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Abstract: During an infectious disease outbreak, timely information 
on the number of new symptomatic cases is crucial. However, the re-
porting of new cases is usually subject to delay due to the incubation 
period, time to seek care, and diagnosis. This results in a downward 
bias in the numbers of new cases by the times of symptoms onset 
towards the current day. The real-time assessment of the current situa-
tion while correcting for underreporting is called nowcasting. We pre-
sent a nowcasting method based on bivariate P-spline smoothing of the 
number of reported cases by time of symptoms onset and delay. Our 
objective is to predict the number of symptomatic-but-not-yet-reported 
cases and combine these with the already reported symptomatic cases 
into a nowcast. We assume the underlying two-dimensional reporting 
intensity surface to be smooth. We include prior information on the 
reporting process as additional constraints: the smooth surface is uni-
modal in the reporting delay dimension, is (almost) zero at a prede-
fined maximum delay and has a prescribed shape at the beginning of 
the outbreak. Parameter estimation is done efficiently by penalized 
iterative weighted least squares. We illustrate our method on a large 
measles outbreak in the Netherlands. We show that even with very lim-
ited information the method is able to accurately predict the number of 
symptomatic-but-not-yet-reported cases. This results in substantially 
improved monitoring of new symptomatic cases in real time.

Keywords: Asymmetric penalty;  Bivariate smoothing; Constrained 
P-splines; Incidence monitoring; Infectious disease outbreaks; Now-
casting
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During outbreaks of diseases such as ebola,1 zika,2 chikun-
gunya,3 measles,4 pandemic influenza5 or large food-borne 

disease outbreaks,6,7 international or federal governmental 
institutes are responsible for disease control and prevention. 
They have the task of monitoring the number of new sympto-
matic cases by time of disease onset in order to inform relevant 
health authorities, assess the severity of the current situation, 
and assess the impact of possible control measures.

However, the reporting of symptomatic cases is usu-
ally subject to delay between the time of symptoms onset and 
the time that the case is reported. A consequence is that the 
numbers of new cases by the times of symptoms onset show a 
downward bias towards the current day.

Depending on the type of infection and on the health re-
porting system, the reporting delay varies between several days 
(e.g., for influenza) to several months (e.g., for tuberculosis). 
The reporting delay is caused by various controllable and un-
controllable processes, such as the incubation period of the in-
fection, the time patients wait to seek care, the time between 
submission of a sample and laboratory confirmation and the 
time to final report by the health department in the database.8,9 
Furthermore, often a strong day-of-the-week effect is present: 
very few cases are reported on Saturdays and Sundays.

The assessment of the current situation based on imper-
fect or partial information is called nowcasting.10 When the dis-
tribution function of the reporting delay is known, it is possible 
to obtain a point estimate of the number of new symptomatic 
cases in real time, e.g., by simply dividing the number of already 
reported cases by the fraction of reported cases at the current 
day, yesterday, etc. In practice, however, it is very difficult to ob-
tain stable estimates of the number of new cases on a daily basis. 
This is particularly true when the number of reported cases is 
low, or even zero, and when the fraction of reported cases is low. 
Moreover, at the beginning of the outbreak, little information is 
known about the shape of the reporting delay distribution, and 
the information there is biased towards shorter delays because 
cases with longer delays have not been reported yet. Further-
more, the reporting delay distribution can change over time.11,12

Statistical modeling techniques can make an improve-
ment here. A good overview of available nowcast models is 
provided by Höhle and an der Heiden.12 As an alternative to 
existing models, they introduce a joint modeling approach that 
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simultaneously estimates the time-varying reporting delay 
distribution and makes a prediction of the epidemic curve. 
The reporting delay distribution is modeled by a time-depen-
dent discrete time-to-event model, while a penalized spline 
smoothing approach is used to provide a stable estimate of the 
epidemic curve. A drawback of such an approach is the com-
plexity of the model, which requires estimation in a Bayesian 
framework using Markov Chain Monte Carlo, leading inevi-
tably to long computation times, often too long for inclusion 
in regular monitoring tools.

We propose an alternative approach based on penalized 
likelihood estimation in the frequentist framework.13 First, the 
numbers of reported cases are organized in a lower triangular con-
tingency table, with on one margin the time of symptoms onset 
and on the other the reporting delay. This is the so-called reporting 
triangle.11 Next, we impose a maximum to the reporting delay, 
where we can safely assume that all cases have been reported. The 
reporting triangle then becomes a trapezoid. Our objective is to 
make a fast and accurate prediction of the number of symptom-
atic-but-not-yet-reported cases in the upper triangular part of the 
contingency table and combine these with the already reported 
symptomatic cases by time of symptoms onset into a nowcast.

