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Abstract

This paper proposes an asymmetric grouping estimator for panel data

forecasting. The estimator relies on the observation that the bias-

variance trade-off in potentially heterogeneous panel data may be dif-

ferent across individuals. Hence, the group of individuals used for

parameter estimation that is optimal in terms of forecast accuracy,

may be different for each individual. For a specific individual, the

estimator uses cross-validation to estimate the bias-variance of all in-

dividual groupings, and uses the parameter estimates of the optimal

grouping to produce the individual-specific forecast. Integer program-

ming and screening methods deal with the combinatorial problem of

a large number of individuals. A simulation study and an application

to market leverage forecasts of U.S. firms demonstrate the promising

performance of our new estimators.
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1 Introduction

Forecast accuracy suffers in many applications from substantial parameter

estimation uncertainty due to a small number of available observations. The

availability of potentially relevant additional ‘panels’ of data may decrease

forecast variance and thus increase forecast performance. When the panels

are short, one commonly gains in efficiency by estimating the parameter val-

ues on the pooled observations from all panels (Baltagi et al., 2008). However,

forecasts based on the assumption of complete parameter homogeneity across

all panels may suffer from substantial bias. The accuracy of panel-specific

forecasts relies on the ability of the researcher to model possible parameter

heterogeneity across panels, balancing the efficiency gains from pooling and

the bias due to panel heterogeneity.

An alternative to assuming either complete heterogeneity or homogeneity

across panels, is to assume that panels can be classified into groups with

homogeneous parameters, while allowing for heterogeneity across groups. To

estimate the unknown number of groups and the group membership of each

panel, researchers use methods from the machine learning literature; Lin

and Ng (2012) and Ando and Bai (2016) use the K-means algorithm to

cluster panels and Su et al. (2016) and Wang et al. (2018) develop lasso-type

estimators to estimate groups of panels. Estimating a symmetric grouping,

in which panel A clusters with panel B if and only if panel B clusters with

panel A, takes parameter heterogeneity across panels into account. However,

it does not account for heterogeneity in panel-specific forecast accuracy.

This paper proposes an asymmetric grouping estimator. The estimator

relies on the observation that the bias-variance trade-off may be different in

each panel, and therefore the optimal grouping in terms of forecast accu-

racy may be different for each panel. The asymmetric grouping estimator

separately estimates parameter values for each panel of interest, potentially

also using observations from other available panels. For a specific panel, the

estimator uses leave-one-out cross-validation to estimate the bias-variance

trade-off of all groupings that involve the panel, and uses the parameter es-

timates of the optimal grouping to produce the panel-specific forecast. The
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estimator is called asymmetric as it does not have to be the case that the

optimal grouping for panel A is the same as the optimal grouping for panel

B. We refer to a standard segmentation as symmetric grouping.

Since the asymmetric grouping estimator does not assume a latent group

structure, it does not require knowledge of the number of groups. Estimating

the number of groups in symmetric grouping estimators involves sequential

testing (Lin and Ng, 2012), information criteria (Su et al., 2016; Wang et al.,

2018), and/or tuning parameters that introduce additional estimation un-

certainty. Even when information about the group structure is available, as

assumed in Bester and Hansen (2016), a higher level grouping potentially

improves forecast accuracy.

We derive an expression for the mean squared forecast error of grouping

estimators. This expression identifies settings in which an asymmetric group-

ing improves upon forecast accuracy relative to symmetric grouping. Since

the asymmetric grouping estimator iterates over all possible combinations of

panels, we introduce a sequential integer programming approach that does

not need to explore every possible combination. The approximation error is

small when the sample covariance matrix of the regressors is approximately

the same in each panel, while the gains in computation time are substan-

tial. However, there are no guarantees on the computation time of integer

programming. We show that asymmetric grouping with a huge number of

panels is feasible by using an initial screening step, under the assumption of

bounded forecast bias. This screening step reduces an NP-hard problem to

computation time that increases linearly in the number of panels.

We study the theoretical results in a finite sample simulation study and

find that asymmetric grouping estimators substantially increase forecast per-

formance in both weakly and strongly heterogeneous panels. An empirical

application to market leverage forecasts of publicly traded U.S. firms shows

that asymmetric grouping improves upon symmetric grouping estimators in

terms of mean squared forecast error in panel data with 10, 25 and 172 firms.

Many other methods are proposed to deal with potentially heterogeneous

panel data. First, researchers allow for heterogeneous intercept parameters

and assume homogeneous slope parameters. These fixed effects estimators
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are poorly estimated in short panels (Neyman and Scott, 1948). Bonhomme

and Manresa (2015) and Bester and Hansen (2016) address this incidental pa-

rameter problem by estimating grouped fixed effects to increase the accuracy

of the intercept estimate. The random coefficient model of Swamy (1970)

provides heterogeneous parameter estimates that rely on distributional as-

sumptions on the parameters. Individual parameters are shrunk towards a

common pooled parameter value, where the pooling and amount of shrinkage

depends on the amount of information in the individual time series.

Second, under the assumption of an underlying group structure, we can

use statistical pretests for parameter heterogeneity across panels (Danilov

and Magnus, 2004; Pesaran and Yamagata, 2008; Jin and Su, 2013; Juhl

and Lugovskyy, 2014). Although one may decide to forecast with a pooled

regression when the hypothesis of homogeneity across panels cannot be re-

jected, the alternative is not very helpful. Sequentially testing for homogene-

ity across subgroups of panels potentially leads to a large number of tests and

a substantial increase in forecast variance. The decision to reject a model

specification relies on an arbitrarily chosen significance level. Moreover, these

tests aim to select a ‘true’ model, which does not have to correspond to a

model that performs best in terms of forecast accuracy.

Third, instead of estimating an underlying group structure, one can also

average over models with different groupings. Wang et al. (2015) combine

forecasts from models with different panel groupings and estimate the weights

based on the Mallows criterion. Desbordes et al. (2018) use Bayesian model

averaging to combine models with different panel groupings. These methods

implicitly assume a symmetric grouping by using the same model weights for

each individual panel forecast. Finite mixture models jointly estimate differ-

ent sets of parameter values and the corresponding probability weights for

each panel (McLachlan and Peel, 2000; Frühwirth-Schnatter, 2006; Kasahara

and Shimotsu, 2009). Although weighting is panel-specific, each forecast is

based on the same fixed number of parameter values with nonzero weights.

Fourth, Maddala et al. (1997) propose shrinkage estimators that shrink

the parameter estimates using only the data in each panel to the parameter

estimates based on the pooled panel data. This idea is also applied in hierar-
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chical Bayes models for panel data by, for instance, Chib (2008). Shrinking

the parameter estimates for each panel to the same mean is only reason-

able under the assumption that the panel-specific parameters have similar

values. Moreover, the shrinkage estimators require the researcher to set a

regularization strength, which is imposed to be the same for each panel.

This paper is structured as follows. Section 2 introduces the asymmetric

grouping estimator, derives the settings under which asymmetric grouping

improves the forecast accuracy, and discusses estimation when the number

of available panels is large. Section 3 derives theoretical results on the con-

ditions where the estimator is useful. The finite sample performance of the

asymmetric grouping estimator is compared to other estimators in a Monte

Carlo study in Section 4. Section 5 discusses an empirical application. Fi-

nally, Section 6 concludes.

