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Sara is a first-year Psychology student who just finished the exam of her final course. 

Mark is an associate professor of educational psychology and just finished teaching the 

final course in the first-year of the bachelor. He now has to decide which of his students, 

like Sara, passed the test and also his course. Carol is the head of the educational 

program and implemented an academic dismissal policy at the end of the first year of the 

bachelor. In this policy, she decides which first-year students, such as Sara, are allowed to 

continue their bachelor studies and which students are not. With this policy, Carol wishes 

to motivate students in the first year while at the same time she tries to ensure that 

students who do not meet the requirements and are not likely to obtain their diploma in 

the future, are dismissed.  

In higher education curricula, tests are administered so that decisions about students’ 

performance, such as those described in the example, can be made. As portrayed, 

different stakeholders make different decisions based on students’ performance (e.g., 

decisions to pass or fail students and decisions to allow students to continue their 

studies). Although each stakeholder makes their decisions to the best of their ability, 

they have different objectives and available resources that may be in conflict with 

each other. For example, Carol needs to make a decision based on multiple tests to 

select students who are motivated and who have the right capacities. She only wants 

to allow students who truly meet all the requirements to continue their studies such 

that the educational quality of the study program is guaranteed. However, she 

understands that tests are not perfectly reliable and valid and that wrong decisions 

are inevitable. Whether her decisions are valid, such that students who are allowed to 

continue their bachelor study meet all the necessary study program requirements, 

depends on many aspects of which the quality of the individual tests is an important 

one. Although teachers like Mark aim to construct high quality tests, such that the test 

score estimates a student’s underlying ability level well, he is constrained in his time 

and budget to design the test, which may limit the tests’ quality.  

To preserve the educational quality of the diploma of a study program, the decisions 

made about students’ performance should be valid, such that students who receive the 

diploma meet the requirements to obtain the diploma. This is important for decisions 

made at each level. Valid decisions are made when the decision is accurate. In 
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psychometrics, students are assumed to have a certain underlying (that is, 

unobserved, latent) ability level, also referred to as a student’s true score. By 

administering a test, a test administrator wishes to estimate this latent ability. This 

true ability level, or true score, is the test score we would obtain when the test would 

measure the true ability level perfectly. Notably, this true score of a specific person 

applies to a specific test at a specific moment in time, and would be stable across 

different administrations of the test under similar circumstances (i.e., if one assumes 

the student would start each repeated test administration with a clean slate, that is, 

tabula rasa). Unfortunately, the test score may not perfectly reflect a student’s true 

ability level because random luck is of influence and may result in a test score that is 

higher (due to luck) or lower (due to bad luck) than the true score. The larger the 

degree of luck that is reflected in the test score, the larger the discrepancy between 

the latent true score and the observed test score, and the less reliable the test score is. 

When this is true, the decision based on the test is more likely to be inaccurate. 

Furthermore, for a test to result in valid decisions on students’ performance it should 

measure what it intended to measure (i.e., the test itself should be valid).  

Having higher education tests that do not measure a student’s true ability level 

perfectly, in terms of both reliability and validity, two types of inaccurate decisions 

can be made. On the one hand, a decision based on the unobserved true score should 

be positive while the decision based on the observed test score shows to be negative. 

This is referred to as a false negative and would mean that we dismiss or fail a student 

based on his or her test score(s) while his or her underlying ability is actually 

sufficient. On the other hand, an inaccurate decision may occur when the decision 

based on the unobserved true score should be negative while the decision based on 

the observed test score is positive. This is referred to as a false positive, students who 

are not dismissed or pass a test while they are, based on their underlying ability, not 

truly sufficiently skilled yet. In this dissertation, the accuracy and consequences of 

decisions on students’ performance in higher education are evaluated, both for 

decisions based on multiple tests (such as those made by Carol) and for decisions 

based on individual tests (such as those made by Mark).   
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Academic Dismissal Policy  

In the Netherlands, among many other countries (e.g., in the USA, Germany, Finland, 

Australia, Ireland, Scotland, and Denmark as well; de Boer et al., 2015), higher 

education institutions obtain performance-based funds from the government. 

Different types of performance-based funds exist, where funds may vary with an 

institution’s past performance or are based on expected performance (through so-

called performance agreements). In these performance agreements specific goals are 

agreed upon for a given time period which, if not met, may result in less funding for 

institutions. Important indicators in these performance goals are students’ dropout 

rates after the first year and completion rates for bachelor students. As a consequence 

of these agreements, among other objectives, improving student success (that is, 

reducing dropout and increasing completion rates) has become a core focus in higher 

education institutions.  

One way to boost student success is through the design of the testing system that is 

employed. Herein an academic dismissal (AD) policy may be implemented to dismiss 

students who do not meet certain criteria. Studies have shown that, although AD 

policies seem to particularly benefit teachers and institutions by retaining talented 

and motivated students who are likely to succeed, AD policies are beneficial to 

students as well. Students are more likely to succeed when an AD policy is in place 

through increasing their efforts when a dismissal is in sight or by switching to another 

(more suitable) study program in time (Cornelisz, Levels, van der Velden, de Wolf, & 

van Klaveren, 2018; De Koning et al., 2014). In the Dutch higher education, the AD 

policy that is in place is called the binding study advice (BSA), in which students who 

do not meet the required number of course credits obtained in their first year of the 

bachelor are dismissed. For its BSA requirements, the Erasmus University Rotterdam 

(EUR) decided to increase the number of course credits required to the maximum of 

60 ECTS1 in 2011 for the Psychology bachelor and later expanded this requirement to 

other study programs (Vermeulen et al., 2012).  

 
1 ECTS is a standardized grading system common in Europe and stands for the European Credit Transfer and 
Accumulation System 
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Increasing the BSA requirements to the maximum study credits sparkled the media’s 

attention, which was sparked again after the Dutch Minister of Education acclaimed 

her plans to lower the maximally allowed study credits required within the BSA to a 

maximum of 40 out of 60 ECTS (Rijksoverheid [Dutch government], 2018). In 

discussions on the BSA requirements the EUR is often mentioned as an example as it 

has the highest BSA requirements for most of its study programs. This discussion on 

the BSA requirements should however not solely focus on the 60 ECTS requirement, 

as there are other measures that were simultaneously implemented with the increased 

BSA requirements (for a detailed description thereof see Arnold & van den Brink, 

2009; Vermeulen et al., 2012). Part of these additional measures, for example, were a 

cap on the number of tests students were allowed to retake and the use of a 

compensatory decision rule to calculate the number of course credits a student 

obtained in the first year. Together, these measures were an attempt to decrease 

student procrastination behavior and to increase student success through the 

adjustment of the institutional academic environment. In this dissertation, focus lies 

on the latter measure, allowing compensation between courses.  

Traditionally, course credits are assigned to individual courses and students receive 

these credits when they obtain a passing course grade, which is when the student’s 

test score is above the pass-fail test score (referred to as the cut-score). Assigning 

course credits in this way means that a so-called conjunctive decision rule is in place. 

Alternatively, in a compensatory decision rule, course credits are assigned based on a 

student’s average grade (that is, the grade point average [GPA]). In this way, students 

are allowed to compensate a low score on one course with a high score on another, as 

long as their average grade meets the requirements. Noticeably, compensation in a 

higher education context, in which a certain minimum level of performance is 

expected from students, is usually allowed within certain boundaries. This is often 

referred to as a complex compensatory decision rule, where ‘complex’ refers to 

additional conjunctive requirements such as requiring each individual test score to be 

above a certain criterion in addition to the requirements for the average grade. 
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Compensatory Decision Rule 

Whether compensation should be allowed or not depends on the context of the 

decision. In higher education, one could argue that compensation should be allowed 

only for those courses which are believed to be to a large extent interchangeable in 

the sense that students still meet the overall end qualification requirements of the 

study program. For example, in a Psychology bachelor program, first year courses 

might all be considered introductory courses covering the broad fundamentals of 

psychology and compensating one of these courses might not be considered 

problematic for later performance as a psychologist. However, in a Psychology master 

program where courses are highly specialized, focusing on a small area in psychology, 

compensation between courses would not be recommended as each course covers a 

fundamental aspect and students would need this knowledge for becoming a 

successful expert in this specialized field. Similarly, this logic applies to the formation 

of cluster of courses within which compensation is allowed. These clusters could be 

formed based on the courses’ content or difficulty, resulting in courses that are 

believed to be interchangeable.  

Overall, the discussion and decision to allow compensation is mostly a consideration 

of students scoring close to the cut-score instead of high performing students as they 

will likely pass regardless of the decision rule (Van Rijn, Béguin, & Verstralen, 2009). 

In this discussion, each stakeholder has their own view and opinion on allowing 

compensation between courses. Taking the view of Carol the policy maker, 

compensation may be favored as it may decrease the number of retakes, trying to 

encourage students to speed up their study progress and in this way increase students’ 

study success. From the perspective of both Carol and Mark the teacher, compensation 

may be favored as it may encourage students to increase their effort on individual 

courses as it pays off to get a grade that is higher than the cut-score. Alternatively, 

Mark may be reluctant towards compensation as he believes students should not be 

able to pass his course with a low grade, viewing it as a devaluation of his course 

(Rekveld & Starren, 1994). Similarly, students such as Sara may be happy because she 

can compensate a low grade with a higher grade but may at the same time worry that 
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compensation may decrease the quality of an educational program and result in a 

devaluation of her diploma as well (Bakker, 2012; Cohen-Schotanus, 1995).  

Regardless of the perspective one takes, what should be central in the discussion of 

whether to allow compensation is the accuracy of the decision that is made. One 

argument related to the accuracy that is often put forth by proponents of 

compensation is that the average grade is more reliable than individual course grades 

(Vermeulen et al., 2012). Whereas several studies evaluated the consequences of 

allowing compensation within a higher education curriculum (see e.g., Arnold & van 

den Brink, 2009; Cohen-Schotanus, 1995), most studies did not evaluate the accuracy 

of this decision rule. Where a few studies exist that evaluated the decision accuracy of 

different decision rules (e.g., Douglas & Mislevy, 2010; Hambleton & Slater, 1997; 

Van Rijn, Béguin, & Verstralen, 2009, 2012), none of these studies were placed in the 

context of higher education curricula. Studying the decision accuracy is difficult 

because an assessment of whether the decision based on the observed test scores is 

accurate requires the students’ true ability level to be known. As mentioned, students’ 

true ability is the test score we would obtain when the test would measure the true 

ability level perfectly. As tests and its administrations are not free of error, true scores 

remain unknown.  

In Chapter 2 the accuracy of a decision based on multiple tests (such as the BSA 

decision) in higher education is evaluated by performing a systematic comparison of 

the decision accuracy of different complex compensatory decision rules. In order to 

obtain students’ true ability levels and to mimic different realistic higher education 

contexts, real-data-guided simulations are performed. By comparing different 

compensatory and conjunctive decision rules, one of the arguments for allowing 

compensation, that the average grade is more reliable than individual course grades, 

is evaluated as well. This is done within different realistic settings by varying the 

requirements in the complex compensatory decision rules as well as the characteristics 

of the testing system such as the correlation among tests, average test reliability, the 

number of tests, and the number of retakes allowed.  
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One of the criticisms of allowing compensation in a first-year higher education 

curriculum is that compensation might result in second-year students who have 

knowledge gaps for courses they were allowed to compensate in the first year. 

Specifically, this concern holds when knowledge is accumulated across courses, such 

that a sequel course builds on material from previous, so-called precursor, courses. By 

studying these course combinations, the consequences of allowing compensations 

with respect to hiatuses in knowledge can be evaluated. In Chapter 3 an extension on 

previous studies in which the performance on sequel courses was evaluated, is made 

by evaluating the performance on sequel courses for different groups of students 

based on their unobserved (i.e., latent) study processes. A latent class regression 

analysis is applied to student data from a Psychology bachelor and a Law curriculum 

to identify students who show low performance on sequel courses, in which students’ 

first-year average, variability in first-year grades, number of compensated courses, and 

number of retaken courses are used to form these latent classes.  

Testing in Higher Education 

Regardless of the specific testing system that is implemented (i.e., the decision rule for 

the combination of tests), the proportion of inaccurate decisions will be high if the 

quality of the individual tests, on which the decision is based, is not sufficient. 

However, ensuring the quality of individual tests in higher education is challenging 

due to the limited time and budget that is available to course instructors (such as 

Mark). Several studies have shown that the quality in instructor-constructed multiple 

choice tests in higher education indeed may be low (e.g., Brown & Abdulnabi, 2017; 

DiBattista & Kurzawa, 2011). In Chapter 4 and Chapter 5 therefore, different 

methods are evaluated to assess how true score estimation in individual higher 

education tests, and given their quality, could be improved.   

In higher education, tests are administered to assess students’ knowledge or skills on a 

specific topic. Although testing is known to support learning (e.g., Roediger & 

Karpicke, 2006) and might be directed towards learning, most tests offered in higher 

education are end-of-course tests in which the goal is to measure students’ true ability 

on the course. This type of testing is commonly referred to as summative tests (Black 

& Wiliam, 2003). Although true score estimation on educational tests has been 



  Chapter 1 General Introduction 

 9 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

studied extensively in the educational measurement literature, most tests studied in 

the literature are different from the type of tests found in higher education curricula 

in several ways. This makes it difficult to generalize results found in the literature to 

the tests in (Dutch) higher education which are studied in this dissertation.  

Whereas the literature mostly focuses on large-scaled standardized tests, such as the 

Dutch end-of-primary school tests (e.g., CITO) and the college-entry Scholastic 

Aptitude Test (SAT) commonly used in the US, tests in Dutch higher education are 

not standardized. Consequently, most tests are designed in-house by individual course 

instructors. Different from standardized tests, these instructors are limited in their 

time and budget and therefore cannot pre-test their test items. This constrained time 

and budget also limits the use of panels to determine the cut-score in higher 

education, which is the most common method described in the literature, leaving this 

task to the instructor. Moreover, course instructors have not received formal training 

in designing and analyzing test items (Draaijer, 2016), making it difficult for them to 

safeguard the quality of the test. Still, even when trained psychometricians are 

available to analyze the test items, tests in higher education are often too small to 

obtain stable item and person parameters using item response theory (IRT) models 

which limits true score estimation in higher education tests. Given all these 

differences between the tests studied in the literature and those found in higher 

education, different challenges exist in students’ true score estimation in higher 

education tests, making it a relevant subject of study.  

Whereas many aspects determine whether a true score is estimated correctly, Chapter 

4 focusses on the accuracy of different methods to correct for guessing in higher 

education multiple choice (MC) tests. Specifically, MC tests in which students are not 

directly penalized for wrong answers (that is, a wrong answer does not result in 

deducted points) and consequently students’ optimal strategy is to guess instead of 

omit answers, are investigated. Psychometrically, guessing is problematic for the 

estimation of a student’s true score as we cannot be sure whether a correct answer is 

due to knowledge or a lucky guess (Bar-Hillel, Budescu, & Attali, 2005; Budescu & 

Bar-Hillel, 1993). Although there has been a recent shift towards not correcting for 

guessing in large-scaled tests such as the SAT (Guo, 2017), MC tests in higher 
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education are often corrected for guessing. Here, the total number of correct items is 

adjusted by subtracting a proportion of items assuming that test-takers would have 

randomly guessed among the given response options. Problematically, partial 

knowledge is not considered in this correction, possibly resulting in an overestimation 

of students’ underlying true score. Other methods to correct for guessing exist, such as 

the extended classical correction, (extended) beta binomial correction methods, and 

models from IRT, that take sample information into account. The aim of the study in 

Chapter 4 is to evaluate these different methods that correct for guessing to see if 

students’ true score estimation might be improved. Hereby, the accuracy of each 

method is compared for which a simulation study is performed. By varying several 

aspects of the higher education test context, performance within different realistic test 

settings is evaluated.  

Often, after correcting for guessing on MC items, grades are assigned to test scores in 

higher education as an indication of students’ underlying ability level. The process of 

transforming test scores into grades using certain rules is referred to as setting 

standards (Reckase, 2006). In higher education, this process is often simplified 

compared to panel methods as one instructor is responsible for setting the standard 

and consensus is easily reached in this way. Although simplified, the cut-score in 

Dutch higher education is often set at a prefixed percentage of items to answer correct 

without much consideration of the underlying ability level required for a passing 

grade. In Chapter 5 the accuracy of different standard setting methods that are 

feasible in small-scaled non-standardized higher education tests is evaluated. In 

additional to the pre-fixed percentage method, which is an absolute method, two 

compromise methods were included which take students’ performance into account as 

well (i.e., it has a relative component): the Cohen and Hofstee method. Again, 

simulations are performed to obtain students’ true scores and assess the accuracy of 

estimated true scores across different methods. Also, through the use of simulations 

different type of tests and samples are evaluated.  

Finally, Chapter 6 provides an overall summary of the findings of chapter two to five 

as well as a discussion and conclusion on the implications for educational 

measurement research and higher education policy making. 
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2 
Systematic Comparison of Decision Accuracy of 

Complex Compensatory Decision Rules 

Combining Multiple Tests in a Higher Education 

Context 

 

 

 

 

 

 

This chapter has been published as: 

Yocarini, I. E., Bouwmeester, S., Smeets, G., & Arends, L. R. (2018). Systematic Comparison 

of Decision Accuracy of Complex Compensatory Decision Rules Combining Multiple Tests in a 

Higher Education Context. Educational Measurement: Issues and Practice, 37, 24-39.   

doi: 10.1111/emip.12186
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Abstract 

This real-data-guided simulation study systematically evaluated the decision accuracy 

of complex decision rules combining multiple tests within different realistic curricula. 