Instead of a time-to-event approach, we directly model 
the number of symptomatic cases in the reporting trapezoid. 
We assume that the underlying reporting intensity is a smooth 
surface, with day-of-the-week effects expressed as deviations 
from it. The two-dimensional surface is modeled using bivar-
iate P-splines.14 P-splines are penalized B-splines and provide 
a flexible way to smooth data and extrapolate trends.15,16 How-
ever, to obtain a stable extrapolation of the surface outside the 
reporting trapezoid, especially at the beginning of the outbreak, 
we include prior information on the reporting process as addi-
tional constraints: the surface is unimodal in the reporting delay 
dimension, is (nearly) zero at the predefined maximum delay, 
and has a presumed shape at the beginning of the outbreak. The 
advantage of this approach is that it is intuitive and fast.

We apply our method to a large measles outbreak in the 
Netherlands in 2013–2014 and investigate its performance in 
different stages of the outbreak.

METHODS

Constructing the Two-dimensional 
Contingency Table

We describe the infection process and observations pro-
cess, following the notation of Höhle and an der Heiden.12 
We first organize the number of cases in a two-dimensional 
contingency table, with on one margin the time of symptoms 
onset t T= …1, ,  days, starting on day 1 of the outbreak and 
on the other margin the reporting delay d D= …0, ,  days. 
Thus T  is the current day (the “now”) in the outbreak and D  
is the predefined maximum delay.

Figure  1 shows a schematic representation of such a 
two-dimensional contingency table for T = 8  and D = 3 . The 
(t d, )-cell of the table represents the number of cases, denoted 
by nt d, , occurring at time t  and reported with a delay of d , 
and corresponds to a certain day of the week. For a given re-
port date t d+  is constant.

We distinguish three types of cases: (1) Cases with 
t T d≤ −  have symptoms and have been reported. This is the 
reporting trapezoid (blue). (2) Cases with T d t T− < ≤  have 
symptoms, but have not been reported yet (orange). These 
cases are right truncated. (3) Cases with t T>  do not have 
symptoms yet, because they occur in the future (gray). Note 
that these numbers are only known in retrospect.

The objective of nowcasting is to predict the total number 
of cases Nt  for times of symptoms onset t T D T= − + …1, , .   

This number is given by N nt
d

D

t d=
=

∑
0

, .  We therefore have 

to combine the already reported symptomatic cases in the 
reporting trapezoid with a prediction of the number of 

FIGURE 1.  Schematic representa-
tion of a two-dimensional contin-
gency table for the number of cases. 
Horizontal axis: time of symptoms 
onset t. Vertical axis: reporting  
delay d. Here the current time 
of symptoms onset is T = 8  and 
the predefined maximum delay is  
D = 3. Blue: reporting trapezoid, 
i.e., number of symptomatic cases 
that have been reported. Orange: 
number of symptomatic cases that 
have not been reported yet (to be 
predicted). Gray: cases without 
symptoms and consequently not 
reported (future). Nt  is the total 
number of cases by time of symp-
toms onset.
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symptomatic-but-not-yet-reported cases in the upper trian-
gular part of the contingency table.

Modeling the Number of Reported Cases
We consider the number of reported cases by time of 

symptoms onset and delay as known and the number of symp-
tomatic-but-not-yet-reported cases as missing values. The model 
formulation below allows prediction of the number of symptom-
atic-but-not-yet-reported cases simultaneously with the estima-
tion procedure. See the section on parameter estimation.

Observations suggest that counts are usually overdispersed, 
i.e., have a variance greater than the mean. We therefore assume 
that number of reported cases by time of symptoms onset and 
delay follows a Negative Binomial distribution with mean µt d, , 
the reporting intensity, and overdispersion parameter θ :

nt d t d, ,~ ,NegBin µ θ( ) � (1)

The variance is given by µ µ θt d, , /+ t d
2 . For θ → ∞,  the dis-

tribution approaches a Poisson distribution, which was used 
by Höhle and an der Heiden.12 The reporting intensity µt d,  is 
related to a linear predictor through the log link function, in 
order to keep the reporting intensity positive.

The linear predictor consists of two parts. We assume 
that the reporting intensity is a two-dimensional smooth sur-
face in the time of symptoms onset and delay dimension (first 
part), with day-of-the-week effects expressed as deviations 
from this surface (second part). The assumption of smooth-
ness comes from the idea that the data generating process, 
apart from day-of-the-week effects, varies gradually over the 
time of symptoms onset and in the reporting delay direction.

To achieve the first part, i.e., the smooth two-dimen-
sional surface, the effect of time of symptoms onset on the 
reporting intensity is modeled by a linear combination of KT  

basis functions 
i

K

i i

T

B t
=
∑ ( )

1

α , where αi  is a set of unknown re-

gression coefficients with i KT= …1, , . A similar expression 
applies to the reporting delay.