2 Methods

This section develops a forecasting method for panel data. We first intro-

duce the general panel data model setup. Second, we show how panel data

forecasts can be constructed in this setting. Third, we introduce the idea

of forecasting using an asymmetric grouping of panel data, and fourth we

introduce algorithms for estimating the grouping that minimizes the mean

squared forecast error. This section concludes with a discussion on the in-

terpretation of the asymmetric grouping estimator.

2.1 Setup

Consider the panel regression model

yi = Xiβi + εi, εi ∼ i.i.d(0, σ2
i ITi), i = 1, . . . , N, (1)

where yi = (yi1, . . . , yiTi)
′ is a Ti × 1 response vector, Xi = (X ′i1, . . . , X

′
iTi

)′ a

Ti×p regressor matrix, εi = (εi1, . . . , εiTi) a Ti×1 independent and identically

distributed error vector with mean zero and variance σ2
i , and N the number
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of available panels. The regressors in Xit are assumed to be uncorrelated

with the error term εit. The coefficients βi = (βi1, . . . , βip)
′ are assumed to

be fixed but allowed to differ across panels.

We study the mean squared forecast error of the individual panel point

forecast ŷi,Ti+1 for yi,Ti+1. The mean squared forecast error for any estimator

β̂i for βi is defined as

ρi = E

[(
yi,Ti+1 − x′i,Ti+1β̂i

)2
− σ2

i

]
, (2)

where the variance σ2
i is subtracted as it arises from the error εi,Ti+1, which

is unpredictable for any method, and we take the expectation over the error

terms εit, for t = 1, . . . , Ti, and i = 1, . . . , N .

The forecast ŷi,Ti+1 can be constructed by estimating βi in (1) by ordinary

least squares only using the data in panel i. However, when the sample size or

the signal-to-noise ratio in panel i is low, substantial parameter uncertainty

can lead to inaccurate forecasts. When data from other panels is available,

the mean squared forecast error may benefit from estimating βi using data

from other panels as well. The pooled estimator uses all available panels

to produce a forecast. This estimator is more efficient than the individual

estimator, but can be biased when coefficients are strongly heterogeneous.

2.2 Panel forecasts from grouping estimators

The bias-variance trade-off between the individual and pooled estimator mo-

tivates the use of grouping estimators. Estimating βi on a subset of multiple

panels may introduce less forecast bias than the pooled estimator and less

forecast variance than the individual estimator. Grouping estimators are able

to exploit this bias-variance trade-off by using the data from the set of panels

that minimizes the mean squared forecast error in (2), potentially improving

upon both the individual and pooled estimator in terms of forecast accuracy.

Denote the estimator for βi based on the data in a set of panels s by

β̂i(s). The set s ∈ Si contains a subset of the numbers 1, . . . , N , indicating

the panels used to estimate βi. We impose that s always includes panel
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i. Denote the number of elements in s by |s|. Let Si be the superset of s

that contains all 2N−1 combinations s that include panel i, and S be the

superset of Si including all 2N −1 unique combinations of N panels of length

|s| = 1, . . . , N . The estimator β̂i(s) for βi equals

β̂i(s) =

(∑
l∈s

X ′lXl

)−1∑
l∈s

X ′lyl, (3)

which uses the data in the set of panels s ∈ Si. The point forecast for yi,Ti+1

based on β̂i(s) is denoted by

ŷi,Ti+1(s) = x′i,Ti+1β̂i(s). (4)

The grouping estimator in (3) includes the case in which panels in s are

pooled up to a panel-specific fixed effect or scaling factor. When we exclude

an intercept from Xi, (1) can be rewritten to

yi = αi +Xiciβi + ui, ui ∼ i.i.d(0, c2iσ
2
i ITi), i = 1, . . . , N, (5)

where the scalars αi and ci represent a panel-specific fixed effect and scaling

factor, respectively. Define µyi = 1
Ti

∑Ti
t=1 yit, µXi

= 1
Ti

∑Ti
t=1Xit, and σyi =√

1
Ti

∑Ti
t=1(yit − µyi)2, then βi in (5) can be estimated using (3) by replacing

Xi and yi by X̃i = Xi−µXi
and ỹi =

yi−µyi
σyi

, respectively. The estimate for αi

equals α̂i =
µyi−µXi

β̂i
σyi

and for ci we get ĉi = 1
σyi

. Setting σyi = 1 only allows

for panel-specific fixed effects within s, and setting µyi = 0 and µXi
= 0 only

for panel-specific scaling within s.

The individual estimator and the pooled estimator are two widely used

special cases of (3). When s = {i}, (3) only uses the data in panel i to

estimate βi, which is equivalent to the individual estimator. The pooled

estimator uses all available panels to produce a forecasts. This boils down

to (4) with s = {1, . . . , N}.
The grouping estimator in (3) allows s to contain more than one but less

than N elements, which results in 2N−1 unique combinations s for forecasting
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ŷi,Ti+1(s). Among others, Lin and Ng (2012), Ando and Bai (2016), Su et al.

(2016), and Wang et al. (2018) estimate s by restricting the total number

of possible combinations in S. They propose estimators that account for a

group structure by assuming a ‘true’ grouping of panels. The coefficients

within a group of panels are homogeneous, but coefficients are heterogeneous

across groups of panels. Applying these ‘symmetric grouping’ methods to

forecasting with panel data, restricts each forecast ŷi,Ti+1 to be constructed

from the same underlying group structure. In other words, yi,Ti+1 is forecast

by ŷi,Ti+1(s) with j ∈ s if and only if yj,Tj+1 is forecast by ŷj,Tj+1(s) with

i ∈ s and vice versa. Hence, symmetry in grouping is assumed. In the next

section we will relax this assumption.

2.3 Asymmetric grouping

Grouping estimators potentially increase forecast accuracy by trading gains

in efficiency against increase in bias due to heterogeneity across panels. This

trade-off may be different in each panel, and therefore the optimal grouping in

terms of forecast accuracy may be different for each panel. An asymmetric

grouping estimator allows for different panel groupings for each individual

panel forecast, and hence allow for asymmetry.

To illustrate the potential gains of asymmetric grouping estimators versus

symmetric grouping estimators, we consider the data generating process in

(1) with xit = 1 for t = 1, . . . , Ti, and i = 1, . . . , N = 2,

y1 = β1 + ε1, ε1 ∼ i.i.d(0, σ2
1IT1), (6)

y2 = β2 + ε2, ε2 ∼ i.i.d(0, σ2
2IT2), (7)

where S = {{1}, {2}, {1, 2}} and the mean squared forecast errors equal

ρ1({1}) = σ2
1/T1, ρ1({1, 2}) =

T 2
2

(T1 + T2)2
(β1 − β2)2 +

σ2
1T1 + σ2

2T2
(T1 + T2)2

, (8)

ρ2({2}) = σ2
2/T2, ρ2({1, 2}) =

T 2
1

(T1 + T2)2
(β1 − β2)2 +

σ2
1T1 + σ2

2T2
(T1 + T2)2

. (9)

There are two cases in which a symmetric grouping achieves the lowest
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mean squared forecast error for both panels. First, it is optimal to forecast

both y1,T1+1 and y2,T2+1 by pooling the two panels together if

(β1 − β2)2 < min

((
2

T2
+

1

T1

)
σ2
1 −

1

T2
σ2
2,

(
2

T1
+

1

T2

)
σ2
2 −

1

T1
σ2
1

)
, (10)

which implies that it is optimal to group the two panels when the bias that

arises from grouping is small relative to the error variances. Second, both

panels benefit more the individual estimator if

(β1 − β2)2 > max

((
2

T2
+

1

T1

)
σ2
1 −

1

T2
σ2
2,

(
2

T1
+

1

T2

)
σ2
2 −

1

T1
σ2
1

)
. (11)

Since the optimal group structure does not change by forecasting in another

panel, we consider the individual estimator as a special case of symmetric

grouping. When the error variances are small relative to the bias, grouping

does not result in more accurate forecasts.