Specifically, complex decision rules combining conjunctive aspects and compensatory 

aspects were evaluated. A conjunctive aspect requires a minimum level of 

performance whereas a compensatory aspect requires an average level of 

performance. Simulations were performed to obtain students’ true and observed score 

distributions and to manipulate several factors relevant to a higher education 

curriculum in practice. The results showed that the decision accuracy depends on the 

conjunctive (required minimum grade) and compensatory (required GPA) aspects and 

their combination. Overall, within a complex compensatory decision rule the false 

negative rate is lower and the false positive rate higher compared to a conjunctive 

decision rule. For a conjunctive decision rule the reverse is true. Which rule is more 

accurate also depends on the average test reliability, average test correlation, and the 

number of reexaminations. This comparison highlights the importance of evaluating 

decision accuracy in high-stake decisions, considering both the specific rule as well as 

the selected measures.  

Keywords: high-stake decision, multiple measures, conjunctive decision rule, 

compensatory decision rule, decision accuracy. 
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Introduction 

In the academic year of 2011-2012 a new compensatory testing system was 

introduced in the first year of the Psychology bachelor at the Erasmus University 

Rotterdam (EUR) in the Netherlands. In this compensatory testing system students are 

allowed to compensate, within certain boundaries, a low test score on one course with 

a high test score on another course. Contrary, students in a conjunctive testing system 

are required to pass each individual course (Chester, 2003). Given that a conjunctive 

testing system is commonly applied in higher education programs in the Netherlands, 

the introduction of this new compensatory testing system has been ground for some 

debate. Critics argue that allowing compensation creates hiatuses in knowledge and 

consequently leads to a devaluation of the diploma (Arnold, 2011). Within this 

context, an academic dismissal policy exists in Dutch higher education in which a 

decision, called the binding study advice (BSA), is made at the end of the first year of 

the bachelor. In this decision it is determined whether students meet the required 

number of study credits to be allowed to continue their bachelor studies. When 

allowing compensation between courses, this BSA decision is based on the average 

grade over courses instead of individual course grades. In other words, the average 

grade serves as a decision-making tool in a situation in which the stakes are high. 

Consequently, the accuracy of this decision is of great importance. The aim of this 

study is to compare the accuracy of different compensatory, conjunctive, and complex 

decision rules within different realistic higher education contexts.      

Comparing the decision accuracy of these rules implies comparing the degree of 

erroneous decisions made, based on the decision rule applied (Douglas & Mislevy, 

2010). One such erroneous decision is a false positive. In this case a student is 

allowed to continue to their second bachelor year while he or she is not sufficiently 

skilled. The other incorrect decision is a false negative. Here, a student is not allowed 

to progress to the second year while he or she is actually competent. As shown in 

Table 1, evaluating the type of incorrect classifications implies comparing the decision 

based on a student’s latent true score to the decision based on a student’s observed 

test score. Since a student’s true score cannot be observed directly, this study includes 

simulations to obtain students’ latent true scores using the classical test theory (CTT) 
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framework.  A clear disadvantage of this simulation method is that many assumptions 

have to be made about both test and student characteristics. To ensure these 

assumptions are as accurate as possible we explicitly evaluated their tenability by 

using empirical information. Still, a difficult problem remains as students’ behavior is 

dynamic and responsive (see e.g., Budescu & Bo’s [2015] study on test-taking 

behavior within a test). Unfortunately, students’ strategic behaviors in response to 

different decision rules is not modeled in the simulations. Instead, this behavior is 

assumed to be constant across decision rules. Despite this required assumption, the 

simulations are valuable because they allow us to evaluate the decision accuracy in a 

broad range of educational contexts. Here, aspects of the curriculum are varied (such 

as the correlation between tests, the number of tests, the average reliability of tests at 

an average true score, and the number of reexaminations2 allowed).  

Table 1: Classification Decisions 

 Decision Based on True Score 
Decisions Based 
on Observed Score Fail Pass 
Fail Correct classification Misclassification 

False negative  
Pass Misclassification 

False positive 
Correct classification 

 

Furthermore, decision rules applied in a higher education curriculum are rarely 

completely compensatory but rather a combination of conjunctive and compensatory 

aspects (a so-called complex decision rule; Douglas & Mislevy, 2010). To ensure the 

studied decision rules are realistic, we used the complex compensatory-conjunctive 

decision rule applied in the first year of the Psychology bachelor at the EUR3 and the 

traditional conjunctive decision rule applied in most Dutch universities as reference 

points. In additional complex decision rules, we varied the specific components 

around these reference rules.  

 
2 In this study the number of reexaminations refers to the number of tests a student is allowed to retake within a 
curriculum, assuming each test in the curriculum is allowed to be retaken only once. Note, that this differs from 
the situation in which students are allowed to retake a test multiple times within a curriculum.   
3 See the Method section for an overview of the specific requirements in this decision rule. 
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Psychometric Motivation for Implementing Compensation  

The implementation of a (complex) compensatory decision rule in a higher education 

study program may be partly motivated by psychometric arguments. As Lord (1962) 

showed, a conjunctive decision rule is suboptimal for observed scores that include 

measurement error, even if a conjunctive decision rule is assumed for the true scores. 

To illustrate, Lord derived the optimal decision rule for observed scores when 

combining two tests.4 Additionally, the psychometric argument for choosing a 

compensatory decision rule notes that decisions based on average scores are more 

reliable than those based on single scores (Vermeulen et al., 2012). This argument 

follows from CTT (see Appendix A for a detailed elaboration of this argument). This 

line of reasoning heavily relies upon CTT’s assumptions of equal error variance across 

tests and true scores and CTT’s assumption of the number of tests approaching infinity 

(Lord & Novick, 1968). Also, the argument implies test scores to be highly correlated 

(Haladyna & Hess, 1999). These assumptions can be problematic in practice.  

First, tests of different courses are likely to vary with respect to the variance of the 

measurement error. Second, it is unlikely that the variance of the measurement error 

is equal for different values of the true scores. For example, in many first year 

Psychology curricula multiple choice (MC) tests are administered. In taking these MC 

tests, students with low true scores are expected to guess more often than students 

with high true scores. Therefore, random measurement error will have more influence 

in the observed scores of students with low true scores. Third, CTT assumes 

measurement error over different tests for one individual to cancel out over a large 

number of tests. However, in practice the number of tests included in a first year 

curriculum might not be large enough for the measurement error to cancel out and 

become zero for the average test score. Fourth, tests of different courses aim to 

measure different kinds of knowledge so the test scores might not be highly 

correlated. This makes it less likely that the reliability of a total score is high 

(Haladyna & Hess, 1999) as the confidence interval around the average grade 

increases as inter-correlations decrease, resulting in a less accurate average grade. 

 
4 Special thanks to our anonymous reviewer who pointed us to this interpretation.   
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Given these likely violations of the assumptions in practice, it remains questionable 

whether the psychometric argument for allowing compensation between tests is 

generally tenable and the average grade is more reliable in practice. Consequently, 

the compensatory decision rule was included in our comparison of the decision 

accuracy of different (complex) decision rules.  

Reliability and Decision Accuracy 

The psychometric argument concerning the reliability described in the previous 

section is important as it relates to the decision accuracy. As mentioned before, 

evaluating the decision accuracy involves the comparison of the decision based on the 

latent true score and the decision based on the observed test score. Here, the true 

score corresponds to the average test score a student would obtain when he or she 

would take a parallel test infinity times. For a dichotomous decision this results in 

four quadrants of decision accuracy, as displayed in Table 1. A correct classification 

(i.e., an accurate decision) is made when both decisions align. If a selection 

instrument is more reliable, less measurement error is included in the observed test 

score. This means that the true score and observed score are more similar, which 

results in fewer false positives and false negatives.  

Given our aim to evaluate the decision accuracy of different decision rules in realistic 

higher education settings, several variables are varied to mimic realistic settings. 

These variables were selected for their relevant influence on the decision accuracy 

either directly or indirectly through test reliability. Variables influencing the reliability 

of the selection instrument are the correlations between tests, the individual test 

reliability, and the number of tests, as described before. Practically relevant factors 

that influence the decision accuracy directly are the number of reexaminations and 

the required average and minimum grade. Assuming that only students who failed the 

test on the first attempt retake a test, reexaminations decrease the number of false 

negatives and increase the number of false positives. This is because students who 

partake in the reexamination were classified as either false negatives or true negatives 

on the first attempt. At the reexamination students who were classified as false 

negatives may become true positives and students who were classified as true 

negatives may become false positives. Secondly, the specific requirements in the 
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decision rule are relevant as misclassifications are especially present for true scores 

close to the cut-off score (Van Rijn, Béguin, & Verstralen, 2009). When a student’s 

true score is further removed from the cut-off score, measurement error in the 

observed test score is less likely to cause a misclassification as decisions based on the 

true score and observed score are still likely to align.   

Previous Studies 

Previous studies examined the decision accuracy of different combinations of multiple 

tests as well as the influence of different factors on the decision accuracy of these 

combinations. Overall, these studies indicate that using a conjunctive, compensatory, 

or a complex decision rule results in different levels of decision accuracy. From his 

simulations, Lord (1962) concluded that, in the face of fallible measures, one better 

opts for some sort of compensation rather than using multiple cutting scores (i.e., a 

conjunctive decision rule). Hambleton and Slater (1997) conducted a simulation 

study to assess the accuracy of combining exercises within a test and found that with a 

compensatory and a complex compensatory-conjunctive rule false positives were more 

likely than false negatives. More recently, Douglas and Mislevy (2010) showed that 

using a complex decision rule, results in fewer decisional errors compared to a 

conjunctive rule, in terms of both false negatives and false positives. Furthermore, Van 

Rijn, Béguin, and Verstralen (2012) found that including conjunctive aspects in a 

complex decision rule in a secondary education context resulted in a higher 

percentage of misclassification compared to adding a condition that combined 

individual cut-off scores in the decision rule.  

In addition, the influence of several factors on the decisional accuracy has been 

studied. For example, McBee et al. (2014) studied the decision accuracy in the context 

of identifying gifted students and evaluated the consequences of test reliability and 

correlations between tests. Their study shows that given their decision rule (which 

combines several scores by means of a conjunctive and a complementary rule, i.e., ‘or’ 

rule) lower test correlations and test reliability are associated with a higher proportion 

of decisional errors. Here, relatively more false negative classifications existed than 

false positives. In addition, Douglas and Mislevy (2010) showed that the number of 

false negatives and false positives was higher for a conjunctive decision rule compared 
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to a compensatory rule and that this effect was exaggerated when more tests were 

used. Also, their study showed that increasing the number of opportunities to pass 

increased the false positive rates. Notably, with three reexaminations, no false 

negatives were present in case of a compensatory decision rule. Hambleton and Slater 

(1997) also found that higher correlations between exercises and more items included 

in a test resulted in higher decision accuracy of a (complex) compensatory decision 

rule.  

Research on the decision accuracy of different decision rules is still sparse yet 

informative (Haladyna & Hess, 1999). Several studies included a complex 

compensatory-conjunctive decision rule, however, none of the studies evaluated the 

influence of varying the specific conjunctive and compensatory requirements within a 

complex rule. Although part of the results might be intuitively theorized, the size of 

the difference in the accuracy of different complex decision rules may not. Also, none 

of the previous studies were placed in the context of higher education curricula. 

Practitioners might need to specify the requirements in a complex decision rule in a 

higher education curriculum and previous results might not provide easy guidance for 

this purpose. To enable evidence-based curriculum implementations, this study 

evaluates the proportions of false negatives and false positives across different 

complex decision rules within realistic higher education curricula. 

Hypotheses 

In light of the aim of this simulation study to compare the accuracy of different 

compensatory, conjunctive, and complex decision rules within realistic higher 

education settings, several variables were varied. We included specifically these 

variables for three reasons. First, we wish to replicate previous findings by evaluating 

the influence of correlation between tests and the number of tests. Importantly, we 

extend these findings by adding higher levels of correlations between tests. This is 

interesting as it informs practitioners how to form clusters of courses in which 

compensation is allowed. Second, we evaluate the test reliability and the number of 

reexaminations to see if these factors influence the decision accuracy as expected. 

Although McBee et al (2014) also evaluated the test reliability, they did not evaluate 

how and whether test reliability differently influenced a conjunctive, compensatory, 
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and complex rule. This is interesting as measurement error may cause the conjunctive 

decision rule to be more inaccurate (i.e., produce relatively more false negatives) than 

a compensatory decision rule. Third, by including all these variables this study 

provides a comprehensive overview of the different influences on decision accuracy 

for practitioners.  

Specifically, the number of tests, the number of reexaminations, the test reliability, 

and the correlations between tests were varied in our simulations. Moreover, the 

studied decision rules differed in their compensatory (i.e., the average grade) and 

conjunctive (i.e., the minimum grade) requirement. Overall, in line with previous 

studies, it was predicted that more decision errors are made using a conjunctive 

decision rule compared to a compensatory decision rule. Specifically, in line with our 

reasoning above, it was hypothesized that more misclassifications occur when the cut-

off score approaches the average (true) score.  

Furthermore, measurement error (which is related to the test reliability) was expected 

to have a stronger influence on the decision accuracy of conjunctive decision rules 

than on the accuracy of compensatory rules. For conjunctive rules an unreliable test 

may easily result in a classification error. In a compensatory rule the result of an 

unreliable test may be compensated by the other tests in the curriculum, making it 

less likely to result in a classification error compared to a conjunctive rule. Given that 

the average grade becomes less accurate with low inter-correlations we also expected 

the differences between the conjunctive and compensatory rules to be more explicit 

for low correlations between tests. In line with CTT and previous studies (Douglas & 

Mislevy, 2010; Hambleton & Slater, 1997), it was hypothesized that increasing the 

number of tests increases the accuracy of compensatory decision rules, as 

measurement error is more likely to cancel out and result in a more reliable average 

grade. Alternatively, with more tests it becomes more likely that measurement error 

on a single test administration causes an individual test score to be lower or higher 

than the true score. Consequently, we expected the false negative and false positive 

rate to increase for conjunctive rules. Finally, following Douglas and Mislevy (2010) 

and our previous discussion, increasing the number of reexaminations was expected 

to decrease the false negative rate and increase the false positive rate. In the 
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(complex) compensatory rule fewer reexaminations are required as compensation is 

allowed, so here it was expected that reexaminations had a smaller influence on the 

decision accuracy compared to the conjunctive decision rule.  

Method 

Simulation Model 

The procedure for performing our simulation study was in line with the simulation 

method developed by Douglas (2007) as applied in Douglas and Mislevy (2010). 

Broadly, the simulations were structured through the following steps: (1) simulate a 

true score distribution for each test, (2) simulate observed scores for each student by 

simulating error around the true scores, (3) simulate replicate scores for the 

reexaminations, and (4) evaluate the decision accuracy by computing the appropriate 

indices. 

First, T true score distributions were simulated for each test. The mean of T was 

assumed to vary for each test. Data from three cohorts of first year Psychology 

students at the EUR were used to obtain a realistic simulated mean true score. 

Specifically, data were obtained from eight tests of 246 students in cohort 2011, 245 

students in cohort 2012, and 330 students in cohort 2013. In total eight tests were 

used which each had 40 multiple choice items with four answer categories. These 

samples included students who had obtained at least one test score throughout the 

year. For the total sample, mean observed test score were calculated for each test, see 

Table 2 for descriptive statistics of the empirical data. The standard deviation and 

mean of these mean observed test scores were estimated to define the distribution 

from which mean true scores were sampled for each simulated test5. The true score 

variance was assumed to be equal across tests, which means that the true scores 

within each course were assumed to vary by the same amount across different 

courses. A realistic value for the true score variance was estimated by calculating the 

variance in the observed test scores for each test and taking the mean of these 

variances. Importantly, the true scores were truncated between 1.0 and 10.0, to 

 
5 Note that true scores were not varied systematically across simulated datasets, meaning that we did not evaluate 
decision accuracy for different student ability levels.  
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mimic the Dutch higher education grading system. Consequently, the T distributions 

were simulated from a multivariate truncated normal distribution to simulate 

different levels of correlations between the tests. See Appendix B for a detailed outline 

on the simulation procedure, the specific assumptions, and an example of code to 

perform the simulations in R (R Core Team, 2015). 

Table 2: Descriptive Statistics Empirical Data 

Descriptive 
Statistic 

Test 
1 2 3 4 5 6 7 8 

N 817 797 758 727 719 706 687 678 
Min 1.9 1.0 1.0 2.0 2.3 2.9 1.8 3.1 
Max 9.3 10.0 10.0 9.7 9.7 10.0 9.8 9.5 
Mean 5.89 6.70 6.11 6.85 6.71 6.64 6.77 6.43 
SD 1.16 1.34 1.70 1.26 1.20 1.11 1.15 1.04 

 

Correlation between tests. The correlations between tests were manipulated to 

evaluate the optimal degree of cohesion between courses that results in the most 

accurate decision. The latter helps to construct guidelines on forming clusters of 

courses wherein students are allowed to compensate. Varying these correlations 

ensured that the true scores on different tests were more or less alike. Taking the first 

year Psychology at EUR and the correlations used by Hambleton and Slater (1997) as 

an example, a realistic average correlation between courses was .3. As other study 

programs might have more or less cohesion between courses, the correlation was 

manipulated to be .1, .3 .5, or .7.  

