindler and Westcott
(2018).

6There is also a resit period at the end of the academic year. This takes place in the few weeks after block five, and is
the only opportunity for students to resit exams.

7At this university, credits are referred to as European Credit Transfer System (ECTS). This is the common measure of
student performance in Europe to accommodate credits across institutions. One ECTS is equivalent to 28 hours of study.

8Briefly, students are randomly sorted on a list upon arrival at the university on the first day of the program. Study group
membership is then determined from this list on a rotating basis.
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rule is almost perfect. This confirms that students have a significant amount of exposure to and inter-

action with their first-year study group peers. These interactions are not only academically oriented.

Students’ transition from high school to university involves disruptions of old friendships and the

creation of new bonds (Thiemann, 2017). The tutorial groups provide one of the first opportunities

for students to create a network and interact with others in their program.

3.3.2 Second Year.

The structure of the program’s second year is identical to the first year. Students follow ten com-

pulsory courses, one light and one heavy course per block, which can be considered as followups of

the first-year courses. The key difference from the first year, however, is that study group choice is

now under the purview of the student. A few weeks before the start of each block, students must

electronically register for a study group for both courses in that block. The lone exception to this is

the final block of the second year, in which one of the two courses has no study groups. We observe

these choices, as well as the exact time and date (down to the second) at which students make their

study group choice for each course. Registering for the same study group for both courses in a block

amounts to more than 5 hours of forced exposure peer week.

For two second-year courses students must also form working groups of 3 to 4 members, within

which they complete important group assignments. These working groups entail a significant amount

of interaction and collaboration. For one of these courses, for instance, students must write a report

together and spent a minimum of 10 hours on the project per week.

Since both empirical and anecdotal evidence suggest that students strategically coordinate their

study and working group registrations in order to register in the same group as their friends, we use

both the self-chosen second-year study groups and working groups to elicit information about student

friendships. Exactly how we use this information is discussed in more detail in Section 3.4.2. A

visual overview of the first block and the entire three year program is presented in Figure 3.1.

3.4 Data

Our main source of data is the administrative database of the university between the academic years

2008-9 and 2014-15. We observe all incoming students for these 7 cohorts, their courses taken, and

study group chosen across these years. We have also extended this data with the working group choice

for two courses in the second year. Additionally we observe a rich set of student characteristics; gen-

der, age, residential address, high school location for the majority of Dutch students, and nationality

as stated on their passport.



82 Going Dutch? Friendship Between Natives and Foreigners at University

Figure 3.1: An overview of the characteristics of the undergraduate Economics program relevant to our study

3.4.1 Descriptive Statistics.

Our main sample is the 781 students across 7 cohorts who are observed to take at least a full block

in the second year. Summary statistics of this sample are given in Table 3.1. Panels A and B present

the characteristics of the native and foreign students, respectively, per cohort. While the majority of

students are male, there are a higher proportion of women in the foreign student sample, and foreign

students are marginally older. Panel C summarizes the origin of the student sample per cohort. The

three most represented countries are The Netherlands (i.e. native students), China, and Germany. A

small fraction of students originate from outside both Europe and Asia.

3.4.2 Eliciting Friendships.

Recall that for each course in the second year students must chose their own study group. Students

are able to begin registering for these groups by computer approximately two weeks before the start

of a block. Depending on the number of students taking a course and the size of the study groups,

there are between three and five groups to chose from per course. Importantly, students are unable to

see which other students are already registered in each study group before registering themselves. In

addition, we also observe students’ working groups for two courses in their second year. While, due

to their larger number, our main source of friendship data will be based on the study group choices,

we will also present results using the working group data to provide additional evidence.
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Using the study group data, we take all students who are observed to have taken both courses in

block b of the second year of cohort t. Given Nbt students, each student then has Nbt − 1 potential

friends in block b. Under the assumption that friends will coordinate their tutorial registrations so that

they end up in the same classes, we classify two students as being friends in a particular block b if both

students choose the same study groups for all courses in that block, and if, for each course in the block,

the student’s registration decisions are made within 12 hours of one another. The latter condition is

designed to ensure as far as possible that two students who choose the same study groups are indeed

coordinating without being too restrictive, given that under coordination registration decisions will

likely occur within a small time period from one another.9 We repeat this process for each of the 5

blocks of the second year. As stated earlier, block 5 only has one course in which study groups are

used. We therefore only use coordination decisions within one study group to elicit friendships in this

final block.

There are two courses in the second year for which we have information on the working groups

chosen by students. Using this data, we take all students in cohort t who are observed to have taken

the second year course c. Under the assumption that students prefer to work on group assignments

with their university friends, we classify two students as friends if they appear in the same working

group. We repeat this process for both of the courses that contain working groups.

Table 3.2 displays a range of summary statistics for the friendship data elicited using the methods

above. The study group data reveals that students coordinate with on average approximately 7 fellow

students per block. This amounts to on average approximately 25 unique friendships across the whole

second year.10 Using the working group data, we identity approximately 3 friends per student per

course, which amounts to a total of roughly 5 unique friends.
9For instance, it is common for students to share their registration decisions with their friends over text message, or to

register together simultaneously on adjacent computers.
10Note that the larger number of friends in block 5 may be at least partly explained by the fact that we observe only one

study group in this block.
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Table 3.2: Descriptive Statistics of Friends from Study and Working Group Data

Panel A: Mean Number of Friends from Study Group Data

Block 1 Block 2 Block 3 Block 4 Block 5 Total

Native Students 5.21 (7.40) 6.59 (6.68) 5.84 (5.20) 5.83 (6.13) 12.84 (10.20) 25.51 (17.15)

Foreign Students 4.88 (6.81) 5.57 (6.35) 4.73 (5.01) 6.58 (7.03) 11.44 (9.84) 24.62 (17.07)

Panel B: Mean Number of Friends from Working Group Data

Course 1 Course 2 Total

Native Students 2.83 (1.04) 2.64 (0.66) 4.60 (1.47)

Foreign Students 2.92 (0.95) 2.65 (0.65) 4.63 (1.48)

Notes:

1. Tables shows the mean and standard deviation of the number of friends per block, separately for native and foreign

students.

2. Panel A shows the results from the study group data. Panel B shows the results from the working group data

3.4.3 Do We Capture Friendship?

A potential concern with eliciting friendship data using students’ choices regarding their study and

working groups, rather than self-reported data, is that coordination behavior does not amount to

friendship. For the reasons stated below we believe that our measures of friendship are valid.

Firstly, the fact that the friendship patterns we observe using our data are in line with what one

would expect to see provide reassurance of the accuracy of these measures. Appendix Table A.3.1

shows how the probability of two students being classified as friends using the study group pair data

(column (1)) and the working group data (column (2)) depends on various characteristics.11 These

results reveal for both data sources that sharing a gender, country, or academic ability significantly

increases the probability that two students are classified as friends. The absolute difference in age

is also a significant predictor of friendship in the study group pair data. These patterns are in line

with generally observed patterns of homophily in networks. A further test of the accuracy of these

measures is examining if our friendship measures are sensitive to students who may have an existing

relationship before entering university. It seems sensible to assume that students from the same high

school are more likely to be friends. The results using our measures are in line with this; as Appendix

Table A.3.1 shows, by far the strongest predictor of being classified as friends is having attended the

same high school.
11Section 3.5.2 describes these specifications in further detail.
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Secondly, if two students are indeed coordinating, it is less important if they actually consider

themselves as friends due to the consequences of this coordination. Students who end up in one

another’s study and working groups are forced to spend a significant amount of time in each others

presence working and studying together. Our interest is in capturing students that socially interact.

Thus, regardless of their perceived friendship status, we are ultimately interested in coordinating stu-

dents. Note that self-reported data, on the other hand, may incur its own measurement problems. The

perceived strength of a friendship may differ from individual to individual, and students who report

themselves as friends are not guaranteed to be exposed to one another or work together regularly. Our

measures do not suffer from these issues.

Finally, although it may be the case that our friendship measures include a degree of noise, it is not

clear how this noise would induce sorting patterns between natives and foreigners in the data. These

friendship measures are primarily used as dependent variables in our regression analyses. As such,

although the standard errors for our regression estimates may increase, they will remain unbiased.

3.5 Sorting Results

3.5.1 Unconditional Native-Foreigner Sorting Patterns.

Using the friendship we now document some basic evidence on the sorting patterns of native and

foreign students. Firstly, for each student, we calculate their five “top” friends. These are defined

as the five fellow students who appear the most number of times as a student’s friends across all

blocks of the study group data. Table 3.3 shows, for both native and foreign students, the observed

percentage of students with differing amounts of native students in their top five friends. Additionally,

we calculate the percentage of students in each category we would expect to see if it was the case that

students would choose their friends independent of nationality. We present p-values from a test of

equality between the actual observed percentages and the expected percentages.

The patterns in Table 3.3 are suggestive of a sizeable degree of segregation between native and

foreign students. Approximately 10% of native students have 5 native top friends. Under the assump-

tion of nationality-independent friendship formation, we would expect this to apply to only roughly

2% of native students. Similarly, we observe that 10% of foreign students have only fellow foreign

as top friends, whereas under nationality-independent friendship formation we would expect this to

apply to only 5% of foreign students. In both cases we strongly reject the null hypothesis that the

observed percentages are equal to the expected percentages under a scenario of no segregation. In

general, consistent with segregation, we observe a surplus (shortage) of native top friends for native

(foreign) students.
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Table 3.3: Top 5 Friends from Study Group Data

Number of Native Friends in Top 5

0 1 2 3 4 5

Native Students

Actual 5.34% 15.43% 24.33% 25.52% 20.18% 9.20%

Expected 5.00% 19.72% 33.12% 27.61% 12.31% 2.24%

p-value Actual=Expected 0.78 0.03 0.00 0.38 0.00 0.00

Foreign Students

Actual 10.10% 25.42% 28.78% 26.38% 7.19% 1.92%

Expected 5.24% 20.76% 34.17% 26.87% 11.03% 1.91%

p-value Actual=Expected 0.00 0.03 0.82 0.38 0.00 0.99

Notes:
1. Table shows the percentage of students with various numbers of natives in students in their top 5
friends using the study group data, separately for native and foreign students.
2. Top 5 friends are defined as the 5 students that appear as a students friend most frequently across
the second year.
3. The Expected rows show the percentages that would be expected if students do not sort based on
nationality. These are calculated as the average values of 100 simulations in which students choose
study groups randomly.
4. The p-value row presents the results of a T-test of the null hypothesis that the observed percentage
is equal to the expected percentage.

One potential issue with our top friends measure is that students may coordinate equally with a

group of friends larger than five, and therefore there may exist a large number of ties in the ranking of

the top five friends. In cases where these ties are larger than five they must be broken arbitrarily. To

avoid these issues, we also consider an alternative measure of close friendship. We define a student’s

“best” friend or friends as those students who appear the most number of times as a friend across all

blocks in the study group data. The number of best friends varies from student to student, depending

on the number of friends they coordinate equally with. Table 3.4 summarizes, for both native and

foreign students, a number of statistics associated with these best friends. Namely, we calculate the

mean proportion of natives in each student’s best friends, the percentage of students who have all

native best friends, and the percentage of students who have no native best friends. Also presented

in Table 3.4 are the statistics we would expect to observe under nationality-independent friendship

formation, and the p-values from a test of equality between the observed values and these expected

values.

Table 3.4 reveals that the mean proportion of native students’ best friends who are fellow natives

is 0.56, and 10 percentage points more than would we expect to see under nationality-independent

friendship formation. Roughly 40% of native students have only native best friends, more than double

what would be expected under the alternative scenario. Conversely, the average proportion of native



Table 3.4: Best Friends from Study Group Data

Origin of Best Friend(s)

Mean Prop. All None
Native Native Native

Native Students

Actual 0.56 42.30% 29.13%

Expected 0.46 17.33% 21.32%

p-value Actual=Expected 0.00 0.00 0.00

Foreign Students

Actual 0.34 22.86% 50.81%

Expected 0.44 15.98% 22.77%

p-value Actual=Expected 0.00 0.00 0.00

Notes:
1. Table shows the mean proportion of native students, and the percent-
age of students who have all native and no native best friends, separately
for native and foreign students.
2. Best friends are defined as the students that are tied for first place as
the most frequent occurring friends across the second year.
3. The Expected rows show the percentages that would be expected
if students do not sort based on nationality. These are calculated as the
average values of 100 simulations in which students choose study groups
randomly.
4. The p-value row presents the results of a T-test of the null hypothesis
that the observed percentage is equal to the expected percentage.
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Table 3.5: Friendship Data from Working Groups

Number of Native Friends in Working Groups

0 1 2 3 All Native

Native Students

Actual 16.03% 27.17 % 25.27% 31.52% 39.95%

Expected 20.06% 41.79% 30.46% 7.68% 12.39%

p-value Actual=Expected 0.03 0.00 0.01 0.00 0.00

Foreign Students

Actual 42.08% 33.48% 18.55% 5.88% 9.73%

Expected 19.72% 41.27% 30.86% 8.05% 13.02%

p-value Actual=Expected 0.00 0.00 0.00 0.05 0.00

Notes:
1. Table shows the percentage of students with various numbers of natives in students in their
working group friends, separately for native and foreign students.
2. Working group friends are defined as those students that shared a working group.
3. All Native columns shows the proportion of students that have only native working group
friends.
4. Expected rows show the percentages that would be expected if students do not sort based
on nationality. These are calculated as the average values of 100 simulations in which students
choose working groups randomly.
5. The p-value row presents the results of a T-test of the null hypothesis that the observed
percentage is equal to the expected percentage.

best friends among foreigners is 0.34, 10 percentage points less than the expected proportion. 50% of

foreign students have only foreign students as best friends, compared to an expected value of 22%.

Finally, Table 3.5 presents sorting evidence using friendship ties elicited from the working group

data. We examine the number of native friends, i.e the number of native students among the two to

three individuals in a student’s working group, for both foreign students and native students. Con-

sistent with the patterns presented above, Table 3.5 reveals a large degree of sorting between native

and foreign students. The number of native students with three fellow native students in their working

group is roughly 30%, in comparison with an expected value of 8%. Roughly 40% of foreign students,

on the other hand, have no native friends according to our working group data, in comparison with

the expected 20%. Given that the total number of students varies somewhat between working groups,

the last column calculates the percentage of students for whom all their working group friends are

native. Again, we observe an surplus (shortage) of native friends for native (foreign) students. In all

cases we strongly reject the hypothesis that the observed patterns are consistent with what we would

expect under nationality-independent friendship formation.
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Table 3.6: Descriptive Statistics of Dyads from Study and Working Group Data

Panel A: Student Pairs from Study Group Data

Block 1 Block 2 Block 3 Block 4 Block 5 Total

Native-Native Pairs 8,839 6,998 8,001 6,641 8,124 38,603
Foreign-Foreign Pairs 13,123 11,134 12,422 11,361 12,761 60,801
Native-Foreign Pairs 21,668 17,830 20,171 17,498 20,532 97,699
Total 43,630 35,962 40,594 35,500 41,417 197,103

Mean of Friendship Variable 0.04 0.06 0.05 0.06 0.11 0.06

Panel B: Student Pairs from Working Group Data

Course 1 Course 2 Total

Native-Native Pairs 8,796 8,695 17,491
Foreign-Foreign Pairs 12,017 13,308 25,325
Native-Foreign Pairs 20,740 21,632 42,372
Total 41,553 43,635 85,188

Mean of Friendship Variable 0.02 0.02 0.02

Notes:
1. Table shows the number of native-native, foreign-foreign, and native-foreign student pairs per block
using the study group pair data (Panel A), and the working group pair data (Panel B).
2. Mean of Friendship Variable gives the average value of the friendship variable, equal to one if the student
pair are categorized as friends, in a particular block.

3.5.2 Regression Approach.

The above results strongly suggest a sizeable degree of segregation between native and foreign stu-

dents. However, one difficulty with interpreting these unconditional patterns is that differences in

other determinants of friendship may be driving the sorting. For instance, differences in the gen-

der composition of foreign and native students may result in what appears to be sorting based on

nationality, but is actually explained by sorting based on gender.

To address this we follow Marmaros and Sacerdote (2006), Mayer and Puller (2008) and Foster

(2005) in examining the probability that a pair of students are friends within a regression framework.

Using our study group data, we generate all possible pairs of students for each block. Given Nbt

students in a particular block b, this produces (Nbt × Nbt − 1)/2 pairings of students.12 Using our

study group friendship data, we define a variable Friends(i, j)bt that is equal to one if the student

pair (i, j) are indeed classified as friends in block b (i.e. registered for the same study group in both

courses within 12 hours of each other), and zero otherwise. An identical process is applied to the

working group data.

Table 3.6 gives a summary of the student pair data, as well as the mean value of the friendship

variable in the different periods. Across all blocks the study group data produces 155,686 student
12This is done by crossing the relevant list of student numbers with itself, removing all duplicate pairs (i, i), and keeping

only one instance of the same pairing ((i, j) and (j, i)).
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pairs. An overall mean of the friendship variable of 0.06 indicates that two randomly chosen students

in a block have a 6% chance of being friends. The working group data provides 85,188 pairs, 2% of

which are classified as being friends.

In order to analyze native-foreign sorting patterns, we run linear probability models of the follow-

ing form:

Friends(i, j)bt = α0 + α1BothNative+ α2BothForeign+ α3X + Cbt + ε(i, j)bt (3.1)

Where BothNative and BothForeign are dummy variables equal to one if students i and j are

both native or both foreign, respectively. Vector X optionally includes variables capturing if students

i and j share the same gender or ability, as well as the absolute difference in their age in years.13

Finally, Cbt captures block-cohort fixed effects. The coefficient α1 then gives the difference in the

probability of friendship of a native-native pair compared to the reference category of a native-foreign

pair, controlling for potential differences in the gender, ability and age of the student pair. Similarly,

α2 gives the conditional difference in the probability of friendship of a foreign-foreign pair compared

to a native-foreign pair.14

Although our focus will be on the study group pair data, our strategy for all regressions in the

remainder of the paper will be to also present results using the working group pair data as a type of

robustness check. By comparing results from friendship data derived from two distinct sources we

hope to lessen the probability of spurious findings. We follow this convention for all of our remaining

analyses.

Using the study group pair data, column (1) of Table 3.7 presents the results of Equation (3.1)

excluding the control variables. Column (2) adds variables adjusting for potential differences in the

gender, ability, and age of the student pair. Columns (3) and (4) repeat the same specifications for the

working group pair data. These patterns are consistent with a substantial degree of sorting between

native and foreign students. Not accounting for differences in age, gender and ability, column (1)

reveals that two native students are 1.47 percentage points more likely to be friends than a native-

foreign pair, according to the study group pair data. When differences in basic characteristics are

taken into account in column (2), this difference in probability reduces only marginally to 1.31 per-

centage points, and remains highly significant. These effects are large when one considers that the

unconditional mean of the outcome variable is 0.063. The reduction in the probability of friendship
13We define students in the top quartile of the average of first year grades at high ability, students in the bottom quartile

as low ability, and the remaining students as average ability.
14We cluster our standard errors on a variable that takes on different values for each unique combination of the student

pair’s first year study groups. All continuous variables are standardized, and thus their coefficients should be interpreted in
terms of standard deviations. We follow these conventions for the remainder of the paper.



Table 3.7: Sorting Results From Regression Approach

Friends
Yes (1) or No (0)

Study Group Working Group
Pair Data Pair Data

(1) (2) (3) (4)

Both Native 0.0147∗∗∗ 0.0131∗∗∗ 0.0140∗∗∗ 0.0135∗∗∗

(0.0027) (0.0026) (0.0019) (0.0020)

Both Foreign 0.0031 0.0037∗ 0.0122∗∗∗ 0.0126∗∗∗

(0.0021) (0.0021) (0.0015) (0.0015)

Same Gender 0.0035∗ 0.0149∗∗∗

(0.0018) (0.0015)

Same Ability 0.0035∗∗ 0.0059∗∗∗

(0.0016) (0.0013)

Age Diff. -0.0029∗∗∗ -0.0007∗

(0.0007) (0.0004)

Unconditional Mean 0.0630 0.0630 0.0235 0.0235
(0.0010) (0.0010) (0.0010) (0.0010)

Observations 197,103 197,103 85,188 85,188
R2 0.02 0.02 0.00 0.01

Notes:
1. All regressions include block/course-cohort fixed effects.
2. The unit of analysis is a student-pair in a particular block. The outcome variable
is one if the students are classified as friends in that particular block.
3. Models are estimated with OLS.
4. Standard errors in parentheses, clustered based on a variable that takes upon
unique values for every combination of first-year tutorial groups of each student
pair.
5. All continuous variables are standardized.
6. Unconditional mean refers to the unconditional mean of the outcome variable.
Standard error reported in parentheses.
7. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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for native-foreign pair then amounts to a reduction of roughly 20% of the baseline. Similar results

are found in columns (3) and (4) using the working group pair data. In this case, since the uncon-

ditional mean of the friendship variable is lower, the difference of 1.35 percentage points between

the probability of a friendship between a native-native and native-foreign pair is almost 60% of the

baseline.

The patterns in this section point to significant and substantial segregation between native and

foreign students on campus. It is outside the scope of this paper to make any normative statement

about the degree to which these patterns are desirable or not.15 However, given that non-trivial in-

teractions are necessary for diversity to yield benefits (Camargo et al., 2010), whatever benefits do

arise from an internationally diverse campus could be further increased if the segregation between

native and foreign students was reduced. Depending on the institutional aims and the expected gains

from further interaction, universities may wish to implement policies aimed increasing the levels of

friendship and interaction between natives and foreigners, thereby ensuring that any benefits are fully

realized. The following section explores the efficacy of one such policy.

3.6 Encouraging Native-Foreign Friendships

Considering the structure of a typical university program, where students must attend lectures and

study groups, a natural approach to encouraging international friendships may be to use such oppor-

tunities as a means to force native and foreign students to be exposed to one another within a small

geographic proximity for an extended time. Evidence from existing studies suggests that such poli-

cies are effective in producing friendships and interaction between diverse students. For instance,

multiple studies have documented that interracial student pairs randomly allocated to share a dorm

or a close equivalent of a study group were significantly more likely to subsequently become friends

(Marmaros and Sacerdote, 2006; Camargo et al., 2010; Foster, 2005).

The setting of the bachelor program allows us to investigate the effect of prolonged forced expo-

sure on the probability of subsequent native-foreign friendships. We take advantage of the fact that

students in their first year of the program are randomly allocated to a study group of approximately 24

students, with whom they follow multiple weekly tutorials with for the entire first academic year. As

outlined in Section 3.3.1, during their first year, students must meet with their allocated study group

three times a week, and must attend at least 70% of these weekly sessions per course in order to pass.