We use B-spline basis functions. B-splines are piece-
wise polynomials of a given degree, usually cubic, which are 
fused smoothly in a pre-specified number of equidistant knots. 
The main advantage of the B-splines basis is its local defini-
tion, i.e., being zero everywhere, except on an interval around 
a knot,15 favorable over, e.g., polynomial splines and truncated 
power series, which may lead to numerical instabilities.17

The time of symptoms onset and reporting delay need 
not to be independent. To model the full interaction, we use a 
tensor product B-spline basis. Such a basis is obtained by con-
sidering all pairwise products B t B di j( ) ( )  of the two univariate 
bases constructed for univariate smooths.14,17

The second part of the linear predictor is the day-of-the-
week effect, expressed as deviations from the smooth surface. 
We can write these deviations as a set of KW  dummy vari-
ables, taking the value 1 if a certain combination of t  and d  
corresponds to a given day of the week and 0 otherwise.

Taking the smooth surface and the deviations from it 
together, the linear predictor is written as:

log µ α βt d, , , .( ) = ( ) ( ) + ( )
= = =
∑∑ ∑
i

K

j

K

i j i j
l

K

l l

T D W

B t B d x t d
1 1 1

� (2)

Here B ti ( )  and B dj ( )  are the univariate B-spline basis func-
tions of respectively time of symptoms onset and delay. The 
number of knots is provided by K TT = ( )max 4 5, /  and 
K DD = ( )max 4 5, / . Controlling the roughness of the surface 
will be dealt with later. Furthermore, x t dl ,( ) , with l KW= …1, , ,  
represent the day-of-the-week effects, as described above. 
Monday is taken as a reference and is implicitly included in 
the smooth trend surface, hence KW = 6 .

For the purpose of regression, we arrange the data 
from grid to column order and switch to matrix notation. The 
first double summation can now be written as Bαα , where 
B B B= ⊗D T .The symbol ⊗  represents the Kronecker or 
tensor product of the two univariate B-splines matrices BT  and 
BD  with dimensions T KT×  and D KD+( ) ×1 , respectively. 
Consequently, B  is a matrix with dimension T D K KT D+( )×1 .   
α is a vector of the corresponding regression coefficients.

The second term can be written as Xββ , where X  is a 
binary-valued matrix with dimension T D KW+( )×1 .  ββ is a 
vector of the corresponding regression coefficients.

Imposing Constraints
In order to obtain stable estimates of both the smooth sur-

face and the day-of-the-week effect, we include prior information 
on the reporting process as additional constraints: the surface is 
unimodal in the reporting delay dimension, is (nearly) zero at the 
predefined maximum delay, and has a presumed shape at the be-
ginning of the outbreak. Furthermore, the regression coefficients 
ββ are regularized to avoid extreme estimates in a sparse data set-
ting. The mathematics behind these constraints can be found in 
the eMethods; http://links.lww.com/EDE/B544 section in the 
supplementary material. There we show in detail how the con-
straints are constructed and how they are applied as penalizations 
on the Negative Binomial log-likelihood function � n�| , ,αα ββ θ( ) .

Parameter Estimation
The smooth surface and the day-of-the-week effects 

are estimated simultaneously. We can write our method as a 
penalized generalized linear model, with a Negative Binomial 
error distribution, a log-link function, a model matrix and, ad-
ditionally, a penalty matrix. We can therefore use the penal-
ized version of the iterative weighted least squares algorithm. 
Details can be found in the eMethods; http://links.lww.com/
EDE/B544 section in the supplementary material.

Nowcasting
Once the regression coefficients αα  and ββ and overdis-

persion parameter θ  have been estimated (including their co-
variance matrix), the nowcast can be produced. As it is not 
straightforward to write down closed-form equations, we use 

We apply our method to a large measles outbreak in the 
Netherlands in 2013–2014 and investigate its performance in 
different stages of the outbreak.

METHODS

Constructing the Two-dimensional 
Contingency Table

We describe the infection process and observations pro-
cess, following the notation of Höhle and an der Heiden.12 
We first organize the number of cases in a two-dimensional 
contingency table, with on one margin the time of symptoms 
onset t T= …1, ,  days, starting on day 1 of the outbreak and 
on the other margin the reporting delay d D= …0, ,  days. 
Thus T  is the current day (the “now”) in the outbreak and D  
is the predefined maximum delay.

Figure  1 shows a schematic representation of such a 
two-dimensional contingency table for T = 8  and D = 3 . The 
(t d, )-cell of the table represents the number of cases, denoted 
by nt d, , occurring at time t  and reported with a delay of d , 
and corresponds to a certain day of the week. For a given re-
port date t d+  is constant.

We distinguish three types of cases: (1) Cases with 
t T d≤ −  have symptoms and have been reported. This is the 
reporting trapezoid (blue). (2) Cases with T d t T− < ≤  have 
symptoms, but have not been reported yet (orange). These 
cases are right truncated. (3) Cases with t T>  do not have 
symptoms yet, because they occur in the future (gray). Note 
that these numbers are only known in retrospect.