Average true score test reliability. Secondly, error was simulated around the true 

scores to produce the simulated test scores. This error variance was estimated using 

the test reliability. Following our discussion of assuming equal measurement error 

variances in CTT in the Introduction, we assumed the test reliability to vary as a 

function of the true score; the higher the true score, the lower the measurement error 

variance, the higher the test reliability. In defining the test reliability at a specific true 

score, the following functions were used: !" = (%!!&.((
)*&"+

), !+ = -.. − (!" ∗ 1*), and 

consequently -..	34	) = 	 !+ + !" ∗ 1. Here, -..	refers to the test reliability at an 

average true score, 1*, which was manipulated to be 0.4, 0.6, and 0.8. Since -.. has a 
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maximum of -.. = 1, which indicates no measurement error, the maximum reliability 

at a maximum true score of 1 = 10 was set at 0.996. Consequently, the error variance 

at T was defined as: 678 = 9 :"#

%!!	%&	"
; − 6)

8. By this definition, there is more error variance 

at lower true scores and less error at higher true scores. 

Number of tests and reexaminations. Finally, to study the influence of the number 

of reexaminations, replicate observed scores were drawn as well. As noted, students 

were assumed to retake a test only once in a first-year curriculum. For these replicate 

observed scores, it was assumed that someone’s true score had increased between the 

first test administration and the reexamination as students gained knowledge within 

this time interval. An estimate of the increment in true score (set at 0.5) was obtained 

from available data of reexaminations taken by first year Psychology students at the 

EUR. To analyze the influence of the number of reexaminations, several conditions 

were simulated; no reexaminations, 1, 2, 3, 4, or all tests in the curriculum. In 

addition to varying the number of reexaminations, the number of tests was also varied 

to be 8 or 12. Both situations are realistic in a first-year curriculum.   

Measure of Decision Accuracy 

The decision accuracy of using different decision rules was evaluated by looking at 

four measures of classification accuracy. First, we evaluated the total proportion of 

misclassification. This is the proportion of misclassified students relative to the overall 

group of students, N: <(=>6?@A66>B>?AC>DE) = F(GHI|)KI)LF(GKI|)HI)

M
. Here, c indicates 

the cut-off score. Secondly, we evaluated the false negative rate which is the 

conditional probability that someone with a qualifying true score is misclassified: 

<(N < ?|1 > ?) = 	 F(GHI	&	)KI)
F()KI)

	. The sensitivity rate can be easily obtained using the 

false negative rate: sensitivity rate = 1 – false negative rate. Thirdly, we evaluated the 

false positive rate. This is the conditional probability that a student with a 

disqualifying true score is misclassified: <(N > ?|1 < ?) = F(GKI	&	)HI)

F()HI)
	. The specificity 

 
6 A sensitivity analysis in which we also evaluated the results where the maximum reliability at a maximum true 
score was set at 0.90 as well as a classical test theory interpretation of reliability (not varying across true scores) 
showed the results were robust under these alternative error variance methods of simulation. See 
https://osf.io/8pgyt/ for the results of the sensitivity analysis. 
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rate can be easily obtained using the false positive rate: specificity rate = 1 – false 

positive rate. Finally, we evaluated the positive predictive value. This is the 

conditional probability that someone with a qualifying true score is identified 

correctly <(1 > ?|N > ?) = F(GKI	&	)KI)

F(GKI)
. In accordance with Van Rijn et al. (2012) the 

negative predictive value was not considered.  

Decision Rules 

In this study, different realistic decision rules were evaluated and compared; see Table 

3 for an overview. For the complex compensatory-conjunctive decision rules we used 

the rule applied in the Psychology bachelor at the EUR as a reference point. For the 

conjunctive decision rules, the rule used among most Dutch universities was used as a 

reference point. In additional complex decision rules, we varied the specific 

conjunctive and compensatory components around these reference rules. As the test 

scores were allowed to range between 1.0 and 10.0, a rule that requires a minimum 

grade of 1.0 is similar to using a compensatory rule because only the required GPA is 

relevant in this case. Furthermore, the curriculum aspects were evaluated in a fully 

crossed design. In total 144 conditions existed. For each of these conditions 500 

datasets of 2000 students were simulated to obtain stable results. Finally, the decision 

accuracy measures were computed for each decision rule and dataset. 
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Table 3: Decision Rules 

Decision Rule 
Score Requirements 

GPA Minimum grade 
1. Compensatory rule  5.5 1.0 
2. Complex compensatory rule 5.5 3.0 
3. Complex compensatory rule 5.5 4.0 
4. Complex compensatory rule 5.5 5.0 
5. Conjunctive rule 5.5 5.5 
6. Compensatory rule 6.0 1.0 
7. Complex compensatory rule 6.0 3.0 
8. Complex compensatory rule1 6.0 4.0 
9. Complex compensatory rule 6.0 5.0 
10. Conjunctive rule 6.0 6.0 
11. Compensatory rule  6.5 1.0 
12. Complex compensatory rule 6.5 3.0 
13. Complex compensatory rule 6.5 4.0 
14. Complex compensatory rule 6.5 5.0 
15. Conjunctive rule 6.5 6.5 

1Decision rule as applied in the first year Psychology at the EUR. 

By studying these specific decision rules, using data as a basis for the simulations, 

several assumptions were made with respect to the setting and structure of the 

educational program. The students included in the observed data had eight 

knowledge tests in a year, programmed in a sequential format. Also, the observed test 

scores in the data all originate from MC tests. In the complex compensatory decision 

rule at the EUR students were only allowed two reexaminations when their GPA was 

below a 6.0 or when an individual test score was below a 4.0 and these 

reexaminations took place at the end of the academic year. 

Results 

In discussing the results of our simulation study, we focus on comparing the decision 

accuracy of the different decision rules, averaged over all manipulated conditions. 

These mean values are displayed in Table 4. In addition, the representativeness of 

these mean values for the simulated conditions is described. An elaborate description 

of the results per manipulated factor is provided in Appendix C with an overview of 
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the results per simulated condition in Table C1 to C4. For results on specific 

conditions, researchers can evaluate these themselves using data of our simulations 

that is freely available from the Open Science Framework (OSF) directory at 

https://osf.io/zmvbh/.  

In the next paragraphs the influence of the required GPA and minimum grade on the 

decision accuracy of a complex compensatory decision rule is evaluated first. Second, 

the accuracy of the compensatory rules is compared to that of the conjunctive decision 

rules. Finally, the mean values observed in Table 4 are compared to the results for 

each separate condition in Table C1 to C4, which illustrate the most important 

deviations from the patterns observed in Table 4.  

Table 4: Mean Values for Each Outcome Measure per Decision Rule 

Decision 
Rule GPA Minimum 

Mean Proportion 
Misclassifications 

Mean 
False 

Negative 
Rate 

Mean 
False 

Positive 
Rate 

Mean 
Positive 

Predictive 
Value 

1 5.5 1 .06(.04) .02(.02) .62(.24)2 .95(.03) 
2 5.5 3 .10(.08) .07(.09) .49(.23) .96(.03) 
3 5.5 4 .17(.11) .14(.14) .41(.20) .94(.02) 
4 5.5 5 .26(.08) .26(.16) .29(.14) .81(.10) 
5 5.5 5.5 .24(.06) .31(.17) .21(.11) .68(.16) 
6 6 1 .14(.06) .03(.03) .55(.25) .87(.06) 
7 6 3 .15(.06) .06(.08) .48(.22) .88(.05) 
8 6 4 .18(.08) .12(.12) .41(.20) .89(.04) 
9 6 5 .25(.08) .25(.16) .29(.14) .80(.10) 

10 6 6 .17(.06) .37(.17) .14(.08) .55(.20) 
11 6.5 1 .23(.10) .05(.05) .44(.25) .73(.11) 
12 6.5 3 .22(.10) .06(.07) .42(.23) .74(.10) 
13 6.5 4 .22(.09) .10(.10) .38(.20) .75(.10) 
14 6.5 5 .23(.08) .20(.15) .28(.15) .74(.11) 
15 6.5 6.5 .10(.05) .42(.18)1 .07(.05) .44(.22)3 

Note: SD over simulations given in brackets. Darker shades of grey implicate increased accuracy (i.e., 
lower proportion of error, false negative rate and false positive rate, and higher positive predictive 
value). When the required GPA equals the required minimum, the decision rule is conjunctive. When 
the required minimum equals 1, it is a compensatory decision rule. The remaining rules are complex 
compensatory- conjunctive decision rules. 1N=71954 instead of N=72000, 2N=71997, 3N=71952. 
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Proportion of Misclassifications 

As shown in the mean proportion error column in Table 4, the proportion of 

misclassifications depended on both the specific required GPA and required minimum 

grade. As expected, increasing the required minimum grade increased the mean 

proportion of misclassifications in the (complex) compensatory decision rules when 

the GPA was not too strict. This means that the compensatory rule resulted in the 

most accurate decision. At a strict GPA, the required minimum grade did not influence 

the decision accuracy of compensatory rules. Overall, increasing the GPA resulted in a 

large to moderate increase of the proportion of misclassifications (except when the 

minimum grade was high and increasing the GPA had a small negative influence). 

Comparing the decision accuracy of the compensatory and conjunctive decision rules 

with a similar required GPA shows that the (complex) compensatory rules were 

generally more accurate when the required GPA was low. When the required 

minimum grade in the complex compensatory rules was high, the conjunctive rule 

was more accurate. Furthermore, when the GPA was closest to the average population 

true score (i.e., high), the conjunctive decision rule resulted in fewer total 

misclassifications. 

Table C1 in Appendix C shows the results for each factor separately which show that 

for most conditions the results are consistent the pattern observed in the mean 

proportion of error in Table 4. Some exceptions exist. The differences in accuracy for 

the different decision rules were smaller when the test correlation or test reliability 

was high. Also, the accuracy was higher when the test reliability was high. Finally, 

when no reexaminations were allowed or when the average test reliability was low, 

the minimum grade had a more pronounced influence on the decision accuracy than 

seen in the average pattern. In light of our hypotheses, the results in Table C1 show 

that the average test reliability mostly had a larger influence on the proportion of 

misclassifications for (complex) compensatory decision rules than for conjunctive 

rules given a specific GPA. As expected, higher test correlations resulted in a smaller 

proportion of misclassification than lower test correlations in complex compensatory 

decision rules. Also, the differences in proportion of misclassifications for the different 

decision rules were larger at lower test correlations. 
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The False Negative Rate 

The false negative rate of the different decision rules shown in Table 4 illustrate a 

clear pattern: the higher the required minimum grade, the higher the false negative 

rate. So, the compensatory decision rules were the most accurate. The required GPA 

had a small positive influence if a compensatory decision rule was used, and a small 

negative influence when a complex compensatory decision rule was applied. Overall, 

the pattern is consistent, such that the conjunctive decision rules had higher false 

negative rates than the (complex) compensatory rules requiring the same GPA.  

Comparing the pattern in the mean values of the false negative rate in Table 4 to the 

patterns observed over the different conditions in Table C2 in Appendix C shows that 

the mean values were very representative. The only differences were observed when 

the test reliability was low, no reexaminations were allowed, or when the correlation 

between the tests was low. In these conditions, the influence of the minimum grade 

was slightly more pronounced, such that there were larger differences in the false 

negative rates across different decision rules. Regarding our hypotheses for the false 

negative rate, the results in Table C2 show that the false negative rate increased for 

conjunctive rules when more tests were included. In addition, increasing the number 

of reexaminations decreased the false negative rate. The influence of the number of 

reexaminations was larger for conjunctive decision rules compared to (complex) 

compensatory rules.  

The False Positive Rate 

Similarly, the false positive rates in Table 4 show a consistent pattern: the higher the 

minimum grade, the lower the false positive rate. Consequently, the compensatory 

decision rules were the least accurate. Furthermore, increasing the GPA resulted in a 

decrease in the false positive rate. Hereby, the negative influence of the GPA was large 

for compensatory decision rules and became small as the required minimum grade 

increased. Overall, the conjunctive decision rules were the most accurate.  

In addition, the pattern observed in the mean values of the false positive rate in Table 

4 is comparable to the patterns observed in Table C3 in Appendix C. The only 

differences are observed for the condition in which no or one reexamination is 
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allowed. Here, the overall false negative rate was lower than observed in the mean 

values and the differences in the false positive rates across rules was smaller. In line 

with our hypothesis, increasing the number of reexaminations increased the false 

positive rate. Contrary to expectations, the number of reexaminations had a larger 

influence on the false positive rate of (complex) compensatory decision rules than 

conjunctive rules.  

Positive Predictive Value 

The mean positive predictive values provided in Table 4 show that the positive 

predictive values of the different decision rules mostly depended on the required GPA. 

The higher the GPA, the lower the mean positive predictive value. This influence 

became smaller as the minimum grade increased. Overall, the minimum grade had a 

small negative influence. When the required GPA was strict, the influence of the 

minimum grade on the positive predictive value of the complex compensatory rules 

disappeared. Overall, the positive predictive value of a complex compensatory 

decision rule was higher than that of a conjunctive decision rule with a similar 

required GPA.  

Table C4 in Appendix C shows the positive predictive value results for each 

manipulated factor. The pattern illustrated resembles the pattern observed in Table 4. 

Differences are mainly observed when the test correlation or test reliability was high, 

or when reexaminations were not allowed. In these conditions, the differences in the 

positive predictive value of the different decision rules were less pronounced than the 

differences observed in Table 4.  

Discussion 

The purpose of this study was to compare the accuracy of different compensatory, 

conjunctive, and complex decision rules within different realistic higher education 

contexts. Overall, the results indicate that the accuracy of the decision rules depends 

on the degree of compensation allowed. For the total proportion of misclassifications, 

the results show that the required minimum grade and GPA interplay. Specifically, at 

a low GPA the compensatory decision rule was the most accurate, while at a high GPA 

the conjunctive decision rule was the most accurate. This result can be explained by 
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the proportion of false positives which dramatically decreased when the requirements 

within the conjunctive rule were closer to the average true score. For the remaining 

outcome measures, the results were more consistent. Overall, conjunctive decision 

rules had a higher false negative rate and a lower false positive rate compared to 

compensatory decision rules requiring a similar GPA. In addition, the compensatory 

decision rules had a higher positive predictive value than conjunctive decision rules 

requiring a similar GPA.   

The patterns in the overall results displayed in Table 3 were representative of the 

patterns observed in the separate settings. Deviations from the overall pattern were 

mainly observed when the test reliability was high or low, the test correlation was 

high or low, or whether none or many reexaminations were allowed. As hypothesized, 

the differences between the decision rules became more explicit when correlations 

were low. Contrary to expectations the average test reliability had a larger influence 

on the proportion of misclassifications for (complex) compensatory decision rules 

than for conjunctive rules. This finding shows that test reliability has an important 

influence on the decision accuracy and is as important for compensatory as for 

conjunctive decision rules. Adding tests to the curriculum increased the false negative 

rate for conjunctive rules as hypothesized. Also, the number of reexaminations 

decreased the number of false negatives and increased the number of false positives. 

As expected, the influence of the reexaminations was larger for conjunctive rules than 

for (complex) compensatory decision rules. On the contrary, the reexaminations had a 

larger influence on the false positive rate of (complex) compensatory rules than 

conjunctive rules. This is because false positives are in general more likely in 

compensatory decision rules than conjunctive rules. 

Overall, the results from this study are in line with previous findings. As Douglas and 

Mislevy (2010) found, a combination of a conjunctive and compensatory decision rule 

results in less decision errors. Our results show that this depends on the specific 

requirements in the decision rule; the complex rule was more accurate than the 

conjunctive decision rule when the required GPA and minimum grade were not too 

strict. Furthermore, the results from our study are similar to McBee et al. (2014) their 

finding that with lower test correlations and lower test reliability a higher proportion 
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of false negatives and false positives is present. Hereby, the influence of test reliability 

on the false positive rate was somewhat stronger than the influence of the correlation 

between the tests. Furthermore, Douglas and Mislevy (2010) found that increasing 

the number of tests exaggerated the difference in the number of false positives and 

false negatives of the conjunctive and compensatory decision rules. The current 

results did not show such a clear pattern for increasing the number of tests. A possible 

explanation for this difference originates in the different factors that were included in 

this study. As additional factors were manipulated, the influence of the number of 

tests might not be a main effect but instead be moderated by other factors.  

As a whole, the findings from this study indicate that it is not only the manner in 

which the multiple measures are combined that is important for the accuracy of a 

decision, the measures selected are just as important. These findings support of 

Chester’s (2003) conclusion. Mostly, a selection of measures in terms of average 

reliability and correlation between the tests seems important.  

Recommendations 

Although the results suggest decision accuracy to be context dependent, some 

recommendations for implementing a (complex) compensatory decision rule might be 

possible based on these results. Mostly, decision makers have to determine the specific 

trade-off between false positives and false negatives. Consequently, in practice, 

choosing the appropriate decision rule implies a discussion of the relative emphasis 

put on preventing false positives or false negatives. This is highly dependent on the 

context in which the decision is placed (i.e., the stakes involved) as well as the 

perspective one takes (see e.g., Mehrens, 1990, for an overview of when (not) to use 

composite scores in decision making). For example, as courses become more advanced 

and specialized it is recommended to allow for less compensation as the prevention of 

false positives would become increasingly important.  