Thus, students have regular and forced exposure to their first-year study group peers; a back-of-the
15It should be noted that the apparent preference for segregation has at least one glaring educational consequence; because

study and working groups are self-chosen, as is the case in many universities, students’ classrooms and working groups in
turn become less internationally diverse.
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envelope calculation reveals that even students who barely comply with the 70% threshold rule must

be present in their first-year study group for a total of just over 131 hours across the first academic

year.16

Studying how forced and prolonged exposure influences subsequent friendship is often difficult

using observational data; students who are geographically proximate will likely have many unob-

servable characteristics that also determine the probability of friendship. Individuals with similar

interests and characteristics tend cluster together. It may then be these shared interests and character-

istics, rather than exposure, that determines friendship. Moreover, students who are already friends

are likely to choose to be exposed to one another. Disentangling the actual effect of exposure on

the probability of friendship is therefore difficult. Taking advantage of the randomized allocation to

first year study groups ensures that we avoid these issues. Appendix Section 3.A presents various

balancing tests to provide evidence that allocation to first year study groups was indeed random.

3.6.1 Exposure Through First Year Study-Group.

We examine the effect of this first-year exposure on the subsequent probability of friendship between

a native and a foreign student. We run regressions of the following form:

Friends(i, j)bt = α0 + α1FirstY ear + α2X + Cbt + ε(i, j)bt (3.2)

Where FirstY ear is an indicator variable taking the value of one if student i and student j were

randomized into the same first-year study group, and zero otherwise, vector Xi contains additional

variables to control for the characteristics of the student pair, and Cbt captures block-cohort fixed

effects.

These results are presented in Table 3.8. Using the study group pair data, column (1) gives

the results of Table 3.8 without the addition of control variables. The coefficient for FirstY ear

implies that a student pair who are exposed to one another through being randomized into the same

first year study group are 1.84 percentage points more likely to be classified as friends than a pair

not in the same first year study group. Column (5) repeats this specification for the working group

pair data, in which an exposed first-year pair are 2.59 percentage points more likely to be friends.

In column (2) and (6) we break down this effect the type of student pair by adding interactions of

FirstY ear and indicators for native-native and foreign-foreign pairs. The FirstY ear coefficient

then gives the exposure effect for native-foreign pairs only. While the exact results differ somewhat
16Complying with the 70% attendance rule for both the heavy and light course amounts to attending 15 study-group

sessions per block, and 75 across the whole year. Each session lasts for 1 hour and 45 minutes. The minimum total
attendance time at these sessions to enter the second year is then equal to (1.75× 75 =) 131.25 hours.
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between the study group and working group data, they suggest that the exposure effect may be largest

for same-type pairs (i.e. native-native pairs and foreign-foreign pairs). The addition of controls for

differences in age, gender and ability in column (3) and (7) leaves these estimate unchanged for both

data sources. Finally, columns (4) and (8) add an interaction term between FirstY ear and the same

gender indicator. The fact that the main FirstY ear effect is no longer significantly different from

zero with the addition of this interaction implies that the exposure effect predominately works through

native-foreign pairs of the same gender.

Although the results in Table 3.8 suggest that the exposure effect may be largest for native-native

and foreign-foreign pairs, they do imply that exposure between native-foreign pairs has some potential

to reduce their propensity to segregate. These effects are large when viewed in the context of the

relatively rare event of student friendship. The increase in friendship probability due to exposure

for native-foreign pairs amounts to 22% and 83% of the unconditional friendship probability for the

two data sources respectively. Also notable is the fact that native-foreign FirstY ear coefficients in

Table 3.8 closely match or exceed in absolute size the sorting coefficients in Table 3.7. This implies

forced exposure could virtually entirely offset the difference in the probability of a native-native and

a native-foreign friendship, at least for those of the same gender.17 The following sections explore

this native-foreign exposure effect in more detail.

3.6.2 Heterogeneity in Exposure Effect.

The results above are in line with the findings of a number of previous studies (Marmaros and Sacer-

dote, 2006; Camargo et al., 2010; Foster, 2005); forcing students to share a close geographic proximity

for an extended time, on average, promotes friendships. However, what has so far been unaddressed

by the literature is the degree to which individual characteristics of either student may alter this friend-

ship promoting effect.

Exploring heterogeneity in the exposure effect by individual characteristics is interesting for at

least two reasons. Firstly, given that one of the goals of an intentional campus is for native students to

form beneficial friendships with students from backgrounds that are appropriately distinct from their

own, it is important to see if exposure can encourage such friendships. For instance, do the results

above hold for students coming from radically different cultures, or are they restricted to native-

foreign students who are culturally similar? Secondly, there are natural limits on the effectiveness of

policies based on shared close geographic proximity. Namely, only a limited amount of students can
17A proportion of the native-foreign friendships under analysis in Table 3.7 are those occurring through forced exposure

in the first year tutorial group. A comparison of the coefficients in Table 3.7 and Table 3.8 may therefore not be entirely
appropriate. Appendix Table A.3.2 repeats the sorting regressions in Table 3.7 only using student pairs who were not in the
same first year study group, where we find similar results.
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physically share the same geographical space. Therefore, it may be sensible in some circumstances

to “ration” forced exposure to only those students who could potentially benefit the most.

We identify three factors that may alter the potential benefits of a native-foreign friendship. Firstly

the diversity-related benefits may differ depending on the cultural distances between the pair. It seems

likely, for instance, that a native Dutch student will gain more intercultural skills from interaction

with a foreign Chinese student than a Belgian student, given the large degree of cultural similarity

and familiarity between large parts of Belgium and the Netherlands.

Second, the potential benefit of a native-foreign partnership may differ depending on the existing

attitudes of the native student. Natives who arrive at university with no existing prejudices or in-

group biases will have little room to improve their intercultural skills, whereas native students with

xenophobic attitudes will have a large potential to benefit from a partnership with a foreigner.

Finally, the benefits of friendship with a foreign student may depend on a native student’s previous

exposure to foreigners. Natives growing up in highly international neighbourhoods are more likely

to have already benefited from diversity-related exposure, while those with little existing experiences

interacting with foreigners could potentially derive larger benefits from partnerships with foreign

students.

We use our detailed student administrative data to investigate the heterogeneity in the exposure

effect by these three factors. We calculate the cultural distance between the country of origin of each

international student and the Netherlands. To do so we use the widely used cultural indices developed

by Hofstede (2001). The cultural distance between the country of origin of the foreigner and the

Netherlands is calculated using the method of Kogut and Singh (1988).18

For use as control variables when examining the role of cultural distance, we also retrieve the

geographical distance between the country of origin of the foreigner and the university campus, as

well as a measure of common languages spoken between the country of origin of the foreign student

and the Netherlands.19 This latter variable is defined as the probability that an individual from the

foreign student’s country and an individual from the Netherlands will be able to understand one

another in some common spoken language (Melitz and Toubal, 2014).

As a proxy for the attitudes a native student may have towards foreigners before entering uni-

versity we use the voting behavior of their municipality. Municipalities act as small administrative

regions and number 335 within the Netherlands. We retrieve the average voting share received by the
18The Hofstede measures consider four different cultural traits; power distance, uncertainty avoidance, masculin-

ity/femininity, and individualism. Cultural distance from the Netherlands is then measured for each country j as
CDj =

∑4
i=1((Iij − Iin)

2/V ari)/4 where Iij is the index of the ith cultural dimension for country j, V ari is the
variance of the index of the ith dimension, and n denotes the Netherlands.

19This variable is taken from the CEPII database: http://www.cepii.fr/CEPII/en/bdd_modele/bdd_
modele.asp
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Party for Freedom (PVV) in the 2010 Dutch general elections within the municipality in which each

native student went to high school. The PVV is generally recognized as a far-right, anti-immigration

party.20 In the 2010 general election they received their highest vote share to date with 15.4% of the

vote, becoming the third most popular party. We reason that students from municipalities with higher

vote shares for PVV are more at risk of having xenophobic views. As a measure of the likely exposure

a student has had with foreigners before entering university, we retrieve the proportion of their mu-

nicipality population classified as being of a “Dutch background” (i.e. non-immigrant background).

For use as control variables when examining the characteristics of the native student, we retrieve

numerous other municipality-level variables; the average vote share for the other major political par-

ties in 2010, the distance of the municipality from the university campus, the percentage of the mu-

nicipality population who have an undergraduate university degree or higher, and the percentage of

the municipality collecting unemployment benefits.21

We assign individual students with municipality- and country-level characteristics. While country-

level measures have successfully been used as a proxies for culture, beliefs and attitudes in other

contexts (Fernandez and Fogli, 2009), the evidence we present in this section should therefore be

viewed with the appropriate caution. We note that any noise introduced as a result of these imperfect

measures will bias our results towards zero.

Given our interest in the potential heterogeneity of forced exposure only for native-foreign friend-

ships we now restrict our focus to solely the native-foreign student pairs in our student pairs data. This

amounts to 97,699 native-foreign pairs in the study group pair data, and 42,372 native-foreign pairs in

the working group pair data (see Table 3.6). In order to examine heterogeneity of the exposure effect,

our strategy will be to run specifications of the following form on this restricted data set:

Friends(iN , jF )bt = α0+α1FirstY ear+α2X+α3

[
FirstY ear×X

]
+Cbt+ε(i

N , jF )bt (3.3)

The variables are defined as in Equation (3.2), and the superscriptsN and F refer to native and foreign

students, respectively. Coefficient α3 then indicates how FirstY ear varies with some characteris-

tic X — say, PVV vote share of the native student’s municipality — and thus how the year-long

friendship inducing exposure effect depends on the characteristics of either one of the student pair.

We separately examine the heterogeneity in the exposure effect for the characteristics of the foreign

student (i.e. their cultural distance from the host country) and of the native student (i.e. their munici-

pality’s voting behaviour and proportion of non-immigrant Dutch).
20For instance, among their stated policy goals is the deportation asylum seekers, a banning of immigration from “Is-

lamic” countries (much of the immigration to the Netherlands in recent years has come from Turkey and Morocco), and for
the Netherlands to leave the EU. The PVV has also been critical of the number of international students in the Netherlands.

21For the latter two percentages we use the average value of these measures between 2007 and 2014.



Table 3.9: Heterogeneity in Exposure Effect by Foreign Characteristics

Friends
Yes (1) or No (0)

Study Group Pair Data

(1) (2) (3) (4)

First Year 0.0136∗∗ 0.0138∗∗ 0.0138∗∗ 0.0173∗∗

(0.0062) (0.0062) (0.0062) (0.0070)

Cultural Dist. 0.0023∗ 0.0043∗∗∗

(0.0013) (0.0017)

First Year × -0.0086∗∗ -0.0086∗∗

Cultural Dist. (0.0037) (0.0037)

Top 25% Cult. Dist. 0.0027
(0.0036)

First Year × -0.0157∗∗

Top 25% Cult. Dist. (0.0074)

Unconditional Mean 0.0592 0.0592 0.0592 0.0592
(0.0008) (0.0008) (0.0008) (0.0008)

Country Controls X X

Observations 97,699 97,699 97,699 97,699
R2 0.02 0.02 0.02 0.02

Notes:
1. All regressions include block/course-cohort fixed effects.
2. The unit of analysis is a student-pair in a particular block. The outcome
variable is one if the students are classified as friends in that particular block.
Only native-foreign student pairs are included in the regressions.
3. Models are estimated with OLS.
4. Standard errors in parentheses, clustered based on a variable that takes upon
unique values for every combination of first-year tutorial groups of each student
pair.
5. All continuous variables are standardized.
6. Unconditional mean refers to the unconditional mean of the outcome vari-
able. Standard error reported in parentheses.
7. Country controls include the geographical distance in kilometers between the
country of origin of the foreigner and the university campus, and a measure of
common languages spoken between the country of origin of the foreign student
and the Netherlands.
8. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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We begin by examining the heterogeneity in the exposure effect by the foreigner’s characteristics

using the study group pair data in Table 3.9. Column (1) repeats the earlier specification showing

only the exposure effect for native-foreign pairs. Column (2) adds the standardized cultural distance

from the country of origin of the foreigner of the student pair to the Netherlands, as well as an inter-

action between this and the FirstY ear indicator. Column (3) adds controls for both the standardized

distance in kilometres between the country of origin on the foreigner and the university campus, and

the standardized common language measure. Finally, column (4) replaces the continuous cultural dis-

tance variable with an indicator that takes the value of one if the foreign student is in the top quartile

of the cultural distance measure. Appendix Table A.3.3 presents the results using the working group

pair data.

These results suggest that the impact of the exposure effect is heavily dependent on the cultural

similarity between the native and foreign student. Column (2) reveals that a one standard deviation

increase in the cultural distance measure reduces the FirstY ear coefficient by roughly 60%. Column

(3) shows that the reduction in the exposure effect cannot be explained simply by potential language

differences or geographical distance. Controlling for these factors leaves the FirstY ear interaction

unchanged. When we consider foreign students in the top quartile of the cultural distance distribution

in column (4), the increase in the probability of a native-foreign friendship brought about by exposure

has been basically erased.22 A test for the sum of the coefficients being different from zero is strongly

insignificant (p-value=0.82). Qualitatively similar patterns are found in the working group pair data

in Appendix Table A.3.3.

Table 3.10 examines the heterogeneity in the exposure effect by characteristics of the native stu-

dent using the study group pair data. Note that the sample size has reduced as for only approximately

80% of native students are we able to match their high school data to a municipality. Column (1)

again repeats the specification including only the exposure effect. Column (2) adds the standardized

share of votes received by PVV in the municipality in the 2010 general elections, as well as an in-

teraction of this variable with FirstY ear. Column (3) adds the municipality level controls. Column

(4) replaces the continuous vote share variable with an indicator variable taking the value of one if

the native student originates from the municipalities in the top quartile of PVV votes. Columns (5) to

(6) repeat the specifications in columns (2) to (3) replacing the PVV vote share with the share of the

municipality population of the native student who are classified as non-immigrant Dutch. Appendix

Table A.3.4 presents the results using the working group data.
22The countries in this category are Albania, Austria, China, Cyprus, Ecuador, Greece, Macedonia, Mexico and the

Philippines.



Table 3.10: Heterogeneity in Exposure Effect by Native Characteristics

Friends
Yes (1) or No (0)

Study Group Pair Data

(1) (2) (3) (4) (5) (6) (7)

First Year 0.0103 0.0103 0.0104 0.0146 0.0104 0.0105 0.0060
(0.0078) (0.0079) (0.0078) (0.0091) (0.0078) (0.0077) (0.0080)

Vote % Far-Right 0.0042∗∗∗ 0.0048
(0.0015) (0.0032)

First Year × -0.0071∗ -0.0072∗

% Far-Right (0.0040) (0.0039)

Top 25% Far-Right -0.0079∗

(0.0045)

First Year × -0.0233∗∗

Top 25% Far-Right (0.0116)

Pop. Dutch -0.0014 -0.0024
(0.0013) (0.0021)

First Year × 0.0098∗∗ 0.0100∗∗

Pop. Dutch (0.0041) (0.0041)

Top 25% Pop. Dutch -0.0006
(0.0050)

First Year × 0.0189∗

Top 25% Pop. Dutch (0.0100)

Unconditional Mean 0.0588 0.0588 0.0588 0.0588 0.0588 0.0588 0.0588
(0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009)

Municipality Controls X X X X

Observations 71,024 71,024 71,024 71,024 71,024 71,024 71,024
R2 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Notes:
1. All regressions include block-cohort fixed effects.
2. The unit of analysis is a student-pair in a particular block. The outcome variable is one if the students are
classified as friends in that particular block. Only native-foreign student pairs are included in the regressions.
3. Models are estimated with OLS.
4. Standard errors in parentheses, clustered based on a variable that takes upon unique values for every com-
bination of first-year tutorial groups of each student pair.
5. All continuous variables are standardized.
6. Unconditional mean refers to the unconditional mean of the outcome variable. Standard error reported in
parentheses.
7. Municipality controls include the average vote share for the other major political parties in 2010, the
geographic distance in kilometers from the municipality to the university campus, the percentage of the mu-
nicipality who have an undergraduate university degree or higher, and the percentage of the municipality who
collect unemployment benefits.
8. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Notable in Table 3.10 is that the FirstY ear effect is no longer significant. Compared to column

(1) of Table 3.8, the point estimates have reduced slightly and the standard errors have increased.

Given that the point estimates of FirstY ear are comparable to earlier specifications, and that the

exposure effect remains significant when using the working group data in Table A.3.4, this loss of

significance may be due to the reduction in observations. Nevertheless, strictly speaking we cannot

reject the hypothesis for this restricted sample that native-foreign pairs allocated to the same first

year study group are equally as likely to become friends than pairs in different study groups. Despite

this, column (2) reveals that the probability of a friendship developing between a native-foreign pair

allocated to the same first year study group depends on the PVV vote share of the municipality of the

native student; a one standard deviation in the vote share for this far-right party decreases the exposure

effect by 0.07 percentage points. This effect remains even when adjusting for a set of comprehensive

municipality-level controls in column (3). Column (4) implies that for native students in the top

quartile of the PVV voting share, the probability of a friendship with a foreign student in their first

year study group is significantly reduced by 2.33 percentage points. Despite the FirstY ear dummy

not being significant, comparing the magnitude of the PVV interaction with the main FirstY ear

point estimate suggests that any increase in the probability of native-foreign friendship brought about

by the exposure effect are completely absent for native students in the top quartile of the PVV voting

share. Similar patterns are found in columns (2), (3), and (4) of Appendix Table A.3.4 using the

working group pair data.

Columns (5), (6), and (7) of Table 3.10 examine how the proportion of non-immigrant Dutch in

the population of a native student’s municipality may alter the exposure effect. Natives who may

have had little previous interactions with foreigners appear to be most sensitive to exposure effect.

The results in column (6), which presents the specification with municipality level controls added,

show that a one standard deviation increase in the proportion of non-immigrant Dutch in a native’s

municipality significantly increases the exposure effect by 1 percentage point, which amounts to a

doubling of the FirstY ear effect. Focusing only on the municipalities in the top quartile of the

non-immigrant Dutch variable, the interaction effect indicates that the exposure effect is increased

by 1.89 percentage points, significant at the 10% level. However, these patterns are not present in

columns (5), (6) and (7) of Appendix Table A.3.4 where the working group pair data is used. Overall,

we therefore view the evidence for a larger effect of exposure for natives with little prior interaction

with foreigners as suggestive only.

Although tentative, these results add some important qualifiers to the average exposure effect

found in Section 3.6.1, as well as earlier findings in the literature. Forced and prolonged exposure

within a close geographic proximity does appear to promote friendship, but the effectiveness of this
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exposure varies with the characteristics of the students. The institutional manipulation of friendships

between native-foreign student pairs who may otherwise no meet and thus for whom interaction may

be most beneficial — those from different genders and cultures, and those including students at risk

of having existing xenophobic attitudes — appears to be difficult through forced exposure.

3.6.3 Exposure Effect Multiplier.

The results above establish that native-foreign friendships can be encouraged through forced exposure

in the first year study groups, though this effect does appear to have some important heterogeneity.

It may also be the case that exposure to foreigners (natives) in the first year study group stimulates

friendships with foreigners (natives) outside of these study groups. In other words, there may be

some “multiplier” effect on foreign-native friendships from exposure. Such an effect could mean that

exposure is a far more efficient method of promoting native-foreign friendships than suggested by

the estimates above. Namely, not every foreign and native student would have to be exposed to one

another in order for segregation to be eliminated.

To investigate this we run regressions of the following form:

Friends(iN , jF )bt = α0 + α1PropForeigneriN

+ α2PropNativejF + α3X + Cbt + ε(iN , jF )bt (3.4)

Where PropForeigneriN is the proportion of foreign students in the native student’s first year study

group, PropNativejF is the proportion of native students in the foreign student’s first year study

group, and the remaining variables are defined as in Equation (3.2). To study the effect of the condi-

tions of the first year study group on the propensity of native-foreign friendships outside of these study

groups, we only consider so-called non-exposed native-foreign student pairs; native-foreign pairs not

allocated to the same first year study group. Therefore, α1 (α2) captures the change in the probability

of a non-exposed native-foreign friendship brought about by a one standard deviation change in the

proportion of foreigners (natives) in the native (foreign) student’s first year study group.

Table 3.11 presents the results of these regressions using the study group pair data. Column (1)

presents the results of Equation (3.4). Based on the fact that the exposure effect seemingly works

primarily through same-gender pairs, as shown in Table 3.8, we calculate the proportion of foreigners

(natives) in the native (foreign) student’s first year study group who are of the same gender as the

student themselves. Column (2) presents the results using these same gender proportions now consid-

ering only non-exposed native-foreign pairs of the same gender. Column (3) adds an interaction term

between the two proportions. Column (4) checks for possibly heterogeneity in the multiplier effect



Table 3.11: Multiplier Effect of Exposure

Friends
Yes (1) or No (0)

Study Group Pair Data

(1) (2) (3) (4)

Prop. Foreigner -0.0019
(0.0013)

Prop. Native -0.0008
(0.0016)

Prop. Foreigner (Same Gen.) 0.0041∗∗ 0.0040∗∗ 0.0039
(0.0018) (0.0017) (0.0024)

Prop. Native (Same Gen.) -0.0018 -0.0018 -0.0022
(0.0020) (0.0020) (0.0024)

Prop. Foreigner (Same Gen.) × -0.0018
Prop. Native (Same Gen.) (0.0020)

Top 25% Far-Right 0.0021
(0.0047)

Top 25% Cult. Dist. 0.0024
(0.0049)

Prop. Foreigner (Same Gen.) × -0.0080
Top 25% Far-Right (0.0049)

Prop. Foreigner (Same Gen.) × 0.0050
Top 25% Cult. Dist. (0.0035)

Prop. Native (Same Gen.) × -0.0044
Top 25% Far-Right (0.0054)

Prop. Native (Same Gen.) × -0.0015
Top 25% Cult. Dist. (0.0046)

Unconditional Mean 0.0574 0.0559 0.0559 0.0559
(0.0008) (0.0011) (0.0011) (0.0011)

Observations 83,169 44,237 44,237 32,702
R2 0.02 0.02 0.02 0.02

Notes:
1. All regressions include block-cohort fixed effects.
2. The unit of analysis is a student-pair in a particular block. The outcome
variable is one if the students are classified as friends in that particular block.
Only native-foreign student pairs not allocated to the same first year study group
are included in the regressions. Columns (2), (3), and (4) consider only pairs of
the same gender.
3. Models are estimated with OLS.
4. Standard errors in parentheses, clustered based on a variable that takes upon
unique values for every combination of first-year tutorial groups of each student
pair.
5. All continuous variables are standardized.
6. Unconditional mean refers to the unconditional mean of the outcome variable.
Standard error reported in parentheses.
7. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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by the cultural distance and PVV vote shares of the foreigner and native, respectively. The results for

the identical specifications using the working group pair data are presented in Appendix Table A.3.5.

While column (1) of Table 3.11 suggests that neither of the total proportions appear to be signifi-

cantly related to the probability of a native-foreign friendship, column (2) implies that native students

exposed to more foreign students of the same gender are induced to make new foreign friends of the

same gender with whom exposure is not forced. A one standard deviation in the proportion of same

gender foreign students in a first year study group (an increase in the proportion of foreigners by 0.10)

significantly increases the probability of a friendship with a non-exposed foreigner by 0.4 percent-

age points. We do not find an equivalent effect for foreign students. Columns (3) and (4) reveal no

convincing evidence of an interaction between the proportions of the native-foreign pair, nor of any

systematic differences in these effects by the characteristics of either the native or the foreign student.