Figure 1 shows the optimal group structure for different values of the error

variances σ2
1 and σ2

2 when the bias term (β1 − β2)2 = 1 and T1 = T2 = 10.

The gray parameter space represents the error variances for which symmetric

grouping is optimal. In the left lower corner both error variances are small

relative to the bias term and each panel has its own group. In the right

upper corner the error variances dominate the bias term and the pooled

estimator is for both panels optimal. The point of intersection is determined

by the sample sizes T1 and T2 and the magnitude of the bias. When the

bias increases, the parameter space corresponding to pooling decreases and

for a zero bias it is never optimal to forecast both panels by the individual

estimator.

When there is enough variation in the error variances across the panels,

Figure 1 shows that it is suboptimal to forecast each panel from the same

group structure. Depending on the bias and the sample size, the asymmetric

grouping can be optimal in a large part of the parameter space and seems by

no means restricted to extreme cases. The idea of this paper is to develop

an estimator that exploits this uncolored parameter space to gain in terms

of forecast accuracy.
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Figure 1: Optimal grouping over parameter space
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This figure shows the optimal group structure for different values of the error variances σ2
1

and σ2
2 when the bias term (β1 − β2)2 = 1 and T1 = T2 = 10.

2.4 Group selection

The asymmetric grouping estimator allows each panel forecast to be con-

structed from a different subset of panels. The subset s is treated as a hy-

perparameter in the forecast ŷi,Ti+1(s), which we select by cross-validation.

The infeasible best estimator of s for forecasting yi,Ti+1 minimizes the

mean squared forecast error and selects the optimal subset of panels ŝ by

ŝ = argmin
s∈Si

ρi(s), (12)

where ρi(s) is defined as the mean squared forecast error in (2) based on

β̂i = β̂i(s).

To obtain a feasible estimate of the optimal grouping strategy for each
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panel forecast we use cross-validation. A sample estimate ρ̂i(s) of ρi(s) is

ρ̂i(s) =
1

Ti

Ti∑
t=1

eit(s)
2, (13)

where eit(s) denote the leave-one-out prediction residuals. These residuals

are based on the leave-one-out estimator

β̂−ti (s) =

∑
l∈s/i

X ′lXl +
∑
j 6=t

xijx
′
ij

−1∑
l∈s/i

X ′lyl +
∑
j 6=t

xijyij

 , (14)

where s/i denotes the set s without element i, by the formula

eit(s) = yit − xitβ̂−ti (s) =
ε̂it(s)

1− x′it
(∑

l∈sX
′
lXl

)−1
xit
, (15)

where ε̂it(s) = yit − xitβ̂i(s). The forecast for yi,Ti+1 equals

ŷi,Ti+1 = x′i,Ti+1β̂i(ŝ), (16)

with β̂i(s) as in (3), and ŝ = argmins∈Si
ρ̂i(s) with ρ̂i(s) defined in (13).

Algorithm 1 shows the three simple steps of forecasting with this asymmetric

grouping estimator.

Algorithm 1 Asymmetric grouping estimator

1: for all s ∈ Si do
2: β̂i(s) =

(∑
l∈sX

′
lXl

)−1∑
l∈sX

′
lyl

3: end for

4: ŝ = argmins∈Si

∑Ti
t=1

(
yit−xitβ̂i(s)

1−x′it(
∑

l∈sX
′
lXl)

−1
xit

)2

5: ŷi,Ti+1 = x′i,Ti+1β̂i(ŝ)

2.4.1 Large number of panels

Since Algorithm 1 performs only one linear operation for each combination of

panels, the estimator is reasonably fast when the number of available panels
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is small. However, the estimator iterates over all available 2N−1 combinations

to forecast in one panel, which means that Algorithm 1 works when N = 10,

but is computationally infeasible when N = 50.

To solve this problem, we propose an asymmetric grouping estimator

that is feasible with a large number of panels by approximating the sample

estimate of the mean squared forecast errors of each panel combination. This

approximation allows for a sequential integer programming approach that

does not need to explore every possible combination.

We estimate the mean squared forecast error ρi(s) using the leave-one-out

prediction residuals

vit(s) =
1

k
(yit − x′itβ̂−ti ({i})) +

1

k

N∑
j 6=i

wij(s)(yit − x′itβ̂j({j})), (17)

where k = |s|, and the weights wij(s), j = 1, . . . , i− 1, i + 1, . . . , N , equal 1

when j ∈ s, and zero otherwise. The residuals vit(s) in (17) approximate the

residuals eit(s) in (13) by a linear approximation1

vit(s) =
1

k − 1

N∑
j 6=i

wij(s)vit({j}), (18)

where the panel-specific prediction residuals vit({j}) are specified as

vit({j}) =
1

k
(yit − x′itβ̂−ti (i)) +

k − 1

k
(yit − x′itβ̂j({j})). (19)

The panel-specific prediction residuals in (19) are constructed only from data

in panel i and panel j. Therefore, this linear approximation enables the

sample estimate of the mean squared forecast error to be written as

ρ̂i(s) =
1

Ti

Ti∑
t=1

vit(s)
2 =

1

Ti
(k − 1)−2wi(s)

′Viwi(s), (20)

where Vi = viv
′
i, with vi = (vi({1}), . . . , vi({i−1}), vi({i+1}), . . . , vi({N}))′,

1Section 3.2 discusses the assumptions under which these approximations are valid.
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vi({j}) = (vi1({j}), . . . , viT ({j}))′, and wi(s) = (wi1(s), . . . , wiN(s))′.

To estimate the optimal subset of panels ŝ we minimize the sample es-

timate of the mean squared forecast error. We iteratively minimize (20) for

each value of k. The s ∈ Si with k = 1 corresponds to the sample estimate

of the mean squared forecast error ρ̂i(i) as defined in (13). For k > 1, we

estimate the optimal combination by solving the optimization problem

min (k − 1)−2w′Viw, (21)∑
j

wj = k − 1, (22)

w ∈ {0, 1}N−1, (23)

which can be solved by integer programming as in Matsypura et al. (2018).

We select the combination ŝ with the lowest ρ̂i(s) from the set of optimal

combinations s of length k = 1, . . . , N . Algorithm 2 outlines the forecasting

steps with the asymmetric grouping estimator and a large number of panels.