Furthermore, the results show that one should allow compensation within a cluster of 

courses that are correlated. In highly correlated clusters the differences in accuracy 

between different decision rules becomes smaller and the overall accuracy is higher. 

Selecting courses to obtain a highly correlated cluster can be done based on, for 
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instance, content or difficulty level. Overall, with low correlation between tests, 

allowing compensation between the tests should be carefully considered as it becomes 

questionable whether these tests could compensate one another content-wise. 

Considerations  

Several assumptions were made in this simulation study, see Appendix A for a 

detailed outline thereof. For example, it was assumed that all students employed a 

similar strategy and choose to retake the course on which their observed score was 

lowest. In real life situations different groups of students might employ different 

strategies. One might for instance argue that students opt a more optimal retake 

strategy and choose those tests where the discrepancy between their observed and 

true score is highest. Because students might not be good in defining their true score 

accurately and consequently the discrepancy between their observed and true score in 

general, it was chosen to simulate a strategy in which students retook the test that 

had the lowest observed score.  

Furthermore, an empirical approach was taken in this study by using empirical data as 

the basis for the simulations. This data only includes Dutch first year Psychology 

students at the EUR. Consequently, the specific accuracy levels might differ for other 

programs or similar bachelor programs in different cities or countries and therefore 

one should not focus on these specific values. Alternatively, this study aims at 

analyzing overall effects of having a higher or lower minimum required grade, not the 

specific value ascribed to it as this might vary in different testing systems. 

Accordingly, interpreting the results as such, the results are more easily generalized to 

other testing systems as well as other decision-making situations.  

As mentioned in the Introduction, it was assumed that students behave similarly 

under each of the decision rules by means of similar true and observed score 

distributions. Hereby, specific learning strategies that students possibly apply were 

ignored. As argued by Van Rijn et al. (2012), this is not to say that in practice these 

exact accuracy levels will automatically occur once a specific decision rule is applied. 

Students are able to react to different testing systems by, for instance, allocating their 

study time accordingly. In this context it remains questionable whether students are 
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capable of directing their study activities in such a way that they would exert a strong 

influence on the specific true score they achieve. Further studies should explore the 

possibility of incorporating alternative study strategies for different decision rules. 

Future Directions 

Although there is a vast amount of literature on the decision accuracy of single 

assessments (Cronbach, 1951; Lee, 2010; Lee, Hanson, & Brennan, 2002; Rudner, 

2005; Sijtsma, 2009) this research is not easily generalized to situations in which 

multiple assessments are combined (Douglas & Mislevy, 2010; Van Rijn et al., 2012). 

Likewise, studies into the measurement precision of composite scores (e.g., He, 2009; 

Wheadon & Stockford, 2013) do not easily apply to situations in which composite 

scores are not easily computed or useful. Consequently, future studies should examine 

the decision accuracy of using multiple measures and in particular focus on the 

plausibility of the assumptions that were made in the current study. The assumptions 

regarding the reexaminations should be tested in further studies to see if the results 

would change considerably when other reexamination strategies are assumed.  

Overall, the results suggest that the accuracy of complex decision rules depends on 

the specific requirements set within a complex decision rule. Consequently, it seems 

that one should carefully consider the strictness of the GPA and minimum grade 

required in a complex decision rule. This implies that the educational decision maker 

should make a trade-off between the emphases put on preventing false negatives 

versus false positives. Hereby, the specific context of the decision is important as well 

as the tests that are used to make the decision. In making these trade-offs, this study 

might aid as a guideline.    
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Appendix A. Psychometric Argument: Average grades more reliable 

Within the CTT framework it is assumed that each individual observed test score, X, is 

a summation of someone’s true score, T, and random measurement error, E (Lord & 

Novick, 1968);  

N = 	1 + R. 

Here, both T and E are unobserved theoretical variables. Moreover, because CTT 

assumes the correlation between T and E to be zero, 

S),7 = 0, 

the variance of X is defined as  

6G
8 = 6)

8 +	67
8. 

Consequently, the theoretical definition of reliability equals 

S.. =
:"#

:'
# =

:"#

:"
#L	:(

#. 

From this definition it follows that a test is more reliable when the variance of 

measurement error is low. Now let us assume that X is a composite score defined as 

the average test score of a series of courses. Then T is the average true score and E is 

the average of the individual measurement errors. For the sake of simplicity, let’s 

assume an equal measurement error variance for each course. Because Ei is a random 

variable with a population mean of zero, the average Ei of an individual student will 

approach zero when the number of tests that are combined in the composite becomes 

large. As this is true for all individuals it follows that the V78	of a composite score is 

smaller than the V78	of a single test score. Therefore, the reliability of a composite 

score is more reliable than that of a single test.  
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Appendix B. Detailed Outline Simulation Procedure 

In this appendix, the simulation procedure including the implied assumptions is 

discussed in detail. Here, the exam scores of 821 first year students on eight courses 

were used to obtain several estimates.  

First, a covariance matrix was computed that included the variance and covariance of 

each of the tests included in the decision. Consequently, an R function sig was 

written that enables the manipulation of the cohesion (cor.mean) and the number of 

tests (n): 

> sig <- function(cor.mean, n, s2T){ 
+   c <- c(rep(cor.mean, n*n) #creating correlation vector with 

similar correlations 
+   sigma <- matrix(c,n,n) 
+   diag(sigma) <- 1 #correlation matrix 
+   sigma <- sigma*(sqrt(s2T)*sqrt(s2T)) #correlation to covariance  
           matrix 
+   return(as.matrix(sigma))} 
 

The argument s2T indicates the variance in true scores on a test and was estimated 

from the available data as the average variance in test scores over all courses. This 

variance in true score was assumed to be similar for each course. In addition, the 

correlation between each test in the curriculum was assumed to be similar. 

Furthermore, the function sig returned a symmetric covariance matrix. 

Secondly, the simulated covariance matrix was used as input for the sampling of a 

true score distribution using the function truescore. These true scores varied 

between 1 and 10 and were therefore simulated from a truncated multivariate normal 

distribution, meaning that the underlying true score distribution was assumed to be 

normally distributed. The R function rtmvnorm from package tmvtnorm (Wilhelm & 

Manjunath, 2014) was used for this purpose: 

> truescore <- function(N, n, m, s, sigma, a, b){ 
+   require(“tmvtnorm”) 
+   a = c(rep(a, n)) #lowerbound 
+   b = c(rep(b, n)) #upperbound 
+   mean <- rnorm(n=n, mean=m, sd=s) #random mean true score for  
                    each test 
+   true.score <- rtmvnorm(n=N, mean=mean, sigma=sigma, lower=a, 

upper=b, algorithm=“rejection”) #simulate true 
score distribution for each test 

+   corcheckt <- c(mean(cor(true.score))#check correlation in output 
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+   return(list(true.score=true.score, cor=corcheckt))}   
 
Again, the arguments included in the function allowed for manipulation of several 

parameters; the sample size (N), the number of tests (n), the mean true score value 

(m), the variability in mean true score values (s), covariance matrix (sigma), and the 

lower (a) and upper (b) bound. Both the mean true score and the standard deviation 

of these means were estimated from the available test scores. Subsequently, these 

values were used to randomly sample mean true scores for each test. Which were 

consequently used to sample the true scores from a truncated multivariate normal 

distribution. In addition to a student his or her true score for each test, the function 

included a check for the strength of the correlations of the final true scores between 

tests to see if the manipulation of the correlations between tests was successful 

(corcheckt). Comparing the output to the input showed that the simulations with a 

correlation r = .1 resulted in an average correlation of r = .19, for the r = .3 

simulations it was r = .36, for the r = .5 simulations it was r = .54, and finally for the 

r = .7 simulations the simulated datasets had an average correlation of r = .72.These 

differences were caused by the truncation of the true score distribution using a 

rejection algorithm. Because of the truncation some sampled distributions were 

rejected as they did not fit in the specified lower and upper bounds and this caused a 

different correlation in the remaining samples compared to the input. 

Thirdly, the observed test scores were simulated. To do so, the true scores were used 

as the mean, and the measurement error functioned as the standard deviation to 

randomly define the observed scores, using the function obsscore. This function 

included the parameter test reliability (R) that could be manipulated. Notably, this 

average true score test reliability referred to the test reliability at an average true 

score. For other true scores however, the reliability varied as it depends on the specific 

true score. Consequently, given the reliability at a specific true score, the error 

variance was calculated and used as an estimate of the measurement error. Again, 

scores were bounded to fall between 1.0 and 10.0.  

> obsscore <- function(R, m, s2T, true.score){ 
+   t = as.vector(true.score) 
+   n = length(t) 
+   R10 = 0.99 #reliability at true score 10 
+   Rmu = R #reliability at mean true score 
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+   b1 = ((Rmu-.99)/(mu-10))  
+   b0 = Rmu - (b1*mu) 
+   Rt = b0 + b1*t #linear equation to define reliability at each
       true score 
+   Rt <- replace(Rt, Rt <=0, 0.01) #replace reliability of 0 or < 0 
+   errort = (s2T/Rt)-s2T #error variance at t 
+   obs.score <- rnorm(n, mean = t, sd = sqrt(errort)) 
+   obs.score <- replace(obs.score, obs.score > 10.0, 10.0) 
+   obs.score <- replace(obs.score, obs.score < 1.0, 1.0) 
+   obs.score <- matrix(obs.score, nrow(true.score),  

  ncol(true.score)) 
+   return(obs.score = obs.score)}  
 

Subsequently, the procedure of taking observed test score was duplicated to obtain a 

replicate observed score in case a student chooses to retake the test, using the 

replicatescore function. Here, one difference compared to the obsscore function 

existed. Given that the test was taken again at the end of the academic year, it was 

assumed that a student his or her true score increased as students were assumed to 

have obtained more test taking skills and relevant knowledge in the interval between 

the first attempt and the reexamination. An estimate of the increase was obtained 

from available data on reexaminations by first year Psychology students 

(approximately 0.5) and was set equal for all students. In simulating the change in the 

true score at the reexamination, all true scores increased by the same amount that 

was estimated from the data (approximately 0.5).  

Fourthly, the retakes function was used. This function determined whether a student 

passed or failed his or her first year. Hereby, x is the input score, which refers to the 

observed score, z refers to the number of reexaminations allowed, ret refers to 

observed score on the reexamination, produced by the replicatescore function. 

Finally, min and GPA refer to the required minimum grade and GPA in the decision 

rule that is applied. Importantly, a test could only be retaken once and the retake was 

restricted to a test that had not been retaken before, the highest grade (of first 

attempt or reexamination) was used, and students were only allowed to retake a test 

if it was below the minimum grade or their GPA was below the required GPA. In the 

latter case, the course with the lowest observed score was retaken.  
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> retakes <- function(x,z,ret,min, GPA){ 
+   count <- matrix(0, nrow(x), ncol(x)) #matrix to identify which  

    test has been retaken 
+   result <- c() 
+   max <- z 
+   r <- c(rep(0, nrow(x))) #number of tests retaken 
+   for (i in 1:nrow(x)){ 
+     r[i] = 0 
+     for (j in 1:ncol(x)){ #checking minimum grade 
+       if (x[i,j] < min & count[i,j]==0 & r[i] < z){ 
+         if (x[i,j] < ret[i,j]){ 
+           x[i,j] <- ret[i,j]} 
+         else { 
+           x[i,j] <- x[i,j]} 
+         count[i,j] = 1 
+         r[i] = r[i] +1}} 
+     for (n in r[i]:max){ 
+       if(mean(x[i,]) < GPA & r[i]<z){ #checking GPA 
+         j <- which(x[i,]==min(x[i,][count[i,]==0]))[1] 
+         if (x[i,j] < ret[i,j]){ 
+           x[i,j] <- ret[i,j]} 
+         else { 
+           x[i,j] <- x[i,j]} 
+         count[i,j] = 1 
+         r[i] = r[i] + 1}}} 
+   for (i in 1:nrow(x)){ 
+     if(min(x[i,])< min){ #if a score is below required minimum  
           student fails 
+       result[i] = 0} 
+     else if(mean(x[i,])< GPA){ #if GPA is below required GPA  

 student fails 
+       result[i] = 0} 
+     else { 
+       result[i] = 1}} 
+   return(list(r, count = count, result = result))} 
 

Consequently, the matrix that defined which test was retaken was used to define 

whether a student passed or failed based on his or her true score.  For this the 

function trueretakes was used. Here, the inputs were the true scores (truescore), 

the increased true score at the reexamination (trueretake), the matrix that defines 

which tests are retaken (count), the required minimum grade (min), and the required 

GPA (GPA).  
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> trueretakes <- function(truescore,trueretake,count, min,GPA){ 
+   result <- c() 
+   for (i in 1:nrow(truescore)){ 
+     for (j in 1:ncol(truescore)){  
+       if (count[i,j] == 1){ 
+         truescore[i,j] <- trueretake[i,j]}}} 
+   for (i in 1:nrow(truescore)){ 
+     if(min(truescore[i,])< min){ 
+       result[i] = 0} 
+     else if(mean(truescore[i,])< GPA){ 
+       result[i] = 0} 
+     else { 
+       result[i] = 1}} 
+   return(list(result = result))} 
 

Finally, the decision vector was converted into a classification table from which the 

appropriate measures were calculated using the function classtable. This function 

required the results from the decision rule (whether students passed or failed) based 

on the true and observed score respectively. 
> classtable <- function(Tr, X){ #for each decision rule you get  
            classification table 
+   v = 0 
+   w = 0 
+   x = 0 
+   y = 0 
+   for (i in 1:length(Tr)){ 
+     if (Tr[i]== 0 & X[i]== 0){ 
+       v = v+1} 
+     if (Tr[i] == 1 & X[i]==0){ 
+       w = w+1} 
+     if (Tr[i] == 0 & X[i] == 1){ 
+       x = x+1} 
+     if (Tr[i] == 1 & X[i] == 1){ 
+       y = y+1}} 
+   class <- matrix(c(v,x,w,y),2,2)  
+   sensitivity <- (class[2,2]/(class[1,2]+class[2,2])) 
+   specificity <- (class[1,1]/(class[1,1]+class[2,1])) 
+   totalmiss <- (class[1,2]+class[2,1])/(sum(class))  
+   pospred <- (class[2,2]/(class[2,1]+class[2,2])) 
+   return(matrix(c("v" = v, "w" = w, "x"=x,"y"=y, 

"sens"=sensitivity,  
"spec"=specificity,  
"total"=totalmiss,"pos"=pospred),1,8))}
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In this appendix, the results of the simulation study are displayed per factor in Table 

C1 to C4. In addition, the next paragraphs discuss these findings in detail by focusing 

on the observed effects for each factor separately. First, the direction of the influence 

of each factor on the decision accuracy is discussed, after which the strength of the 

influence is described.   

Influence of Average Test Correlation 

The average test correlation columns in Table C1 to C4 show the mean values for the 

four levels of test correlations that were simulated. Overall, the direction of the 

influence of the test correlation on the proportion of misclassifications and positive 

predictive value depended on the required GPA and minimum grade. Although mostly 

a negative influence of the test correlation on the proportion of misclassifications was 

observed, it was positive for compensatory decision rules in which the GPA was low. 

Furthermore, increasing the test correlation increased the positive predictive value if 

the minimum grade was high and decreased the positive predictive value if the 

minimum grade was low. The test correlation had a negative influence on the false 

negative and false positive rate.  

Similarly, the size of the observed effect of the test correlation depended on the 

specific decision rule applied. The test correlation strongly influenced the false 

positive rate. Here, increasing the minimum grade or GPA, resulted in a decrease in 

the influence of the test correlation. Secondly, the test correlation had a large 

influence on the false negative rate and the proportion of misclassifications. For the 

false negative rate, increasing the minimum grade strongly increased the negative 

influence of the test correlation. Increasing the GPA slightly increased the influence of 

the test correlation as well. Similarly, for the proportion of misclassifications, the 

negative influence of the test correlation was largest as the minimum grade increased. 

Interestingly, the influence of the test correlation on the positive predictive value was 

small except when the minimum grade was high. In this case, the influence of the test 

correlation was very large.  
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Influence of Average True Score Test Reliability 

Evaluating the direction of the influence of the test reliability at an average true score 

on the decision accuracy shows that the direction only depended on the specific 

decision rule for the false positive rate. Here, mostly a negative influence was 

observed, except when the minimum grade was low or the GPA was high. For these 

decision rules, increasing the test reliability at an average true score resulted in an 

increase in the false negative rate. Furthermore, the test reliability had a negative 

influence on the proportion of misclassifications and the false negative rate; 

increasing the test reliability resulted in fewer classification errors. Contrary, test 

reliability had a positive influence on the positive predictive value.  

Evaluating the size of the influence of the test reliability at an average true score, 

shows that the reliability had a medium to large influence on the false positive rate. 

Here, the influence was strongest if a compensatory decision rule was applied. 

Furthermore, the influence of the test reliability decreased at a higher minimum 

grade. Here, the influence of the minimum grade on the influence of the test 

reliability was smaller if the required GPA was low. The test reliability also had a large 

influence on the false negative rate. Here, the influence of the test reliability increased 

as the minimum grade increases as well, especially at a low required GPA. 

Furthermore, a large influence of the test reliability on the proportion of the 

misclassification was observed. This influence increased as the minimum grade 

increased for rules in which the required GPA was low. Contrary, the influence of the 

test reliability on the proportion of misclassifications decreased as the minimum grade 

increased when the required GPA was high. Also, the positive influence of the GPA on 

the influence of the test reliability was strongest for a compensatory rule. Finally, the 

test reliability had a small to medium influence on the positive predictive value. 