The objective of nowcasting is to predict the total number 
of cases Nt  for times of symptoms onset t T D T= − + …1, , .   

This number is given by N nt
d

D

t d=
=

∑
0

, .  We therefore have 

to combine the already reported symptomatic cases in the 
reporting trapezoid with a prediction of the number of 
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Monte Carlo simulation to deal with the parameter uncertain-
ties and the generation of prediction intervals.

	(1) � Generate 1000 Monte Carlo samples for the regression 
coefficients. We assume that the estimates follow a mul-
tivariate Normal distribution. We empirically found that 
1000 samples are enough.

	(2) � Calculate the expected reporting intensity for the sympto-
matic cases that have not been reported yet: for each real-
ization of αα  and ββ, calculate µt d,  for T d t T− < ≤  using 
equation (2).

(3) � Generate the number nt d,  of symptomatic cases that have 
not been reported yet: for each realization of µt d,  and θ,  
sample one realization from the Negative Binomial distri-
bution using equation (1), resulting again in 1000 Monte 
Carlo samples.

(4) � Summarize the number of symptomatic cases by time of 
symptoms onset: for each realization of nt d, , calculate 

N nt
d

D

t d=
=

∑
0

,
 for t T D T= − + …1, , .  This procedure com-

bines the already reported symptomatic cases with the 
predicted number of symptomatic-but-not-yet-reported 
cases from step 3.

(5) � For each time of symptoms onset, compute the empirical 
predictive distribution function. From this, any desired 
statistics, such as the median or prediction interval, can 
be computed. It can also be used to evaluate the nowcast 
in retrospect.

Evaluating the Nowcast Performance
We assessed performance by comparing the predictive 

distribution for new symptomatic cases with the observed 
number by time of symptoms onset Nt . We investigated three 
different phases in an outbreak: (1) the growth phase, usu-
ally characterized by a positive exponential epidemic growth 
rate in the number of cases, (2) the peak phase, characterized 
by a near zero growth rate, and (3) the decline phase of the 
outbreak, characterized by a negative exponential growth 
rate. Furthermore, we investigated the effect of the order of 
the differences mt  on the coefficients in the time of symp-
toms onset dimension. See the eMethods; http://links.lww.
com/EDE/B544 section in the supplementary material for 
more details on these difference orders. Our default setting, 
mT = 2 , results in a linear extrapolation of epidemic trends on 
a log-scale. However, sometimes this resulted in overshooting 
of trends. Hence, we also set mT = 1 and see how well our 
method performs.

We evaluated the nowcasts by using the probability in-
tegral transform (PIT) histogram.18 This histogram is espe-
cially useful for probabilistic forecasts (nowcasts in our case). 
A probabilistic forecast does not have one outcome, but a 
range of outcomes, each with its own probability. If obser-
vations were drawn from the predictive distribution, the PIT 
histogram should show a uniform distribution. Deviations 

from uniformity indicate model deficiencies. For example, 
skewness towards higher (lower) PIT values indicates that 
the observations are too high (low) compared to the predic-
tive distribution. In other words, the nowcast underestimates 
(overestimates) the true epidemic curve.

Time-varying Reporting Delay Distribution
In can be of interest to have an estimate of the time-

varying distribution of reporting delays. This can be obtained 
using the first term in equation (2):

(1) � Calculate the contribution of the bivariate smoothing term 
to the reporting intensity: given the estimated regression 
coefficients αα , calculate µµ s   =  exp(Bαα) for all combi-
nations of t T= …1, ,  and d D= …0, , . Superscript s  
denotes the smooth surface.

(2) � Arrange µµ s  back into a T D× +( )1  grid, µt d
s
, .

(3) � Calculate the time-varying reporting delay distribution 
(probability mass function) by normalizing µt d

s
,  on its 

column totals: f dt t d
s

d

D

t d
s� ( ) =

′
′

=
∑µ µ, ,/

0

, for t T= …1, , .

The day-of-the-week effect is ignored to obtain a smooth 
estimate. Since Monday is taken as the reference day of the 
week, the smooth surface for any other day is multiplied by a 
factor equal to the exponent of the corresponding regression 
coefficient for that day. This factor cancels out by conditioning 
on column totals. However, one could still include the day-of-
the-week effect in the reporting delay distribution if desired by 
replacing µµ s by µµ .

NOWCASTING A LARGE MEASLES  
OUTBREAK IN THE NETHERLANDS

Data
During May 2013–March 2014, the Netherlands was 

affected by a large measles outbreak.4,19 The outbreak com-
menced in the center of the country in an orthodox protes-
tant community and spread to regions with low vaccination 
coverage. Two thousand seven hundred patients with mea-
sles have been reported, 181 children were hospitalized and 
one child died from complications of measles. The first case 
occurred on 8 May 2013; however it was not reported until 27 
May, with a delay of 19 days, together with five other cases.