Overall, the results in column (2) and (3) provide some evidence of a small multiplier effect of expo-

sure for native students. However, given that Appendix Table A.3.5 shows no significant effect across

any specification when using the working group pair data, we view this evidence with appropriate

caution.23

3.7 Conclusion

A commonly cited benefit of the increased admittance of foreign students is the facilitation of ben-

eficial native-foreigner friendships. Despite this assertion, and the ongoing debate surrounding the

internationalization of education, empirical evidence documenting the actual native-foreign sorting

patterns remain scarce.

This paper addresses the gap in the literature. Using a novel friendship elicitation method based

on students’ choices at university, our first set of results show a significant and substantial degree of

segregation between native and foreign students. Focusing on best friends — likely those friendships

that have the largest influence on individuals — we find that 42% (50%) of native (foreign) students

have only fellow native (foreign) students within this important group. Our regression framework

reveals that even when controlling for potential differences in age, ability and gender, any native-

foreign friendship is 20% less likely than a native-native friendship.

Such a degree of segregation between native and foreign students may be surprising for two rea-

sons. First, the program we study is taught in English and designed with an international focus.

Second, according to commonly observed empirical patterns in social networks, the tendency to seg-

regate should be least pronounced where the group sizes are roughly even - as is the case in our
23It should be noted that the variation in the proportion of natives and foreigners is limited by the nature of the random

assignment. This lack of support may reduce our ability to detect a multiplier effect, should it exist.
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setting (Currarini et al., 2009). Despite both the nature of the program, and the roughly equal number

of native and foreign students, we nevertheless observe a non-trivial degree of segregation.

We consider the effectiveness of a seemingly natural remedy for segregation on campus; the

promotion of native-foreign friendships through forcing such students to be exposed to one another

within a small geographic proximity for an extended period. While we find forced exposure can

promote native-foreign friendships, this finding comes with some important caveats. Namely, en-

couraging native-foreign friendships between students who may derive the largest benefit is difficult;

the exposure effect is apparently absent for student pairs between whom the cultural distance is large,

and for native students at risk of having xenophobic views.

The most obvious obstacle to reducing segregation through forced exposure is the reality that only

a small number of students can be forced to share a close geographic space. The fact that we find

no convincing evidence of a large multiplier effect of exposure, and the fact that a native (foreign)

student cannot be forced to be exposed to every foreign (native) student in their cohort, means that

forced exposure cannot entirely eliminate segregation.

Our results imply that there may be a gap in the rhetoric of the purported benefits of the inter-

nationalization of education and what actually occurs on university campuses. Given the segregation

patterns we observe, universities could be missing out on fully realizing the gains from an interna-

tional student body. Moreover, it appears there is no quick fix to address segregation within the normal

structure of university programs. A deeper understanding of the reasons for segregation of students

from different backgrounds is required if universities wish to yield these benefits.
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3.A Appendix

First Year Study Group

The main assumption underlying our identification of the exposure effect in the first year tutorials is

that unobserved characteristics determining friendship are not systemically correlated with first year

study group assignment. Random allocation of students to study groups, the details of which are

described below, makes this identifying assumption likely to hold.

3.A.1 First Year Study Group Allocation.

On the first day of the academic year, every student who has preregistered to the program is invited to

come to campus where they must confirm their registration.24 This happens through approximately

10 to 15 administrative personnel, who add names and students’ details to an electronic list.

Study group membership is then determined from this list. After being sorted on a randomly

determined ID, the first student on the list is assigned to study group 1, the second student to study

group 2, and so forth. This process continues until the maximum study group has been reached, at

which point allocation begins again at study group 1. Students who are late to register and students

who wish to be re-assigned due to irresolvable scheduling conflicts outside of university are allocated

at the discretion of the university administrator. We do not observe this in our dataset. Though we

were informed that these cases are rare, the final group size and composition may differ slightly from

the initial assignment.

3.A.2 Balancing Test.

We provide evidence that the final allocation of students to study groups was indeed random using

a series of balancing checks. Given that the allocation process takes place at the beginning of the

program, the following specifications include all students observed to register for the first year of the

program including those students that drop out before the start of their second year.

First, we analyse whether the proportion of foreign students in a student’s first year study group

can be explained by their background characteristics Xi.

PropForeignerig = γ0 + γ1Xi + Tt + εigt

24This confirmation process is done so that no-shows are not taken into account when forming the tutorial groups.
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The background characteristics Xi include age, gender, and student number.25 We include cohort

fixed effects (Tt) as randomization into groups takes place per cohort. Estimates of γ1 significantly

different from zero would indicate that our identifying assumption may be violated. Appendix Ta-

ble A.3.6 shows the results of this test, where column (1) to (3) examine the degree to which student’s

background characteristics determine the proportion of foreigners, the proportion of European for-

eigners, and the proportion of non-European foreigners respectively.

Our second balancing check tests for systematic clustering of certain characteristics within the

first year study groups. We regress each background characteristic above - as well a dummy variable

Native indicating if a student is native or not - on first year study group dummies and cohort fixed

effects. Next, in a separate model we regress the same student characteristics only upon cohort fixed

effects and perform an F-test on the small versus big model. If the larger model explains the variation

in the background characteristics significantly better than the smaller model, this may indicate that

students with certain characteristics have been clustered in study groups. These results are presented

in Appendix Table A.3.7.

The findings for both our tests are consistent with the final allocation of students to study groups

being random. Across the three specifications in Appendix Table A.3.6 we find all student character-

istics to be individually and jointly insignificant. Appendix Table A.3.7 shows that for no background

characteristics does the F-test reject the null hypothesis that the parsimonious model fits the data

equally as well as the extended model.

25When students register for the program they are automatically assigned a student number. This number is used for
administrative purposes during their time at university. Given that a student is allocated a student number at the time of
registration, it may correlate with their motivation to take the program.



Table A.3.1: Validation of Friendship Measures

Friends
Yes (1) or No (0)

Study Group Working Group
Pair Data Pair Data

(1) (2)

Same Country 0.0142∗∗∗ 0.0173∗∗∗

(0.0025) (0.0020)

Same Gender 0.0033∗ 0.0145∗∗∗

(0.0018) (0.0015)

Same Ability 0.0035∗∗ 0.0059∗∗∗

(0.0016) (0.0013)

Age. Diff -0.0027∗∗∗ -0.0001
(0.0008) (0.0004)

Same School 0.1353∗∗ 0.1397∗∗∗

(0.0602) (0.0510)

Unconditional Mean 0.0630 0.0235
(0.0010) (0.0010)

Observations 197,103 85,188
R2 0.02 0.01

Notes:
1. All regressions include block/course-cohort fixed effects.
2. The unit of analysis is a student-pair in a particular block.
The outcome variable is one if the students are classified as
friends in that particular block.
3. Models are estimated with OLS.
4. Standard errors in parentheses, clustered based on a vari-
able that takes upon unique values for every combination of
first-year tutorial groups of each student pair.
5. All continuous variables are standardized.
6. Unconditional mean refers to the unconditional mean of
the outcome variable. Standard error reported in parentheses.
7. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.3.2: Sorting Results Excluding First Year Study Group Pairs

Friends
Yes (1) or No (0)

Study Group Working Group
Pair Data Pair Data

(1) (2) (3) (4)

Native-Native 0.0131∗∗∗ 0.0112∗∗∗ 0.0106∗∗∗ 0.0099∗∗∗

(0.0027) (0.0027) (0.0017) (0.0018)

Foreign-Foreign 0.0018 0.0025 0.0112∗∗∗ 0.0116∗∗∗

(0.0021) (0.0021) (0.0015) (0.0015)

Same Gender 0.0001 0.0104∗∗∗

(0.0017) (0.0012)

Same Ability 0.0026 0.0040∗∗∗

(0.0016) (0.0012)

Age Diff. -0.0034∗∗∗ -0.0012∗∗∗

(0.0007) (0.0003)

Unconditional Mean 0.0604 0.0604 0.0195 0.0195
(0.0006) (0.0006) (0.0005) (0.0005)

Observations 167,452 167,452 72,410 72,410
R2 0.02 0.02 0.00 0.01

Notes:
1. All regressions include block/course-cohort fixed effects.
2. The unit of analysis is a student-pair in a particular block. The outcome variable
is one if the students are classified as friends in that particular block. All student
pairs who allocated to the same first year tutorial have been excluded.
3. Models are estimated with OLS.
4. Standard errors in parentheses, clustered based on a variable that takes upon
unique values for every combination of first-year tutorial groups of each student
pair.
5. Unconditional mean refers to the unconditional mean of the outcome variable.
Standard error reported in parentheses.
6. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.3.3: Heterogeneity in Exposure Effect by Foreign Characteristics (Working Groups)

Friends
Yes (1) or No (0)

Working Group Pair Data

(1) (2) (3) (4)

First Year 0.0205∗∗∗ 0.0198∗∗∗ 0.0198∗∗∗ 0.0233∗∗∗

(0.0018) (0.0033) (0.0033) (0.0040)

Cultural Dist. 0.0005 0.0007
(0.0008) (0.0011)

First Year × -0.0093∗∗∗ -0.0093∗∗∗

Cultural Dist. (0.0023) (0.0023)

Top 25% Cult. Dist. 0.0015
(0.0022)

First Year × -0.0159∗∗∗

Top 25% Cult. Dist. (0.0055)

Unconditional Mean 0.0171 0.0171 0.0171 0.0171
(0.0006) (0.0006) (0.0006) (0.0006)

Country Controls X X

Observations 42,372 42,372 42,372 42,372
R2 0.00 0.01 0.01 0.01

Notes:
1. All regressions include block/course-cohort fixed effects.
2. The unit of analysis is a student-pair in a particular block. The outcome variable
is one if the students are classified as friends in that particular block. Only native-
foreign student pairs are included in the regressions.
3. Models are estimated with OLS.
4. Standard errors in parentheses, clustered based on a variable that takes upon
unique values for every combination of first-year tutorial groups of each student
pair.
5. All continuous variables are standardized.
6. Unconditional mean refers to the unconditional mean of the outcome variable.
Standard error reported in parentheses.
7. Country controls include the geographical distance in kilometers between the
country of origin of the foreigner and the university campus, and a measure of
common languages spoken between the country of origin of the foreign student and
the Netherlands.
8. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.3.4: Heterogeneity in Exposure Effect by Native Characteristics (Working Groups)

Friends
Yes (1) or No (0)

Working Group Pair Data

(1) (2) (3) (4) (5) (6) (7)

First Year 0.0138∗∗∗ 0.0138∗∗∗ 0.0138∗∗∗ 0.0164∗∗∗ 0.0138∗∗∗ 0.0138∗∗∗ 0.0145∗∗∗

(0.0036) (0.0036) (0.0036) (0.0040) (0.0036) (0.0036) (0.0038)

Vote % Far-Right 0.0011 0.0021
(0.0009) (0.0019)

First Year × -0.0038 -0.0038
(0.0027) (0.0027)

Top 25% Far-Right 0.0062∗∗

(0.0030)

First Year × -0.0151∗∗

Top 25% Far-Right (0.0058)

Pop. Dutch -0.0002 -0.0010
(0.0007) (0.0012)

First Year × 0.0012 0.0013
Pop. Dutch (0.0025) (0.0025)

Top 25% Pop. Dutch -0.0026
(0.0025)

First Year × -0.0026
Top 25% Pop. Dutch (0.0069)

Unconditional Mean 0.0149 0.0149 0.0149 0.0149 0.0149 0.0149 0.0149
(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)

Municipality Controls X X X X

Observations 30,822 30,822 30,822 30,822 30,822 30,822 30,822
R2 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Notes:
1. All regressions include block-cohort fixed effects.
2. The unit of analysis is a student-pair in a particular block. The outcome variable is one if the students are classified
as friends in that particular block. Only native-foreign student pairs are included in the regressions.
3. Models are estimated with OLS.
4. Standard errors in parentheses, clustered based on a variable that takes upon unique values for every combination
of first-year tutorial groups of each student pair.
5. All continuous variables are standardized.
6. Unconditional mean refers to the unconditional mean of the outcome variable. Standard error reported in paren-
theses.
7. Municipality controls include the average vote share for the other major political parties in 2010, the geographic
distance in kilometers from the municipality to the university campus, the percentage of the municipality who have an
undergraduate university degree or higher, and the percentage of the municipality who collect unemployment benefits.
8. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



3.A Appendix 113

Table A.3.5: Multiplier Effect of Exposure (Working Groups)

Friends
Yes (1) or No (0)

Working Group Pair Data

(1) (2) (3) (4)

Prop. Foreigner 0.0012
(0.0009)

Prop. Native 0.0001
(0.0009)

Prop. Foreigner (Same Gen.) 0.0013 0.0012 0.0019
(0.0014) (0.0014) (0.0019)

Prop. Native (Same Gen.) 0.0001 0.0001 -0.0011
(0.0013) (0.0013) (0.0016)

Prop. Foreigner (Same Gen.) × -0.0018
Prop. Native (Same Gen.) (0.0016)

Top 25% Far-Right 0.0024
(0.0030)

Top 25% Cult. Dist. 0.0003
(0.0030)

Prop. Foreigner (Same Gen.) × -0.0019
Top 25% Far-Right (0.0030)

Prop. Foreigner (Same Gen.) × 0.0017
Top 25% Cult. Dist. (0.0029)

Prop. Native (Same Gen.) × -0.0035
Top 25% Far-Right (0.0031)

Prop. Native (Same Gen.) × 0.0017
Top 25% Cult. Dist. (0.0031)

Unconditional Mean 0.0140 0.0175 0.0175 0.0153
(0.0006) (0.0175) (0.0175) (0.0153)

Observations 42,372 42,372 42,372 30,822
R2 0.00 0.01 0.01 0.01

Notes:
1. All regressions include block-cohort fixed effects.
2. The unit of analysis is a student-pair in a particular block. The outcome
variable is one if the students are classified as friends in that particular block.
Only native-foreign student pairs not allocated to the same first year study group
are included in the regressions. Columns (2), (3), and (4) consider only pairs of
the same gender.
3. Models are estimated with OLS.
4. Standard errors in parentheses, clustered based on a variable that takes upon
unique values for every combination of first-year tutorial groups of each student
pair.
5. All continuous variables are standardized.
6. Unconditional mean refers to the unconditional mean of the outcome vari-
able. Standard error reported in parentheses.
7. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.3.6: Proportion of Foreigners in First Year Study Group Balancing Tests

Prop. Foreigner Prop. Foreigner Prop. Foreigner
(Euro.) (Non-Euro.)

(1) (2) (3)

Student Number -0.0857 -0.0137 -0.0872
(0.1510) (0.0977) (0.1423)

Female -0.0363 -0.0395 0.0059
(0.0370) (0.0324) (0.0420)

Age 0.0235 -0.0040 0.0338
(0.0330) (0.0250) (0.0274)

Observations 961 961 961
R2 0.175 0.353 0.150

F-test 0.48 0.57 0.56
p-value 0.700 0.635 0.644

Notes:
1. Regressions show the relationship between the background characteristics
and proportion of foreigners in a student’s first year study group. All regressions
include cohort fixed effects.
2. The dependent variable is shown at the top of each column. The dependent
variables, StudentNumber and Age are standardized.
3. The F-tests, and corresponding p-values, refer to a test for the joint signifi-
cance of all background characteristics.
4. Standard errors in parentheses, clustered on the first year study group level.
5. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table A.3.7: Clustering of Background Characteristics Test

(1) (2) (3) (4)
Native Student Age Female

Number

Study Group 1 0.1333 -0.0404 -0.0587 0.0111
(0.1486) (0.0607) (0.2962) (0.1437)

Study Group 2 0.0000 0.0545 0.0278 -0.0556
(0.1601) (0.0654) (0.3191) (0.1548)

Study Group 3 0.0652 0.0260 0.0230 0.1486
(0.1455) (0.0594) (0.2899) (0.1406)

Study Group 4 -0.0652 -0.0253 0.1091 -0.0272
(0.1455) (0.0594) (0.2899) (0.1406)

...
...

...
...

Observations 961 961 961 961
R2 0.046 0.960 0.055 0.033

F-test 1.09 1.30 1.03 0.56
p-value 0.331 0.113 0.423 0.982

Notes:
1. Regressions include cohort fixed effects and dummies for the
first year study group. No further controls are included.
2. The dependent variable is shown at the top of each column. The
StudentNumber and Age variables are standardized.
3. The F-test, and corresponding p-value, refer to a test for the joint
insignificance of the study group dummies. The test is for whether
a large model with both cohort dummies and study group dummies
can explain the variance in the background characteristics better
than a small model with only cohort dummies.
4. Standard errors in parentheses.
5. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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4.1 Introduction

The Great Recession that started in 2008 was for most OECD countries the worst economic contrac-

tion since the 1930s (Jenkins et al., 2012). While falling incomes and rising unemployment have

been the most visible consequence of the crisis, an additional concern is whether any effects have

been unequally spread across the income distribution.

The importance of studying inequalities, both in income and other dimensions, is widely appre-

ciated. While the European Union has targeted health inequality reduction as a key policy goal and

warned of “the negative consequences for health, social cohesion and economic development if health

inequalities are not effectively tackled” (European Commission, 2009, p. 5), the crisis has interfered

with the execution of some of these policies (European Commission, 2013).

The aim of this paper is to examine what has happened to the social gradient in health before and

after the crisis. We focus on Spain, one of the EU countries confronted with a severe economic re-

cession, and employ a decomposition method that has been used to examine the evolution of income,

health and inequality during a period of rapid growth in China (Baeten et al., 2013). We use new

EU Statistics on Income and Living Conditions (SILC) panel data spanning the period 2004-2012,

including both a period of substantial economic growth (2004-2007) as well as of recession (2009-

2012). We examine the extent to which the evolution of health disparities by income was associated
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with changes in income growth, in income inequality and in differential income mobility of various

socio-demographic groups.

The economic growth pattern in Spain since the mid-1990s can be summarized by a pre-crisis

trend and a post-crisis trend. Figure 4.1 shows the evolution of unemployment (right axis), and GDP

growth and real average annual wage growth (left axis) between 2002 and 2013. Prior to the crisis, the

country experienced extended economic expansion with real GDP growing at approximately 3% per

year and unemployment falling below 8% in 2007. Despite this extended period of labour demand,

wage growth was minimal (Carrasco et al., 2011).

The effects of the global financial crisis become obvious in Spain beginning in 2008: when GDP

growth fell from 3% to below -3% between the first quarter of 2008 and the first quarter of 2009,

while unemployment roughly doubled in the same period. Youth unemployment became particularly

high, with unemployment in the 15-24 age group doubling between 2007 and 2009 to stand at more

than 35% (OECD, 2016b). Males, who were overrepresented in highly cyclical forms of employ-

ment, were hit disproportionally (De la Rica and Rebollo-Sanz, 2017). Jenkins et al. (2012) reaches

similar conclusions, noting that the largest fall in employment in Spain during the crisis period was

concentrated among young people under the age of 25, especially young men.1

Particularly important to understanding both the boom and bust years in Spain is the expansion

and collapse of the housing market. The nominal house price per square meter in Spain tripled

between 1997 and 2007 (Bonhomme and Hospido, 2012). Parallel to this housing boom was an

expansion in the construction sector. Between 1998 and 2008 the share of construction in Spain’s

GDP increased by 4 percentage points to 10.7% (Gonzalez and Ortega, 2013). From 1997 to 2006

the share of construction in male employment rose from 14% to more than 20% (Bonhomme and

Hospido, 2012). However, in 2008 as the effects of the subprime mortgage crisis in America spread

and Europe began to enter recession, the Spanish housing sector crashed. Most of the sharp rise in

unemployment in Spain was due to the collapse of this sector. From the first quarter of 2008 till the

last quarter of 2009, construction experienced a 20% per annum drop in employment (Bentolila et al.,

2012).2

Alongside the changes in average levels of income there have been changes in its distribution.

In general, income inequality in Spain has followed a counter-cyclical pattern – during boom years

income inequality decreased while during bust years it rose (Lacuesta and Izquierdo, 2012; Carrasco
1In the years immediately following the crisis GDP growth rebounded slightly before falling back to negative growth,

whereas unemployment steadily increased to above 25% in 2012. Real wages actually increased between 2009 and 2010.
However, this was due to compositional effects, as less experienced workers with lower paying temporary contracts were
the first to lose their jobs (Puente and Galán, 2014). As the crisis progressed however, real wages contracted.

2The reasons for the extraordinary growth until 2006, and the collapse after 2008 in the construction sector are still up
for debate. See Gonzalez and Ortega (2013) and Bentolila et al. (2012) for more details.
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Figure 4.1: Unemployment and GDP growth in Spain

Notes:

1. GDP growth and unemployment data taken from the Instituto National de Estadı́stica.
2. Wage growth data taken from OECD database.

et al., 2011; Pijoan-Mas and Sánchez-Marcos, 2010). Bonhomme and Hospido (2012) show that

the housing and construction sector is once again key to understanding these trends as the construc-

tion sector is one of the main employers of young, uneducated, relatively disadvantaged groups of

(usually) men Aparicio Fenoll (2010).

A separate question is the extent to which the Great Recession has affected health. There is a large

literature documenting that worsening economic conditions are associated with reduced mortality

(Ruhm, 2000; Stuckler et al., 2009), although recent evidence has been more mixed. Ruhm (2015)

suggests that the relationship may be disappearing over time, while others have found that mortality

trends, except for suicides, continued to improve during the recent European-wide recession (Regidor

et al., 2014; OECD, 2016a).

There is little evidence on the evolution of health inequalities during the recent crisis.3 Most

observers appear to assume that it will widen existing gaps following reductions in welfare spending

that increase the vulnerability of those with lower education levels, who are also more likely to be

unemployed (European Commission, 2013).

One strand of literature has focused on the comparison of income-related health inequalities

(IRHI) across countries and over time. Doorslaer and Koolman (2004), for instance, documented
3Bacigalupe and Escolar-Pujolar (2014) review four studies on Spain during the Great Recession, and conclude that the

evidence points in the direction of increasing health inequalities.
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the variation in degrees of IRHI for 13 EU countries in 1996 and showed that IRHI tends to be larger

in countries with larger income inequality, but also that the relative income position of Europeans

that are not working and not in good health, like the retired and the disabled, was critical. Van Ourti

et al. (2009) decomposed the evolution of IRHI between 1994 and 2001 for the same 13 EU coun-

tries. They found that the income elasticity of health was crucial for understanding the evolution of

IRHI, although the period considered was one of economic growth for most European countries. An

extended version of this decomposition was used by Baeten et al. (2013) to decompose the evolution

of IRHI in China into the contributions of various factors like income growth, income inequality, and

income mobility, as well as a number of regional-demographic factors associated with health. They

found that the substantial rise in IRHI over the period of double-digit income growth (1991-2006)

was associated with rising income inequality, but especially with the adverse health and income ex-

perience of older women lacking pension or other social protection. It is this decomposition method

that we use in this paper.