Increasing the required GPA or increased the influence of the test reliability, while 

increasing the minimum grade slightly decreased the influence of the test reliability 

on the positive predictive value.  
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Influence of Number of Tests 

The number of tests columns in Table C1 to C4 show the mean values for the 

simulations of curricula with 8 or 12 tests. As can be seen, the direction of the 

influence of the number of tests on the proportion of misclassifications and the 

positive predictive value depended on the required minimum grade and GPA. A 

negative influence of the number of tests on the proportion of misclassification was 

observed when the minimum grade was low or when the required GPA was high. 

Additionally, mostly a positive influence of the number of tests on the positive 

predictive value was observed. Only if the minimum grade was high and the GPA low, 

a negative influence was observed. Overall, increasing the number of tests increased 

the false negative rate and decreased the false positive rate.  

The results in Table C1 to C4 show that the size of the influence of the number of 

tests only had a small influence on the decision accuracy relative to the other 

measures. Mostly, it influenced the false positive rate. Additionally, increasing the 

GPA slightly increased the moderate influence of the number of tests. Secondly, there 

was a small influence of the number of tests on the false negative rate if the minimum 

grade was high. If the minimum grade was low, there was no effect of the number of 

tests. Finally, the influence of the number of tests on the proportion of 

misclassifications and positive predictive value was very small and not consistently 

influenced by the specific decision rule applied.  

Influence of Number of Reexaminations 

Finally, the last columns in Table C1 to C4 display the decision accuracy measures for 

the simulations with the different number of reexaminations. Looking at the direction 

of the influence of the number of reexaminations on the proportion of 

misclassifications shows that the influence depended on the specific decision rule. 

Specifically, if the minimum grade was high and the GPA low, a negative influence of 

the number of reexaminations on the proportion of misclassifications existed. For the 

remaining decision rules, increasing the number of reexaminations, resulted in an 

increase in the proportion of decisional errors. Furthermore, the number of 
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reexaminations had a negative influence on the false negative rate and the positive 

predictive value and a positive influence on the false positive rate.  

Focusing on the size of the influence of the number of tests shows that the number of 

reexaminations mostly influenced the false positive rate. Here, the influence 

decreased as the minimum grade increased. Also, the number of reexaminations had a 

very large influence on the false negative rate, especially for the rules in which a high 

minimum grade was required. For both decision accuracy measures, the minimum 

grade was more important in determining the size of the influence of the number of 

reexaminations than the GPA. Furthermore, the number of reexaminations had a 

medium to large influence on the positive predictive value. Here the influence was 

largest as the decision rule required a high GPA. The number of reexaminations also 

had a small to large influence on the proportion of misclassifications. Here, the 

influence was highest if the required GPA was high and the minimum grade was low. 

Notably, the influence of the GPA on the size of the influence of the number of tests 

on the proportion of misclassifications and the positive predictive value was larger 

than the influence of the minimum grade.
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Allowing Course Compensation in Higher 

Education: A latent class regression to evaluate 

performance on a sequel course 
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Compensation in Higher Education: A latent class regression to evaluate performance on a 

sequel course.  



 

 48 

 

 

 

 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

In Dutch higher education, an academic dismissal policy is in place in which a 

compensatory decision rule might be used to assign study credits. In this study, the 

consequences of allowing compensation are evaluated by examining performance on a 

second-year sequel course that builds on material from a first-year precursor course. 

Up to now, differences in the consequences of compensation on student performance 

across latent groups of students were not considered. This study uses a latent class 

regression model to distinguish between students who portray different unobserved 

study processes. Data from a Psychology and a Law undergraduate curriculum were 

used and latent classes were formed based on similar patterns of first-year averages, 

variability in first-year grades, the number of compensated first-year courses, and the 

number of retakes in the first year. Results show that students can be distinguished by 

three latent classes. Although the first-year precursor course is compensated in each of 

these latent classes, low performance on the precursor course results in low 

performance on the second-year sequel course for Psychology students who belong to 

a class in which the average across first-year courses is low and the average number of 

compensated courses and retakes are high. For these students, compensation on a 

precursor course seems more likely to relate to insufficient performance on a sequel 

course.   

Keywords: compensation, higher education, latent class regression, academic 

performance.  
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Introduction 

Student success in higher education is an important issue. This is underlined by the 

goal set in the Europe 2020 strategy to have at least 40% of 30-34-year-olds complete 

higher education. Reducing student dropout and increasing study completion rates is 

hereby one of the main strategies to improve student success (Vossensteyn et al., 

2015). Similarly, in the US an increased focus on student attainment exists as US 

colleges and universities try to prevent high dropout rates (Barefoot, 2004). 

Improving study success in higher education has been approached in many ways, 

using different interventions (Sneyers & De Witte, 2018). One successful intervention, 

which we focus on in this study, is the use of an academic dismissal (AD) policy, that 

is, a performance-based selection mechanism through which students may be 

dismissed from an academic program (in The Netherlands referred to as the binding 

study advice [BSA]; Sneyers & De Witte, 2018). In an AD policy, students’ progress is 

evaluated, for example, after the first year of the bachelor to assess whether the 

requirements to continue their studies are met. In making this decision, different 

decision rules may be applied by the higher education institutions. These rules may 

vary with respect to the number of study credits required. Traditionally, a conjunctive 

decision rule is applied, in which students either pass or fail an individual course and 

study credits are assigned to individual grades. Alternatively, a compensatory decision 

rule may be applied in which students are allowed to compensate, within boundaries, 

a low score on one course with a high score on another course. In this situation, 

students receive study credits based on their average score. In this study, the latter 

approach is examined as we aim to evaluate performance of students who are allowed 

to compensate courses in the academic dismissal policy.  

Allowing Course Compensation 

Different reasons may motivate the implementation of a compensatory decision rule 

instead of a conjunctive decision rule. First, compensation might be allowed to 

improve students’ grade goals and motivation to perform well on tests as it pays off to 

get a grade that is as high as possible when the average grade serves as the selection 

instrument, instead of just passing a test. Indeed, Kickert, Stegers-Jager, Meeuwisse, 

Prinzie, and Arends (2017) showed that this might increase students’ study efforts. 
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Furthermore, compensation might be a consequence of the intention to decrease 

students’ procrastination by limiting the number of retakes allowed. When allowing 

compensation, a failing grade on a course does not necessarily need to be retaken and 

subsequent study delay might be decreased. By decreasing study delay, study success 

in terms of time-to-degree increases (Vermeulen et al., 2012). Third, students are 

trained for a profession that is compensatory by nature. In a job, an employee may 

compensate his or her lacking in one area by outshining others in another area of 

expertise, assuming that a minimum (Rekveld & Starren, 1994). Notably, lacking here 

is relative as an employee holding a diploma should have a minimum degree of 

competency in each area as stated in the end qualification requirements for the 

diploma. Fourth, the argument that the average grade is more reliable than individual 

test scores and consequently guards against making incorrect decisions in the AD 

policy, may motivate the implementation of a compensatory rule (De Gruijter, 2008; 

Vermeulen et al., 2012).  

Whereas there may be several reasons to implement compensation, there is also 

critique on allowing course compensation in higher education. Opponents argue that 

compensation might result in unfavorable study behavior and processes that might 

result in lower academic performance. By using a decision rule in which compensation 

is allowed, strategic study behavior might be elicited in which students may make 

certain strategic study choices in terms of their resource allocation (such as in time 

and effort; see e.g., Van Naerssen, 1970) that might hamper their academic 

performance. Certain resource allocation strategies, such as for example, focusing 

more on easier courses and less on difficult ones, within a compensatory decision rule 

might possibly create problematic hiatuses (i.e., gaps) in students’ knowledge, thereby 

decreasing educational quality (Arnold, 2011). Specifically, this concern applies to the 

situation in which courses accumulate on knowledge obtained in previous courses (so-

called sequel courses). By allowing compensation, students might not obtain sufficient 

knowledge to perform well on a sequel course and possibly graduate with hiatuses. 

Furthermore, opponents argue that students who are allowed to compensate courses 

might strategically compensate more complicated courses with easier ones (Rekveld & 

Starren, 1994).  
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To prevent such undesired situations, an educational program should be designed 

accordingly and, for example, form clusters in which compensation is allowed 

(Rekveld & Starren, 1994). By forming clusters based on, such as for example, the 

course content or the course difficulty level or by giving difficult courses more weight, 

one could avoid having graduates with hiatuses in their knowledge. Consequently, 

decision rules in an educational context are rarely fully compensatory (Douglas & 

Mislevy, 2010). Rather, there are some conjunctive aspects included in which a 

minimum level of performance is required. Furthermore, we evaluated in an earlier 

study the fourth argument (that the average grade is more reliable) motivating the 

implementation of compensation in a simulation study in which relevant higher 

education contexts were mimicked (Yocarini, Bouwmeester, Smeets, & Arends, 2018). 

By varying the conjunctive and compensatory aspects in a decision rule, the accuracy 

of each decision was evaluated. From these results it can be concluded that the 

compensatory decision rule in a higher education context is not always more reliable 

than a conjunctive rule. Instead, its relative accuracy depends on the context (i.e., the 

test reliabilities, correlation between tests, and the number of resists allowed). 

Consequently, choosing a specific decision rule should involve the evaluation of the 

decision accuracy as well as the characteristics of the tests that are combined. For 

conjunctive decision rules, false negatives, those students who failed but are truly 

competent enough to pass, are more prominent than false positives, students who 

passed but are not sufficiently skilled yet. For compensatory decision rules the reverse 

is true and more false positives occur compared to false negatives. The discussion of 

whether to allow course compensation is therefore also a discussion of preferring false 

negatives over false positives or vice versa.  

With the increased focus on student success in higher education, the debate on 

allowing compensation in an AD policy has gotten more attention as well (see e.g., 

Smits, Kelderman, & Hoeksma, 2015). Several studies have focused on the evaluation 

of compensatory decision rules. For example, Arnold (2011) evaluated the 

consequences in an Economics bachelor program and showed that whether the 

compensated course grade was obtained after one or multiple tries (i.e., was retaken) 

was important for later performance; that is, the number of retakes were negatively 
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related to performance on the sequel course. Whereas the pros and cons of 

compensation have been discussed from both a scientific and policy perspective, up to 

now the debate has not yet touched upon the question whether the discussion of the 

consequences of compensation (e.g., possible hiatuses in knowledge) applies to 

specific groups of students. Although this point was raised by Smits et al. (2015), no 

study has evaluated this. The higher education student population is diverse, 

containing students with varying levels of cognitive abilities who may portray 

different study strategies. Students’ grades and choices to compensate or retake 

courses in a curriculum may vary as a consequence.  

The Present Study  

The purpose of this study is to take into account these unobserved study processes for 

students who are allowed to compensate courses. In this way, our study extends 

previous studies that have studied the relation between performance on a first-year 

precursor and second-year sequel course (e.g., Arnold, 2011). To our knowledge, 

there is no published study that evaluated differences between groups of students that 

show similar study processes. As these groups have yet to be detected, a latent class 

model could be applied to explore whether groups of students exist who are 

characterized by similar unobserved choices in study resource allocation.  

Variables that were used to distinguish these latent classes are the first-year average 

grade, the variation in first-year grades, the number of courses that were 

compensated, and the number of courses that were retaken. Courses are qualified as 

compensated when the course grade (e.g., 5.0, on a 1-10-point scale, as is common in 

Dutch higher education) is below the required average grade set in the compensatory 

decision rule (e.g., 6.0). These variables were selected as these are expected to be able 

to make a distinction between groups of students who make different (unobserved) 

choices with regards to their study resource allocation in the first year of the bachelor, 

and which groups may display different relations between first-year precursor and 

second-year sequel course performance. Although students with very high and very 

low cognitive abilities will probably perform similarly under different decision rules 

(i.e., pass or fail in either situation), students with average abilities just above the cut-

score are of most interest in the compensation discussion. Here, two students (let’s 
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call them Ann and Peter) with similar average grades might be very different in their 

underlying latent true scores per course. Where Ann might have quite similar true 

scores across courses and obtained her average grade by consistently scoring around 

this average, Peter might have high variation in his true scores across courses, 

resulting in high variability in his grades. Study choices as to which course to 

compensate or retake and to alter study resource allocation accordingly, might be 

more useful to Peter compared to Ann. Consequently, performance on a second-year 

sequel course is more likely to be low for Peter compared to Ann, as he is more likely 

to have had a low true score, and possibly compensated the first-year precursor 

course. By compensating this course, it might be that Peter lacks knowledge of the 

first-year material required in the second-year sequel course, resulting in lower 

academic performance in the second-year compared to Ann. Up to now, the 

consequences of compensation have been studied as being similar for Ann and Peter 

by not making a distinction in latent student groups. However, what applies to the 

aggregate does not necessarily mean the finding holds in general and applies to each 

and every student (Hamaker, 2012).  

The overall aim of this study is to evaluate the consequences of course compensation 

by evaluating performance on a second-year sequel course across different latent 

groups. Specifically, the relation between the first-year precursor course and second-

year sequel course performance is allowed to vary across latent student groups who 

are characterized by a similar pattern in first-year grades, variability in their first-year 

grades, the number of compensated first-year courses, and the number of retakes in 

the first year. For this purpose, a latent class regression model (Vermunt & Magidson, 

2002; Wedel & DeSarbo, 1994) is applied on data from a Psychology university 

bachelor in the Netherlands in which compensation is allowed within boundaries in 

the first year of the bachelor. As a second purpose, the generalizability of the results is 

assessed by replicating the analyses on data from a Dutch Law university bachelor 

program in which course compensation is also allowed. Here, a latent class model has 

the advantage that groups of students can be formed which show similar grade 

characteristics and study choices without a priori assumptions about the specific 

formation of these groups (e.g., in terms of the number of classes or class sizes; 
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Vermunt & Magidson, 2002). In this way, the regression coefficients are allowed to 

vary across heterogeneous groups (Wedel & DeSarbo, 1994).  

Method 

Sample 

Test scores from students’ first- and second-year courses in a Psychology bachelor 

program at a Dutch university were used. This data was obtained from the Erasmus 

Educational Research (EER) database. Specifically, cohorts were included in which 

compensation was allowed and in which a sequel second-year course was present, 

meaning that the material in the second year built upon the material in a first-year 

course. For this selection, the content of the courses was considered by consulting the 

exam regulations and course descriptions, as well as the course coordinators or 

program executives. Overall, only students who passed the AD policy requirements to 

continue to the second year of the bachelor were included. This implies that each 

included student obtained a grade on each first-year course (i.e., no missing values 

were allowed). Dutch students are graded on a scale of 1 to 10, with 5.5 serving as 

the cut-score for a passing grade. Compared to American grading scales, a grade of 8 

or higher corresponds to an ‘A’, a grade of 7 to a ‘B+’, and a grade of 6.5 to a ‘B’ 

(Nuffic, 2009). Following these selection criteria, the cohorts 2011 to 2015 were 

selected, including 1077 Psychology students in the study. Psychology students were 

required to score 6.0 on average (rounded from 5.95 on a 1-10-point scale) over eight 

courses with a minimum required grade of 4.0 on each individual course. Of these 

eight tests only two were allowed to be retaken once. Overall, one course combination 

existed in which the second-year course very clearly and explicitly built on first-year 

material for these Psychology cohorts, namely that of Statistics I in the first year and 

Statistics II in the second year.  

To assess the generalizability of our findings in the Psychology data, students’ grades 

from the Law bachelor were selected to replicate the analyses. If one would expect 

similarities in latent classes across study programs, these similarities are expected to 

be most pronounced in a study program that is most similar to the Psychology 

bachelor program. For this reason, law students were selected as the Law curriculum 
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has a similar organisation (i.e., eight consecutive courses that each have a similar 

number of course credits) and didactic approach (i.e., problem-based learning), is 

about similar in size, and employs an AD policy decision rule that is most similar to 

that of the Psychology bachelor. Following a similar exclusion procedure, the cohorts 

2012 to 2015 were selected, including 1120 Law students. Law students were 

required to score 6.0 on average (unrounded) over eight courses with a minimum 

required grade of 4.5 on each individual course. Similarly, two out of these eight tests 

were allowed to be retaken once. Within the Law curriculum several course 

combinations existed in which the second-year sequel course built on the first-year 

precursor course. The combination in which the first-year course was compensated 

most often was selected: Introduction to constitutional and administrative law in the 

first year and Constitutional law in the second year. See Table 1 and Table 2 for 

descriptive information of the sample per study program.  

Table 1: Descriptive Statistics Continuous Variables 

Study 
program Course  Year Variable Mean Median SD Min Max 
Psy  1 Yearly average1 6.77 6.60 0.65 5.95 9.25 

1 Yearly SD 0.89 0.88 0.24 0.28 1.67 
Statistics I 1 Course grade 6.40 6.40 1.28 4 10 
Statistics II 2 Course grade2 6.66 6.80 1.49 1 10 

Law  1 Yearly average1 6.82 6.75 0.61 6 9 
  1 Yearly SD 0.80 0.79 0.22 0 1.51 
 Intro cons and  

admin. law 
1 Course grade 6.54 7 1.03 5 10 

 Con. law 2 Course grade3 6.26 6 1.08 3 10 
1The average includes students who received a grade on all first-year courses. 2Note that second-year 
courses do not have the requirements in the AD policy as in the first year, so grades run from 1 to 10, 
NA = 77. 3NA = 192.  
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Statistical Analyses  

To assess the relation between the first-year precursor course and second-year sequel 

course grade across different groups of students a latent class (LC) regression model is 

performed. In a LC regression model, a single dependent variable exists that is 

assumed to be class dependent, which is the grade on a second-year sequel course. In 

this way, unobserved heterogeneity with respect to the distribution of second-year 

grades can be described by the latent classes. Different variables are included in the 

latent class regression analysis, namely predictors that influence the dependent 

variable and variables that influence the latent variable (referred to as covariates; 

Vermunt & Magidson, 2013a). This results in the LC regression model: 

(1) !"#$%&'()%*'()%+'()%,'(), %&./012 = ∑ 5(7|%&'(), %*'(), %+'(), %,'())!(#|7, %&./01):
;<& .  