Algorithm 2 Asymmetric grouping with large number of panels

1: for all k = 2, . . . , N do
2: for all j 6= i do
3: vi({j}) = 1

k
ei(i) + k−1

k
(yi − x′iβ̂j({j}))

4: end for
5: vi = (vi({1}), . . . , vi({i− 1}), vi({i+ 1}), . . . , vi({N}))′
6: minw ρ

k
i (w) = (k − 1)−2w′viv

′
iw s.t.

∑
j wj = k − 1 and wj ∈ {0, 1}

7: Set ŝ according to ŵk if ρki (ŵ
k) < ρk−1i (ŵk−1)

8: end for
9: ŷi,Ti+1 = x′i,Ti+1β̂i(ŝ)

2.4.2 Huge number of panels

Algorithm 2 runs a series of integer programming problems to forecast with

a large number of panels. Matsypura et al. (2018) show that these problems

have NP-hard complexity, which means that there is no guarantee on a feasi-

ble computation time for data sets with a very large number of panels. This

section proposes an alternative forecasting method, for which the computa-
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tion time increases linearly in the number of panels, and therefore suits a

huge number of panels.

Instead of estimating the mean squared forecast error for all possible

combinations of panels, we first select a small set of panel combinations

which contains a panel combination with a mean squared forecast error that

is close or equal to the optimal one. This initial screening step is based on

the conjecture that a panel combination that contains a panel that induces

a forecast bias and variance in the mean squared forecast error, is only likely

to be optimal when it also includes the panels that induce smaller bias and

variance terms in the mean squared forecast error. This bias-variance trade-

off for forecasting in panel i with panel l is captured by ρi({j}).
When the number of panels N is large we propose an algorithm that only

estimates the mean squared forecast errors of 2N panel combinations instead

of 2N−1. The initial screening step estimates the mean squared forecast errors

ρi({l}) for l = 1, . . . , N . Subsequently, we run Algorithm 1 only for the

N panel combinations consisting of panels corresponding to the k smallest

ρi({l}), with k = 1, . . . , N . Algorithm 3 shows the computation steps of this

asymmetric grouping estimator with large N .

Algorithm 3 Asymmetric grouping with huge number of panels

1: for j = 1, . . . , N do

2: β̂i({j}) =
(
X ′jXj

)−1
X ′jyj

3: ρ̂i({j}) =
∑Ti

t=1

(
yit − xitβ̂i({j})

)2
4: end for
5: for k = 1, . . . , N do
6: h = set of k panels selected by smallest ρ̂i({j})
7: β̂i(h) =

(∑
l∈hX

′
lXl

)−1∑
l∈hX

′
lyl

8: end for

9: ĥ = argminh
∑Ti

t=1

(
yit−xitβ̂i(h)

1−x′it(
∑

l∈hX
′
lXl)

−1
xit

)2

10: ŷi,Ti+1 = x′i,Ti+1β̂i(ĥ)
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2.5 A shrinkage interpretation of grouping estimators

The grouping estimator defined in (3) borrows information from other panels

when the set s contains more than one panel. This idea is directly related to

shrinkage estimators in panel data. To illustrate this, we rewrite the grouping

estimator to

β̂i(s) =
∑
l∈s

(U−1s Ql)β̂l({l}) = (U−1s Qi)β̂i({i}) +
∑
l∈s/i

(U−1s Ql)β̂l({l}), (24)

where Ql = X ′lXl and Us =
∑

l∈sQl. The grouping estimator in (24) is a

weighted average of the individual panel estimator in panel i and a combi-

nation of the individual estimators in the other panels included in s. The

grouping estimator shrinks the panel estimates to the weighted average of

other panels in s.

From a Bayesian perspective, this shrinkage is defined in terms of prior

distributions. The posterior mean of a parameter is shrinked from the sam-

ple mean to the prior mean. Consider the panel regression model in (1)

and assume normally distributed error terms. The natural conjugate prior

distribution for βi and diffuse prior for σ2
i are specified as

p(βi|σ2
i ) ∼ N(bi, σ

2
iBi), p(σ2

i ) ∝ σ−2i , (25)

where bi defines the prior mean and σ2
iBi the covariance matrix of the prior

distribution for βi. This prior assumes no shrinkage when bi and Bi do not

use cross-sectional information. The marginal posterior distribution of βi is

βi ∼ t(β̃i, σ̃
2
i (X

′
iXi +B−1i )−1, Ti), (26)

β̃i = (X ′iXi +B−1i )−1(X ′iyi +B−1i bi), (27)

σ̃2
i =

1

N
((yi −Xiβ̃i)

′(yi −Xiβ̃i) + (bi − β̃i)′B−1i (bi − β̃i), (28)

see e.g. Chapter 3 of Zellner (1971), from which follows that the posterior
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mean of βi equals β̂i(s) if

bi =

∑
l∈s/i

X ′lXl

−1 ∑
l∈s/i

X ′lyl, Bi =

∑
l∈s/i

X ′lXl

−1 . (29)

The prior parameters in (29) shrink the individual panel estimator in panel i

to the ordinary least squares estimator using the other panels included in s. A

symmetric grouping only allows for groups of panels for which the parameter

estimates are shrunken to a common group-specific parameter value. The

asymmetric grouping estimator also allows for different prior parameters for

each panel, which implies that the shrinkage direction can be different for all

panel-specific parameter estimates.

Figure 2 shows the shrinkage behaviour of different grouping estimators.

The coefficients are estimated on linear panel data simulated from DGP 3

with N = 10 and R2 = 0.9, discussed in Section 4. The squares in the first

panel of Figure 2 display the true values of the 4 different regression param-

eter settings used in the DGP. The circles in the other panels display the

individual estimates, while the stars denote one of the grouping estimates.

The pooled estimator with s = {1, . . . , N} for all panels shrinks all panel-

specific coefficients to a common estimate. This approach does not allow

for parameter heterogeneity across panels. The second panel of Figure 2

shows the individual panel estimates together with their weighted average

estimated by the pooled estimator. A symmetric grouping estimator does al-

low for heterogeneity by shrinking the individual panel estimates to common

cluster estimates. The third panel in Figure 2 shows that the coefficients

shrink to two different clusters. The asymmetric grouping estimator does

not necessarily shrink panel coefficients to identical values. The final panel

in Figure 2 shows that the two coefficient vectors in the lower left corner

shrink together, the coefficient vector in the upper right corner do not move

at all, and other coefficients shrink only in each others direction.
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Figure 2: Parameter estimates grouping estimators
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The figure in the upper left corner shows the parameter values of β1 and β2 for data
simulated from DGP 3 in Section 4. The upper right figure shows the individual panel
estimates (circles) with the pooled estimate (stars), the lower left figure with the C-lasso
estimates (stars), and the lower right with the asymmetric grouping estimates (stars).
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3 Theoretical results

So far, we have introduced our new asymmetric grouping estimator. In this

section we derive under which conditions our estimator is useful and under

which conditions our approximations can be applied. The results are based

on the panel regression model in (1). This model assumes strictly exogenous

explanatory variables. Under this assumption, the individual estimator is

unbiased and we can derive explicit expressions for the bias-variance trade-

off of the proposed estimators.

3.1 Mean squared forecast error grouping estimators

Lemma 1 provides an expression for the mean squared forecast error ρi(s)

for the forecast ŷi,Ti+1(s) in (4).