Our findings indicate the following: inequality in health by income was slightly rising before

the crisis, but started falling sharply after 2009 when the recession hit Spain. The main reason for

this reversal is the differential effect of the crisis on the incomes of young and old Spaniards: while

pensioner incomes were relatively shielded against the erosion in the post-crisis years, this does not

hold for the incomes of younger groups. Loss of employment and of earnings in employment meant

that these relatively healthier groups moved downwards in the income ranking, thereby lowering

the association between health and income rank. As a result, IRHI in 2012 was lower than in the

years prior to 2009, a somewhat surprising by-product of an otherwise discomforting period in recent

Spanish history.

4.2 Decomposing the Evolution of IRHI with a Balanced Cohort

We use the decomposition method of Baeten et al. (2013) to estimate the evolution of IRHI and to

shed light on the relative importance of (a) income growth, (b) the evolution of income inequality,

(c) income mobility, and (d) the evolution in non-income factors (such as demographics) that are

associated with health. This section describes the decomposition approach for a balanced cohort of n

individuals that we observe at the start (period 1) and end (period 2) of a time interval.
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4.2.1 Choice of Health Inequality Index.

We use the corrected concentration index (CC) (Erreygers, 2009) because it satisfies the mirror con-

dition and it is insensitive to equal health additions (cf. absolute inequality) (Erreygers and Van Ourti,

2011). When health is bounded between 0 and 1, it can be written as:

CC(ht|yt) =
8

n2

n∑
i=1

zithit (4.1)

where ht and yt are the health and income distribution in period t = 1, 2, hit describes the health

of individual i and zit is a weight that depends on the income rank of individual i. This weight takes

the value 0 for the individual with median income, and increases (decreases) linearly for individuals

with higher (lower) than median income levels.4

4.2.2 Descriptive Model for Health.

We use a simple descriptive5 model that links health linearly and additively to its associated factors:

hit = α+ θ(yit) + x
′
itβ (4.2)

where α is an intercept parameter; θ(yit) is a non-linear function of income; xit represents a

vector of K non-income variables (e.g. demographics), and β is its associated parameter vector.6 It

is important to allow for a very general functional form for θ(.) since the actual functional form will

largely determine the relative importance of the contribution of (a) income growth and (b) income

inequality in our decomposition approach.

4.2.3 Evolution of IRHI Over Time.

Our interest lies in decomposing changes in IRHI. Combining Equation (4.2) and Equation (4.1) leads

to7:
4zit takes (1− n)/2 for the poorest individual and (n− 1)/2 for the richest individual.
5It should be stressed that our goal is not to estimate a causal model of health; our sole aim is to decompose changes in

the (partial) association between health and income rank. As we have neglected to include potentially endogenous variables
such as education or lifestyle the non-linear income function features as the sole potentially endogenous variable. We
have deliberately not addressed its potential endogeneity since we are interested in documenting the association between
changes in the distribution of income and the evolution of IRHI in Spain. Turning to the underlying mechanisms is only
sensible after the magnitude of this association has been established, and after the relative importance of “income growth”,
“mean-preserving income changes”, and “income mobility” has been understood.

6After results are presented we return to the assumption that Equation (4.2) is deterministic.
7The intercept parameters drop out in Equation (4.3) since

∑n
i=1 zit = 0.
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CC(h2|y2)− CC(h1|y1) =
8

n2

[ n∑
i=1

zi2hi2 −
n∑
i=1

zi1hi1

]
=

8

n2

n∑
i=1

{[
zi2θ(yi2)− zi1θ(yi1)

]
+ β

[
zi2x

′
i2 − zi1x

′
i1

]} (4.3)

Equation (4.3) shows that we can disentangle the change in IRHI into a part due to changes in

the association between the income rank and the income effect (zi2θ(yi2)− zi1θ(yi1)) and a part due

to changes in the association between the income rank and the non-income factors (zi2x′i2 − zi1x′i1).

In order to isolate the contributions of (a) income growth, (b) the evolution of income inequality, (c)

income mobility, and (d) the evolution in non-income factors, we construct two hypothetical health

states in period 2 using Equation (4.2) – health under average income growth (hagi2 ) and health under

no income growth (hngi2 ). For the former, we calculate an individual’s health in period 2 in the scenario

that everyone’s income changed proportionally to the average income gain (or loss) between period

1 and period 2. We denote this income as yagi2 . For the latter, we estimate an individuals health in

period 2 in the scenario that there was no income change between period 1 and period 2 yngi2 . In each

scenario we allow all non-income variables to change as they actually did.

4.2.4 Decomposition Method.

Given that CC(hag2 |y
ag
2 ) = CC(hag2 |y1) and yngi2 = yi1, the change in IRHI can be expressed as:

CC(h2|y2)− CC(h1|y1) =CC(h2|y2)− CC(hag2 |y1)︸ ︷︷ ︸
income inequality & mobility

+CC(hag2 |y1)− CC(hng2 |y1)︸ ︷︷ ︸
average income growth

+CC(hng2 |y1)− CC(h1|y1)︸ ︷︷ ︸
non-income factors

(4.4)

which can be further disentangled as the sum of 4 terms (note that zagi2 = zngi2 = zi1):

CC(h2|y2)− CC(h1|y1)

=
8

n2

n∑
i=1

{
zi1
[
θ(yagi2 )− θ(yi1)

]︸ ︷︷ ︸
average income growth

+
[
zi2θ(yi2)− zi1θ(yagi2 )

]︸ ︷︷ ︸
income inequality

+ (zi2 − zi1)
( K∑
k=1

βkxki2

)
︸ ︷︷ ︸

income mobility

+ zi1

[ K∑
k=1

βk(xki2 − xki1)
]

︸ ︷︷ ︸
non-income factors

} (4.5)
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Equation (4.5) shows that the evolution of IRHI can be written as the sum of (a) average income

growth, (b) the evolution of income inequality, (c) income mobility, and (d) the evolution in non-

income factors.

The first term, average income growth, captures the change in IRHI when everyone’s income

changes in proportion to the average income change. As all incomes grow proportionally, there is

no change in the rankings (zit’s). Therefore this term captures whether the health responsiveness to

proportional income changes (θ(yagi2 ) − θ(yi1)) is, on average, larger or smaller for those with lower

(negative zi1) versus higher incomes (positive zi1) in period 1. If the health responsiveness is larger

for the initially richest part of the population, then this term will be positive. The sign (and magnitude)

of this term depends on the functional form of θ(.), but also on whether incomes have increased or

decreased on average.

The second term captures the evolution of income inequality – that is, the health difference at-

tributed to the difference between the true income in the second period and the income under the

scenario of average income growth (θ(yi2) − θ(yagi2 )). If the health returns from income growth are

increasing with income (θ′(.) > 0), if there is no income re-ranking (zi2 = zi1) and if – relative to the

average income growth scenario – the rich become richer while the poor loose, then the second term

will be positive. In a scenario with income re-ranking, one cannot a priori assign a direction to term

2.

Term 3 – “income mobility” – captures the association between income re-ranking (zi2 − zi1)

and the non-income factors in the second period, weighted by the βk coefficients. One can further

decompose term 3 into separate contributions for each non-income variable since term 3 is additively

separable. In our empirical application, the non-income variables are dummy variables. In this case,

the contribution of each non-income dummy can be large (compared to the reference category) be-

cause (a) health is considerably higher or lower among the individuals belonging to the non-income

dummy (βk), (b) income re-ranking is substantial for these individuals (zi2 − zi1), and/or (c) a sub-

stantial share of the sample belongs to this non-income dummy (
∑n

i=1 x
k
i2).

Term 4 measures the association between changes in non-income factors and initial income ranks.

If the non-income factors include age and location, then term 4 isolates the effect of ageing and

migration on the change of IRHI. For example, if many people with high initial income ranks migrate

to a location which is associated with better health then this term will be positive. In what follows we

refer to the terms 1, 2, 3 and 4 as income growth, income inequality, income mobility, and non-income

factors.
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Table 4.1: Rotation Groups Overview

Rotation Group

1 2 3 4 5 6

2004 X
2005 X X
2006 X X X
2007 X X X X
2008 X X X X
2009 X X X X
2010 X X X
2011 X X
2012 X

Notes:
1. Table presents the structure of the
EU-SILC rotation groups for Spain be-
tween 2004 and 2012. Ticks indi-
cate the years covered by each rotation
group.

4.3 Data and Empirical Implementation

We use 6 rounds of the Spanish EU-SILC dataset spanning 2004-2012. It includes the period before

and during the financial and economic crisis that affected Spain from 2009 onwards. As the EU-

SILC dataset is set up as a rotating panel every year between 2004 and 2009, a new random sample

is drawn and followed for 4 years, after which it is dropped. We use the term “rotation group” for

each of these random samples. For example, the first rotation group is drawn in 2004 and lasts till

2007; the second covers 2005-2008; and the sixth and last rotation group covers 2009-2012. Hence,

for the full period of 2004-2012 we have 6 rotation groups in total, and these constitute different and

independent samples.8 In total, we have 122,592 observations (see Table 4.1 for more details).

4.3.1 Key Variables.

The two main variables of interest are self-assessed health (SAH) and household income. The SAH

responses derive from the question: “How is your health in general? Is it: (1) very good, (2) good,

(3) fair, (4) bad, (5) very bad?” As our income variable we use total disposable household income

during the previous 12 months. We adjust for household size and inflation by dividing by the square
8In 2004 and 2012, we observe only one rotation group (group 1 & 6); in 2005 and 2011 we simultaneously observe 2

rotation groups (group 1/2 & 5/6), in 2006 & 2010 3 rotation groups (group 1/2/3 & 4/5/6), while for the years 2007, 2008
and 2009, we simultaneously observe 4 separate rotation groups (group 1/2/3/4; 2/3/4/5 & 3/4/5/6).
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root of household size9 and by applying the Spanish CPI index with base year 2012. We remove

observations with negative incomes.10

4.3.2 Estimating the Health Model.

We estimate the model for health in Equation (4.2) using an interval regression (with threshold values

imposed as in Van Doorslaer and Jones (2003)), as the CC computation requires a health indicator

measured on a cardinal scale.11 The predicted values are used as our main health indicator, and can be

interpreted as predicted health utility index (HUI) scores (Van Doorslaer and Jones, 2003).12 We use

a second degree polynomial for the income function θ(yit) as it is a parsimonious functional form that

is sufficiently flexible to avoid predetermining the effect of proportional income changes on health.13

The remaining independent variables are dummy variables for each region in Spain and age category

dummies for both males and females.14 Age is categorised into the following groups: 16 to 26 years,

26 to 36 years, 36 to 46 years, 46 to 56 years, 56 to 66 years, 66 to 76 years, 66 to 76 years, and more

than 76 years of age.

4.3.3 Empirical Implementation of Decomposition Method.

Because of the rotating design of EU-SILC we cannot directly compare IRHI measured for the same

individuals in 2004 and 2012. This complicates both the implementation of the decomposition and

the estimation of the empirical health model. The decomposition requires at least two observations of

the same individual over time. We apply the decomposition to each of the 6 rotation groups separately
9Decompositions using alternative equivalence scales, such as the OECD-modified scale, did not significantly change

the results.
10Negative incomes can occur in the EU-SILC data due to debt, but make up less than 1% of the observations. They are

problematic as in the hypothetical average income movement scenario these individuals will see their incomes drop when
on average incomes rise. However, decompositions that included these observations did not change the qualitative features
of our results.

11This involves estimating an ordered probit model, with the thresholds imposed from the empirical distribution function
of HUI in the Canadian National Population Health Survey 1994-1995 (HUI=1 equals maximum health and HUI=0 equals
minimum health). Several studies using this approach (Van Doorslaer and Jones, 2003; Lauridsen et al., 2004; Lecluyse
and Cleemput, 2006) have found the health inequality estimates to be rather insensitive to the threshold values imposed.

12While the predicted HUI scores only reflect health changes resulting from changes in the explanatory variables,
Van Doorslaer and Jones (2003) show that the interval regression approach is the preferred approach when calculating
health inequality indices. One might also calculate the conditional predictions from the interval regression model given
the observed SAH levels, but then the predicted HUI scores would no longer be a linear combination of the explanatory
variables, and therefore not be amenable to our decomposition approach.

13As explained before, the signs and size of term 1 and 2 (“income growth” and “evolution of income inequality”) largely
depend on whether the health responsiveness to proportional income changes decreases or increases with rising incomes.
This is left open with a second order income polynomial, but not with other popular choices in the empirical literature. For
example, when one would favour the natural logarithm of income, one would impose that a proportional change in income
has the same health effect for every individual (and hence one would force term 1 to be zero).

14The EU-SILC categorises Spain into 18 different regions: Galicia, Asturias, Cantabria, Paı́s Vasco, Navarra, La Ri-
oja, Aragón, Madrid, Castilla y León, Castilla-La Mancha, Extremadura, Cataluña, Comunidad Valenciana, Baleares,
Andalucı́a, Murcia, Ceuta y Melilla, and Canarias.
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Table 4.2: Balanced Panel Observations per Rotation Group

Rotation Individuals Total
Group per Wave Observations

1 4,193 16,772
2 4,996 19,984
3 5,099 20,396
4 5,575 22,300
5 5,617 22,468
6 5,168 20,672

Total 122,592

Notes:
1. Table presents the number of unique indi-
viduals, and the total number of observations
per rotation group.

and within each rotation group to a balanced panel only.15 While we calculate the decomposition for

each of the 6 rotating panels, we only present three of these; a before crisis group: 2004-2007; a

group covering both before and when the crisis occurs: 2007-2010; and a group that covers the crisis

period: 2009-2012.16

We first pool the data from all 6 rotation groups and run the interval regression model described

above.17 We remove the individuals belonging to the top 1% of incomes (calculated on the full pooled

sample) as these observations have a disproportionate effect on the functional form of income.18 The

estimated parameters of the pooled model are then used to decompose the 3 rotation groups which

span the entire 2004-2012 period, leaving us with the observations per rotation group as shown in

Table 4.2. Each of the rotating panels uses a different base year. In the 2004-2007 rotation group, we

first compare the change in IRHI for 2004-2005, then 2004-2006, then 2004-2007. We next take the

second rotation group (which spans 2007-2010) and compare the change in IRHI between 2007 and

each following year. For the 2009-2012 rotation group, 2009 is the base year. In total there are then

9 changes of IRHI to be decomposed.

We use the sample weights of the first year of each rotating panel provided with the EU-SILC

data. In the interval regression model, we also allow for robust standard errors and cluster at the
15Summary statistics of the full unbalanced panel sample are similar to those of the balanced panel. Nor did the evolution

of IRHI using the unbalanced panels for each rotating group differ markedly, suggesting that attrition is not an important
driver of our main findings, although we cannot entirely rule out that explicitly accounting for mortality as in Petrie et al.
(2011) would have disproportionally hit the older and poorer age groups.

16Decomposition results for the 2005-2008, 2006-2009 and the 2008-2011 rotation groups are not presented for reasons
of clarity and brevity. They are in line with the results presented and available upon request.

17The assumption of constant coefficients may be questionable in the case of pre- and post-crisis Spain, since the rela-
tionship between income and health may have changed. To test the robustness of our main findings we also decomposed
the periods 2004-2007 using coefficients estimated on pre-crisis observations (before 2009) only, and 2009-2012 using only
post crisis observations (after 2008). This did not change our results.

18While including the top 1% of incomes does change the function form of income due to some extreme outliers (in
particular among very high incomes), it does not change the overall results of the decomposition. Nevertheless in order to
achieve an income function that is not unduly influenced by outliers we remove the top 1% of incomes.
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individual level. Statistical inference of the decomposition method is obtained after bootstrapping the

entire procedure with 1,500 replications. The bootstrap sampling is bias-corrected, and clustered at

the primary sampling unit of the EU-SILC.

4.4 Results

4.4.1 Summary Statistics.

Table 4.3 displays variable means for each wave of rotation group 1, 4 and 6. Panel (a) includes vari-

ables most important to the analysis, whereas panel (b) provides additional background information

on the labour market. The health variable refers to the predicted HUI score.

Income is rising in each successive year for rotation group 1, as well as rotation group 4 until

2009. As income refers to the last 12 months, the drop observed in 2010 refers to an income fall in

2009, during which Spain was fully immersed in the economic crisis. In rotation group 6 income falls

in each wave compared to the last. The effect of the crisis is also visible in the occupational category

changes. The proportion unemployed in 2009 almost doubles from the previous year to approximately

11%. In subsequent years the proportion of employed individuals decreases every year. This does

not appear to be due to ageing and retiring individuals; while the proportion of retirees does increase

slightly, it is the unemployed category that shows the sharpest increase.

Income inequality, as measured by the Gini coefficient was rather stable, although opposite trends

can be observed before and after 2009. Income inequality appears to have been slightly falling during

the“boom” years, and began to increase once the crisis started. This is in line with the findings of

others, such as Jenkins et al (2013).

Figure 4.2, with the CC per year for each rotation group, shows that IRHI has not been stationary

over the sample period.1920 Until 2009, there is a slightly significant upward trend.21 Since the

beginning of the crisis, however, IRHI fell quite steeply. This is confirmed by comparatively large

and significant falls in IRHI in the final two rotation groups.

Column 1 of Tables 4.4 and 4.5 shows the coefficients from the interval regression for the age-sex

and region dummies.22 Note that older age groups consistently report lower health than younger.
19One should only use the 95% confidence intervals to compare IRHI between rotation groups, since different waves

within each rotation group are dependent samples.
20The fact that similar trends are observed using different rotation groups indicates that the trend is not simply driven by

a particular rotation group.
21Appendix Table A.4.1 shows the numerical changes of IRHI between waves for each rotation group, and indicates the

significance of such changes.
22The coefficients of the income polynomial are suppressed.
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Figure 4.2: IRHI per Wave per Rotation Group

Notes:

1. Bars indicate 95% confidence intervals.

Regional health differences, by contrast, are very small. Figure 4.3 shows decomposition results for

rotation groups 2004-2007, 2007-2010 and 2009-2012 with 95% confidence intervals.

4.4.2 2004-2007 Results.

Between 2004 and 2007, IRHI rose significantly. Panel (1) of Figure 4.3 shows that income growth

is important in understanding this rise. The income growth term, although small, indicates that health

responsiveness to proportional income growth was larger for those with higher income in 2004. De-

spite being the largest term in all years, income mobility only becomes significant in the 2004-2007

comparison. This implies that income re-ranking occurring prior to 2007 was not systematically re-

lated to age, gender or location, while the elderly were on average (and just borderline significantly)

more likely to experience negative income re-ranking between 2004 and 2007.23 As the elderly com-

bine this move down the income ladder with the lowest predicted health, this led to a rise in IRHI.

The evolution of income inequality and the non-income factors are unimportant for the IRHI change

in this period.
23The fact that term 3 is so large in magnitude but still insignificant indicates that there are a small amount of very large

and influential income re-rankings occurring. An individual moving from the bottom of the income distribution to the top
in turn affects the rankings of the rest of the sample as well. Term 3 therefore changes dramatically when this individual is
left out of the sample in a bootstrap replication.
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4.4.3 2007-2010 Results.

IRHI grew significantly between 2007 and 2008, but returned in the subsequent two years to its 2007

level. The decreasing trend turns out to be almost entirely driven by the changing association between

the age dummies and the income rank, while region is relatively unimportant (see income mobility

term in panel (2) of Figure 4.3 and panel (1) of Figure 4.4). Closer inspection reveals that it is mainly

influenced by the older, unhealthier, age groups. While initially, during the period of income growth

prior to 2008, the elderly were falling in income rank, there is a reversal after 2008. Panel (2) of

Figure 4.4 shows that this was especially true for those over 75. The income rank of the older age

groups, with poorer health, increased contributing to the fall in IRHI.

Also significant between 2007 and 2010 is the contribution of income inequality. This suggests

that the health effects of income gains – over and above proportional income growth – led to a rise in

IRHI. Income growth is positive in each wave and remains small but significant. As average income

falls in the final 2010 wave, so does the magnitude of income growth.

4.4.4 2009-2012 Results.

The final 4-year rotation group of the EU-SILC entirely reflects the crisis years. This is the period

in which the largest drop in IRHI occurs and the trends observed in the 2007-2010 decomposition

also emerge here. The significant fall in IRHI is primarily due to income mobility, which is largest

in magnitude and significant in all years. Panels (1) and (2) of Figure 4.5 demonstrate that it is the

experience of certain older age groups – men and women aged 66 and above – which is the largest

contributor to the decrease. By contrast, the younger and healthier individuals have a small but

positive contribution. This leads to a fall in IRHI as those with poorer health became relatively richer.

The 2009-2012 decomposition also reveals that both income growth and income inequality are

significant drivers in the change of IRHI. The negative sign of income growth reflects the fact that

had the average income fall between 2009 and 2012 been applied to everyone, those with high in-

comes would have had a larger fall in health than those with low incomes. Income inequality is

positive however, indicating that the fall in income was disproportionately felt by the poor. Still, the

overall effect of these terms relating to health responsiveness to income is small compared to income

mobility.

4.5 Discusson

The decomposition results reveal two very different trends in IRHI before and after the crisis. Prior

to 2009 there was a trend of increasing inequality which was mostly driven by income growth but
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also by income mobility, with the elderly slightly moving down on the income ranks. After the start

of the 2008 financial crisis we observe a sharp fall in IRHI. Income mobility is the main driver of

this change: young and middle-aged healthier groups experienced a greater income drop, while on

average the incomes of the elderly were less affected. This caused shifts in the income ranks in favour

of the older, less healthy group, leading to a decrease in IRHI.

Further decomposing the contribution of each regional-demographic group to income mobility

reveals the relative importance of three distinct underlying mechanisms. Indeed, each sub-term de-

pends on three elements – the partial association between the group and health (βk), the number of

individuals in that particular group, and the changes in income ranks between the two periods for

these individuals (zi2 − zi1). Any changes in income mobility result from some combination of these

elements. Tables 4.4 and 4.5 presents results for each of these three elements per demographic group

and region, respectively.

Column 1 of these tables report the interval regression coefficients and Columns 2 to 7 the per-

centage shares of each regional-demographic group for the first and final years of each rotation group,

while columns 8 to 10 report the income re-ranking for each regional-demographic group. The re-

sults for income re-ranking are obtained by running a simple no-constant OLS using the regional-

demographic variables as explanatory variables for the change in individual z-scores between the two

periods.24 A positive coefficient implies a rise in income rank between the two periods.

Table 4.4 confirms that the income re-ranking of the elderly, in particular after the onset of the

crisis, is most important for understanding changes in IRHI due to income mobility. Between 2004

and 2007, there was little re-ranking taking place, although the negative coefficients for the elderly

indicate that, if anything, the elderly were slightly losing relative to young. In the final rotation group

however the coefficients of the 65+ have become highly significant and switched sign. This, combined

with the comparatively large negative coefficient of the 65+ in the health regression, and the sizable

and increasing number of individuals in this category, leads to a large fall in income related health

inequality.25

The primary reason that the elderly’s incomes were better protected during the crisis appears to

be the old-age pension system. In Spain, the vast majority of pensioners receive their incomes from

contributory pensions based on earnings prior to retirement (OECD, 2013). As a consequence, cur-
24The change in z-scores is bounded between -2 and 2 since the z-scores have been normalized between -1 and 1. For

example, the most extreme case of an individual going from the highest to the lowest rank would lead to zi2 − zi1 =
(−1)− 1 = −2.