In this model, !"#$7, %&./012 denotes the distribution of the grades on the second-year 

course, given a student his or her class membership x and predictor value	%&./01, which 

is the grade on the first-year precursor course. These second-year grades are allowed 

to be class dependent, where it is assumed that the probability of belonging to latent 

class x, of all K classes, depends on the values of the four covariates %&'(), %*'(), %+'(), 
and %,'(). In this study, the covariates include: the yearly average, variation in first-

year grades, the number of compensated courses in the first year (i.e., the number of 

course grades below the required minimum grade), and the number of resits in the 

first year. In this way, latent classes are formed that depend on the first-year grade 

patterns as well as the grade on a second-year sequel course.  

The LC regression was performed using Latent GOLD 5.0 (LG; Vermunt & Magidson, 

2013a, see Appendix A for the syntax used). The number of classes were determined 

using various information criteria (IC): the Akaike information criterion (AIC), the 

Akaike information criterion 3 (AIC3), and the Bayesian information criterion (BIC). 

Generally, models with more parameters provide a better absolute fit (McCutcheon, 

2002). However, each of these IC apply a different penalty on the log-likelihood 

statistic for the number of model parameters, sample size, or both (Nylund, 

Asparouhov, & Muthén, 2007). As a consequence, each IC might point towards 

different models as the relatively best fitting model (that for which the IC is lowest) 
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and thus the ICs might not be in agreement. For this reason, choosing the number of 

classes is one of the most difficult aspects of LC analyses and consequently a main 

research topic in LC analyses (Vermunt & Magidson, 2002). Therefore, in addition to 

the ICs, the classification error was reported, a proportion that indicates how well the 

latent classes are separated, that is, their distinctiveness (Vermunt & Magidson, 

2013b). Furthermore, in addition to these fit indices, the parsimoniousness of the 

model, class size, and class interpretability were also taken into account in 

determining the number of classes. The first two are important to ensure the selected 

model is generalizable to other students as well. The latter, the substantive 

consideration of the model, is very important as the latent classes selected should 

substantively add value to our evaluation of the relation between first- and second-

year grades.  

Note that the validation ICs and classification errors were used to prevent overfitting. 

Using the sample ICs to validate the model might lead to overoptimistic assessments 

as the same data is used for validation as well as model building (Skrondal & Rabe-

Hesketh, 2004). To remedy this overfitting, cross-validation was used in which a 10-

fold validation procedure was applied. In this procedure, students were randomly 

assigned to one of the ten validation subsamples. The model of interest was then 

estimated ten times for which each time one of the ten subsamples was excluded in 

the estimation (Vermunt & Magidson, 2015). In each of the 10 folds, the estimated 

model parameters were used to obtain the log-likelihood and prediction statistics for 

the subsample left out of the estimation procedure. Consequently, validation ICs and 

the validation classification error were obtained by summing the statistics over the ten 

subsamples. This validation procedure was run in LG simultaneously with estimating 

our models. Additionally, the interpretability of the classes and class sizes were also 

taken into account in determining the number of latent classes.  

Finally, after selecting the best fitting model, class assignments were used to describe 

the latent classes. Students were assigned to classes using the posterior probability to 

be in a latent class x given their response pattern y (i.e., their values on each of the 

four covariate variables). These posterior probabilities are obtained using the 



Chapter 3 Course Compensation in Higher Education 

 59 

 

 

 

 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

estimated parameters from the latent classes in the LC regression analysis (Vermunt & 

Magidson, 2002): 

 (4)5(> = 7|? = @) = A(B<;)A(?<@|B<;)
A(?<@) . 

Consequently, a modal classification method was used in which students were 

assigned to the class with the largest posterior membership probability (Vermunt & 

Magidson, 2013b).   

After this evaluation, the LC model was further validated by performing the same 

analysis on the Law data. In this way, the generalizability of our findings across study 

programs was assessed.   

Results 

LC Regression Analysis   

Several LC regression models were fitted to the Psychology data, with an increasing 

number of classes. The validation fit statistics and proportion of classification errors 

for the LC models are displayed in Table 3.  

Table 3: Validation Information Criteria  

and Classification Errors for Different LC Models for Psychology 

Model LL1 BIC AIC AIC(3) 
Number of  
Parameters 

Proportion of 
Classification  

Errors 
1- class  -1732.44 3485.61 3470.87 3473.87 3 0 
2- class  -1632.06 3340.16 3286.12 3297.12 11 0.12 
3- class  -1605.28 3341.91 3248.57 3267.57 19 0.2 
4- class  -1616.03 3418.71 3286.07 3313.07 27 0.25 
5- class  -1611.22 3464.39 3292.45 3327.45 35 0.22 
6- class  -1615.40 3528.05 3316.80 3359.80 43 0.22 

1LL = Log-Likelihood. Note that the Log-Likelihood slightly increases at the 4- and 6-class model, this is 
possible because of the holdout validation procedure used to estimate these values. 
 

First, the BIC values in Table 3 are lowest for the two-class model (and only slightly 

smaller than the BIC of the three-class model). The AIC and AIC(3) values are lowest 

for the three-class model. Consequently, the two- and three-class models will be 
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considered. As can be seen by the proportion of classification errors of the different 

models, which indicate how distinct the latent classes are, these are higher for the 

three-class model and models with more classes. These classifications are high 

because some students are not easily classified in one of the three classes within the 

LC model, which seems mostly true for students classified in class one and two, as the 

mean classification error was slightly smaller in the third class. Investigating the class 

sizes shows that in both models there is one relatively larger class and one or two 

smaller classes. Where there is one class that has a high first-year average and one 

that has a low first-year average in the two-class model, the three-class model makes 

an additional distinction resulting in two classes with low and average first-year 

averages, each having different average number of compensated and retaken tests. 

Because of this additional distinction, which adds valuable information for our LC 

regression analysis, the three-class model was selected.  

Table 4 shows the descriptive statistics for the covariate variables, the predictor 

variable, and the dependent variable for each class, as well as the class sizes. The 

parameter estimates of the covariates in the LC regression can be tested to see 

whether the influence of the covariate has a significant influence on the classes. The 

results for these tests showed that the yearly average, Wald statistic (2) = 29.16, p < 

.001, the yearly number of compensated courses, Wald statistic (2) = 8.30, p = .016, 

and the yearly number of retaken tests, Wald statistic (2) = 13.69, p < .001, were 

significantly different across the latent classes. As shown in Table 4, the first class can 

be interpreted as the students with an average low performance, a high average 

number of compensated courses and a high average number of retaken tests. About a 

quarter of the students are classified in class one. The second class, which is about 

half of the sample, are students with average performance levels, a moderate average 

number of compensated courses and a low number of retaken tests on average. 

Finally, the third class, about a fifth of the sample, consists of the high performing 

students, who have a low number of compensated courses on average and no retakes 

on average.  
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Table 4: Descriptive Statistics for the Three-Class Model for Psychology 

  Class 
Variable  1 2 3 
First-year average1 Average 6.20 6.69 7.61 
 Standard deviation 0.20 0.43 0.62 
 Max 7 8 9 
First-year standard deviation2 Average 0.88 0.91 0.86 

Standard deviation 0.22 0.23 0.25 
Number of compensations3 
 

Average 2.86 1.61 0.63 
Standard deviation 1.07 1.22 1.09 

Number of retaken tests4 Average 1.35 0.21 0.09 
Standard deviation 0.87 0.51 0.33 

First-year precursor course grade5 Average 5.64 6.35 7.32 
 Standard deviation 1.03 1.14 1.25 
 Max 9 9 10 
Second-year sequel course grade Average 4.98 6.68 8.47 
 Standard deviation 1.26 0.90 0.61 
 Min 1 4 7 
 Max 9 9 10 
Class size  0.23 0.56 0.21 
N6  234 563 208 

1The minimum first-year average is 6 for all classes. 2The range of the standard deviation in first-year 
grades is similar across classes: from 0 to 2.  3The number of compensated courses ranges between 0 
and 5 for each class. 4The number of retaken tests ranges between 0 and 2 for each class. 5The 
minimum grade is 4 across all classes. 6Sample size here is smaller as reported in the Results section as 
there were 72 missing values on the second-year grade.  

Subsequently, the class-dependent relations between the first-year precursor grades 

on the second-year sequel course grades were evaluated. Here, a Wald test indicated 

the relation of the predictor with the second-year sequel course grade to be 

significant: Wald statistic (3) = 135.09, p < .001. When the precursor course grade 

was high, the grade on the second-year sequel course was high as well. Yet, a Wald 

test comparing the parameters across classes was not significant, Wald statistic (2) = 

0.20, p = .90, indicating that the parameters did not significantly differ across classes. 

This implies that the positive relation that is found between the first-year precursor 

and second-year sequel grade did not vary statistically significant across different 

latent classes. Furthermore, the variances of the dependent variable, the second-year 
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sequel course grades, were significantly different across the three classes: Wald 

statistic (2) = 42.05, p < .001. This implies that the variability in second-year sequel 

course grades differs across the different latent classes, as shown by the standard 

deviation of the second-year precursor grade per class in the bottom half of Table 4. 

Because second-year grades may be more similar within a specific class, the 

parameters of the predictors might not differ across classes. Therefore, it is important 

to evaluate the average performance on the first-year precursor and second-year 

sequel course across classes.  

The bottom half of Table 4 shows these estimates and as shown by the variability of 

the second-year grades, variability is high in the first class, but smaller in the second 

and third class. Importantly, in the first class, the average grade on the first-year 

precursor grade was just sufficient at the Dutch cut-off score of 5.5 (5.6), yet below 

the required average grade of 6.0 in the first-year compensatory decision rule. For 

these students in the first class, the average grade on the second-year sequel course 

was even lower and on average insufficient (5.0). For the second class, the average 

grade on the first-year course was sufficient and above the required average of 6.0 

(6.4), while on average performance on the second-year sequel course was good 

(6.7). Finally, for the third class, which contains the high performing students, the 

average grade on the first-year course was high (7.3) and the average grade on the 

second-year course was very high (8.5). The ranges of the first-year and second-year 

grades show that while in every class (some) students compensated the first-year 

precursor course grade, the second-year sequel course was only compensated by 

(some) students from the first and second class.  

LC Regression Analysis Law Curriculum   

To assess whether the results generalize to other study programs, data from a Law 

bachelor program were analysed. A few differences exist in the analyses as the 

dependent variable, grades on a sequel second-year course, is treated as ordinal here 

as rounded grades are used in the Law program. The dependent variable therefore 

consists of only eight levels (grades ranging from 3 to 10). If the dependent variable 

would be considered continuous in this case, the resulting classes would be focused 

too much on these eight levels and not result in relevant and insightful latent classes. 
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As a consequence, second-year grades are treated as ordinal and the class dependent 

variances are not included in the model. Table 5 shows the validation information 

criteria and classification errors for the different LC models.  

Table 5: Validation Information Criteria and  

Classification Errors for Different LC Models for Law 

Model LL1 BIC AIC AIC(3) 
Number of  
Parameters 

Proportion of  
Classification 

Errors 
1- class  -1321.90 2698.47 2659.81 2667.81 8 0 
2- class  -1268.43 2680.35 2578.86 2599.86 21 0.11 
3- class  -1269.22 2770.77 2606.44 2640.44 34 0.23 
4- class  -1270.50 2862.15 2635.00 2682.00 47 0.17 
5- class  -1268.05 2946.08 2656.10 2716.10 60 0.23 
6- class  -1272.71 3044.23 2691.42 2764.42 73 0.19 

1LL = Log-Likelihood. Note that the Log-Likelihood slightly increases at the 4- and 6-class model, this is 
possible because of the holdout validation procedure used to estimate these values. 
 

The BIC, AIC, and AIC(3) values in Table 5 are all lowest for the two-class model 

indicating that this model fits the data best. Next, descriptive statistics for the 

covariate variables, the predictor variable, and the dependent variable for both 

classes, as well as the class sizes, are shown in Table 6. Tests to assess the influence of 

the covariates on the latent classes showed that the yearly average and the variation 

in first-year grades had a significant influence on the latent classes: Wald statistic (1) 

= 14.56, p < .001 and Wald statistic (1) = 8.76, p = .003, respectively. Students 

belonging to the first class had on average lower average grades than students in the 

first class. Also, variation in first-year grades was on average higher in the second 

class than in the first class. Furthermore, the grade on a first-year precursor course 

was a statistically significant predictor of grades on a second-year sequel course: Wald 

statistic (2) = 20.14, p < .001. Differences in the parameters across the two latent 

classes, however, were not statistically significant, Wald statistic (1) = 1.62, p = .200. 

As the three-class model fitted best in the Psychology data, it is interesting to evaluate 

the three-class model, which had the second-best fit, in the Law data as well. In this 

three-class model, only the first-year average was significantly different across the 

latent classes: Wald statistic (2) = 20.56, p < .001. Furthermore, the relation 
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between the first-year precursor course and second-year sequel course grades was 

significant: Wald statistic (3) = 17.29, p < .001. The differences in the positive 

relation across the three classes were not statistically significant: Wald statistic (2) = 

3.82, p = .150. These results are similar to those found in the three-class model of the 

Psychology data.  

Table 6: Descriptive Statistics for the Two-Class Model for Law 

  Class 
Variable  1 2 
First-year average1 Average 6.57 7.5 
 Standard deviation 0.41 0.52 
 Max 8 9 

First-year standard deviation2 
Average 0.78 0.87 
Standard deviation 0.20 0.22 

 Max 1 2 
Number of compensations3 
 

Average 0.91 0.23 
Standard deviation 0.93 0.49 

 Max 4 2 

Number of retaken tests4 
Average 0.79 0.25 
Standard deviation 0.74 0.50 

First-year precursor course grade5 Average 6.30 7.22 
 Standard deviation 0.90 1.07 
 Max 9 10 
Second-year sequel course grade Average 5.78 7.32 

Standard deviation 0.84 0.76 
Min 3 6 
Max 8 10 

Class size  0.69 0.31 
N6  286 642 

1The minimum first-year average is 6 for both classes. 2The minimum of the first-year standard 
deviation is 0 in both classes. 3The minimum number of compensations is 0 for both classes. 4The range 
of the number of retaken tests ranges between 0 and 2 for both classes. 5The minimum of the first-year 
precursor course grade is 5 in both classes. 6Sample size here is smaller as there were 192 students for 
who second year grade was missing.   
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Table 7: Descriptive Statistics for the Three-Class Model for Law 

  Class 
Variable  1 2 3 
First-year average1 Average 6.42 6.71 7.25 

Standard deviation 0.37 0.46 0.63 
Max 8 8 9 

First-year standard deviation2 Average 0.88 0.70 0.87 
Standard deviation 0.18 0.17 0.21 
Max 1 1 2 

Number of compensations3 
 

Average 1.5 0.43 0.45 
Standard deviation 0.93 0.63 0.72 

 Max 4 2 3 
Number of retaken tests4 Average 0.68 0.86 0.39 

Standard deviation 0.70 0.78 0.60 
First-year precursor course grade5 Average 6.04 6.54 6.96 

Standard deviation 0.95 0.84 1.12 
Max 9 9 10 

Second-year sequel course grade Average 5.2 5.86 7.26 
Standard deviation 0.61 0.61 0.70 
Min 4 3 6 
Max 6 7 10 

Class size  0.25 0.35 0.40 
N6  230 327 371 

1The minimum first-year average was 6 for all classes. 2The minimum first-year standard deviation was 
0 for all classes. 3The minimum number of compensations was 0 for all classes. 4The number of retaken 
tests ranges between 0 and 2 for each class. 5The minimum first-year precursor grade was 5 for all 
classes. 6Sample size here is smaller as there were 192 students for who second year grade was missing.     

 

Table 7 shows the descriptive statistics for the three-class model for Law. In 

comparison to the two-class model in which the low performing class had a first-year 

average of 6.4, the three-class model has two classes that have a first-year average 

around this value. One class has a lower average first-year average of 6.2, while the 

average first-year average in the second class is slightly higher at 6.7. These two 

classes show differences in their average first-year precursor course grade as the 

average is just above the required average of 6.0 in the first class and around 6.5 on 

average in the second-class. Interestingly, for the lowest performing class, the average 

grade on the second-year sequel course is below the Dutch pass-fail cut-score of 5.5 

(5.2) on average, while that of the second class is just below the required average 
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grade of 6.0 (5.9) on average. These results show that with three classes, a similar 

pattern is observed in the Law data as was in the Psychology data, where low 

performance on the first-year precursor course relates to an even lower performance 

on the sequel course on average for students whose performance in the first-year was 

low. 