Lemma 1 The mean squared forecast error ρi(s) for ŷi,Ti+1(s) is

ρi(s) = Bi(s) + Vi(s) (30)

=

(
x′i,Ti+1U

−1
s

∑
l∈s

Ql(βl − βi)

)2

+
∑
l∈s

σ2
l x
′
i,Ti+1U

−1
s QlU

−1
s xi,Ti+1,

with s ∈ Si and where we denote Ql = X ′lXl and Us =
∑

l∈sQl.

The proof is given in Appendix A.

Lemma 1 shows that the mean squared forecast error is a composition of

a bias and a variance term. The first term in (30) represents the squared

forecast bias that may arise from using multiple panels to forecast panel i.

For the individual estimator s = {i} the bias term is zero. The bias term

also equals zero when the coefficients are homogeneous across panels, that is

β = βi for all i. In this case both the individual and the pooled estimator

with s = {1, . . . , N} results in zero forecast bias. The bias is large when the

coefficients are strongly heterogeneous and |s| > 1.

The second term in (30) represents the forecast variance. The variance

for s = {i} equals σ2
i x
′
i,Ti+1Q

−1
i xi,Ti+1, which increases in the error variance
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σ2
i . To show that pooling may decrease the forecast variance, we rewrite the

variance term as

Vi(s) = σ2
i x
′
i,Ti+1U

−1
s xi,Ti+1 +

∑
l∈s/i

(σ2
l − σ2

i )x
′
i,Ti+1U

−1
s QlU

−1
s xi,Ti+1. (31)

For homogeneous error variances, σ2 = σ2
i , the forecast variance is minimized

by the pooled estimator. In case of heterogeneous error variances, the forecast

variance of ŷi,Ti+1(s) benefits from pooling with panels l for which σ2
l < σ2

i .

The forecast variance also decreases in the number of total observations in s

via U−1s .

The bias-variance trade-off in the mean squared forecast error determines

whether heterogeneous grouping results in optimal forecasts. Theorem 1

formalizes this intuition to a general setting.

Theorem 1 For two panels i and j with data generating process (1), the

mean squared forecast errors as defined in (2) satisfy

ρj({ij}) < ρj({j}) and ρi({ij}) > ρi({i}), (32)

when the following condition holds,

σ2
iUsQ

−1
i Us −Qj(βi − βj)(βi − βj)′Qj ≺ σ2

iQi + σ2
jQj

≺ σ2
jUsQ

−1
j Us −Qi(βi − βj)(βi − βj)′Qi,

(33)

where A ≺ B means that B − A is a positive definite matrix, Qi = X ′iXi,

Qj = X ′jXj and Us = Qi +Qj.

The proof is given in Appendix B.

Theorem 1 shows that there exist general conditions under which a het-

erogeneous grouping is optimal. This optimality depends on the bias from

grouping, the error variances and the regressor matrices. Along the same

lines as in the proof for Theorem 1, we can simplify the expression in (33)
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by assuming that Ql → TlΣ,(
2σ2

1 − σ2
2

T2
+
σ2
1

T1

)
Σ ≺ Σ(βi − βj)(βi − βj)′Σ ≺

(
2σ2

2 − σ2
1

T1
+
σ2
2

T2

)
Σ, (34)

or by using the stricter assumption that Xi = Xj,

(3σ2
i − σ2

j )Qi ≺ Qi(βi − βj)(βi − βj)′Qi ≺ (3σ2
j − σ2

i )Qi. (35)

When the variation in the error variances across the panels is large enough,

the panel with the smaller error variance achieves the highest forecast ac-

curacy by not grouping together, whereas the panel with the larger error

variance improves in forecast accuracy by grouping. Applying a symmetric

group estimator in this setting inevitably leads to a loss in accuracy.

3.2 Forecast algorithms

Section 2.4 estimates the optimal grouping by cross-validation on the mean

squared forecast errors. However, for a large number of panels the com-

putation of the forecast errors of all possible panel combinations becomes

infeasible and we rely on approximations. This section shows under which

assumptions these approximations are valid.

The heterogeneous grouping estimator in Algorithm 2 approximates the

leave-one-out-residuals used in Algorithm 1 to allow for a large number of

panels. Theorem 2 shows that the approximation error of Algorithm 2 is small

for balanced panels in which the sample covariance matrix of the regressors

is approximately the same in each panel.

Theorem 2 Assume that 1
Ti
X ′iXi ≈ 1

Tj
X ′jXj and Ti = Tj for all i = 1, . . . , N

and j = 1, . . . , N . We have that

vit(s) ≈ eit(s). (36)

The proof is given in Appendix C.

To deal with the large number of panels, Theorem 2 assumes balanced

panel data and the same covariance matrix for the regressors in each panel.
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Both assumptions can be checked before the analysis.

Algorithm 3 is proposed for panel data sets with a huge number of panels.

The approximation error of this algorithm is small if the difference between

the mean squared forecast error between the selected panel combination by

Algorithm 1 and the selected panel combination by Algorithm 3 is small.

Theorem 3 shows that this difference is due to ignoring the cross bias terms

in the mean squared forecast error.

Theorem 3 Assume that 1
Ti
X ′iXi ≈ 1

Tj
X ′jXj for all i = 1, . . . , N and j =

1, . . . , N . We have that

ρi(s) ≈
∑

l∈s T
2
l ρi({l}) + Ci(s)∑

l∈s T
2
l

, (37)

where

Ci(s) =
∑
l∈s

∑
k∈s/l

TlTkx
′
i,Ti+1(βl − βi)(βk − βi)′xi,Ti+1. (38)

The proof is given in Appendix D.

Theorem 3 shows that the mean squared forecast error of a combination

of panels indeed consists of a weighted average of the individual bias-variance

trade-offs of each panel. However, the mean squared forecasts error consists

of an additional term, Ci(s), that represents the cross bias terms of the

panels. Algorithm 3 gives identical results to Algorithm 1 when the sample

covariance matrix of the regressors in each panel are the same and the cross

bias terms are sufficiently small. In the next section we will illustrate the

properties of the asymmetric grouping estimator and its approximations in

a Monte Carlo study.

4 Simulation Study

To demonstrate the importance of asymmetric grouping estimators in panel

data forecasting, we consider varying degrees of panel heterogeneity in a

simulation study. The performance of the proposed forecasting algorithms
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with asymmetric grouping are evaluated by the mean squared forecast error

and compared to symmetric grouping estimators.

4.1 Design Monte Carlo experiments

The Monte Carlo experiments have the following data generating process

yit =
3∑
l=1

xitlβil + εit, εit ∼ N(0, σ2
i ), i = 1, . . . , N, t = 1, . . . , T + 1,

where xit1 = 1 and xit2 and xit3 are independently generated from a standard

normal distribution. The size of the variance of the errors σ2
i sets the R2 in

each panel equal to a pre-specified value. The parameters are estimated on

t = 1, . . . , T , and used to forecast t = T + 1 for all i = 1, . . . , N . The sample

size in each panel is T = 20, the number of panels N = 10, and the error

term εi,T+1 is set to zero.

We vary the degree of heterogeneity in the coefficients with four different

specifications.