25One may question whether IRHI due to natural ageing is interesting or important, since ageing is an unavoidable
biological process. In this case, the decomposition method can be viewed in different ways. If we are interested in the
evolution of total IRHI then the sum of all 4 terms should be considered. If we wish to exclude the effect of natural ageing
then we should exclude the non-income factors term. If we wish to narrow our focus further, and ignore that part of the
evolution of IRHI that is due to the mobility of different age groups then the income mobility term should also be excluded.



Ta
bl

e
4.

4:
A

ge
/S

ex
Fa

ct
or

s
In

flu
en

ci
ng

Te
rm

3

Va
ri

ab
le

C
oe

ffi
ci

en
t

Sh
ar

e
of

In
di

vi
du

al
si

n
R

e-
ra

nk
in

g
C

oe
ffi

ci
en

ta
,b

A
ge

-s
ex

C
at

eg
or

y
(%

)

R
ot

at
io

n
1

R
ot

at
io

n
4

R
ot

at
io

n
6

20
04

20
07

20
07

20
10

20
09

20
12

20
04

-2
00

7
20

07
-2

01
0

20
09

-2
01

2

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

Fe
m

al
e

16
-2

6
R

ef
er

en
ce

6.
21

3.
75

6.
03

3.
93

5.
4

3.
53

0.
01

52
0.

03
47

-0
.0

04
9

26
-3

6
-0

.0
14

6∗
∗∗

8.
81

8.
19

9.
27

8.
41

8.
98

8
0.

00
09

12
-0

.0
14

3
-0

.0
23

36
-4

6
-0

.0
28

6∗
∗∗

11
.1

2
10

.9
2

10
.0

5
9.

98
9.

66
9.

37
0.

01
06

-0
.0

12
-0

.0
08

03
46

-5
6

-0
.0

51
5∗

∗∗
8.

65
9.

55
8.

4
9.

27
8.

65
9.

28
-0

.0
00

71
-0

.0
00

66
-0

.0
06

75
56

-6
6

-0
.0

81
6∗

∗∗
7.

05
7.

64
6.

71
7.

01
7.

83
7.

83
-0

.0
09

94
-0

.0
18

1
0.

00
27

4
66

-7
6

-0
.1

14
∗∗

∗
6.

52
6.

4
5.

82
6.

19
5.

27
6.

22
-0

.0
03

35
0.

00
19

9
0.

02
79

∗

75
+

-0
.1

56
∗∗

∗
4.

75
6.

67
5.

02
6.

5
5.

49
7.

03
-0

.0
02

51
0.

02
8∗

∗
0.

03
54

∗∗
∗

M
al

e
16

-2
6

0.
00

11
7

5.
97

4.
11

5.
98

3.
94

6.
12

4.
45

0.
01

41
0.

02
72

-0
.0

02
59

26
-3

6
-0

.0
12

5∗
∗∗

8.
29

7.
29

10
.7

6
9.

81
9.

47
7.

87
0.

01
5

0.
00

15
4

-0
.0

22
2

36
-4

6
-0

.0
27

2∗
∗∗

10
.0

1
9.

81
10

.2
8

10
.3

9
9.

78
10

.4
7

-0
.0

04
44

-0
.0

16
3

-0
.0

19
9

46
-5

6
-0

.0
40

7∗
∗∗

8.
22

8.
9

7.
79

8.
69

8.
45

8.
78

0.
00

47
8

-0
.0

08
21

-0
.0

13
8

56
-6

6
-0

.0
66

7∗
∗∗

6.
53

7.
12

5.
97

6.
38

7.
19

7.
61

-0
.0

13
6

-0
.0

03
23

-0
.0

02
66

66
-7

6
-0

.0
85

3∗
∗∗

5.
21

5.
79

4.
9

5.
09

4.
55

4.
98

-0
.0

12
9

0.
00

21
1

0.
02

86
∗

75
+

-0
.1

18
∗∗

∗
2.

65
3.

87
3.

03
4.

4
3.

17
4.

55
-0

.0
07

28
0.

02
56

∗
0.

03
52

∗∗

N
ot

es
:

1.
a

R
e-

ra
nk

in
g

co
ef

fic
ie

nt
re

fe
rs

to
a

no
-c

on
st

an
tr

eg
re

ss
io

n
w

he
re

ch
an

ge
in

ra
nk

is
re

gr
es

se
d

on
th

e
de

m
og

ra
ph

ic
va

ri
ab

le
s

in
th

e
fin

al
pe

ri
od

2.
b
T

he
co

ef
fic

ie
nt

s
ar

e
no

tj
oi

nt
ly

si
gn

ifi
ca

nt
fo

rt
he

20
04

-2
00

7
m

od
el

,w
hi

le
th

ey
ar

e
fo

rt
he

20
07

-2
01

0
an

d
20

09
-2

01
2

m
od

el
.

3.
∗
p
<

0
.0
5

,∗
∗
p
<

0
.0
1

,∗
∗∗
p
<

0
.0
0
1



Table
4.5:

R
egionalFactors

Influencing
Term

3

Variable
C

oefficient
Share

ofIndividualsin
R

e-ranking
C

oefficient a
,b

A
ge-sex

C
ategory

(%
)

R
otation

1
R

otation
4

R
otation

6
2004

2007
2007

2010
2009

2012
2004-2007

2007-2010
2009-2012

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

(9)
(10)

R
egionM

adrid
R

eference
4.13

4.14
13.14

13.3
12.22

12.28
0.0455

∗
-0.025

-0.00799
G

alicia
-0.0267

∗∗∗
7.7

7.7
7.27

7.32
6.43

6.43
-0.00405

0.023
0.00503

A
sturias

-0.0048
3.36

3.35
3

2.98
2.71

2.7
0.00533

0.00578
0.00896

C
antabria

0.00449
0.9

0.9
1.28

1.29
1.44

1.42
0.0148

∗
-0.0149

-0.00627
Paı́s

V
asco

0.0023
3.69

3.63
3.66

3.67
3.94

3.95
-0.00055

0.0417
∗∗∗

0.0148
N

avarra
0.00135

2.01
2.01

1.65
1.65

1.3
1.3

0.00288
-0.00156

0.02
∗

L
a

R
ioja

-0.000513
0.83

0.83
0.69

0.69
0.88

0.96
0.00146

0.00245
-0.00226

A
ragón

-0.000675
3.44

3.41
3.36

3.35
3.23

3.23
-0.00034

0.0285
∗∗

0.0261
∗

C
astilla

y
L

eón
-0.0012

7.13
7.29

6.5
6.49

6.39
6.31

0.00815
0.0133

0.00948
C

astilla-L
a

M
ancha

-0.000617
4.74

4.67
4.89

4.82
5.17

5.2
-0.0287

∗∗
-0.0122

-0.0146
E

xtrem
adura

0.00203
3.54

3.42
2.7

2.7
2.75

2.82
-0.0152

∗
0.0274

∗∗∗
0.0113

C
ataluña

0.000396
16.9

16.9
15.09

14.93
15.12

15.19
-0.0153

-0.0109
0.0144

V
alenciana

-0.00439
12.6

12.69
10.11

10.13
12.44

12.22
0.0222

-0.0620
∗∗∗

-0.0222
B

aleares
0.00554

∗
2.28

2.25
2.19

2.19
1.92

1.87
-0.00624

0.0171
0.0133

A
ndalucı́a

-0.00871
∗∗∗

18.36
18.47

17.44
17.41

16.33
16.39

0.0128
0.0306

∗
-0.015

M
urcia

-0.00974
∗∗∗

4.52
4.46

3.11
3.18

3.41
3.41

-0.0123
-0.022

-0.0267
C

euta
y

M
elilla

-0.0148
∗∗∗

0.29
0.29

0.24
0.24

0.27
0.27

0.0052
-0.00152

-0.0028
C

anarias
-0.0119

∗∗∗
3.57

3.57
3.7

3.68
4.06

4.06
-0.0298

∗∗∗
-0.0344

∗
0.012

N
otes:

1.
aR

e-ranking
coefficientrefers

to
a

no-constantregression
w

here
change

in
rank

is
regressed

on
the

dem
ographic

variables
in

the
finalperiod

2.
bT

he
coefficients

are
notjointly

significantforthe
2004-2007

m
odel,w

hile
they

are
forthe

2007-2010
and

2009-2012
m

odel.
3.
∗
p
<

0
.0
5,
∗∗
p
<

0
.0
1,
∗∗∗

p
<

0
.0
0
1



4.6 Conclusion 137

rent economic conditions have little immediate effect on retiree incomes. Moreover, any potential

changes to pension benefits are delayed by political processes and reforms are not applied retrospec-

tively. Thus, in spite of a series of reforms that took place during the last decade in Spain, existing

pensioners’ incomes have remained relatively untouched.26

4.5.1 Role of Labour Market Status and Occupation.

Our results thus far indicate that the pre-crisis rise and post-crisis fall in IRHI were largely related

to differential income mobility. In this section we explore how income mobility is associated with

labour market status and occupation.27

Again, we use OLS regression to analyse the correlation between labour market status and changes

in the income ranks (see Table 4.6). Prior to the crisis (column 1), we see that the changes in the z-

scores are not significantly different across labour market states (except for the self-employed), but

during the crisis years (column 2) every group, except the employed and unemployed, on average,

moves up in the income ranking. Interestingly, the self-employed, the group with the greatest drop in

the income ranks between 2004 and 2007, has gained the most after 2009. The retired and disabled

groups also experienced gains, both of which receive “sticky” benefits that were not immediately

affected by current economic conditions.

Columns 3 and 4 repeat the exercise for employed individuals only to examine differences be-

tween occupations for those employed in the first wave of each rotation group, (in 2004 and 2009).

We do not observe large differences in re-rankings across occupations in the pre-crisis years (column

3), but during the crisis years (column 4), all occupation groups fell relative to the Manager group.

The largest significant drop occurs in the Elementary Occupation group, which contains manufactur-

ing, mining and construction labourers. These findings are in line with previous evidence showing

that it was those in the construction sector whose incomes fell the most after the onset of the crisis in

Spain Bentolila et al. (2012).

4.6 Conclusion

We examine the evolution of IRHI in Spain both before and during the Great Recession, and decom-

pose IRHI changes into four separately interpretable terms, reflecting the contribution of (i) income
26For a comprehensive overview of recent reforms of Spanish old-age and disability pensions see Garcı́a-Gómez et al.

(2012).
27Neither our model of health nor our decomposition accounts for individuals’ labour market status. We have repeated

the decomposition with the inclusion of labour market status and the results are extremely similar to those presented here.
This is because once age is controlled for labour market status has very little correlation with health, and consequently can
explain only very little.



Table 4.6: Labour Market Status/Occupational Re-ranking

Variable Re-ranking Coefficienta,b

2004-2007 2009-2012 2004-2007 2009-2012
(1) (2) (3) (4)

Labour Market Status
Employed 0.00472 -0.0142∗

Self Employed -0.0324∗∗∗ 0.0447∗∗∗

Unemployed 0.0109 -0.0675∗∗∗

Other 0.00397 0.0152∗

Retired -0.00679 0.0287∗∗∗

Disabled 0.000519 0.0287

Occupation
Managers -0.0222 0.0658∗∗∗

Military 0.0553 0.0136
Professionals 0.00953 0.0155
Technicians -0.0197 0.025

Clerks -0.00476 -0.0314
Service & Sales 0.0263∗∗ 0.00399

Agricultural -0.0217 -0.0513
Trade -0.012 -0.0245

Machine Operators -0.00249 -0.0286
Elementary Occupation -0.00456 -0.0452∗∗

Notes:
1. aRe-ranking coefficient refers to a no-constant regression where change in rank is
regressed on economic status/occupation in the first period.
2. bThe coefficients are jointly significant for the all models, except for the 2004-2007
occupation regression, where they are only jointly significant at the 0.10 level.
3. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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growth, (ii) income inequality changes, (iii) income mobility and (iv) changes in non-income terms.

Our findings are as follows.

First, while our approach is only informative for health changes resulting from changes in the

explanatory variables, our findings suggest that health inequality by income in Spain was rising in the

four years of economic growth prior to the start of the crisis, but this rise was modest. By contrast,

after 2008, it started falling at a faster pace. Second, there appear to be two reasons for this modest

rise in IRHI prior to 2008 – income growth and to a lesser extent income mobility – suggesting that

the health benefits associated with income growth were disproportionately concentrated amongst the

already rich; and that the elderly, often in poorer health, fell slightly on the income ranks leading to

increased disparities. Third, the falling health disparities by income mainly derived from the uneven

distribution of the income consequences of the crisis. The incomes of younger, healthier groups were

affected much more by rising unemployment than the incomes of the over 65s which mainly consist

of pensions. Since contributory pensions are “sticky” in Spain and therefore relatively unaffected

in the first years of the crisis, pensioners improved their relative position in the income distribution

substantially. Fourth, we study the role of labour market participation status and occupation and find

that, in line with others studies, it was primarily the income deterioration of the unemployed and the

employed, especially those in the construction sector, that was responsible for their fall in the income

ranking.

While the great recession caused a substantial deterioration in income, health policy makers can

perhaps take solace in the fact that the Spanish pension system - at least in the short run - appears

to have shielded some of the most vulnerable individuals. The EU has devoted special attention

to reducing health inequalities and for decades countries have attempted to reduce pervasive and

persistent health disparities in periods of economic growth. Ironically, our study reveals that the

recent crisis has perhaps done more to cut back inequality than many years of pro-poor health policy

making. This may be somewhat surprising, given the initial predictions of many observers and in

light of media reports of crises hitting the most vulnerable population segments first. But in reality it

can be understood as a logical outcome in the presence of sticky pensions and other welfare benefits

in the immediate aftermath of a financial crisis. While employment rates and earnings levels are

less protected in the short run, also pension and other benefits may be curtailed in the longer run

as a consequence of fiscal constraints. It also remains to be seen whether the post-crisis evolution of

income-related health inequality has been similar in other European countries with less sticky pension

and other benefits.
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4.A Appendix

Table A.4.1: IRHI Change Within Rotation Groups

Rotation Group IRHI Change

1 2004-2005 2004-2006 2004-2007
0.0019 0.003 0.0047∗

2 2005-2006 2005-2007 2005-2008
0.0031∗ 0.00071 0.0041∗

3 2006-2007 2006-2008 2006-2009
0.0019∗ 0.0016 0.0027∗

4 2007-2008 2007-2009 2007-2010
0.00447∗ 0.0037∗ -0.00001

5 2008-2009 2008-2010 2008-2011
0.00193 -0.00273 -0.00478∗

6 2009-2010 2009-2011 2009-2012
-0.003∗ -0.0038∗ -0.0064∗

Notes:
1. Table shows changes in IRHI compared to the base year for
each rotation group.
2. ∗ p < 0.05



Table A.4.2: Decomposition Results for Rotation Group 1

2004-2005 2004-2006 2004-2007

IRHI Change 0.00196 0.00339 0.00483
Income Growth 0.00011 0.00065 0.00084
Income Inequality -0.00016 0.00003 -0.00008
Income Mobility 0.0014 0.00216 0.00354
Non-income Factors 0.00061 0.00073 0.00094

Individual Contribution

Income Non-inc. Income Non-inc. Income Non-inc.
Mobility Factors Mobility Factors Mobility Factors

M 16-26 -0.00001 0 -0.00002 0 0.00001 0
F 26-36 -0.00022 0.00018 -0.00012 0.00012 -0.00004 0.00025
M 26-36 0.00002 0.00016 -0.00026 0.00036 -0.00016 0.00047
F 36-46 -0.00006 0.00008 0.00011 -0.00014 -0.00051 -0.00007
M 36-46 -0.00008 -0.00028 -0.00025 -0.00063 0.00015 -0.00076
F 46-56 0.00076 -0.00065 0.00008 -0.00069 0.00013 -0.00102
M 46-56 -0.00032 0.00013 0.00015 0.00034 -0.00019 0.00026
F 56-66 0.00014 -0.00064 0.00027 -0.00097 0.00075 -0.00158
M 56-66 0.00062 -0.00068 -0.00033 -0.00145 0.00097 -0.00177
F 66-76 -0.00022 0.00021 0.00102 -0.00032 0.00038 -0.00113
M 66-76 0.00045 -0.00015 0.00094 -0.00043 0.00097 -0.00083
F 75+ 0.00012 0.00165 -0.00027 0.00313 0.00038 0.00495
M 75+ 0.00023 0.0006 0.00049 0.00143 0.00052 0.00215

Galicia -0.00012 0 0.00043 0 0.00028 0.00004
Asturias -0.00001 0 -0.00001 0 -0.00002 0
Cantabria 0.00002 0 0.00002 0 0.00002 0
Paı́s Vasco 0 0 0 0 0 0.00001
Navarra 0.00001 0 0.00001 0 0 0
La Rioja 0 0 0 0 0 0
Aragón 0 0 0 0 0 0
Castilla y León -0.00002 0 -0.00001 0 -0.00002 0
Castilla-La Mancha 0.00001 0 0 0 0.00001 0
Extremadura 0 0 -0.00002 0 -0.00002 0
Cataluña 0 0 0 0 -0.00001 0
Comunidad Valenciana 0.00001 -0.00001 0.00002 -0.00001 -0.00012 -0.00001
Baleares -0.00003 -0.00001 -0.00005 0 -0.00002 0.00001
Andalucı́a -0.00021 0.00001 -0.0002 -0.00001 -0.00021 0
Murcia 0.00015 0 -0.00002 -0.00001 0.0001 -0.00001
Ceuta y Melilla -0.00002 0 -0.00003 0 -0.00002 0
Canarias 0.00018 0 0.00023 -0.00002 0.00021 -0.00002

Notes:
1. Table shows the full decomposition for rotation group 1, and the individual contribution of
each variable for the Income Mobility and Non-Income Factors terms.
2. Madrid, F 16-26 and Employed used as control groups.



Table A.4.3: Decomposition Results for Rotation Group 4

2004-2005 2004-2006 2004-2007

IRHI Change 0.00487 0.00413 0.00078
Income Growth 0.00078 0.00135 0.00084
Income Inequality -0.00017 0.00081 0.00205
Income Mobility 0.00374 0.00215 -0.00217
Non-income Factors 0.00018 0.00006 0.00007

Individual Contribution

Income Non-inc. Income Non-inc. Income Non-inc.
Mobility Factors Mobility Factors Mobility Factors

M 16-26 0 -0.00002 0.00001 -0.00001 0.00001 -0.00002
F 26-36 -0.00015 -0.0001 0.00002 0 0.00012 0.00002
M 26-36 -0.00045 -0.00003 -0.00029 0.00002 0 0.00011
F 36-46 -0.0003 0.00005 0.00007 0 0.00018 -0.00015
M 36-46 0.00027 -0.00015 0.00031 -0.00028 0.00023 -0.00054
F 46-56 0.00086 -0.00018 -0.00013 -0.00019 0.00017 0.00008
M 46-56 0.00026 -0.0002 0.00032 0.00011 0.0004 -0.00006
F 56-66 0.00068 0.00027 0.00048 -0.00022 0.00091 -0.00094
M 56-66 0.00053 -0.00016 0.00037 -0.0003 0.00012 -0.00065
F 66-76 0.0008 -0.00097 0.00151 -0.00137 -0.00026 -0.00103
M 66-76 0.00058 -0.00032 0.00077 -0.00129 -0.00012 -0.00124
F 75+ 0.00006 0.00134 -0.00121 0.002 -0.00243 0.00257
M 75+ 0.0005 0.00066 -0.00029 0.0016 -0.00116 0.00196

Galicia 0.00013 -0.00003 0.00012 0.00001 -0.00044 -0.00002
Asturias 0.00001 0 0.00002 -0.00001 -0.00001 0
Cantabria 0 0 -0.00001 0 -0.00002 0
Paı́s Vasco 0.00003 0 0.00005 0 0.00004 0
Navarra 0 0 0 0 0 0
La Rioja 0 0 0 0 0 0
Aragón 0 0 -0.00001 0 -0.00001 0
Castilla y León 0.00001 0 -0.00001 0 -0.00002 0
Castilla-La Mancha 0 0 0.00001 0 0 0
Extremadura 0.00001 0 0.00002 0 0.00001 0
Cataluña 0.00001 0 0 0 -0.00001 0
Comunidad Valenciana 0.00009 0 0.00015 -0.00001 0.00019 -0.00001
Baleares 0.00002 0 0.00004 0 0.00002 0
Andalucı́a -0.00028 0.00001 -0.00033 0.00001 -0.0003 0.00001
Murcia 0.00002 0.00001 0.00008 0.00001 0.00008 0.00001
Ceuta y Melilla 0.00001 0 0.00001 0 0 0
Canarias 0.00004 0 0.00006 -0.00003 0.00012 -0.00004

Notes:
1. Table shows the full decomposition for rotation group 4, and the individual contribution of
each variable for the Income Mobility and Non-Income Factors terms.
2. Madrid, F 16-26 and Employed used as control groups.



Table A.4.4: Decomposition Results for Rotation Group 6

2004-2005 2004-2006 2004-2007

IRHI Change -0.00244 -0.00367 -0.00643
Income Growth -0.00043 -0.00119 -0.00182
Income Inequality 0.00097 0.00103 0.00153
Income Mobility -0.0033 -0.00385 -0.00611
Non-income Factors 0.00032 0.00059 0.00029

Individual Contribution

Income Non-inc. Income Non-inc. Income Non-inc.
Mobility Factors Mobility Factors Mobility Factors

M 16-26 0.00001 0 0 0 0 0
F 26-36 -0.00006 0.00015 0.00007 0.00032 0.00018 0.00051
M 26-36 0.00016 0.00007 0.00009 0.00013 0.00011 0.00021
F 36-46 0.00013 -0.00006 0.00007 -0.00011 0.00023 -0.00042
M 36-46 0.00038 -0.00003 -0.00002 0.00003 0.00042 0.00004
F 46-56 0.00033 -0.00029 0.00031 -0.00002 0.00031 -0.00015
M 46-56 0.00025 -0.00018 0.00029 -0.00032 0.0004 -0.00046
F 56-66 -0.00102 -0.00037 -0.00044 -0.00173 -0.00012 -0.00214
M 56-66 -0.00033 0.00017 0.00083 -0.00032 0.00022 -0.00073
F 66-76 -0.00015 -0.00026 -0.00142 -0.00051 -0.00191 -0.00076
M 66-76 -0.00013 -0.00095 -0.00043 -0.0014 -0.00118 -0.00166
F 75+ -0.00215 0.00121 -0.00223 0.00284 -0.00321 0.0037
M 75+ -0.00073 0.00088 -0.00099 0.00169 -0.00176 0.00217

Galicia -0.00042 0 -0.00042 -0.00001 -0.00009 -0.00001
Asturias 0 0 -0.00001 0 -0.00002 0
Cantabria 0 0 0.00001 0 0 0
Paı́s Vasco 0.00001 0 0.00003 0 0.00002 0
Navarra 0 0 0 0 0 0
La Rioja 0 0 0 0 0 0
Aragón -0.00001 0 -0.00001 0 -0.00001 0
Castilla y León 0.00002 0 0.00001 0 -0.00001 0
Castilla-La Mancha 0 0 0.00001 0 0 0
Extremadura 0 0 0.00001 0 0.00001 0
Cataluña 0 0 0.00001 0 0.00001 0
Comunidad Valenciana 0.00015 -0.00001 0.00012 -0.00002 0.00007 -0.00003
Baleares 0.00003 0 0.00002 -0.00001 0.00001 -0.00001
Andalucı́a 0.00011 0 0.00021 0.00001 0.00015 0.00002
Murcia 0.00012 0 0.00013 0 0.0001 0
Ceuta y Melilla 0.00003 0 0 0 0.00001 0
Canarias -0.00006 0 -0.00009 0.00002 -0.00007 0.00002

Notes:
1. Table shows the full decomposition for rotation group 6, and the individual contribution of
each variable for the Income Mobility and Non-Income Factors terms.
2. Madrid, F 16-26 and Employed used as control groups.
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Chapter 5

Every Crisis Has a Silver Lining?