Discussion 

In an academic dismissal (AD) policy, such as the binding study advice (BSA) in Dutch 

higher education, decisions are made about students’ performance through the 

combination of multiple tests. In making these decisions, higher institutions may 

choose to allow course compensation when combining courses. The aim of this study 

was to evaluate performance on a second-year sequel course that builds on material 

from a first-year precursor course when students were allowed to compensate courses 

in the first-year of their undergraduate curriculum. This study extends on prior 

research by allowing the relation between a first-year precursor course and a second-

year sequel course to be different for different latent groups of students. Data of an 

undergraduate Psychology program and a Law program were analysed using a latent 

class (LC) regression approach. These latent classes were expected to portray different 

unobserved study processes and choices with regard to students’ study resource 

allocation within a complex compensatory testing system. Specifically, the latent 

classes were formed based on similar patterns in first-year averages, variability in 

first-year grades, the number of compensated first-year courses, and the number of 

retakes in the first year.  

The best fitting latent class model for the Psychology data was a three-class model in 

which three groups of students could be distinguished in terms of their patterns in 

first-year averages, number of compensated courses, and number of retakes in the 

first year. Most students, a little over a half of the sample, belonged to the second 

class. Students in the second class performed well on average (6.7 on a 1- to 10-point 

scale), compensated about 1.6 courses (out of eight) on average (i.e., the number of 

grades below the required average grade of 6.0 in the complex compensatory decision 

rule), and on average did not need to retake many courses (about 0.2). Then, about a 

quarter of the sample belonged to the first class, which were the students with low 
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performance. These students on average had a first-year average just above the 

required average of 6.0 (6.2), had the highest number of compensated courses (2.9), 

and the highest number of retakes (1.4) on average. Finally, about a fifth of the 

sample belonged to the third class which were the best performing students. These 

students had a very high first-year average (7.6), a low number of compensated 

courses (0.6), and almost no retakes on average (0.1). For each of the classes, the 

relation between the average first-year grade, and the number of compensations or 

retakes is as expected, the higher the first-year average, the lower the number of 

compensated courses or retakes. Overall, these three latent classes distinguish 

students with low, moderate, and high performance.  

Subsequently, testing the relation between the first-year precursor course grades and 

the second-year sequel course grades showed that differences in this relation were not 

statistically significant across classes. However, as this result is possibly due to the 

smaller variation in the dependent variable for the second and third class, evaluating 

the average grades on the first-year precursor course and the second-year sequel 

course across the different classes provided more insight. The average grade on the 

precursor course for the low performing students in the first class was below the 

required 6.0 average and just sufficient (5.6; the cut-score in Dutch education is at 

5.5), for students from the second class the average grade was sufficient (6.4), and for 

the high performing students from the third class the average grade was high (7.3). 

The ranges of the precursor course across classes showed that in each class some 

students compensated the precursor course (i.e., scored below 6.0). The average 

grade on the second-year sequel course was insufficient (5.0) for the lowest 

performing students from the first class, good (6.7) for students from the second class, 

and very high (8.5) for the high performing students from class three. Here, the range 

of the sequel course grade showed that some students compensated the second-year 

sequel course in the first and second class, while no student needed to do so in the 

third class (i.e., the high performing students).   

Overall, the positive relation that was found between the grades on the first-year 

precursor course and second-year sequel course is similar to findings from previous 

studies (e.g., Arnold, 2011). To assess the generalizability of the results, the model 
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was validated by replicating the analyses using data from a Law program. Here, a 

two-class model fitted best. In this model, the largest class (about two thirds) 

contained students with a moderate first-year average and the smaller class included 

students with a high first-year average and slightly more variation in their first-year 

grades. Similar to Psychology, differences in the relation between the precursor course 

grade and sequel course grade were not statistically significant, yet the average grade 

on the precursor course in the first class was moderate while performance on the 

sequel course on average was below the required average grade of 6.0 (5.8). For 

comparison purposes, the three-class model, the second-best fitting model in the Law 

data, was also evaluated. Here, a distinction was found similar to the Psychology data 

where the first class had a moderate first-year average, yet an average grade on the 

first-year precursor course that was just at the required average grade of 6.0. For this 

group, average performance on the second-year sequel course (5.2) was not only 

below the required average grade of 6.0 (as found in the two-class model results) but 

also below the Dutch pass-fail cut-score of 5.5. These results show that although the 

results in the Law data are not as extreme as in the Psychology data, that is, the 

average performance on the precursor and sequel course are slightly higher in the 

Law data, similar patterns are found in both datasets. The differences across the study 

programs might be due to differences in the course combinations, such that the 

second-year sequel course in the Psychology curriculum more extensively builds on 

the precursor course than in the studied course combination in the Law program. 

Also, grades on the Psychology courses might be lower because the courses might be 

considered more difficult within the curriculum than the courses evaluated in the Law 

program.  

In this study, performance on a second-year sequel course was of interest because it 

explicitly builds on materials from a precursor course. Performance on these courses 

gives an indication of the consequences of allowing compensation in a first-year 

curriculum in terms of knowledge accumulation. The results from our latent class 

regression show that for the lowest performing class, which across study programs 

was about a quarter of the sample, performance on the second-year sequel course is 

on average a failing grade. These results suggest that allowing course compensation 
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might result in low performance on a sequel course when students’ performance in 

the first-year is low as well (for Psychology students characterized by a low first-year 

average and a high number of compensated first-year courses and retakes). This 

seems to suggest that allowing compensation might on average have negative 

consequences for the students in the class with overall low first-year performance, 

such that performance on later courses is not sufficient. However, the results also 

show that the precursor course is compensated by students in each of the three 

classes, yet performance on the sequel course on average is higher (i.e., not 

insufficient) in the second and third class. This seems to suggest that these students 

(who compensated the precursor course yet had higher first-year performance than 

students in class one) are able to accumulate knowledge and skills on other courses 

that may transfer to the sequel course, resulting in sufficient performance.   

Overall, the LC regression showed the data to be summarized best by three distinct 

latent classes. Whereas a positive relation between the precursor and sequel course 

was observed for all classes, this is the best fitting relation on average and does not 

imply this relation occurs for all students in the class. As policy makers might want to 

obtain guidelines for allowing compensation or not, students’ performance in the low 

performing class in the Psychology dataset was further explored to see if patterns 

could be identified for which performance on the second-year course is more likely to 

be low. The exploration shows that the second-year sequel course grade in the first 

class is on average (i.e., the lowest performing students) lower when students in this 

class did not retake a test (26.5% of class 1, they had an average of 4.45 with SD of 

0.88) or just had one test retaken (12% of class 1, they had an average of 4.73 with 

SD of 0.99) compared to those who had two retaken tests (61.5% of class 1, they had 

an average of 5.26 with SD of 1.37). Taken together, these patterns suggest that 

students who accumulated knowledge by retaking first-year tests or by having 

moderate to high performance on other first-year courses, might have gained 

additional knowledge that helped them perform well on the sequel course (even if 

performance on the first-year precursor course was low). Note that this elaboration is 

only meant to explore trends, in the LC regression only one group of low performing 
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students was identified and further trends should therefore be interpreted with 

caution, as these might, for example, not be large enough to be relevant.  

Furthermore, these results suggest that first-year course compensation does not 

necessarily result in lower performance on a second-year sequel course. However, for 

the low performing group of students, compensation showed to have negative 

influences such that performance on a second-year sequel course was more likely to 

be insufficient. In observing this, it is important to keep in mind that this study only 

evaluated performance of students who were allowed to compensate courses in their 

first-year curriculum. Especially, given the debate on whether to allow compensation 

or to use a traditional conjunctive decision rule in the first-year of the bachelor 

program, the discussion of our results is consequently limited to students who were 

allowed to compensate and retake a maximum of two tests. That compensation might 

have negative influences for a group of students does not imply that students in a 

conjunctive system might not have low performance on a sequel course when their 

overall performance is low and around the cut-score as well. However, even if these 

relations between first-year precursor course grades and second-year sequel course 

grades are similar across testing systems, the group for which performance might be 

low on sequel courses would be larger when the minimum required grade on a course 

is lower (as is often the case in compensatory systems). Furthermore, the results from 

our study are limited as empirical data is used, including higher education tests. 

Although these tests meet a specific quality level, tests in higher education are not 

always able to discriminate highly among students (see e.g., Brown & Abdulnabi, 

2017; DiBattista & Kurzawa, 2011) and consequently our results are limited by the 

quality of the tests that were used. 

In this study, a first exploration of differences in patterns in students’ study results 

was done. These patterns might be indicative of differences in study processes. As 

proponents of course compensation in an AD policy believe compensation to positively 

influence students’ study processes, it would be interesting for future studies to focus 

explicitly on these study processes. A good starting point for studying these processes 

could be an evaluation of how students allocate their study time. Here, experienced 

based sampling methods (also known as ecological momentary assessment) might 
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provide a convenient method for measuring study time allocation. Ideally, these 

choices in study time allocation would be evaluated across different testing programs 

(i.e., compensatory or conjunctive) and in response to different curriculum aspects 

such as assessments and retakes. Also, it would be interesting to expand the model 

fitted in this study to different study programs to assess its generalizability, as well as 

to future students to assess its predictive ability. This latter aspect would be 

interesting to policy makers as one would like to identify students who will likely have 

a low performance on later courses in time. Based on our findings, which are limited 

only to our compensatory decision rule, it seems that students whose first-year 

performance is low and consequently compensate and/or fail the precursor course in 

the first-year have a higher likelihood to have low performance on the sequel course 

as well. Consequently, these students might require additional attention within a 

compensatory decision rule in the first-year of a curriculum to prevent gaps in 

knowledge, late drop-out, or increased time-to-degree.   
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Appendix A. Latent GOLD syntax 

options 
   maxthreads=all; 
      //this option ensures that all computer cores are  
   employed in the model computations.  
   algorithm  
      tolerance=1e-008 emtolerance=0.01 emiterations=500 
nriterations=100; 

//latentGOLD uses both the expectation maximization (EM)    
 and the Newton-Raphson (NR) algorithm, alternating the  
 two to obtain the optimal model parameter estimates. 
 First the EM is used up till the maximum number of EM  
 iterations (emiterations) or the EM   convergence  
 criterion (emtolerance) is reached. Then, NR iterations  
 are used till the maximum number of NR iterations        
 (nriterations) or convergence tolerance) is reached.Here,  
 we doubled the default values to ensure convergence to a  
 global optimum.  

   startvalues 
      seed=0 sets=16 tolerance=1e-005 iterations=100; 

//latentGOLD generates random start values automatically, 
thereby generating multiple sets to avoid convergence to local 
minima. Iterations here were doubled compared to the default of 
50.  

   bayes 
      categorical=1 variances=1 latent=1 poisson=1; 
   montecarlo 
      seed=0 sets=0 replicates=500 tolerance=1e-008; 
   quadrature  nodes=10; 
   missing  excludeall; 
   output       
      parameters=effect  betaopts=wl standarderrors profile  
      probmeans=posterior 
      bivariateresiduals estimatedvalues=regression 
      validationLL; 

//validationLL ensures that a validation procedure is performed 
in which the sample is randomly split into ten folds. Through 
each of the ten runs, one of the ten subsamples is the holdout 
set and therefore not included in the model estimation part. 
The holdout set is consequently used to obtain the output 
statistics using the parameter estimates from the model 
estimation on the other 9 subsamples. Finally, the output 
includes the validation statistics which is the sum for these 
statistics over all ten folds. 

   outfile “class3psy.sav” classification 
 keep STUDENT_VOLGNR; 

//this option specifies a file as output that has all posterior 
prediction probabilities for each cluster per row. In this way 
we obtain the classification of students to the cluster for 
which this posterior predictive probability is highest.  

variables 
dependent JR2_GELDEND_RESULTAAT continuous; 
independent yearly_average numeric, yearly_stddev 
numeric,yearly_compensated numeric, yearly_herkansing numeric, 
JR1_GELDEND_RESULTAAT numeric;  

   latent 
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 Class nominal 3; 
equations 

Class <- 1 + yearly_average + yearly_stddev + yearly_compensated 
+    
         yearly_herkansing; 

//This equation specifies the variables used to define the 
latent classes. 

   JR2_GELDEND_RESULTAAT <- 1|Class + JR1_GELDEND_RESULTAAT|Class; 
//This equation specifies the regression analysis, where the 
influence of first-year grades on second-year grades is allowed 
to vary across classes.  

   JR2_GELDEND_RESULTAAT | Class;  
//This equation allows the error variances for the dependent 
variable to vary across classes. 
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Correcting for Guessing in Estimating True 

Scores in Higher Education Tests 
 

 

 

 

 

 

 

 

 

 

This chapter is under revision as: 

Yocarini, I. E., Bouwmeester, S., & Jongerling, J. (submitted). Correcting for guessing in 

estimating true scores in higher education tests.  
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Abstract 

In small-scale multiple choice (MC) tests, as used in higher education, a correction for 

guessing is often applied when calculating test scores. A classical method adjusts the 

number of correct items by subtracting a proportion of items examinees answered 

correctly assuming they would have purely guessed (i.e., formula scoring). 

Problematically, the guessing probability may not be accurate as students may have 

partial knowledge. In this simulation study the performance of the classical and 

alternative correction methods were evaluated. Results from two studies showed that 

the estimation of true scores might be improved by using the extended classical 

correction method proposed by Calandra (1941) and Hamilton (1950) or by using a 

method, such as our proposed weighted item difficulty correction, that incorporates 

item characteristics in the true score estimation. 

Keywords: Guessing correction, formula scoring, higher education, MC items, true 

score estimation. 
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Introduction 

In higher education classrooms, multiple choice (MC) tests are often small-scaled, 

designed in-house for each course. The goal of these tests is to estimate students’ true 

scores as accurately as possible. Whether true scores are estimated correctly depends 

on various factors; for example, it depends on the number of items in the test, the 

quality of the items, the number of different factors assessed in the test, the 

instruction of the teacher, the number of different strategies employed by test-takers, 

and whether and how the test scores are corrected for guessing. In this study we 

evaluate the accuracy of estimated true scores for different methods to correct for 

guessing. We hereby focus on MC test in which incorrect answers are not directly 

penalized, meaning that no points are deducted for filling out the wrong answer. In 

this context, test takers’ optimal and most common strategy is to guess instead of omit 

answers. Here, guessing is defined as the probability of answering an item correct 

when a student has an infinite negative ability for this item.  

Psychometrically, guessing poses a problem as it interferes with estimating true scores 

using observed item responses on MC items. The problem is that it remains a question 

whether correct answers are due to knowledge or lucky guesses (Bar-Hillel, Budescu, 

& Attali, 2005; Budescu & Bar-Hillel, 1993). Without correcting for guessing, using 

the so-called number right scoring rule, the number of correct answers are simply 

summed to obtain a total test score. Under this scoring rule, guesses that result in 

correct answers will always lead to overestimates of the true scores. In order to make 

this estimation more accurate, some kind of correction seems appropriate.  

Whether MC test scores should be corrected for guessing or not has been a topic for 

debate since the introduction of correction methods (e.g., Angoff & Schrader, 1984; 

Lord, 1975). Recently, there has been a shift from using a classical correction for 

guessing method, such as formula scoring, to a number right scoring method (i.e., not 

correcting for guessing), as was done for the new Scholastic Aptitude Test (SAT) by 

the College Board (Guo, 2017). However, the context of large-scale standardized tests 

such as the SAT is different from the small-scale tests used in higher education and 

consequently different challenges exist in estimating students’ true scores here. In 

large-scale standardized tests item properties are often known, making it possible to 
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obtain more accurate true score estimates. For higher education tests, the samples are 

mostly too small and tests are often designed for individual courses by different 

academics throughout cohorts, making it harder to obtain information on the 

functioning of items to use in estimating students’ true scores.  

The higher education context also differs from the context of large-scale tests such as 

the SAT in terms of the guessing process. Guo (2017) evaluated both number right 

and formula scoring in the context of large-scale standardized tests and denoted 

omitted answers are often observed under formula scoring. While this might be true 

for large-scale standardized tests, omitted answers are rarely observed in higher 

education course tests where a correction for guessing is applied. This difference in 

occurrence of omitted answers might be caused by different factors. The stakes are 

often high for tests such as the SAT as these are used in the college admittance 

process. While for individual courses in a higher education curriculum the stakes are 

generally low. The scope of a higher education course might be more confined than a 

large-scale standardized test, which might result in less random guesses and relatively 

more partial knowledge in higher education tests. When we compare the optimal 

strategy for test-takers, the optimal strategy under number right scoring is to guess 

instead of omitting answers, as omissions are not penalized. Under formula scoring 

however, the optimal strategy would be to omit answers only when they would be 

pure guesses. For all other guesses, the certainty of guessing would be higher than the 

penalty given for an omission (Budescu & Bar-Hillel, 1993). So, if students in higher 

education more often possess partial knowledge and have fewer pure guesses, their 

optimal strategy might be not to omit answers.  

Consequently, rarely observing omissions in higher education MC test responses, the 

question remains how to correct for guessing. Here, it remains a problem that the 

underlying process of guessing is unobserved and may differ for individuals as they 

may differ in risk aversion or calibration accuracy (Budescu & Bar-Hillel, 2005; 

Espinosa & Gardeazabal, 2010). Facing these individual differences and latent 

processes, it is hard to decide which guessing method leads to the most accurate true 

score estimate. Especially, as different correction methods differ in the (implicit) 

assumptions that are made about the underlying guessing process. Overall, the goal of 
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this simulation study is to evaluate the accuracy of estimated true scores using 

different correction for guessing methods in non-standardized small-scaled higher 

education MC tests where the predominant strategy of students is to guess instead of 

omit answers. This study hereby provides a review of the different correction for 

guessing methods available and fills a gap in the literature by focusing on guessing 

methods in higher education classroom assessment as opposed to large-scale testing.  