Figure 2 shows the number of cases by symptoms onset 
time on Saturday 10 August 2013. This is 1 month after the 
peak of the outbreak. We have complete data on the entire out-
break in retrospect (only the reported symptomatic cases). In 
the top panel, the blue bars show the number of symptomatic 
cases that have been reported up to 10 August 2013. The or-
ange bars show the number of symptomatic cases that have 
not been reported yet up to 10 August 2013. The gray bars 
show the number of cases with symptoms onset time after 10 
August 2013.

http://links.lww.com/EDE/B544
http://links.lww.com/EDE/B544


Epidemiology  •  Volume 30, Number 5, September 2019	 Nowcasting Disease Outbreaks Using P-spline Smoothing

© 2019 Wolters Kluwer Health, Inc. All rights reserved.	 www.epidem.com  |  741

from uniformity indicate model deficiencies. For example, 
skewness towards higher (lower) PIT values indicates that 
the observations are too high (low) compared to the predic-
tive distribution. In other words, the nowcast underestimates 
(overestimates) the true epidemic curve.

Time-varying Reporting Delay Distribution
In can be of interest to have an estimate of the time-

varying distribution of reporting delays. This can be obtained 
using the first term in equation (2):

(1) � Calculate the contribution of the bivariate smoothing term 
to the reporting intensity: given the estimated regression 
coefficients αα , calculate µµ s   =  exp(Bαα) for all combi-
nations of t T= …1, ,  and d D= …0, , . Superscript s  
denotes the smooth surface.

(2) � Arrange µµ s  back into a T D× +( )1  grid, µt d
s
, .

(3) � Calculate the time-varying reporting delay distribution 
(probability mass function) by normalizing µt d

s
,  on its 

column totals: f dt t d
s

d

D

t d
s� ( ) =

′
′

=
∑µ µ, ,/

0

, for t T= …1, , .

The day-of-the-week effect is ignored to obtain a smooth 
estimate. Since Monday is taken as the reference day of the 
week, the smooth surface for any other day is multiplied by a 
factor equal to the exponent of the corresponding regression 
coefficient for that day. This factor cancels out by conditioning 
on column totals. However, one could still include the day-of-
the-week effect in the reporting delay distribution if desired by 
replacing µµ s by µµ .

NOWCASTING A LARGE MEASLES  
OUTBREAK IN THE NETHERLANDS

Data
During May 2013–March 2014, the Netherlands was 

affected by a large measles outbreak.4,19 The outbreak com-
menced in the center of the country in an orthodox protes-
tant community and spread to regions with low vaccination 
coverage. Two thousand seven hundred patients with mea-
sles have been reported, 181 children were hospitalized and 
one child died from complications of measles. The first case 
occurred on 8 May 2013; however it was not reported until 27 
May, with a delay of 19 days, together with five other cases.

Figure 2 shows the number of cases by symptoms onset 
time on Saturday 10 August 2013. This is 1 month after the 
peak of the outbreak. We have complete data on the entire out-
break in retrospect (only the reported symptomatic cases). In 
the top panel, the blue bars show the number of symptomatic 
cases that have been reported up to 10 August 2013. The or-
ange bars show the number of symptomatic cases that have 
not been reported yet up to 10 August 2013. The gray bars 
show the number of cases with symptoms onset time after 10 
August 2013.

The bottom panel visualizes the corresponding two-di-
mensional contingency table. The meaning of the colors is the 
same as in the top panel. The darker the colors, the more cases 
are being reported for that specific combination of time of 
symptoms onset and reporting delay. Day-of-the-week effects 
can be recognized as diagonal patterns running from the top 
left to the bottom right. Hardly any cases were reported in 
weekends, as suggested by the lighter diagonal band struc-
tures. Our objective is to model the number of reported symp-
tomatic cases in the blue reporting trapezoid and predict the 
number of symptomatic-but-not-yet-reported cases in the or-
ange upper triangular part of the contingency table. Both are 
provided by the nowcast.

Model Setup
From Figure 2, we can distinguish the following three 

phases in the outbreak: (1) Growth phase: June 2013. (2) Peak 
phase: July 2013. (3) Decline phase: August 2013. To illus-
trate our method, we produced nowcasts for three specific 
dates: 10 June 2013 (growth phase), 10 July 2013 (peak inci-
dence), and 10 August 2013 (decline phase). We considered 1 
May 2013 as day 1 (t = 1).