Unravelling the Pro-Cyclical Pattern of

Health Inequalities by Income

Joint work with Pilar Garcı́a-Gómez, Eddy Van Doorslaer and Tom van Ourti

5.1 Introduction

It is well known that those with higher incomes enjoy longer and healthier lives than those with

lower incomes. These inequalities, which are widespread and persistent, have presented a challenge

to policy makers and researchers. Both the Centre for Disease Control in the US and the European

Commission have highlighted the need to reduce disparities in health, and have devoted resources to

doing so (Frieden, 2013; European Commission, 2009).

However, despite these concerns, important gaps remain in our understanding of these inequali-

ties. Firstly, relatively little is known about how Income Related Health Inequality (IRHI) in Europe

has changed since the Great Recession. While changes in the income distribution have been well

documented (Jenkins et al., 2012), comprehensive cross-country evidence on changes in the distri-

bution of health by income before, during and after the crisis is lacking.1 Without precise estimates

of IRHI over this period, we currently miss important information that is necessary to address these

inequalities.

Secondly, evidence is also lacking on the relative importance of (changes in) different income

sources for (changes in) IRHI. We distinguish between the two most important sources of income:

1Ásgeirsdóttir and Ragnarsdóttir (2013) study differences in IRHI for 26 European countries in 2007. However, this
cross-sectional approach is uninformative about the evolution of IRHI between 2004 and 2013.
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market incomes (like wages), and government transfers (like old-age and unemployment benefits) and

separate their influence on IRHI. Why is it plausible that changes in these different income sources

have differing IRHI consequences? First, because their distribution across age and health groups dif-

fers, and secondly, because they tend to vary in opposite directions in times of recession and growth.

The distinction is also important because of its implications for policy; governments are able to ma-

nipulate transfers such as unemployment benefits more directly than, for example, wages. The crisis

induced heterogeneous labour market effects across nearly all European countries and governments

responded differently with a range of austerity measures, primarily relating to unemployment and

pension benefits. Further, if there is a distinct role of transfer income for IRHI changes, then it is

important to shed light on some of the – perhaps unintended – IRHI consequences that policies gov-

erning these transfers may have had.

Our contributions are fourfold. First, we document trends in IRHI in 7 European countries be-

tween 2004 and 2013 – both before and after the financial crisis.2 Second, we develop a novel decom-

position method that identifies the separate roles of government transfers and market earnings on the

evolution of IRHI. Third, by means of the decomposition, we unravel the most important drivers of

the distinctive patterns that we observe for IRHI pre- and post-crisis. Lastly, we provide descriptive

evidence on the role that specific pension policies, and the austerity measures enacted in Greece, have

had on IRHI.

We add to the literature using rank-dependent, concentration index-type measures to compare

health inequalities by income across countries that started with Van Doorslaer et al. (1997). Subse-

quent contributions have employed a series of decomposition methods and measurement corrections

that provided additional insight into the drivers of cross-country differences (Van Ourti et al., 2009,?).

These and other European comparative studies report substantial pro-rich inequalities in health in Eu-

rope, and they highlight the role of changes in the income ranks, in addition to health, for inequality

trends.

Coveney et al. (2016) used a decomposition of concentration indices to study IRHI changes in

Spain between 2004 and 2012. Though IRHI was initially growing between 2004 and 2008 as the

Spanish economy grew, large reductions in inequality occurred after 2008.3 A decomposition anal-

ysis of these trends reveals that IRHI was primarily driven by the income position of the relatively

unhealthy elderly groups. In “good” economic times, the income position of the young tended to rise

faster than that of the elderly, increasing the income gap between the healthy and the unhealthy and

subsequently leading to increases in IRHI. During bad economic conditions, incomes of the young
2Austria, Belgium, France, Greece, Italy, Portugal and Spain.
3This is in line with Regidor et al. (2014) who – using a different methodology – conclude that all-cause mortality

declined more rapidly during the economic crisis among groups with low socioeconomic status.
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fell while incomes among the elderly tended to be far more stable, leading to decreases in IRHI. While

these findings hint at the distinct roles played by government transfers versus income from labour, the

decomposition methods used did not explicitly allow for this distinction. Further, studying a range

of European countries, with differing levels of exposure to the crisis as well as a range of different

pension and other policies, provides further insights into the determinants of trends in IRHI.

We do not aim to add to the literature that started with Ruhm (2000), linking health and economic

conditions, aiming to identify a causal effect of the crisis or income on health. Rather, our decompo-

sition illustrates how changes in transfer and market incomes are related to changes in the association

between income and health, and thus IRHI. By following cohorts of individuals over time in relation

to the underlying income and health distributions, our approach also differs from the cross-country

comparisons of Mackenbach and co-authors (Mackenbach et al., 1997, 2008), which document levels

and trends in socio-economic inequalities in health (mostly education- and occupation-related) for a

large number of European countries.

Our findings are as follows. First, we find that IRHI trends are interwoven with macroeconomic

conditions. Documenting annual IRHI changes across 7 European countries between 2004 and 2013,

we find differential trends that imply IRHI is pro-cyclical: perhaps surprisingly, inequalities tend to

increase in good economic times and fall in bad times. Between 2004 and 2008, a time of relatively

steady economic growth in Europe, IRHI was on average relatively flat, though it significantly in-

creased in countries with substantial economic growth, such as Greece and Spain. Between 2008 and

2012, IRHI fell in countries that were most affected by the crisis, namely Greece, Spain and Portugal.

IRHI in countries that did not experience severe economic consequences as a result of the crisis, such

as France and Austria, remained stable or increased slightly.

Second, by decomposing these changes, we find that in general the two main sources of household

income – market income and government transfers – have opposite effects on IRHI. Market income

growth is associated with increasing health inequalities, while rising government transfers tend to

reduce them. This stems from the fact that market incomes are on average afforded to the healthy,

while government transfers, especially pensions, are on average afforded to both the unhealthiest and

poorest individuals in the population.

Third, related to the first and second finding, we show that the pro-cyclical pattern of IRHI can

largely be explained by the differing importance of government transfers and market incomes in good

economic versus bad economic conditions. The economic crisis led to differential income changes

by age-group, and thus by health status. Thus, if income from work grows more (less) than pensions

during good (bad) economic times, IRHI grows (falls), in particular when the relative income position

of the (unhealthy) very elderly is affected.
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Lastly, we present descriptive evidence that both household structure and policies governing pen-

sions across countries have a measurable impact on IRHI. Households where intergeneration sharing

of pensions is high, as well as pension reforms Greece enacted as part of the austerity measures in

2010 and 2011, both appear to have dampened the IRHI reducing effect of government transfers.

Further, given the importance of the income position of the very elderly in determining IRHI trends,

we conclude that policies governing the generosity of pensions for this group, such as indexation

policies, can play a role in governing these trends.

5.2 Decomposition of Changes in Income-Related Health Inequality

Our decomposition method is based on an extension of the method used in Baeten et al. (2013). In

this section we describe the approach for a balanced cohort of n individuals that we observe at the

start (period 1) and end (period 2) of a time interval.

5.2.1 Health Inequality Measurement.

To measure health inequalities we use the corrected concentration index (CCI) (Erreygers, 2009)

which satisfies the mirror condition and is insensitive to equal health additions (absolute inequality)

(Erreygers and Van Ourti, 2011). When health is bounded between 0 and 1, the index can be written

as:

CCI(ht|yt) =
8

n2

n∑
i=1

zithit (5.1)

where ht and yt are the health and income distribution in period t = 1 or 2, hit describes the

health level of individual i and zit is a weight that depends linearly on the income rank of individual

i with individuals ranked from poor (i = 1) to rich (i = n), i.e. zi = ((2i− n− 1))/n. This income

weight takes the value 0 for the individual with median income, and increases linearly with income

rank.

5.2.2 Health Model.

We use a simple descriptive model that links health linearly and additively to its associated factors:

hit = α+ θ(yit) + x
′
itβ (5.2)

where α is an intercept parameter; θ(yit) is a non-linear function of income; xit represents a

vector of K non-income variables (in our analysis, these are a set of age-sex and region dummies),
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and β is its associated parameter vector reflecting partial associations. The exact functional form for

θ(.) pre-determines the sign and magnitude of some parts of our decomposition. Therefore we use a

flexible functional form in the empirical application.

5.2.3 Decomposition of IRHI Change.

Our interest lies in decomposing changes in IRHI. Taking the change in the CCI between two periods

and combining equation Equation (5.1) and Equation (5.2) leads to:

CCI(h2|y2)− CCI(h1|y1)

=
8

n2

[ n∑
i=1

zi2hi2 −
n∑
i=1

zi1hi1

]
=

8

n2

n∑
i=1

{[
zi2θ(yi2)− zi1θ(yi1)

]
+ β

[
zi2x

′
i2 − zi1x

′
i1

]} (5.3)

Equation (5.3) shows that we can disentangle the change in IRHI into a part due to changes in

the association between the income rank and the non-linear income function (zi2θ(yi2) − zi1θ(yi1))

and a part due to changes in the association between the income rank and the non-income factors

(zi2x
′
i2 − zi1x

′
i1).

4

Because the aim is to separate the role of different income sources for the change in IRHI, we

distinguish between total income (yit) as the sum of market incomes (yMit ) and government trans-

fers (yTit), i.e. yit = yMit + yTit . Income weights can then be defined separately for each source.

Weights associated with total income (zit) and market income (zMit ) are defined in the standard way

described above. The income weights associated with transfers are defined as the difference between

an individual’s total income rank and market income rank:

zTit = zit − zMit (5.4)

An individual’s transfer income rank thus not necessarily coincide with the rank of yTit , but mea-

sures the number of steps on the income ladder that separate total from market income. In our de-

scriptive setting this coincides – as is common in the income redistribution literature (Plotnick, 1981;

Lambert, 2001) – with interpreting market income as the income that would prevail in the absence of

government transfers, or in other words with the redistributive effect of government transfers.
4An additional assumption is that there is no structural change in the health equation across periods.
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Combining our model for health (Equation (5.2)), our definition of transfer income weights (Equa-

tion (5.4)), and after manipulating the terms in the final line of Equation (5.3), the change in IRHI

between periods 1 and 2 can be expressed as the sum of 5 terms:

CCI(h2|y2)− CCI(h1|y1)

=
8

n2

n∑
i=1

{
(zMi2 − zMi1 )

k∑
j=1

xji2βj︸ ︷︷ ︸
market-related income mobility

+ (zTi2 − zTi1)
k∑
j=1

xji2βj︸ ︷︷ ︸
transfer-related income mobility

+ zMi2 θ(y
M
i2 )− zMi1 θ(yMi1 )︸ ︷︷ ︸

market-related inequality ∆

+
[
zi2θ(yi2)− zMi2 θ(yMi2 )

]
−
[
zi1θ(yi1)− zMi1 θ(yMi1 )

]︸ ︷︷ ︸
transfer-related inequality ∆

+ zi1

k∑
j=1

βj(xji2 − xji1)︸ ︷︷ ︸
ageing and migration

}
(5.5)

5.2.4 Explanation of Decomposition Terms.

We term the first two expressions in Equation (5.5) market-related income mobility and transfer-

related income mobility respectively. Market-related income mobility measures the association be-

tween changes in the market income weights/ranks and non-income related health in the second

period. The expression between brackets captures the change in an individual’s market income

weights/ranks between period 1 and 2, and will be positive (negative) if an individual has moved

up (down) in the market income ranks. The second part of the term captures the non-income related

health of the individual in the second period. The transfer-related income mobility term is identical,

except for the use of transfer income weights. Both income mobility terms are more positive (neg-

ative) when upwardly (transfer/market) income mobile individuals have better (worse) non-income

health in period 2, or vice versa.

Note that if the non-income variables consist of multiple variables that enter the health equation

additively, then the mobility terms comprise a summation of different sub-terms. This holds, for

example, if one uses a set of age-sex and region dummies as we do. This allows one to separate the

aggregate mobility effect into the contribution per age-group and region category. Summing the total

transfer and market mobility terms gives the total income mobility.

The third expression in Equation (5.5) is termed market-related inequality change. It measures the

consequences for IRHI of the change in the distribution of market incomes. θ(yMi2 ) denotes the health

level in the second period that corresponds to yMi2 conditional on the non-income factors. The first

product therefore measures market related inequality in the conditional health levels. This is simply
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the CCI for market income related health in the second period. The second product in the expression

is identical, but refers to the first period. The difference between these two corrected concentration

indices therefore captures how changes in the distribution of market incomes between the two periods

were associated to changes in IRHI, both by their association with health through the θ(.) function,

and via the re-ranking of individuals on the market income scale. For a monotonically increasing θ(.)

function, market-related inequality change will indicate rising (falling) IRHI when the rich (poor)

predominantly experience income improvements (deteriorations).

The fourth expression in Equation (5.5) is the transfer-related inequality change. Term [zi2θ(yi2)−

[zMi2 θ(y
M
i2 )] captures the degree to which transfer incomes change the association between income

weight/rank and income-related health in the second period; the second term measures this effect in

the first period. Both terms thus reflect whether transfer incomes result in a more or less equal dis-

tribution of income-related health, or the extent of the redistributive effect of transfer incomes in the

separate periods. Their difference is a measure of how this effect has changed over time, and its con-

sequence for the evolution of IRHI. Summing market-related inequality change and transfer-related

inequality change gives the change in the CCI for total income-related health between periods 1 and

2.

Finally, any remaining change in IRHI is captured by the ageing and migration term. It indicates

how changes in non-income related health, due to their association with initial income weights/ranks,

have led to changes in IRHI. As our non-income variables are age-sex and region dummies, it there-

fore measures the impact of ageing and within-country migration on IRHI. As these phenomena have

consequences for health, the degree to which they are associated with income ranks may affect IRHI.

This term mainly acts as a control, allowing us to study changes in IRHI net of ageing and migration

effects.

5.3 Empirical Analysis

5.3.1 Data.

We use the European Union Survey on Income and Living conditions (EU-SILC), a European-wide

survey designed primarily to collect labour and income related data. It is well suited to our analysis

for several reasons. First, it provides a detailed breakdown of the sources of disposable household

income, which is crucial to measuring the separate effects of government transfers and market income

on IRHI trends. Secondly, individuals are asked to rate their self-assessed health (SAH), which is used

as our health measure.
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Our selection of countries is based on data availability and quality in the EU-SILC. We require

that countries have adequate income and health data for the whole 2004-2013 period. Appendix

Table A.5.1 provides information on the available information for the 29 EU-SILC countries and the

selection criteria used for inclusion. This leaves us with the following 7 countries: Austria, Belgium,

France, Portugal, Italy, Greece and Spain.5 Crucially, the latter 4 countries are of particular interest

because they were more affected by the 2008 financial crisis.

The EU-SILC is a rotating panel. A new random sample (referred to as a rotation group) is drawn

every year, followed for 4 years and then dropped. Therefore, at any point, each country has 4 con-

current panel samples. There are 7 rotation groups in our study period, i.e. 2004− 2007, . . . , 2010−

2013.6 We use balanced data from all 7 rotation groups to estimate our model for health (Equa-

tion (5.2)).78 Table 5.1 gives the number of observations per rotation group and country. Due to

changes in data collection methods, the income data for France from 2009 onwards are not compara-

ble to earlier waves. We therefore ignore the 2007-2010 period for France.9

Table 5.1: Observations Per Wave, Rotation Group, Country in EU-SILC Dataset

Rotation group 1 2 3 4 5 6 7

Period 2004-2007 2005-2008 2006-2009 2007-2010 2008-2011 2009-2012 2010-2013

Observations
Austria 2,294 1,923 1,901 1,894 1,882 2,200 2,163
Belgium 1,315 2,126 1,966 1,987 1,670 1,762 1,886
Greece 2,221 2,113 2,498 2,238 2,756 2,479 2,244
Spain 4,136 4,918 5,046 5,474 5,522 5,177 4,571
France 1,433 2,323 2,360 2,359 2,399 2,295 2,316
Italy 8,240 7,898 7,673 7,709 6,730 5,652 4,986
Portugal 1,945 1,758 1,770 2,014 2,101 2,612 2,571

Notes:
1. Table shows for each rotation group the period spanned and the number of balanced observations (observed for the whole
4 year period) for each country.

5Our selection criteria is that a country is represented in all 7 rotation groups. Furthermore, although many of the Nordic
countries – Finland, Iceland and Sweden – are present in rotation groups, their use of register-based data collection methods
leads to many missing values of the SAH variable raising concerns of attrition bias. Sample sizes in some of these countries
are too low for reliable analysis. For instance, there are only 13 women above the age of 75 in the 2004 sample in Iceland.
Appendix Table A.5.1 details the selection criteria per country.

6The French EU-SILC uses longer rotation groups, but for comparability with other countries we shorten them to 4
years.

7We symmetrically drop the top and bottom 1% of total income to remove potential outliers.
8Our restriction to balanced panels excludes the possibility of attrition bias. However, trends of IRHI computed when

using all data - not just a balanced panel – are extremely similar to those we find here, suggesting attrition bias is not driving
our results.

9The data collection method for certain components of income in France, namely “interest, dividends and profit from
capital investments in unincorporated business”, went from being survey-based to register-based in 2009. The average
value of this component increased by almost e3,000, and led to a dramatic rise in average incomes. It is not possible to
distinguish between “real” increase in the component and inflation due to more accurate collection methods.
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5.3.2 Income and Health Measurement.

The EU-SILC provides, per person and household, a detailed breakdown of the components of annual

household income. We separate total income into what we term market income and transfer income.

An individual’s market income is defined as the equivalized value of disposable household income

before all social transfers, and transfer income as the equivalized value of the sum of all household

social transfers.10 The income reference period is the previous calendar year. Table 5.2 lists the

EU-SILC components that make up household market and transfer income.

Table 5.2: Income Components of Transfer and Market Incomes

Transfer Income Market Income

• Unemployment benefits • Gross employee cash or near cash income
• Old-age benefits • Company car
• Survivor benefits • Gross cash benefits or losses from self-employment
• Sickness benefits • Pensions received from individual private plans
• Disability benefits • Income from rental of a property or land
• Education-related allowances • Regular inter-household cash transfers received
• Family/children related allowances • Returns from unincorporated business
• Social exclusion not elsewhere classified • Income received by people aged under 16
• Housing allowances

Minus
• Regular taxes on wealth
• Regular inter-household cash transfer paid
• Tax on income and social insurance contributions

Notes:
1. Table shows the makeup for our definitions of Transfer and Market incomes as used in the EU-SILC survey.
Importantly, old-age benefits captures all benefits that provide a replacement income once an individual retires
or reaches a certain age. This includes public pension payments, care allowances, disability cash benefits, lump
sum payments at the time of retirement and other cash benefits. It does not include any payments from private
pension plans, which enter the market income definition.

What is the relative importance of each of these components? Public pensions form the largest

share of transfer income, and employee income (income from work) for market incomes.11 When

using the term “pensions” we are referring to what EU-SILC terms “old age” benefits. These include

the collection of all social payments to the elderly that are designed to provide a replacement income

when a person has reached a certain age.12

10Our equivalization procedure involves dividing household income by the square root of the number of individuals living
in the household in the current period.

11Appendix Table A.5.2 shows the percentages of transfer and market incomes that are made up of pensions and wages
respectively, per rotation group and country.

12This includes public pension payments, care allowances, disability cash benefits, lump sum payments at the time of
retirement and other cash benefits. It does not include any payments from private pension plans, which enter the market
income definition. See the EU-SILC guidelines documentation for further details. Our data shows private pensions are not
an important part of transfers for these countries. On average across all rotation groups and countries, payment from private
plans are less than 1% of old age benefits. Per country, the average fraction of private payments to pension payments is
never higher than 3%.
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The other key variable in our analysis is the self-assessed health variable. Individuals are asked

the following question: “How is your health in general? Is it: (1) very good, (2) good, (3) fair, (4)

bad, (5) very bad?”

5.3.3 Implementation of Decomposition.

The first step in the decomposition procedure is to calculate, per country, rotation group and year,

IRHI using the CCI. The CCI requires a ratio-scaled health measure (Erreygers and Van Ourti, 2011).

In order to transform the ordinal SAH measure in EU-SILC to a ratio-scaled measure, we use an

interval regression with the threshold values imposed from external data (Van Doorslaer and Jones,

2003).13 The variables included in these regressions are age/sex dummies,14 region dummies,15 and

a second degree income polynomial, in line with the widely observed concave shape of the health-

income gradient. This predictive set of variables is parsimonious, yet is strongly associated with

health. The interval regression is run separately for each country and serves a dual purpose: (i) they

produce a ratio-scaled predicted health score between 0 and 1, and (ii) they provide the non-income

and income coefficients (βj and θ(.)) used in the decomposition (Equation (5.5)).16 The regression

results for each country are shown in Appendix Table A.5.3.

For each country, we then take 3 rotation groups (2004-2007, 2007-2010, 2010-2013), and cal-

culate and decompose the change in the CCI from the first year (the base year). We only present the

decomposition with respect to the last year of the rotation group because intermediate decompositions

are similar in sign and relative magnitude within rotation groups.17 In order to allow for statistical in-

ference on IRHI levels, IRHI changes and the decomposition terms, we bootstrap the entire procedure

1,500 times.

5.4 Results and Discussion

This section first examines the general trends in IRHI in the 7 countries under study between 2004 and

2013. We then separately study the role of the mobility and health inequality terms in IRHI changes

before and after the financial crisis in 2008. Next we compare cross country differences in the transfer
13Our imposed thresholds are from the empirical distribution function of the health utility index in the Canadian National

Population Health Survey 1994-1995.
14The age/sex dummies divide age into the following categories, separately for men and women: 16 to 25 years, 26 to

35 years, 36 to 45 years, 46 to 55 years, 56 to 65 years, 66 to 75 years, and more than 75 years of age.
15Regions in EU-SILC are recorded at the NUTS II level. For Portugal and Belgium however this information is missing

and we use urbanization dummies (dense, medium and thinly populated areas) instead.
16While we only explicitly decompose the 2004-2007, 2007-2010 and 2010-2013 rotation groups, to maximize sample

size the observations for all 7 rotation groups spanning 2004 to 2013 are included in the health regressions.
17An exception is Greece in the 2010-2013 decomposition, which we explore in more detail below. The full decomposi-

tion results per comparison and per rotation group are available upon request.
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Figure 5.1: IRHI Trends

Notes:

1. Figure shows, for each country, IRHI per year, per rotation group. Note the different
scale of Portugal. Bold bars years in which change in CCI compared to base year is
significant (p < 0.05). Y-axis: value of the CCI.

mobility terms and pension policies. Finally, the role of the austerity measures enacted in Greece on

IRHI is explored.