DGP 1 (Homogenous) βil = 1 for all i and l.

DGP 2 (Weakly heterogeneous)

βi1 = βi2 =

{
1, i = 1, . . . , [N/2],

3, i = [N/2] + 1, . . . , N,
(39)

βi3 =

{
1, i = 1, . . . , [N/3],

3, i = [N/3] + 1, . . . , N.
(40)

where [N/2] denotes the nearest integer that is smaller than N/2.
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DGP 3 (Strongly heterogeneous)

βi1 = βi2 =


1, i = 1, . . . , [N/4],

2, i = [N/4] + 1, . . . , [N/2],

3, i = [N/2] + 1, . . . , [3N/4],

4, i = [3N/4] + 1, . . . , N,

(41)

βi3 =


1, i = 1, . . . , [N/5],

2, i = [N/5] + 1, . . . , [2N/5],

3, i = [2N/5] + 1, . . . , [3N/5],

4, i = [3N/5] + 1, . . . , N.

(42)

DGP 4 (Completely heterogeneous) βil = N−1 × i× l for all i and l.

We generate one-step ahead forecasts with the three asymmetric group-

ing algorithms discussed in Section 2.4. These methods are compared to

symmetric grouping estimators: pooled estimator, individual estimator, C-

Lasso, and an oracle estimator. The pooled estimator produces a forecast

ŷi,Ti+1 based on s = {1, . . . , N}, the individual estimator on s = {i}, and C-

lasso estimates the s under the restriction that yi,Ti+1 is forecast by ŷi,Ti+1(s)

with j ∈ s if and only if yj,Tj+1 is forecast by ŷj,Tj+1(s) with i ∈ s. We im-

plement C-Lasso as proposed by Su et al. (2016), for K = 1, . . . , 5 number of

groups and tuning parameters cλ = {0.125, 0.25, 0.5, 1, 2}, and the estimated

grouping selected by an information criterion. The oracle estimator assumes

that the ‘true’ group structure in the data generating process is known, and

forecasts yi,Ti+1 by ŷi,Ti+1(s) with s defined by the data generating process

above.

4.2 Simulation results

Table 1 shows the mean squared forecast error over 1.000 replications of the

four data generating processes with R2 = 0.4 and R2 = 0.9. The reported

mean squared forecast errors of the oracle estimator, asymmetric grouping

estimators, C-lasso, and the pooling estimator (Pool) are relative to the mean

squared forecast error of the individual estimator.
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Table 1: Monte Carlo Simulation Results

R2 = 0.4 R2 = 0.9
DGP 1 2 3 4 1 2 3 4

Oracle 0.084 0.214 0.514 1.000 0.088 0.214 0.514 1.000
AGES 0.398 0.517 0.487 0.509 0.397 0.609 0.661 0.691
AGEL 0.378 0.523 0.491 0.510 0.375 0.599 0.683 0.714
AGEH 0.393 0.540 0.507 0.512 0.388 0.556 0.702 0.705
C-Lasso 0.087 0.687 0.661 0.785 0.091 0.880 1.899 1.962
Pool 0.084 0.731 0.652 0.877 0.088 8.839 7.788 10.844

Note: this table shows the mean squared forecast error over 1,000 replications
of four data generating processes defined in Section 4, with R2 = {0.4, 0.9} and
T = 20 and N = 10. The mean squared forecast errors of the asymmetric
grouping estimators defined in Algorithm 1 (AGES), Algorithm 2 (AGEL), and
Algorithm 3 (AGEH), together with the oracle, C-Lasso, and pooled estimator
(Pool) are relative to the mean squared forecast error of the individual estimator.

The asymmetric grouping estimator outperforms the pooled and indi-

vidual estimator in almost all cases. When the coefficients are completely

homogeneous, which is the case under the first data generating process, the

pooled estimator is more accurate. In all other cases under consideration,

the asymmetric grouping estimator has a lower mean squared forecast er-

ror. Even when the coefficients are completely heterogeneous, the individual

estimator is outperformed by a wide margin.

The forecasts of the asymmetric grouping estimator are more accurate

than the C-lasso in all heterogeneous data generating processes. The C-lasso

estimates the ’true’ underlying panel grouping in the data generating process,

while the asymmetric grouping estimator estimates the optimal bias-variance

trade-off. The latter approach results in substantial improvements in fore-

cast accuracy, especially when the signal-to-noise ratio is high. A comparison

between the oracle estimator and the asymmetric grouping estimator shows

that, even when the underlying grouping is correctly identified, the asym-

metric grouping estimator performs better when the panels are sufficiently

heterogeneous.

The accuracy of the approximate asymmetric group estimators in Al-

gorithm 2 and Algorithm 3 is close to the standard asymmetric grouping
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Figure 3: Simulations: asymmetric panel grouping
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Percentage replications ŷi,Ti+1(s) is based on j ∈ s by the asymmetric grouping estimator
defined in Algorithm 1 (AGES), for the four data generating processes with R2 = 0.9.

estimator defined by Algorithm 1. Although the standard asymmetric group

estimator performs slightly better under most settings, the difference is small

in any setting, and the approximate algorithms also outperform the bench-

mark methods in all settings but the completely homogeneous coefficient data

generating process.

Figure 3 shows the percentage of replications the panel forecasts in the

rows are constructed with the panel data in the columns, for the standard

asymmetric grouping estimator defined in Algorithm 1. The forecast for

yi,T+1 in row i is based on a combination of panels s that contains the panel

in column j. The group probabilities are shown for the four different data

generating processes with R2 = 0.9. The experiments with R2 = 0.4 and the

approximate grouping estimators show similar results.
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Figure 4: Simulations: symmetric panel grouping
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Percentage replications ŷi,Ti+1(s) is based on j ∈ s by C-lasso, for the four different data
generating processes with R2 = 0.9.

We find for different data generating processes different groupings. Fig-

ure 3 shows a diagonal structure of the group probabilities for DGP 1. Due to

the homogeneous coefficients, a symmetric grouping is most accurate. Each

panel has a probability close 50% to be used for another panel. The group

probabilities for DGP 2 also suggest a symmetric grouping. Since the panels

1-3, panels 4 and 5, and panels 6-10 have the same data generating process,

DGP 2 reveals a block structure.

The Monte Carlo experiments show that the asymmetric grouping esti-

mator can indeed identify asymmetric grouping structures. A close look at

the graphs show that they are not completely symmetric with respect to the

diagonal. The estimated grouping for DGP 3 shows that for forecasting panel

1 and 2 the panels 3 and 4 are not used, while for forecasting panels 3 and 4
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the panels 1 and 2 are used. This asymmetric group structure is caused by

the higher noise level in panel 3 and 4 compared to the noise level in panel 1

and 2. We also find evidence for asymmetric grouping in DGP 4, where for

instance the first panel is used to forecast in panels 1-8, while forecasts for

panel 1 only use data in the panel itself.

Figure 4 shows the group probabilities for the C-lasso. The completely ho-

mogeneous data generating process is correctly identified, and also the weakly

heterogeneous group structure in DGP 2 is correctly estimated in most Monte

Carlo replications. However, for the strongly heterogeneous panel data in

DGP 3 and DGP4, the grouping estimates of C-lasso are strongly biased and

very different from the estimated asymmetric groupings in Figure 3.