Next, we had to translate prior information on the re-
porting process into constraints for our nowcast model. See 

the eMethods; http://links.lww.com/EDE/B544 section in the 
supplementary material for more details. We had to define the 
boundary constraints at t = 1  and d D= .  From our database, 
for measles reports before 1 May 2013, we found that the av-
erage reporting delay was 12 days and that 99% of all cases 
were being reported within 6 weeks (42 days).8 By setting this 
maximum, we lose a few cases (1%) with longer reporting 
delays, but this had no consequences for the results. Assuming 
a Negative Binomial reporting delay distribution, these num-
bers defined the boundary constraint at t = 1  and d D= = 42  
days.

Furthermore, we penalized second order differences of 
the regression coefficients in the time of symptoms onset di-
mension (mT = 2), so any possible trends in that dimension 
will be extrapolated linearly (on a log-scale). We did the 
same for the reporting delay distribution dimension (mD = 2).  
We took the default fixed parameters κu = 106, κb = 106,  
κw = 0.01, and κs = 10−6. See the eMethods; http://links.lww.
com/EDE/B544 section in the supplementary material for 
more details.

In practice it is usually not necessary to include all times 
of symptoms onset t T= …1, , ,  so one option of the model is 
to set a time window to be used in the estimation procedure. By 

FIGURE 2.  Top panel: daily number of 
symptomatic cases during the Measles 
outbreak in the Netherlands for the 
period 1 May–15 September 2013, as 
available in retrospect. Bottom panel: 
corresponding reporting trapezoid. 
Blue colors: reported symptomatic 
cases up to 10 August 2013. Orange 
colors: not yet reported symptomatic 
cases on 10 August 2013. Gray colors: 
cases without symptoms (future).

http://links.lww.com/EDE/B544
http://links.lww.com/EDE/B544
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default, this window is set to t T D T= − +( ) …max 1 2 1, , , ,  in 
our case a window of 12 weeks (84 days).

RESULTS
Figure 3 shows the nowcasts on 10 June, 10 July, and 

10 August 2013. The blue bars show the number of sympto-
matic cases that had been reported up to that date. The gray 
bars show the number of symptomatic cases that had not been 

reported yet. The orange lines are the nowcasts (median) and 
the orange shaded areas are the 90% prediction intervals.

In general, although very few cases, or even zero cases, 
have been reported on the days before each nowcast date, the 
model is still able to predict the number of symptomatic-but-
not-yet-reported cases quite well. As we go further back in time, 
more symptomatic cases are being reported. As a result, the pre-
diction interval gets narrower. More specifically, if we look in 

at June 10, only a limited number of cases have been reported 
up to that date. Based on these observations and prior informa-
tion on the reporting process, the nowcasting method seems to 
overestimate the true number of symptomatic cases during this 
phase of the outbreak. If we look specifically at 10 July and 10 
August, the method seems to capture the epidemic trends better. 
The performance will be formally assessed in the next section.

Figure  4 shows the smooth time-varying distribution of 
reporting delays. For illustrating the time-varying nature of the 
reporting process, it includes all times of symptoms onset from 
t = 1 up to 1 September 2013. The orange triangle is the extrapo-
lation based on the available data in the reporting trapezoid. At the 
beginning of the outbreak, the distribution is mainly defined by the 
boundary constraint at t = 1. As more information becomes avail-
able, a gradual shift towards shorter delays can be seen, resulting 
in a more peaked distribution in June 2013. The highest reporting 
intensities occur with a delay of 5–9 days. In July and August, the 
reporting delays get less concentrated, possibly because of the hol-
idays resulting in longer waiting times to contact a general practi-
tioner or understaffing at the Municipal Health Services.

eFigure 1 (Supplementary material; http://links.lww.
com/EDE/B544) shows the estimated day-of-the-week effects 
as rate ratios (RR) including 95% confidence intervals for the 
nowcast date 10 August 2013. Because Monday is taken as the 
reference day, RR = 1 for this day. Monday is also the day with 
the highest reporting rate, probably because of the weekend 
cases being reported then. There is a decrease in reporting 
rates during weekdays, except for Friday, which is comparable 
to Mondays. During weekends hardly any cases are being re-
ported, resulting in rate ratios near zero, compared to Mondays.

Performance
We assessed the nowcast performance during 15 days 

within each of the three outbreak phases. More specifically, 
for example for the growth phase, around 10 June, from 3 June 
to 17 June, etc. Because we are most interested in good perfor-
mance in real-time, i.e., close to the current day during the out-
break, nowcasts are being produced to 7 days back, starting at  
the current day, i.e., T T, , .… − 6  For each date we compare 
the predictive distribution with the true number of reported 
cases Nt . Subsequently, we let T  run within each phase 
of the outbreak. Note that the observed value Nt  is being 
used multiple times. Hence, each PIT histogram is based on 

FIGURE 3.  Nowcast of the Measles 
outbreak for 10 June, 10 July, and 10 
August 2013 to 6 weeks back (orange 
colors). The shaded areas are the 90% 
prediction intervals.

http://links.lww.com/EDE/B544
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at June 10, only a limited number of cases have been reported 
up to that date. Based on these observations and prior informa-
tion on the reporting process, the nowcasting method seems to 
overestimate the true number of symptomatic cases during this 
phase of the outbreak. If we look specifically at 10 July and 10 
August, the method seems to capture the epidemic trends better. 
The performance will be formally assessed in the next section.