5.4.1 IRHI Trends Across 7 European Countries.

Figure 5.1 shows how IRHI, as measured by the CCI and calculated using predicted health, has

evolved between 2004 and 2013 for the 7 countries under study. The separate lines represent the

three rotation groups used to span the period. The black bars show 95% confidence intervals. While

the confidence intervals in Figure 5.1 are informative about the sampling variability of the yearly

point estimates of IRHI, our interest lies in examining the changes of IRHI between different periods.

It is therefore useful to know if the changes in IRHI with respect to the base year are statistically

significant, which is signified by the bold bars.18

We note both geographical and time patterns in the IRHI trends. Before 2008, IRHI was either

increasing or showed no significant movements, whereas between 2010 and 2013 some countries

experienced dramatic decreases. There seems to be a geographical pattern; IRHI in southern EU

countries was initially rising before beginning to fall after approximately 2008. Continental countries
18We do not check the statistical significance of changes across rotation groups. While they might be relevant (e.g.

comparing the change in IRHI from the onset of the financial crisis), we only observe the same set of individuals over a
period of 4 years.
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Figure 5.2: Equivalent Household Income

Notes:

1. Figure shows, for each country, average total and market income per year, per rotation
group.

saw much smaller changes in IRHI, and both Belgium and France experienced significant increases

in IRHI in the 2010-2013 period.

The above suggests distinctive trends in IRHI before and after the “Great Recession”. Figures 5.2

to 5.4 respectively show, for our sample of analysis, the trends in average total and market equival-

ized household incomes, unemployment and retirement rates, and the generalized Gini coefficient,

calculated using both market and total income. Figure 5.3 reveals an increase in unemployment for

Spain, Portugal and Greece between 2009 and 2010, where it continues to rise throughout the 2010-

2013 period. Unemployment increases are only noticeable in Italy in the 2010-2013 period, while the

continental countries appear unaffected. Patterns in equivalized income are less obvious, and appear

mostly in the last rotation group in the southern countries, especially Greece.

Not surprisingly, in periods of economic growth the generalized Gini coefficient of market income

tends to increase. The addition of transfers leads to lower absolute income inequality. For countries

that suffered noticeable household income declines after the economic crisis, the generalized Gini

index decreased.

Given these trends, we distinguish between 3 different periods in our analysis. Following Jenkins

et al. (2012), we consider the 2004-2007 period to be the pre-crisis period; a time of relatively normal

growth for the 7 countries. We term the rotation group spanning 2007-2010 the crisis period. Finally,

the post-crisis rotation period (2010-2013) is when consequences of the crisis are most obvious in



Figure 5.3: Activity Status Trends

Notes:

1. Figure shows, for each country, the average proportion of retired and unemployed
individuals per year, per rotation group.

Figure 5.4: Generalized Gini Trends

Notes:

1. Figure shows, for each country, the value of the generalized Gini for total and market
income per year, per rotation group.
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southern countries, while large effects for household income, inequality and employment are absent

for the continental countries.

Comparisons of household statistics in Figures 5.2 to 5.4 and IRHI in Figure 5.1 reveal that

IRHI trends differ in good and bad economic times. Years in which countries experience steady

income growth – such as Greece, Spain and Italy in the pre-crisis period – coincide with significant

increases in IRHI. Average income drops – and increasing unemployment – appear to be linked to

decreases in IRHI; notably in Greece and Portugal in the post-crisis period. Our subsequent analysis

is motivated by these observations: why does IRHI follow a pro-cyclical pattern, with significant

increases (decreases) during times of economic growth (recession)? The decomposition will focus

on the pre-crisis (2004-2010) and post-crisis (2010-2013) periods. This is because these periods

encapsulate clear phases of economic growth or decline for countries, while the crisis period (2007-

2010) often includes mixed periods of both.19

5.4.2 Decomposition Results.

Figures 5.5 and 5.6 depict the estimated income mobility and inequality change terms, respectively.

The ageing and migration term proves to be unimportant for explaining IRHI evolution.20 Panels A

and B in Figure 5.5 show the results for, respectively, the pre-crisis and post-crisis rotation groups for

all countries. The leftmost cluster of bars in panel A shows (in order from left to right) the contribution

that market-related mobility (black), transfer-related mobility (grey) and total income mobility (white,

and the sum of the previous two terms) had on IRHI changes in Austria between 2004 and 2007. The

remaining clusters/panels have a similar interpretation for the different countries and rotation groups.

In Figure 5.6 each cluster of bars shows, per country, the effect that market-related inequality change,

transfer-related inequality change and total inequality change (sum of the previous two terms) had on

IRHI change in that rotation group.

19We present the decomposition results of the 2007-2010 period in Appendix Figure A.5.1.
20See Appendix Figure A.5.2.
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The mobility terms are much larger in magnitude than the inequality terms, and thus appear to be

the most important determinant of IRHI change. The reason for this is that the association between

ageing and health is stronger than the association between income and health.21

5.4.3 Mobility Terms.

Figure 5.5 reveals that, across countries and periods, market mobility tends to be positive and sizable.

In comparison – though usually negative – the size and sign of transfer mobility is more varied, and

therefore it is often this term which leads to differences in the total mobility term across country-

period comparisons.

Recall that the mobility terms can be further split into per-age/sex groups and per-region contribu-

tions (see Equation (5.5)). Doing so gives an indication of which age/sex group’s income movements

are influencing the direction of the separate mobility terms, and therefore gives insight into the pat-

terns in Figure 5.5. While we don’t refer to these more detailed results explicitly in the main text,

they inform much of the following discussion, and can be found in the appendix for each country,

mobility term and for both the pre- and post-crisis period.22

The reason for the IRHI increasing effect of market mobility is that improvements in market in-

comes help the youngest, and therefore healthiest, groups to climb the income ladder, thus increasing

the disparities in health by market income. Greece and Portugal are amongst the only countries to

not experience significantly positive market mobility in the post-crisis period, as market incomes no

longer grew in this period and the very elderly were least affected by shrinking market incomes as

they rely more than any other age group on pension incomes. Given the variation in transfer mobility,

we distinguish between the following distinctive patterns.

First, one can distinguish between two types of periods and countries: (i) those in which transfer

mobility fully compensates for the increase in IRHI caused by market mobility, such as in Austria

(pre- and post-crisis), Portugal (pre-crisis period) and Spain and Italy (post-crisis), and (ii) periods

and countries in which transfer mobility is close to zero, such as in Belgium and France (pre- and post-

crisis), and Spain (pre-crisis). Our results show that transfer mobility tends to be IRHI reducing, as

transfers mainly consist of pensions, which disproportionately benefit older and relatively less healthy

groups. However, the crucial difference between the above two patterns is the income position of the

very elderly (75+) compared to young age groups. We return to this observation below.
21For example, in Portugal, the country with the largest predicted health difference between the oldest and the youngest

individuals, the difference between the individuals with the minimum and the maximum income-related health value is
roughly the same as the difference in predicted health between a 16-25 year old and a 56-65 year old man. See Appendix
Table A.5.3.

22See Appendix Table A.5.4-Table A.5.10 for the results per age/sex group. The results per region are suppressed as they
are small and not important to the decomposition, but are available upon request from the authors.
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Second, there are countries for which transfer mobility is large and positive, such as Italy and

Greece pre-crisis. Further decomposition of these terms reveals that this can be attributed to house-

hold structure. Rather than solely being enjoyed by the old, younger people in Italy and Greece also

benefited from the large increase in pension incomes between 2004 and 2007. This is due to young

individuals in these countries continuing to live at their parent’s home, and therefore benefiting from

their parent’s (or grandparent’s) influx in pension income upon the retirement of the elderly members

of the household. This increase in transfer income for the young and the just-retired, and to the exclu-

sion of the very-elderly, led to increasing income disparities between the healthy and the unhealthy,

and therefore increased IRHI.

Lastly, there is a remarkable pattern for the southern countries post-crisis, whereby transfer mo-

bility is large and negative in the final rotation group. This is most noticeable in Greece and Portugal,

where this term “over-compensated” for market mobility. In such cases total income mobility is neg-

ative, and leading to decreases in IRHI between 2010 and 2013. This is due to the “stickiness” of

pensions relative to income from work – while the crisis led to a significant fall in the incomes of

the young , the incomes of elderly (and, on average, unhealthier) pensioners were less affected. This

generated a drop in IRHI.

5.4.4 Market and Transfer Inequality Change.

The market inequality change term tends to be positive in most countries and periods as market in-

comes tend to become more unequally distributed over time (see Figure 5.6).23 This occurs primarily

for two reasons. Firstly, wage growth for the employed is typically positive. Second, as shown in

Figure 5.3, the number of retirees in our panels – those who have much lower market incomes – grad-

ually increases over time. Both of these phenomena lead to growing inequality in market incomes,

and therefore also growing inequality in (predicted) market-income related health.

By contrast, the transfer-related inequality change terms tend to be negative, leading to IRHI

decreases. This reflects two facts. First, the redistributive effect of transfers was negative in each

year, i.e. market income-related health inequalities (zMit θ(y
M
it )) were always larger than total income-

related health inequalities (zitθ(yit)). Second, the redistributive effect became larger (i.e. more

negative) over time in most countries. We further find that the transfer-related inequality change

terms compensate, in most countries and periods, the increase in market inequality change such that

the changes in total income inequality change are usually close to zero.
23Portugal (post-crisis) is the only exception which combines an increase in market inequality change with a decrease

of the generalized Gini index (see Figure 5.4). This happens because the partial association between income and health –
the θ(.) function – is steeper and more concave in Portugal than other countries (see Appendix Table A.5.3), and because
average incomes were declining at the same time.
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The most important social transfers, in terms of change in the redistributive effect, are pensions.

To demonstrate this, we repeat our decomposition and redefine transfer income to only include income

from “old age benefits” and “survivor benefits”,24 attributing the remaining transfer components to

market income. The results are shown in the Appendix Figure A.5.3. Although the magnitudes

change slightly for some countries, we observe much the same pattern as in Figure 5.6. This confirms

that old-age and survivor benefits are the primary source of the increasingly redistributive effect of

transfers over time.

In addition to transfers lowering IRHI through the mobility terms, our results identify a secondary

IRHI reducing mechanism of transfers, and more specifically pensions. The θ(.) function describes

the association between income and health conditional on age (and gender and region). Pensions

reduce IRHI rises by providing income to, on average, poorer individuals, thereby reducing disparities

in market income related health by improving the poor’s (age-independent) health and income rank.

Those that benefit from pensions are in worse health, not only because they are old, but also because

their market incomes provide little market income-related health.

The smaller association between income and health relative to the association between age and

health means that the pro-cyclical pattern seen in the mobility terms is less obvious for the inequality

change terms. For each of the crisis countries, the effect of total-income inequality change does in

fact switch from positive to negative (Greece, Spain, Italy) or becomes more negative (Portugal),

when comparing the results from 2004-2007 to 2010-2013. However, with the exception of Greece

these changes are quantitatively unimportant.

5.4.5 Pension Policies and IRHI.

The decomposition results highlight the particular importance of transfer mobility in determining the

trends in IRHI: the income position of the old and very elderly (75+) as compared to younger age

groups turned out to be crucial. A natural next step, and the goal of this section, is to check whether

different trends in transfer mobility are related to differences in pension policies across countries.

This is a first step towards understanding the role of pension policies for IRHI trends, although we

acknowledge that the selection of 7 countries (see data section) inevitably restricts the scope of our

analysis.
24The EU-SILC data is organized in such a way that separating these components, and focusing only on old age benefits,

is impossible for the early rotation groups, such as the 2004-2007 rotation groups. However, for the years in which we can
separate these components we find that the average contribution across all countries of old age benefits (pensions and other
lump cash benefits afforded to those who have reached the required age) to household income is approximately e7,000
while for survivor benefits the average contribution is e300.
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We restrict the analysis to the pre-crisis 2004-2007 period because – in contrast to later periods

– this was a time of relatively normal economic growth. The severity of the crisis (and the policy

reaction to it) in the post-crisis period differed substantially across countries. Restricting the period

to a time of similar economic growth across countries facilitates a clearer cross country comparison

of pension policies.

Panel A of Table 5.3 shows the average change in levels and ranks of transfer incomes between

2004 and 2007 for different age groups (as defined in 2007). Transfer mobility in Portugal and Austria

led to large reductions in IRHI because the very elderly enjoyed gains in transfer income (ranks)

relative to working-age groups, especially the young. The effect of transfer mobility is muted in

Belgium, Spain and France because the very elderly’s relative transfer income position has stagnated.

Finally, as discussed in the previous sections, in both Greece and Italy the transfer incomes of the

young largely outperform those of the 65+ (Italy) and 75+ (Greece) age groups. Therefore, even

in situations where newly retired individuals in the 56-65 group are compensated for their loss in

market incomes, it is apparently not always sufficient for the net effect of transfer mobility to be IRHI

reducing. Because of the large drops in predicted health as individuals’ age, any relative income

losses for those in the 66-75 and especially those in the 75+ age categories will have IRHI increasing

effects.
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The phenomenon of relatively lower incomes of the very elderly (75+) compared to more recent

retirees is observed across Europe and elsewhere (OECD, 2008). In our setting, the key factor is how

transfer incomes change the income position of the very elderly (i.e. how much they move up or down

the income ladder), relative to others in the population – especially young groups. Differential growth

in pensions compared to transfer payments to other age groups can be driven by several factors. First,

if there is a gradual rise in pension contributions leading to more generous pensions for newly retired,

the relative losses of the already-retired will be larger. This will be amplified if pension incomes from

the recently retired are shared with younger household members while no similar sharing mechanism

holds for the very elderly. Secondly, the indexation policy of pensions matters. If indexation is pegged

to inflation, the real value of pensions will not increase. However, some countries use other indexing

rules such as pegging pensions to average earnings, or “progressive” indexation, with smaller pensions

enjoying higher proportional increases (OECD, 2009). Third, the age at which an individual retires

will have consequences for the transfer mobility term. Because poor health rises sharply with age, the

IRHI reducing effect of an increase in pension income at retirement will be larger the later-in-life an

individual retires.25

In order to get a sense of the role of the different institutional settings, panel B of Table 5.3 shows

a number of different indicators of pension generosity in 2007; while panel C shows the type of

indexing rules in effect per country during the 2004-2007 period. There is little evidence to suggest

that generosity is related to the IRHI reducing effect of pensions. Austria consistently has the highest

level of pension generosity, while Portugal has amongst the lowest, yet the transfer mobility for both

of these countries significantly reduced IRHI. Belgium, France and Spain occupy different ranks

according to the generosity measure used, yet for all of these countries transfer mobility is close to

zero. As emphasized earlier, it is the relative changes in transfer income rank which are crucial to

determining transfer mobility, and for those who are already retired pension generosity may do little

to increase their income rank.

Indexation policy, shown in panel C of Table 5.3, may also be important for differences in transfer

mobility. Austria, which employs yearly discretionary increases in pensions, has adjusted pensions

between 2004 and 2007 in a progressive manner (Whitehouse, 2009). Benefits rose with prices up

until the median pension, while all pensions above the median were increased by a flat amount.

Portugal had a similar progressive indexation. Belgium, France and Spain, applied pension indexation

with prices, without any progressivity adjustments (OECD, 2007). Because the very elderly tend to

have lower pension benefits, any progressivity in indexation will naturally favour them, thus plausibly
25However, due to large age brackets, our decomposition may fail to pick up the IRHI effect of small differences in the

retirement age between countries. Moreover, the income position of the very elderly might not be directly affected by this;
but only indirectly as compared to the newly retired.
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increasing pension incomes ranks for these groups relative to younger groups, and reducing IRHI

(OECD, 2009).

The age of new retirees in Austria between 2004 and 2007 is also important for transfer mobility.

The large increase in transfer income for those aged above 75 is in part due to a number of newly

retired pensioners who, in 2007, were aged 75 or more. According to calculations using our data,

approximately 10% of the new retirees in this period fit this description in Austria. Thus, the influx

of transfer income to these old age and relatively poor-health individuals increased the IRHI reducing

effect of the rank mobility from transfers.

5.4.6 Greek Austerity Measures and IRHI.

The most drastic policy changes in this period were enacted in Greece. In exchange for two bailout

packages in 2010 and 2011, the Greek government introduced a wide ranging set of austerity mea-

sures. Among these were cuts in social transfers such as pensions and unemployment benefits, taxa-

tion of pensions above e1,400 a month by 5-10%, and freezing mandatory increases in public pen-

sions between 2011 and 2015.26

As mentioned above, the pattern for the inequality change term for Greece between 2010 and

2013 is noticeably different from other countries, as the transfer term is positive while the market

term is negative. The decrease in absolute income inequality deriving from the large drop in income

from work over this period means that market inequality change is negative, leading to reductions

in IRHI. The positive sign for transfer inequality change indicates that the reduction in inequality

between 2010 and 2013 was larger due to market income-related health changes than considering

total income-related health changes. In other words: the redistributive effect of transfers declined as

a result of cuts in social transfers due to the austerity measures, especially for pensions.

The consequences of the Greek austerity measures are less obvious when looking at the mobil-

ity results between 2010 and 2013, though they are visible in the 2010-2011 comparison when the

transfer mobility term is large and positive.27 The immediate impact of the Greek austerity measures

was a worsening of the incomes of the elderly relative to the young, as the drop in pensions between

2010 and 2011 was larger than the drop in income from work. This worsened the relative income

position of older groups, and increased IRHI. However, the transfer mobility term switches sign to

become negative between 2011 and 2012. This is due to the sudden nature of the cut in transfer in-

comes, compared to the more gradual decline in market incomes. While incomes were already falling

in Greece between 2010 and 2011, it is in the subsequent two years that the largest falls occur (see
26OECD (2013) provides a list of pension reforms that occurred as a result of these austerity measures.
27See Appendix Figure A.5.4.
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Figure 5.2). Between 2011 and 2013, incomes from work in Greece shrunk sufficiently to outweigh

the initially IRHI increasing effects of the austerity measures.

5.5 Conclusion

We believe we make a number of contributions to the literature on health inequalities. First, for a

range of European countries, we show for the first time how IRHI have evolved between 2004 and

2013, a time period that covers the largest global economic contraction in the post-war era. We

document distinct time and geographic trends in IRHI. Before the crisis, southern countries, and to a

lesser extent continental countries, saw IRHI rising. After 2008, IRHI started falling in the southern

countries that were most affected by the crisis. These European trends confirm the largely pro-cyclical

pattern of IRHI documented for 2 countries (China and Spain) in earlier work (Baeten et al., 2013;

Coveney et al., 2016).

Secondly, using a novel decomposition, we provide important new empirical regularities con-

cerning IRHI growth. We find that market incomes tend to increase inequalities in health, while the

relation between social transfers and IRHI reveals a more varied pattern, in some cases decreasing

and in other cases increasing IRHI. This mixed pattern occurs because social transfers – most im-

portantly pensions – are targeted at the elderly and other poor groups who are otherwise excluded

from gains from income growth, but also because in some countries, the young tend to live longer

in their parental household and therefore benefit from their pension benefits upon retirement. The

decomposition also explains the – perhaps initially puzzling – finding that IRHI falls during crises.

This occurs as the logical consequence of the stickiness of pensions relative to income from work,

and the age-based income re-ranking effect that it generates.

Finally, we examine how government policies relate to IRHI change. We look at the heterogeneity

in the IRHI decreasing effect of transfers across countries and time, and find that the most “successful”

pensions payments (in terms of reducing IRHI) are those that do not leave the very elderly (75+)

groups behind in times of income growth. Our results also demonstrate that the large reduction in

pension payments that occurred between 2010 and 2013 due to the austerity measures in Greece

initially coincided with an increase in IRHI, and is likely to have dampened the IRHI reducing effects

of transfers in later years.

Based on these empirical findings, our results suggest that government transfer policies can and

do appear to have a large effect on IRHI. Especially in times of crisis, pensions help to reduce IRHI

by improving the relative income position of the elderly. In that sense, they can be argued to add

a “silver lining” to the generally dark future prospects characterizing recessions. In periods of eco-
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nomic growth, however, transfers may not provide adequate protection for these groups. Key is the

income protection afforded to the elderly, and in particular the very elderly, a group whose population

share is likely to keep growing in the near future. Our results demonstrate that in situations where

this group is excluded from gains, the net effect of transfers may no longer be IRHI reducing. But

the finding also points at potential policy levers. Governments that are concerned with rising levels

of IRHI should develop policies that improve the relative incomes of the very elderly. While our

descriptive decomposition method can not causally assess the IRHI reducing effectiveness of alterna-

tive policies, our findings do suggest that pension generosity alone does not guarantee lower levels of

IRHI. Other pension related policy options that favor the eldest groups, such as progressive indexation

and appropriate discretionary increases, have greater potential to successfully reduce IRHI. Finally, it

is worth noting that, while in general IRHI is pro-cyclical, the Greek experience shows that austerity

measures can kill much of the IRHI reducing effect of pensions during crises, thereby removing most

of the silver from the lining.
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Table A.5.2: Percentage of Market and Transfer Income Due to Pensions and Wages per Rotation Group

Rotation Group
1 2 3 4 5 6 7

Austria Pension % 40.77 42.03 44.11 41.73 39.64 39.85 38.77
Wage % 70.91 69.38 66.15 68.49 66.62 67.11 67.4

Belgium Pension % 32.69 33.2 35.32 32.95 32.8 30.65 31.06
Wage % 68.35 66.96 65.1 66.95 67.94 66.87 66.85

Greece Pension % 63.69 62.03 62.04 61.36 61.19 63.57 62.74
Wage % 57.21 53.09 55.71 57.36 58.19 56.83 56.04

Spain Pension % 54.85 60.21 54.49 52.7 48.63 37.18 33.12
Wage % 77.57 78.53 80.88 80.33 79.95 73.59 71.92

France Pension % 39.39 41.04 40.65 41.37 44.62 45.63 46.14
Wage % 69.56 70.77 69.44 67.35 65.07 65.2 64.94

Italy Pension % 57.59 55.91 55 52.47 54.16 55.34 54.87
Wage % 60.48 62.73 61.23 62.63 62.38 60.88 61.76

Portugal Pension % 41.73 45.42 45.69 43.12 46 47.51 45.91
Wage % 75.13 76.66 77.94 78.79 77.75 79.21 78.18

Notes:
1. Table shows for each rotation group and country the percentage of transfer income
from pensions (first row per country) and the percentage of (gross) market income
from wages (second row per country), computed on the sample for which compo-
nent information is available. Our data indicate that on average wages and pensions
are the most important sources of income within market and transfer income, respec-
tively. Our definition of pensions includes public pension payments, care allowances,
disability cash benefits, lump sum payments at the time of retirement and other cash
benefits. It does not include any payments from private pension plans, which enter the
market income definition. Wages include all employee cash or near cash income. See
Table 5.2 for further information on the components of transfer and market income.