5 Empirical application

To illustrate the usefulness of our asymmetric grouping estimator we consider

panel forecasts of market leverage of U.S. firms. Market leverage forecasts are

a key input in corporate capital structure decisions. The bankruptcy costs

and tax savings related to the capital structure of firms, are not only of inter-

est to the firms itself, but also to policymakers and financial market agents

trying to understand the market risk. Frank and Goyal (2009) construct a

panel data set to examine the important predictors for market leverage. They

identify six core predictors that account for 27% of the variation in leverage,

while the remaining analyzed predictors only add a further 2%. Smith et al.

(2019) study the same data in a pooled regression model with Bayesian vari-

able selection under breaks. We study forecast performance conditional on

the six core predictors for market leverage in a panel regression model that

allows for heterogeneity across panels.

5.1 Data and methods

We use the data of Frank and Goyal (2009), and refer to their paper for a

detailed definition of all variables. To have a balanced panel, we run the

forecast exercise for the 172 publicly traded American firms without missing
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observations between 1963 and 2003. We consider a heterogeneous panel

regression model,

LVit = αi + x′i,t−1βi + εit, i = 1, . . . , N, t = 1, . . . , T, (43)

where LVit is the market-based leverage ratio measure, total debt to market

assets, of firm i at year t, x′i,t−1 is a 6 × 1 vector of lagged core predictors,

and N = 172 and T = 41. The core predictors of market leverage are:

median industry leverage, market-to-book assets ratio, tangibility, profits,

log of assets, and expected inflation.

We use an expanding window to produce 15 forecasts for each panel, from

1989 to 2003. The forecasts are constructed based on four different methods:

the individual estimator, pooled estimator, C-lasso, and asymmetric group-

ing estimators. We follow the C-Lasso settings in Su et al. (2016), with K =

1, . . . , 5 number of groups and tuning parameters cλ = {0.125, 0.25, 0.5, 1, 2},
and the estimated grouping selected by an information criterion. Each es-

timation window mean-centers and scales the dependent and independent

variables to a variance of one. This means that we estimate group-specific

effects, up to a panel-specific fixed effect and scaling factor.

The forecasting algorithms proposed in Section 2.4 target data sets with

different numbers of panels. To illustrate the performance of each algorithm,

we apply them to subsets of the data as if there is only information available

of a small number of firms. Algorithm 1 is applied to the 10 firms with the

largest asset value at 2003, Algorithm 2 to the 25 firms with the largest asset

value at 2003, and Algorithm 3 to all 172 firms. For each set of panels we

calculate the average mean squared forecast error over the panels for the

forecast from 1989 to 2003, from 1994 to 2003, and 1999 to 2003.

5.2 Results

Table 2 shows the mean squared forecast errors for different panel data sets

and different hold-out samples. Values below one favor the grouping meth-

ods over forecasts based on the individual panel estimator. We find that

asymmetric grouping improves upon the benchmark methods in all but one
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Table 2: Mean squared forecast errors market leverage

N = 10 N = 25 N = 172
τ 15 10 5 15 10 5 15 10 5

AGE 0.731 0.798 0.804 0.880 0.901 0.866 0.925 0.948 0.942
C-Lasso 0.841 0.869 0.851 1.007 0.929 0.848 1.055 1.000 1.044
Pool 0.841 0.869 0.851 1.019 0.947 0.871 1.204 1.083 1.129

Note: this table shows the mean squared forecast errors of the asymmetric group esti-
mator (AGE), C-Lasso, and the pooling estimator (Pool), relative to the mean squared
forecast error of the individual estimator. For N = 10, AGE forecasts with Algorithm 1,
for N = 25 with Algorithm 2, and for N = 172 with Algorithm 3. The number of forecast
periods is indicated by τ . The minimum values in each column are underlined.

setting. The mean squared forecast error based on only the five forecast pe-

riods for 1999 to 2003 in the panel with the 25 largest firms is minimized

by C-lasso. The symmetric grouping estimated by C-lasso performs at least

as good as the pooling estimator, in all settings under consideration. How-

ever, both symmetric grouping estimators perform worse than the individual

estimator in several cases.

The asymmetric grouping estimator outperforms benchmark methods for

all panel sizes. Although the sample covariance matrix of the regressors show

substantial variation across panels, the integer programming approach and

the screening approach achieve competitive forecast performance. Especially

for the panel including all 172 firms the improvements in forecast accuracy

are substantial, with the asymmetric grouping estimator the only method

outperforming the individual estimator. Note that the mean squared fore-

cast error estimates in the large panel are based on 172 × τ forecasts and

therefore most reliable. Unreported results show that for N = 25 the perfor-

mance of the asymmetric grouping estimator based on Algorithm 3 instead

of 2 is slightly worse. For N = 10 the asymmetric grouping estimator based

on Algorithms 2 and 3 perform even worse than the C-Lasso and Pooled esti-

mator. Hence, in small samples it is to be preferred to avoid approximations

of the cross-validation approach.

Figure 5 shows the estimated panel groupings by the asymmetric group-

ing estimator. In every setting we find forecasts for firms that do not use
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Table 3: Statistics group size market leverage forecasts

N = 10 N = 25 N = 172
1989 2003 1989 2003 1989 2003

AGE min 1 1 1 1 1 1
max 7 7 16 15 153 52
mean 3.6 3.5 6.1 5.2 12.3 9.2
median 3.0 3.5 5.0 4.0 7.0 6.5
std 2.3 1.6 4.3 3.5 16.7 9.3

C-Lasso min 10 10 25 7 34 64
max 10 10 25 18 138 108

This table shows statistics of the estimated panel group size in the
asymmetric grouping estimator (AGE) and the symmetric grouping
estimator (C-Lasso).

information from other panels. This boils down to using the individual esti-

mator. There are no estimated groupings that include all panels, the pooled

estimator. Apart from the individual estimators, there are no settings in

which the asymmetric grouping estimator estimates a symmetric grouping.

Table 3 shows the wide variety in panel group sized across panel forecasts.

The estimated panel groupings also show substantial variation over time.

The groupings estimated to forecast market leverage in 1989 are different

from groupings for market leverage in 2003. When we increase the number

of available panels, the estimated groupings also increase.

Figure 6 shows the estimated symmetric panel groupings by C-lasso. The

symmetric grouping estimator does not find heterogeneity in the small panel

of 10 firms and estimates only one group. The same holds for the estimation

window for the market leverage forecasts in 1989. C-lasso finds two groups

of panels with different predictor coefficients in the other settings. Table 3

shows the panel group sizes. The increase in forecast performance of the

asymmetric grouping estimators relative to the symmetric grouping estimator

in Table 2, may be explained by the fact that a symmetric grouping is not

able to balance the bias-variance trade-off in an optimal way.
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Figure 5: Asymmetric panel grouping of firm market leverage
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The figures show which firm panels on the columns are used to predict the firm panels on
the rows, in the estimation sample for the market leverage forecast for 1989 and 2003 by
the asymmetric grouping algorithms. Black colors indicate that a panel is included in the
group and white refers to not included.
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Figure 6: Symmetric panel grouping of firm market leverage
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The figures show which firm panels on the columns are used to predict the firm panels on
the rows, in the estimation sample for the market leverage forecast for 1989 and 2003 by
C-lasso. Black colors indicate that a panel is included in the group and white refers to not
included.
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In sum, we conclude that the asymmetric grouping estimator turns out to

be a useful estimator for forecasting market leverage. The resulting group-

ing structure clearly suggests that asymmetric grouping is often better for

forecasting than symmetric grouping.