Figure  4 shows the smooth time-varying distribution of 
reporting delays. For illustrating the time-varying nature of the 
reporting process, it includes all times of symptoms onset from 
t = 1 up to 1 September 2013. The orange triangle is the extrapo-
lation based on the available data in the reporting trapezoid. At the 
beginning of the outbreak, the distribution is mainly defined by the 
boundary constraint at t = 1. As more information becomes avail-
able, a gradual shift towards shorter delays can be seen, resulting 
in a more peaked distribution in June 2013. The highest reporting 
intensities occur with a delay of 5–9 days. In July and August, the 
reporting delays get less concentrated, possibly because of the hol-
idays resulting in longer waiting times to contact a general practi-
tioner or understaffing at the Municipal Health Services.

eFigure 1 (Supplementary material; http://links.lww.
com/EDE/B544) shows the estimated day-of-the-week effects 
as rate ratios (RR) including 95% confidence intervals for the 
nowcast date 10 August 2013. Because Monday is taken as the 
reference day, RR = 1 for this day. Monday is also the day with 
the highest reporting rate, probably because of the weekend 
cases being reported then. There is a decrease in reporting 
rates during weekdays, except for Friday, which is comparable 
to Mondays. During weekends hardly any cases are being re-
ported, resulting in rate ratios near zero, compared to Mondays.

Performance
We assessed the nowcast performance during 15 days 

within each of the three outbreak phases. More specifically, 
for example for the growth phase, around 10 June, from 3 June 
to 17 June, etc. Because we are most interested in good perfor-
mance in real-time, i.e., close to the current day during the out-
break, nowcasts are being produced to 7 days back, starting at  
the current day, i.e., T T, , .… − 6  For each date we compare 
the predictive distribution with the true number of reported 
cases Nt . Subsequently, we let T  run within each phase 
of the outbreak. Note that the observed value Nt  is being 
used multiple times. Hence, each PIT histogram is based on 

7 × 15 = 105 days. The included times of symptoms onset in 
the estimation procedure are set to the default, which is twice 
the maximum reporting delay, here 12 weeks (84 days).

The corresponding PIT histograms are shown in eFigure 
2 (Supplementary material; http://links.lww.com/EDE/B544). 
The columns show the growth phase, peak phase, and decline 
phase of the outbreak; the rows show the effect of penalization 
of the first order and second order differences on the adjacent 
coefficients in the time of symptoms onset dimension.

During the initial phase (10 June 2013 ± 7 days), tak-
ing first order differences, the histogram shows a tendency to 
higher PIT values. This indicates that the predictive distribu-
tion is most of the time too low compared to the observed 
numbers. Taking second order differences, the PIT histogram 
shows a tendency to lower PIT values, indicating that the 
predictive distribution is too high compared to the observed 
numbers, which corresponds the upper panel in Figure 2. If 
we calculate the mean absolute difference the bars with one 
(dashed horizontal line), it is 0.84 for the first order differ-
ences and 0.70 for the second order differences, indicating 
that taking second order differences is better.

During the peak phase (10 July 2013 ± 7 days), taking 
first order differences, again results in a predictive distribu-
tion that is too low compared to the observed numbers. Tak-
ing second order differences, the PIT histogram is more or 
less uniform. Here the nowcast performs better than during 
the growth phase. For the second order differences this cor-
responds to what we see in the middle panel in Figure 2. The 
mean absolute difference is 0.87 for the first order differences 
and 0.23 for the second order differences.

During the decline phase (10 August 2013 ± 7 days), 
there seems to be a tendency to lower PIT values, both taking 
first and second order differences. This indicates that the pre-
dictive distribution is most of the time a bit too high compared 
to the observed numbers. For the second order differences this 
corresponds to what we see in the lower panel in Figure 2. The 
mean absolute difference is 0.72 for the first order differences 
and 0.62 for the second order differences.

DISCUSSION
During an infectious disease outbreak, it is impor-

tant to have real-time information on the number of new 

FIGURE 4.  Time varying reporting delay distri-
bution up to 1 September 2013. The blue colors 
indicate the smoothed distribution based on the 
observations. The extrapolation is indicated by 
orange colors. The contour lines indicate levels of 
equal probability mass.
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symptomatic cases. Because of reporting delays, relying only 
on reported cases will result in biased estimates for the most 
recent time. We have shown how to combine information from 
already reported cases with a nowcast model to make real-
time predictions. These predictions can be used for outbreak 
management.