Table A.5.3: Interval Regression Results

Country
Variable Austria Belgium Greece Spain France Italy Portugal

Eqinc 0.0321∗∗∗ 0.0388∗∗∗ 0.0268∗∗∗ 0.0193∗∗∗ 0.0220∗∗∗ 0.0133∗∗∗ 0.0730∗∗∗

Eqinc2 -0.0027∗∗∗ -0.0039∗∗∗ -0.0031∗∗∗ -0.0018∗∗∗ -0.0017∗∗∗ -0.0001∗∗∗ -0.0106∗∗∗

F 16-25 -0.0017 -0.0054∗ 0.00178 -0.0011 -0.0084∗∗∗ -0.0014 -0.0062
M 26-35 -0.0138∗∗∗ -0.0179∗∗∗ -0.0118∗∗∗ -0.0132∗∗∗ -0.0179∗∗∗ -0.0137∗∗∗ -0.0242∗∗∗

F 26-35 -0.0119∗∗∗ -0.0226∗∗∗ -0.0082∗∗∗ -0.0153∗∗∗ -0.0245∗∗∗ -0.0152∗∗∗ -0.0263∗∗∗

M 36-45 -0.0295∗∗∗ -0.0310∗∗∗ -0.0219∗∗∗ -0.0267∗∗∗ -0.0324∗∗∗ -0.0276∗∗∗ -0.0400∗∗∗

F 36-45 -0.0311∗∗∗ -0.0391∗∗∗ -0.0245∗∗∗ -0.0291∗∗∗ -0.0386∗∗∗ -0.0312∗∗∗ -0.0532∗∗∗

M 46-55 -0.0541∗∗∗ -0.0534∗∗∗ -0.0422∗∗∗ -0.0424∗∗∗ -0.0537∗∗∗ -0.0446∗∗∗ -0.0699∗∗∗

F 46-55 -0.0568∗∗∗ -0.0530∗∗∗ -0.0490∗∗∗ -0.0499∗∗∗ -0.0595∗∗∗ -0.0510∗∗∗ -0.0969∗∗∗

M 56-65 -0.0834∗∗∗ -0.0585∗∗∗ -0.0785∗∗∗ -0.0684∗∗∗ -0.0670∗∗∗ -0.0713∗∗∗ -0.1160∗∗∗

F 56-65 -0.0679∗∗∗ -0.0589∗∗∗ -0.0866∗∗∗ -0.0813∗∗∗ -0.0674∗∗∗ -0.0806∗∗∗ -0.1520∗∗∗

M 66-75 -0.0827∗∗∗ -0.0587∗∗∗ -0.1190∗∗∗ -0.0864∗∗∗ -0.0906∗∗∗ -0.1040∗∗∗ -0.1510∗∗∗

F 66-75 -0.0870∗∗∗ -0.0747∗∗∗ -0.1440∗∗∗ -0.1140∗∗∗ -0.0929∗∗∗ -0.1250∗∗∗ -0.1940∗∗∗

M 76-85 -0.1220∗∗∗ -0.0818∗∗∗ -0.1860∗∗∗ -0.1220∗∗∗ -0.1330∗∗∗ -0.1510∗∗∗ -0.1950∗∗∗

F 76+ -0.1480∗∗∗ -0.0973∗∗∗ -0.2160∗∗∗ -0.1580∗∗∗ -0.1290∗∗∗ -0.1800∗∗∗ -0.2480∗∗∗

Observations 57,028 50,848 66,192 139,372 61,932 195,552 59,084

Notes:
1. Table shows the interval regression results, used to generate the ratio-scaled health variable and the coefficients
of which are used in the decomposition. Eqinc refers to equivalized household income. The constant has been
suppressed, as well as the regional dummies because they are small and not important to the decomposition.
Full regression results are available from the authors upon request. Robust standard errors used, clustered at the
individual level.
2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Pre-crisis(2004-2007)
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Table
A

.5.8:
Sub-M

obility
Term

s
forFrance

Pre-crisis(2004-2007)
Post-crisis(2010-2013)

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

(9)
(10)

(11)

A
ge-Sex

C
oeff.

Prop.
M

arket
Transfer

M
arket

Transfer
Prop.

M
arket

Transfer
M

arket
Transfer

G
roup

W
eight

W
eight

Incom
e

(e
)

Incom
e

(e
)

W
eight

W
eight

Incom
e

(e
)

Incom
e

(e
)

M
16-25

-
5.5

-10.08
-9.324

-901.9
1704.2

4.77
13.27

-18.3
-1341.3

459.6
F

16-25
-0.00842

∗∗∗
5.49

-25.51
-41.17

∗
-1087.2

-256.7
3.74

48.06
-4.055

1023.6
-325.8

M
26-35

-0.0179
∗∗∗

8.35
28.27

-6.367
1189.5

562.5
5.55

33.34
7.683

761.1
529.7

F
26-35

-0.0245
∗∗∗

8.86
43.67

∗∗
-2.626

2408.9
∗∗

117.8
6.44

52.19
∗∗∗

4.266
1720.8

∗
301.5

M
36-45

-0.0324
∗∗∗

9.8
11.47

-18.63
492.3

-292.6
8.28

36.28
∗∗

-11.03
1713.6

∗
-455

F
36-45

-0.0386
∗∗∗

10.86
29.6

-0.112
1468.9

266.1
8.88

22.61
∗

-13.62
1440.7

-353.5
M

46-55
-0.0537

∗∗∗
8.77

7.619
-1.254

737.6
945.6

8.31
0.878

-12.98
-1173.4

115.5
F

46-55
-0.0595

∗∗∗
9.42

-26.98
-13.95

-1567.6
467.3

10.35
-21.49

-9.36
-2533.5

∗∗
922.7

∗

M
56-65

-0.0670
∗∗∗

7.09
-76.14

∗∗
76.78

∗∗∗
-3491.5

∗
4429.4

∗∗∗
9.64

-60.14
∗∗∗

46.81
∗∗

-4465.9
∗∗∗

4095.9
∗∗∗

F
56-65

-0.0674
∗∗∗

7.8
-54.77

∗
57.38

∗
-3215.3

∗
3443.4

∗∗∗
9.96

-70.55
∗∗∗

40.85
∗∗

-4988.4
∗∗∗

3149.1
∗∗∗

M
66-75

-0.0906
∗∗∗

4.69
0.395

-8.21
-928.6

1070.2
6.42

-7.063
0.235

-2034.6
∗

1623.5
∗∗

F
66-75

-0.0929
∗∗∗

6.08
16.65

-33.08
∗

398.9
-324.2

7.17
13.67

-11.29
-903.1

1322.3
∗∗

M
76-85

-0.133
∗∗∗

2.98
40.53

∗∗
-18.6

1093.9
∗

-432.4
4.47

19.5
-22.6

-239.6
337.2

F
76-85

-0.129
∗∗∗

4.3
16.11

-3.895
103.1

706.1
6.02

15.26
-37.92

∗∗∗
-136.4

-202.9
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Table
A

.5.10:
Sub-M

obility
Term

s
forPortugal

Pre-crisis(2004-2007)
Post-crisis(2010-2013)

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

(9)
(10)

(11)

A
ge-Sex

C
oeff.

Prop.
M

arket
Transfer

M
arket

Transfer
Prop.

M
arket

Transfer
M

arket
Transfer

G
roup

W
eight

W
eight

Incom
e

(e
)

Incom
e

(e
)

W
eight

W
eight

Incom
e

(e
)

Incom
e

(e
)

M
16-25

-
5.37

6.78
0.641

-478
555.2

∗
3.62

40.45
∗

-13.89
-703

-138.2
F

16-25
-0.00621

4.38
51.55

∗∗
-15.07

1205.6
∗

-59.6
3.8

19.68
-10.75

-1027
195

M
26-35

-0.0242
∗∗∗

7.83
6.407

-13.9
368.1

-82.51
6.04

23.16
-26.78

-901.7
-557.5

F
26-35

-0.0263
∗∗∗

7.53
48.31

∗
-37.13

∗
1301.3

∗∗
-489.5

6.49
25.21

-23.25
-803.3

25.49
M

36-45
-0.0400

∗∗∗
8.25

38.70
∗∗

-9.996
1150.2

∗∗
-213

8.74
-7.735

-31.05
∗∗

-2638.2
∗∗∗

85.41
F

36-45
-0.0532

∗∗∗
9.09

2.019
-15.25

13.51
-230.6

10.25
-0.255

-26.90
∗∗∗

-2441.4
∗∗∗

43.39
M

46-55
-0.0699

∗∗∗
8.89

0.851
-2.633

-291.4
493.1

∗
8.34

-6.581
-3.896

-1873.0
∗∗∗

475.8
F

46-55
-0.0969

∗∗∗
9.7

-2.91
7.746

-392.7
589.4

∗∗
9.49

-0.275
4.726

-2092.6
∗∗∗

536.8
∗∗

M
56-65

-0.116
∗∗∗

6.34
-59.86

∗∗
35.16

-1547.2
∗∗

1574.9
∗∗∗

7.82
-27.77

39.38
∗∗

-2781.4
∗∗∗

1272.1
∗∗∗

F
56-65

-0.152
∗∗∗

7.75
-48.50

∗
14.73

-1276.1
∗∗

1085.7
∗∗∗

8.85
-39.20

∗
34.38

∗
-2684.6

∗∗∗
1050.9

∗∗∗

M
66-75

-0.151
∗∗∗

6.02
-32.61

31.79
∗

-1024.1
∗

1159.5
∗∗∗

6.96
-31.33

∗
46.79

∗∗
-2158.3

∗∗∗
907.7

∗

F
66-75

-0.194
∗∗∗

8.18
-3.944

18.91
-452.4

829.8
∗∗∗

7.5
3.48

16.25
-1248.7

∗∗∗
215.1

M
76-85

-0.195
∗∗∗

3.68
13.28

7.988
-186.6

120.9
5

29.69
∗

-26.12
-326.1

-447.6
F

76-85
-0.248

∗∗∗
6.99

-8.314
-13.2

-587.6
179.3

7.1
29.60

∗
1.347

-537.6
467.8

N
otes:
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change
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the
identicalinform

ation
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the
post-crisis
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period.
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changes
are

sum
m

arized
by

a
no-constantregression

w
here

the
change

in
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Figure A.5.4: Year-by-Year Decomposition for Greece for 2010-2013 Rotation Group

Notes:

1. Figure shows the full decomposition results for Greece for each year of the 2010-
2013 rotation group.



Chapter 6

Conclusion

The designing and implementation of effective, efficient, and ethical policies in the spheres of edu-

cation and health requires evidence. In this spirit, the chapters of this thesis aim to provide scientific

evidence to aid policy makers, as well as uncover promising directions for further research.

Despite the voluminous existing research, the goal of implementing predictable policies exploit-

ing peer effects remains elusive. A 2014 review of the literature in this area concluded, somewhat

pessimistically, that “despite potential temptation, we have not reached the point at which we can

reliably use knowledge of peer effects to implement policies that improve outcomes for students and

other human subjects” (Sacerdote, 2014, p. 254). The results presented in Chapter 2 provide the

first step towards reaching this goal. Examining the mechanisms through which peer effects operate

is vital to providing workable policy guidance, as well as improving our theoretical understanding

of such effects. Though a variety of mechanisms have been suggested by the literature our results

provide strong support for only one: peer effects arising through social interaction between students.

More suggestive evidence points towards these interactions involving group studying outside of the

classroom.

The message for future interventions in this area is clear. It is not enough to focus only on

achieving an “optimal” mix of students in terms of ability within a classroom. It is also necessary

for these students to actually interact with each other in order for the desired peer effects to occur.

Encouragingly, the results from this paper suggest that, at least within our experimental context, the

institutional manipulation of friendships is possible in the short term. A small intervention in the

form of several informal meetings managed to create meaningful bonds among some students (close

peers), while not among others (distant peers). A repeat of the experiment by Carrell et al. (2013)

with the addition of some encouragement of social interaction between assigned peers would be the

logical next step from these conclusions.
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In Chapter 3, we turned our attention to one aspect of educational policy that has attracted consid-

erable debate: the large increase in the admissions of international students. Faced with claims that

these students take university places and other resources away from locals, advocates for the so-called

internationalization of education point out that interaction with foreigners holds many advantages for

native students. For instance, a recent letter to parliament by the education minister claimed that the

admission of international students helped natives “learn to deal with diversity”, and that by “ac-

quiring inter-cultural skills, students learn to cope in different environments”, and gain a “worldwide

view and a vision” (van Engelshoven, 2018, p. 2). Given that interactions are necessary for diversity

to yield benefits (Camargo et al., 2010), a crucial question is then to what extent foreign and native

students actually do interact on campus.

Using a novel method to reveal the friendship ties between students we find clear sorting patterns

between these students, implying that universities may be missing out on fully realizing the potential

benefits of native-foreign interactions. Moreover, forced exposure between natives and foreigners

does not appear to be a quick-fix for increasing interaction. While native-foreign student pairs forced

to share a classroom are subsequently more likely to be friends, this effect does not hold for natives at

risk of exhibiting xenophobic political views, nor for foreigners from countries with radically different

cultures from the host country.

These findings have important implications for the debate surrounding the internationalization of

education. They suggest that interactions between local and international students represent a poten-

tially beneficial but currently untapped resource, though that exploiting this resources is not straight-

forward. Future work should investigate the reasons for observed segregation, if more intensive and

deliberate interventions could reduce these patterns, and indeed whether the proposed benefits of an

international campus do exist.

At least since the Black Report in 1980, which noted the inability of the NHS to halt the widening

of socio-economic health disparities in England and Wales since the 1930s (Black et al., 1980), IRHIs

have been a public health concern. Indeed, to this day, their reduction remains a primary policy goal

of the EU (European Commission, 2009). Despite this, and while their existence has by now been

widely confirmed by more than a decade of research, much about the determinants and evolution of

IRHIs remains unclear.

Chapter 4 seeks to resolve the important but open question of how IRHIs respond to financial

crises, specifically the 2008 Great Recession in Spain. Did the fears of deepening inequalities in

health come to pass? Our conclusion is that IRHI actually reduced as a consequence of the crisis.

Further investigation shows that this trend is the logical consequence of large health differences be-

tween the young and the old, and the differential impact that the crisis had on the incomes of these
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two groups. The incomes of the elderly stayed relatively flat, protected from the effects of the crisis

by the inherent stickiness of pensions, while the incomes of the youngest were disproportionately

reduced, especially as a result of the collapse of employment in the construction sector. As a result,

the relative income positions of the elderly compared to the young improved during the crisis.

The findings, although based on a narrow context, highlight a perhaps unappreciated role of pen-

sions; their stickiness helps to protect the incomes of those in the worst health (the elderly) during

economic crises. However, our focus on a single country prevents us from making more concrete

claims about the relationship between IRHI and crises. It is not clear to what degree the institutional

settings, demographics, and other country-specific factors may play a role in determining these trends.

It is these limitations that motivated our broadened investigation of IRHI in Chapter 5. We com-

pute IRHI trends between 2004 and 2013 for Spain, Portugal, Italy, France, Belgium, Austria and

Greece. This leads to further insights into how IRHI evolved during the Great Recession, and the

range of countries permits comparison between those which were heavily and lightly affected. We

find that the conclusions in the previous chapter for Spain hold for many of the so-called crisis coun-

tries in Europe; the recession tended to decrease IRHI.

The findings from Chapters 4 and 5 may provide some solace to policy makers. While devas-

tating for incomes, the crisis does not appear (at least in the short-run) to have exacerbated existing

IRHIs. Instead, disparities in health by income have reduced. However, our analysis also reveals

some important qualifiers, as well as potential policy levers. The very elderly - those older than 75

- are extremely vulnerable to being left behind in terms of both income and health. The methods

for determining pension benefits for this group are therefore a crucial determinant of the evolution

of IRHI. Household structures in some countries, such as Italy, lead to increases in IRHI due to the

intergenerational sharing of government transfers. Finally - and importantly - we find that austerity

policies like those enacted in Greece decrease the IRHI-reducing effects of pensions.

At first glance the various topics within this thesis may appear unrelated. However, they are united

by the fact that their overarching themes – health and education policy – are part of perhaps the most

important obligation of modern governments to their citizens. It is imperative that careful and precise

scientific evidence should form the backbone of policies in these areas. The chapters contained in this

thesis go some way to providing such evidence.





Nederlandse Samenvatting

(Summary in Dutch)

De gebieden waar het overheidsbeleid zich in het dagelijks leven van individuen het meest duidelijk

voordoet, zijn die van het onderwijs en de gezondheidszorg. Grote aantallen wetten en voorschriften

van de overheid bepalen waar, wanneer en hoe burgers omgaan met het onderwijs en de zorg. Het

beleid is op deze gebieden niet alleen zichtbaar, het beleid heeft ook zeer belangrijke en verstrekkende

gevolgen voor het individu. Regelmatig identificeren filosofen een goede gezondheid en goed onder-

wijs als de basis van een bevredigend en fatsoenlijk leven en behoren statistieken op het gebied van

gezondheid en onderwijsprestaties vaak tot de meest essentiële statistieken van het individuele welzijn

en de ontwikkeling van een land.

Vanwege het fundamentele belang van gezondheid en onderwijs, is het absoluut noodzakelijk dat

beleid wordt gebaseerd op bewijsmateriaal dat afkomstig is van zorgvuldig en gedetailleerd weten-

schappelijk onderzoek. De hoofdstukken van dit proefschrift presenteren het werk dat ik heb onder-

nomen (met mijn coauteurs), waarbij alle hoofdstukken het thema delen van het leveren van dergelijk

bewijsmateriaal in een poging om beleid te adviseren.

De focus van dit proefschrift richt zich op twee verschillende sub-onderwerpen die vallen onder

het gemeenschappelijke onderwerp van gezondheid en educatie. Het eerste onderwerp, geadresseerd

in hoofdstuk 2 en 3, richt zich op een cruciaal onderdeel van een student zijn educatie: de relatie

met zijn medestudenten. Het tweede sub-onderwerp, geadresseerd in hoofdstuk 4 en 5, beschrijft

het onderwerp van inkomens-gerelateerde-gezondsheidsongelijkheid (“IRHIs”). Deze ongelijkheden

tonen het verschil in gezondheid door inkomen, waar in bijna elke context (ook de Europese), rijkere

individuen langer leven en gezondere levens hebben ten opzichte van armere individuen.

Hoofdstuk 2 heeft als doelstelling om een stap dichter-bij het doel te komen van het imple-

menteren van een betrouwbaar en voorspelbaar peer-effecten-beleid door de mechanismen die dergeli-

jke effecten aansturen te onderzoeken. We analyseren de peer-effecten en de wijze waarop deze peer-

effecten zich kanaliseren bij een grote Europese universiteit, verspreid over 6 cohorten van economi-
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estudenten. We documenteren kleine positieve effecten tussen de vaardigheden van willekeurig

toegewezen peers binnen werkgroepen en de cijfers van studenten. Wanneer we gebruik maken van

de structuur van de werkgroepen, dan kunnen we aantonen dat deze peer-effecten alleen voorkomen

tussen studenten die vrienden zijn. Dit impliceert dat peer-effecten ontstaan door sociale nabijheid in

plaats van via effecten op werkgroep niveau. We laten zien dat sociale nabijheid evolueert in de tijd,

dit suggereert dat spillover effecten van toegewezen peers aan werkgroepen van korte duur zijn.

In hoofdstuk 3 geven we inzichten ten behoeve van het huidige beleidsdebat rondom de toegenomen

toelatingen van internationale studenten aan veel Europese universiteiten. De lokale-buitenlandse

interacties worden vaak gepresenteerd als een centraal voordeel van een internationaal diverse uni-

versiteitscampus, maar er is weinig bewijs over de mate waarin dergelijke interacties daadwerkelijk

bestaan. Dit hoofdstuk is de eerste die kwantitatief bewijs levert over verdelingspatronen van lokale

en buitenlandse studenten. Aan de hand van unieke vriendschapsgegevens die worden ontleend uit de

keuzes van studenten aan een grote Europese universiteit, documenteren we een aanzienlijke en sub-

stantiële segregatie tussen lokale en buitenlandse studenten. Deze patronen blijven bestaan, zelfs na

controle voor vermogen, leeftijd en geslachtsverschillen. We onderzoeken een mogelijke oplossing

voor deze geobserveerde segregatie op de campus door te onderzoeken in hoeverre vriendschappen

tussen lokale en buitenlandse bevolkingsgroepen kunnen worden aangemoedigd door gedwongen en

regelmatige blootstelling binnen kleine jaarlange studiegroepen. Gekoppelde lokale en buitenlandse

studenten die gedwongen worden dezelfde groep te delen, hebben een aanzienlijk hogere kans om

een vriendschap te vormen. Dit “exposure effect” is echter afwezig voor gekoppelde lokale en buiten-

landse studenten waarvoor interacties mogelijk het gunstigst zijn; de koppels waarbij de lokale student

het risico loopt op het vertonen van xenofobische politieke opvattingen, en buitenlandse studenten uit

landen die cultureel het minst lijken op het gastland.

Regeringen en beleidsmakers hebben lang geprobeerd de ongelijkheden op gezondheidsgebied te

verminderen. Er is echter weinig bewijs over de mate hoe dergelijke ongelijkheden zich tijdens de

recente financiële crisis hebben ontwikkeld. IRHI-trends in deze periode verdienen speciale aandacht

gezien de bezorgdheid dat de crisis mogelijk onevenredig de meest kwetsbare groepen in de samen-

leving heeft getroffen. Hoofdstuk 4 bespreekt de ontwikkeling van IRHI in Spanje voor, tijdens en

na de Grote Recessie van 2008. We zien een sterke daling van gezondheidsongelijkheden na 2008.

De daling is vooral het gevolg van het feit dat de financiële crisis onevenredig jongere, gezondere

groepen heeft getroffen. We concluderen dat de ongelijke verdeling van inkomensbescherming naar

leeftijd op korte termijn gezondheidsongelijkheid kan verminderen na een economische recessie.

Hoofdstuk 5 verbreedt de analyse van IRHI en economische omstandigheden met 6 additionele

Europese landen. Voortbouwend op de conclusies van het vorige hoofdstuk, ontwikkelen en passen
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we een meer genuanceerde decompositie toe om expliciet de rol van veranderende regeringen en hun

relatie met de evolutie van IRHI in tijden van economische groei en recessie te onderzoeken. We doc-

umenteren een procyclisch patroon van IRHI dat grotendeels kan worden verklaard door de relatieve

“stickiness” van ouderdomspensioenuitkeringen in vergelijking met het marktinkomen van jongere

groepen. Bezuinigingsmaatregelen verzwakken het IRHI-verminderende effect van overheidsover-

drachten. We concluderen dat pensioenbeleid veel ruimte lijkt te hebben om IRHI te verminderen.
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