6 Conclusion

Exploiting cross-sectional information in panel data potentially improves

forecast accuracy when the number of observations in each panel is small.

This paper constructs panel-specific forecasts based on a asymmetric group-

ing estimator, that allows for an asymmetric bias-variance trade-off across

panels. The estimator can be extended to the setting where the number of

panels is large. We show that asymmetric grouping is optimal in terms of

mean squared forecast under a broad range of conditions. A simulation study

and an empirical application support these findings. Although the asymmet-

ric estimator is only discussed in a linear setting, the estimator may also

be useful in nonlinear panel models. A clear disadvantage of applying the

methods in nonlinear panel data models is however that the cross-validation

may take much more computing time which limits the practical applicability

of the approach.
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A Proof of Lemma 1

The mean squared forecast error equals

ρi(s) = E

(x′i,Ti+1βi − x′i,Ti+1U
−1
s

∑
l∈s

Qlβl − x′i,Ti+1U
−1
s

∑
l∈s

X ′lεl

)2
 (44)

= E

(x′i,Ti+1U
−1
s

∑
l∈s

Ql(βl − βi)− x′i,Ti+1U
−1
s

∑
l∈s

X ′lεl

)2
 (45)

=

(
x′i,Ti+1U

−1
s

∑
l∈s

Ql(βl − βi)

)2

+ E

(x′i,Ti+1U
−1
s

∑
l∈s

X ′lεl

)2
, (46)

where the second line uses βi = U−1s Usβi, and the third line uses E [X ′lεl] = 0.

The second term in (46) equals

E

[
x′i,Ti+1U

−1
s

∑
l∈s

(X ′lεl)
∑
l∈s

(ε′lXl)U
−1
s xi,Ti+1

]
= (47)∑

l∈s

x′i,Ti+1U
−1
s X ′lE[εlε

′
l]XlU

−1
s xi,Ti+1 = (48)∑

l∈s

σ2
l x
′
i,Ti+1U

−1
s QlU

−1
s xi,Ti+1, (49)

where the second line uses E[εiε
′
j] = 0 for i 6= j, and the third E[εiε

′
i] = σ2

i I.

B Proof of Theorem 1

Using Lemma 1, the mean squared forecast errors for panel i satisfy,

ρi({ij})− ρi({i}) = x′i,Ti+1U
−1
s AiU

−1
s xi,Ti+1, with (50)

Ai = Qj(βi − βj)(βi − βj)′Qj + σ2
iQi + σ2

jQj − σ2
iUsQ

−1
i Us, (51)
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from which follows that ρi({ij})− ρi({i}) > 0 if Ai � 0. In the same way,

ρj({ij})− ρj({j}) = x′j,Tj+1U
−1
s AjU

−1
s xj,Tj+1, with (52)

Aj = Qi(βi − βj)(βi − βj)′Qi + σ2
iQi + σ2

jQj − σ2
jQsQ

−1
j Qs, (53)

which gives ρj({ij})− ρj({j}) < 0 if Aj ≺ 0. Combining the two cases,

σ2
iUsQ

−1
i Us −Qj(βi − βj)(βi − βj)′Qj ≺ σ2

iQi + σ2
jQj (54)

≺ σ2
jUsQ

−1
j Us −Qi(βi − βj)(βi − βj)′Qi. (55)

C Proof of Theorem 2

β̂−ti (s) =

∑
l∈s/i

X ′lXl +
∑
j 6=t

xijx
′
ij

−1∑
l∈s/i

X ′lyl +
∑
j 6=t

xijyij

 (56)

=

∑
l∈s/i

Ql +Q−ti

−1∑
l∈s/i

QlQ
−1
l X ′lyl +Q−ti (Q−ti )−1

∑
j 6=t

xijyij


=

∑
l∈s/i

Ql +Q−ti

−1∑
l∈s/i

Qlβ̂l({l}) +Q−ti β̂
−t
i ({i})

 (57)

= W−t
i (s)β̂−ti ({i}) +

N∑
j 6=i

Wij(s)β̂j({j}), (58)

where Ql = X ′lXl and Q−ti =
∑

j 6=t xijx
′
ij. Define the matrices W−t

i (s) =(∑
l∈s/iQl +Q−ti

)−1
Q−ti and Wij(s) =

(∑
l∈s/iQl +Q−ti

)−1
QjI[j ∈ s]. It

follows that

eit(s) = W−t
i (s)(yit − x′itβ̂−ti ({i})) +

N∑
j 6=i

Wij(s)(yit − x′itβ̂j({j})). (59)
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When 1
Ti
X ′iXi ≈ 1

Tj
X ′jXj and Ti = Tj for all i, j, we have W−t

i (s) ≈ 1
k

and

Wij(s) ≈ 1
k
I[j ∈ s] with k = |s|. So under this assumption

vit(s) =
1

k
(yit − x′itβ̂−ti ({i})) +

1

k

N∑
j 6=i

I[j ∈ s](yit − x′itβ̂j({j})) ≈ eit(s).

D Proof of Theorem 3

The mean squared forecast error equals

ρi(s) =

(
x′i,Ti+1U

−1
s

∑
l∈s

Ql(βl − βi)

)2

+
∑
l∈s

σ2
l x
′
i,Ti+1U

−1
s QlU

−1
s xi,Ti+1,

where the first term represents the forecast bias and the second term the

forecast variance. Rewrite the forecast bias to∑
l∈s

x′i,Ti+1U
−1
s Ql(βl − βi)(βl − βi)′QlU

−1
s xi,Ti+1+ (60)∑

l∈s

∑
k∈s/l

x′i,Ti+1U
−1
s Ql(βl − βi)(βk − βi)′QkU

−1
s xi,Ti+1 (61)

where first line contains the squared bias terms and the second line the cross

bias terms, which we denote by Ci(s). We have

ρi(s) =
∑
l∈s

x′i,Ti+1U
−1
s Ql

(
(βl − βi)(βl − βi)′ + σ2

lQ
−1
l

)
QlU

−1
s xi,Ti+1 + Ci(s)

=
∑
l∈s

x′i,Ti+1U
−1
s QlAi({l})QlU

−1
s xi,Ti+1 + Ci(s) (62)

where Ai({l}) = (βl− βi)(βl− βi)′+ σ2
lQ
−1
l . Assume that 1

Ti
X ′iXi ≈ 1

Tj
X ′jXj

and Ti = Tj for all i = 1, . . . , N and j = 1, . . . , N , it follows that

ρi(s) ≈
∑

l∈s T
2
l ρi({l}) +

∑
k∈s/l TlTkx

′
i,Ti+1(βl − βi)(βk − βi)′xi,Ti+1∑

l∈s T
2
l

, (63)

where we use that ρi({l}) = x′i,Ti+1Ai({l})xi,Ti+1.
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