The advantage of our nowcasting method is that it is 
intuitive and fast. It is intuitive as it considers a direct mod-
eling of the number of cases in the dimensions of symptoms 
onset time and reporting delay. Prior information about the 
reporting process is included in the model by translating it 
into additional constraints. Subsequently, the two-dimensional 
surface is extrapolated outside the reporting trapezoid. The 
method is computationally fast as it can be thought of as a 
penalized generalized linear model. This allows model build-
ing in terms of a regression matrix, an error distribution, and 
a link function. Although penalties are added, the algorithm 
retains the efficient iterative weighted least squares form. Es-
timation is done in seconds. This allows it to be used in real-
time monitoring.

The method has many similarities with the Bayesian hier-
archical approach of Höhle and an der Heiden,12 like modeling 
counts in the reporting trapezoid, taking the right truncation 
of the reporting process into account, smoothing the epidemic 
trend in the dimension of symptoms onset time, and allow-
ing incorporation of covariates, here day-of-the-week effects. 
However, using our approach, modeling sudden changes in the 
reporting process can be challenging. Currently, any sudden 
changes in the reporting process will be manifested as gradual 
trends in the reporting intensity surface. However, by setting 
specific elements in difference operator matrices to zero, breaks 
or jumps can be incorporated. Furthermore, a sudden change 
could be incorporated as a categorical covariate in the regres-
sion framework. For the measles outbreak we have seen that 
the reporting delay distribution was slightly time-varying. The 
model was able to pick up these gradual changes.

The constraints that are introduced reflect prior infor-
mation on the reporting process, which we consider impor-
tant to take into account. Without these constraints, it was 
almost impossible to generate a stable extrapolation outside 
the reporting trapezoid. The most important constraint is the 
boundary constraint. It forces the smooth reporting intensity 
surface below prespecified values. Here, these values were 
based on historical knowledge of the reporting process, but 
an educated guess could have been used as well. It should be 
noted that if only a few cases can be expected at t = 1, then 
this information should certainly be included, or else the fit 
will become very unstable because of the few observations. 
However, if already many cases can be expected at t = 1, 
then this constraint becomes less important because there are 
enough observations to inform the model. In the beginning of 
an outbreak one can use reporting delays from previous out-
breaks to get some idea about the expected delays and about a 
maximum reporting delay during the current outbreak.

Of lesser importance is the unimodality constraint. This 
is because most of the time, though not always, the boundary 
constraint at d D=  already results in a unimodal stable ex-
trapolation outside reporting trapezoid. Furthermore, for some 
diseases, the reporting delay distribution will not always be 
unimodal, e.g. for tuberculosis or HIV, which typically have 
long variable reporting delays. For such diseases, by simply 
setting κu = 0, the unimodality constraint can be disabled in 
our nowcasting method. See the eMethods section in the sup-
plementary material for more details.

Parameter uncertainty is taken into account in the now-
casting procedure by Monte Carlo sampling. In addition, the 
prediction interval is obtained by Monte Carlo sampling. This 
allows generating a predictive empirical distribution function 
for each date. Furthermore, knowing the true number of cases 
by date in retrospect allows evaluating the quality of the now-
casts, using PIT histograms.

We evaluated the nowcasts for three phases during the 
outbreak. We chose these phases to investigate the behavior of 
the method under different circumstances. We chose the length 
of the period, 7 days backward, in a 15-day moving window, to 
evaluate the nowcast performance in real-time, i.e., close to the 
current day during an outbreak. Based on the mean absolute 
differences of the PIT values compared to one, taking second-
order differences resulted in a better performance. However, 
during the growth phase of the outbreak the predictive distribu-
tion then is too high, compared to the observed numbers. Dur-
ing the peak and decline phase, the nowcast performed better.

Future work involves the implementation the general-
ized linear array model algorithm20 to further increase the 
computational efficiency. Furthermore, the model formulation 
can be generalized, so that more covariates, in addition to the 
day of the week, can easily be incorporated. In addition, the 
possibility to include breaks or jumps should be further inves-
tigated. Finally, it would be interesting to investigate other 
diseases with much longer reporting delays, e.g., pertussis, 
having an average delay of several weeks.8

CONCLUSIONS
We have presented a nowcasting method for estimating 

the number of new symptomatic cases during infectious di-
sease outbreaks. In essence, we estimate a two-dimensional 
reporting intensity surface and extrapolate this surface to pre-
dict the number of symptomatic-but-not-yet-reported cases. 
Our method directly models the reported number of cases 
by symptoms onset time and reporting delay using P-splines. 
Prior information on the reporting process is included as addi-
tional constraints. The extrapolation, in combination with the 
number of already reported symptomatic cases, allows con-
structing a nowcast for the current day and backwards, up to 
a predefined maximum delay. Even with very limited infor-
mation, the method is able to predict the number of symptom-
atic-but-not-yet-reported cases quite well. The method is fast, 
which allows it to be used in real-time monitoring.
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