Study 1 

Correction for Guessing Methods 

Classical correction method. Classically, subtracting a score from the number correct 

score is used to correct for guessing. The first known publication to suggest a method 

to correct for guessing in classroom testing was written by McCall (1920). Opposed to 

using the number of correct responses as an estimate of the true knowledge score 

(here referred to as the number right scoring or no correction method), McCall (1920) 

proposed a correction method (widely known as an example of formula scoring; Lord, 

1963) in which the number of correct responses, R, is adjusted for guessing using  

(1) ! = # −	&'(
)'*

. 

Where S is the adjusted number correct score, k is the total number of items and a 

refers to the number of answer alternatives. Consequently, estimated true knowledge 

proportion, +,-. /, for a number correct # is obtained using:  

(2) +,-. / = !/,. 

The implicit assumption about the latent guessing process here is that examinees 

either know the answer to an item or else guess among the alternative response 

options at random (Lord, 1975). Consequently, it is assumed that all incorrect 

responses are guessed wrong and correct responses are obtained either by knowledge 

or guessing (k – R; Diamond & Evans, 1973) with a probability of (a-1)/a to choose 

an incorrect option and 1/a to choose the correct option.  

Psychometrically, there are at least two important problems in the estimation of the 

test-taker’s true score. First, responses that were not guessed are nevertheless 
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corrected for it, lowering the total correct score. This results in an adjusted score that 

is an underestimation of the true knowledge score. Second, when an examinee guesses 

he or she will not consider all answer options most of the time because one or more 

options can be ruled out by some partial knowledge. This might result in an adjusted 

score that is an overestimation of the true knowledge score.  

Extended classical correction method. Another issue with the classical correction 

method is that the adjusted number correct score S is not a real estimate of the true 

knowledge score as S has no error. That is, although the relation between R and S can 

be expressed as a linear model ! = 	12 + 1*, with 12 = 	
'&

)'*
 and 1* = 	

)

)'*
, 12 and 1* are 

not estimated parameter values that vary per sample but fixed values defined by 

constants k and a. Calandra (1941) and Hamilton (1950, eq. 15) transformed the 

classical correction into a true linear regression equation by incorporating sample 

properties. They used the mean number correct score, #4, and variance of the number 

correct score 5(6 to derive the estimated adjusted number correct score !7: 

(3) !7 = 	 (
4(&'(4)'&:!"

()'*):!
" +

;):!
"'&'(4<(
()'*):!

"  (Hamilton, 1950). 

By substituting !7 (Equation 3) for S in Equation 2, estimated true knowledge 

proportions are derived.  

Beta binomial correction method. Although an improvement, this extended classical 

correction method does not solve the two issues that lead to under- and 

overestimation of true scores due to correcting of answers that were not guessed and 

answers where partial knowledge was used. Moreover, it might be suboptimal as it 

only uses the sample mean and variance of the number correct scores in the sample to 

estimate !7. A scoring formula in which the entire distribution of the number correct 

score is taken into account might lead to a better estimate of the true knowledge 

score. This brings us to the extensively discussed (Lord, 1959; Morrison & Brockway, 

1979) mixed binomial model as a method to obtain accurate knowledge estimates. 

The mixed binomial model is based on the binomial model in which the probability of 

a certain number correct score R in a test of k items is defined as:  

(4) 1(#, ,, -) = >,
#
?-((1 − -)&'(. 



Chapter 4 Correcting HE MC Tests for Guessing 

 81 

 

 

 

 

 

 

4 

 

 

 

 

 

 

 

 

 

 

 

Where p is a fixed probability of a correct response to an item j, j = 1,…,k. Note that 

in this binomial distribution it is assumed that examinees have the same true 

knowledge score and all items have the same difficulty level (Keats & Lord, 1962). To 

allow for differences in individuals’ ability level, the mixed binomial distribution was 

proposed (Lord, 1959). See Appendix A for an elaborate description of the mixed 

binomial distribution method and the calculation of the true knowledge proportions.  

Extended beta binomial correction method with three parameters. Because the 

beta binomial model takes the distributional properties of the number correct score R 

into account, it may be an improvement over the classical and extended classical 

correction for guessing method. Nevertheless, some problems remain. First, in the 

beta binomial model it is implicitly assumed that all items are equally difficult. For 

many tests this is not only unrealistic to assume, it even would be undesirable to have 

a test with equally difficult items. Instead, a test developer wishes to vary the item 

difficulty level to optimally discriminate between students among the entire range of 

true knowledge levels. Secondly, the probability p covers the full 0 < p < 1 range in 

the mixed binomial distribution. For multiple choice items, however, the lower bound 

probability, A2, might be larger as guessing gives a probability of at least 1/a for a 

correct answer (Morrison & Brockway, 1979). As Carlin and Rubin (1991) mention, 

this is evident in observed score distributions for MC tests which often exhibit a lack 

of low scores. Lord (1965) proposed a modified beta binomial distribution with range 

0	 ≤ D	 < - < 1 ≤ 1 to solve this issue.  

Extended beta binomial correction method two parameters. Morrison and 

Brockway (1979) derived at the same extended beta binomial method as Carlin and 

Rubin (1991), see Equation 17 in Appendix A. Except, Morrison and Brockway (1979) 

their model is somewhat simpler as A2 is not estimated but fixed at 1/a. The model is 

simpler, however, a being fixed might give problems similar to those mentioned for 

the classical correction method where the guessing probability is also fixed at 1/a.  

Three-parameter logistic model (3PLM) correction method. Although taking into 

account more properties of the distribution of knowledge scores than the correction 

methods discussed so far, the extended beta binomial model does not provide a 

solution to the unrealistic assumption that all items are equally difficult. Item 
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response theory (IRT) models take individual item parameters into account and may 

therefore be more adequate in estimating the true knowledge proportion. Whereas 

IRT models are generally applied to large-scale standardized tests, sample sizes in 

higher education tests are often too small to apply IRT. However, we are still 

interested to see how the performance of an IRT correction for guessing compares to 

other methods. As explained, each method makes assumptions about the underlying 

guessing process. Given that this process is unobserved it is unsure which method 

results in the most accurate true scores on average, even if the context in which the 

method is applied is suboptimal. In the three-parameter logistic model (3PLM; 

Birnbaum, 1968) a separate parameter is estimated not only for each item’s difficulty, 

FG but also for the item’s discriminability, ∝G, and the lower bound probability, A2G. 

Moreover, individuals may vary with respect to their true knowledge level, indicated 

by a latent trait level I/ which, unlike the binomial mixture models, may vary between 

individuals with the same number correct score R. The 3PLM model is defined as: 

(5) J >KG = 1LIM/, F7G, ∝NG, AO2#? = 	AO2# + (1 − AO2#)
PQR	(∝N#;S$T 'UT#<)

*VPQR	(∝N#;S$T 'UT#<)
. 

See Equation 18 in Appendix A for an overview of how IM/ (latent trait scores) are 

consequently calculated using these probabilities. 

To summarize the developments in the correction for guessing methods, different 

types of methods can be distinguished. Overall, the methods differ with respect to the 

extent in which they take the sample characteristics into account. Neither the no 

correction, nor the classical correction method takes any sample characteristic into 

account in estimating true knowledge scores from item responses. The extended 

classical correction method takes into account the mean and variance of the sample. 

The methods using the beta binomial distribution take the distribution of total scores R 

into account by assuming all items have a similar difficulty and the extended beta 

binomial methods also take into account differences in true knowledge. Finally, the 

3PLM integrates variability in students’ ability and in items.  
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Method 

A simulation study was performed using R (R core Team, 2016) to evaluate the 

different correction methods. The aim of our study is to evaluate the different 

correction methods in estimating accurate true scores in a range of realistic higher 

education test settings. In practice however, we only have the observed responses as 

the true scores are unknown by definition. Therefore, in order to evaluate the 

correction methods we performed a simulation study in which true scores were 

simulated throughout a range of realistic higher education settings. In order to define 

this range we used estimates from observational data from education settings, such as, 

for example, sample size, the number of items, and item information (see the next 

paragraph for more detailed information on the parameters that were varied). 

Additionally, many factors might influence the accuracy of the correction methods, by 

performing a simulation study we were able to evaluate the influence of the factors in 

isolation. 

First, for each student i, i = 1, …, n, a true knowledge score W/, was simulated from a 

truncated normal distribution X~(Z[, \[). Unlike a uniform distribution in which each 

true knowledge score would have an equal probability of occurring, a normal 

distribution was assumed as most students have an average true knowledge score and 

probabilities to score higher or lower decline. Here, Z[ refers to the average true 

knowledge score of the sample and \[ indicates the variation in the true knowledge 

score across students. The true knowledge scores were sampled from a truncated 

distribution with W]/^ = −3 and W])` = 3 as these were subsequently transformed to 

a true knowledge proportion (tkp) which is bounded between 0 and 1. Transformation 

was done using the linear equation: 

(6) +,-/ = 12 + 1*W/. 

Here, 12	was fixed at .5, assuming that an average student has a general knowledge 

proportion of .5 when W̅ = 0 and 1* =
2.c

d
= 0.167 to obtain a tkp between 0 and 1. 

Next, item responses were simulated for each student, based on their simulated true 

knowledge score. To do so, the 3PLM (Equation 5) was applied to calculate the 

probability to answer an item correct for each item for each student. Using the ltm 
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package in R (Rizopoulos, 2006) these were subsequently converted into correct (KG =

1) and incorrect (KG = 0) item scores using the probability to answer an item correct 

of .5 as the cut-score.  

Simulated conditions. To evaluate the bias of the correction methods within 

different realistic higher educational contexts, true knowledge scores were simulated 

under different conditions. Datasets were simulated varying different variables: the 

average true knowledge score, the variance in the true knowledge score, the sample 

size, the number of items, the number of item response options, the average difficulty 

of the items, and the average discriminability of the items. As shown in Table 1, the 

manipulated variables can be divided into those related to the sample and those 

related to the test.  

Table 1: Overview Simulated Variables and Values 

 

 Variable Notation Value(s) 
Sample Properties Average true knowledge score  Z[ -1, 0, 1 
 Variance true knowledge score \[ 1, 1.8 
 Size sample g 20, 200, 400 
Test Properties Number of items , 20, 40, 50, 60 
 Number of item response options D 2, 3, 4 
 Average item difficulty ZU -.8, 0, .8 
 Variability in item difficulty \U .5 
 Average item discriminability Zh .3, .5 
 Variability in item discriminability \h .3 
 Average guessing probability Zi .25 
 Variability in guessing probability \i .05 
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Table 2: Settings for Simulated Datasets 

Setting Z[ \[ g , D ZU Zh 
1 0 1 400 40 4 0 .5 
2 -1 1 400 40 4 0 .5 
3 1 1 400 40 4 0 .5 
4 0 1.8 400 40 4 0 .5 
5 0 1 200 40 4 0 .5 
6 0 1 20 40 4 0 .5 
7 0 1 400 20 2 0 .5 
8 0 1 400 20 3 0 .5 
9 0 1 400 20 4 0 .5 
10 0 1 400 50 3 0 .5 
11 0 1 400 60 2 0 .5 
12 0 1 400 60 3 0 .5 
13 0 1 400 60 4 0 .5 
14 0 1 400 40 4 .8 .5 
15 0 1 400 40 4 -.8 .5 
16 0 1 400 40 4 0 .3 

 

Overall 16 settings (see Table 2) were chosen in which datasets were simulated. 

These specific values and combinations of values were chosen for their relevance to 

practical settings. In European higher education popular study programs have about 

400 students while more specialized study programs might only have 20 students in a 

cohort. Furthermore, most MC tests consist of 40 items with each having four item 

response categories. If more items are included in a test, they generally have fewer 

item response categories. The item difficulty and item discriminability values were 

based on data of first year psychology students. As most tests consist of four item 

response categories the average guessing probability was set to .25 with a standard 

deviation of .05 throughout items. In this way, the guessing probability could be lower 

for items where, for example, students choose the distractor answer options and the 

guessing probability could be higher for items where students, for example, only 

guessed among three answer options due to partial knowledge. For each scenario 

1000 datasets were simulated. The R code is available upon request. 
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Outcome measure. Finally, to evaluate the accuracy of each correction method, two 

measures were used to compare the estimated true knowledge proportion, +,-j. , to the 

true knowledge proportions, +,-/. The mean sum of squared error (MSE) was 

calculated using: 

(7) k!l = m∑ (o&p$q'o&p%)"%&'
^

. 

The MSE is informative as it shows the absolute differences between the estimated 

and true knowledge scores. However, the MSE does not give information about the 

ranking of the estimated true scores. Therefore, the correlation between the estimated 

and true knowledge scores was calculated as a second measure of bias. Notably, the 

correlation is only interesting to compare the no correction and the classical 

correction methods on one hand and the remaining methods on the other hand, as 

each of these former methods are a linear transformation of one another.  

Results  

To keep a clear overview, the results of the comparison of different methods are 

discussed separately for each manipulated variable. To handle the large number of 

results only main effects are discussed. 

True knowledge scores. Table 3 shows the results for varying levels of the average 

true knowledge scores in a sample for seven different correction methods. In an 

average cohort bias was lowest for the extended classical correction method, followed 

by the classical correction method. In a cohort where the average true knowledge 

score was low, the extended classical correction had the lowest bias. In a cohort 

where the average true knowledge score was high, no correction clearly resulted in 

the lowest bias. The correlation values in Table 3 show that overall, independent of 

the cohort’s average true knowledge, no correction and the classical correction 

methods resulted in the highest correlation.  
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In addition, the variability of the true knowledge score distribution in a cohort was 

varied. As shown in Table 4, the mean bias results show that in both an average and 

variable cohort the extended classical correction method performed best. The same 

holds for the correlation results, independent of the variability in true knowledge 

scores, no correction and the classical methods were best. Notably, the correlations 

were less stable in a variable cohort than in a less variable cohort. 

Table 4: Effect of Changes in Variability in True Knowledge Scores 

     Bias     Correlation   
 

Correction Method 
Average  
Cohort 

Variable 
Cohort 

Average  
Cohort 

Variable 
Cohort 

1 None .1677 (.0029) .1846 (.0330) .7362 (.0385) .5579 (.0683) 
2 Classical  .1147 (.0015) .1396 (.0024) .7363 (.0385) .5579 (.0683) 
3 Extended classical  .1118 (.0015) .1366 (.0021) .7362 (.0385) .5579 (.0683) 
4 Beta Binomial  .2078 (.0040) .1645 (.0038) .7272 (.0390) .8370 (.0269) 
5 Extended BB1 3 par.2 .3369 (.0958) .3199 (.1102) .6792 (.1208) .7924 (.1139) 
6 Extended BB 2 par. .2898 (.0072) .2457 (.0076) .7003 (.0400) .8132 (.0289) 
7 3PL3 model  .1550 (.0220) .1595 (.0297) .6186 (.4018) .7687 (.3639) 
1 Rasch model .1516 (.0093) .1767 (.0099) .7395  (.0376) .8365 (.0259) 
2 Weighted item  

difficulty  
.1616 (.0029) .1870 (.0040) .7314 (.0388) .8323 (.0276) 

Note: Standard deviations over simulations given between brackets. 1BB = Beta Binomial. 2 par. = 
parameters. 33PL = three parameter logistic. 

 
Item Difficulty. As shown in Table 5, varying the item difficulty results influenced the 

most optimal correction method. For a test with more difficult items the mean bias 

was lowest when no correction for guessing was applied. Alternatively, for a test with 

less difficult items the extended classical correction method performed best. The 

correlation results show that no correction and the classical correction methods 

resulted in the highest correlation.   
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Item Discrimination. The results of varying the item discrimination levels are shown 

in Table 6. The mean bias results show that the extended classical correction method 

worked best, independent of the item discrimination level. Similarly, no correction 

and the classical correction methods resulted in the highest correlation. Overall, the 

correlation was considerably lower when item discrimination was lower, indicating 

the need for well discriminating items when estimating true scores. Also, the 

correlations in a cohort with lower item discrimination levels were less stable than 

that of an average cohort.  

Table 6: Effect of Changes in Item Discrimination 

     Bias     Correlation   
 

Correction Method 
Average 
 Cohort 

Lower Item  
Discrimination 

.3 
Average  
Cohort 

Lower Item  
Discrimination 

.3 
1 None .1677 (.0029) .1846 (.0330) .7362 (.0385) .5579 (.0683) 
2 Classical  .1147 (.0015) .1396 (.0024) .7363 (.0385) .5579 (.0683) 
3 Extended classical  .1118 (.0015) .1366 (.0021) .7362 (.0385) .5579 (.0683) 
4 Binomial  .2078 (.0040) .2466 (.0151) .7272 (.0390) .5507 (.0670) 
5 Extended BB1 3 par.2 .3369 (.0958) .3597 (.0910) .6792 (.1208) .5038 (.1185) 
6 Extended BB 2 par. .2898 (.0072) .3317 (.0141) .7003 (.0400) .5211 (.0675) 
7 3PL3 model  .1550 (.0220) .2032 (.0280) .6186 (.4018) .3128 (.4910) 
1 Rasch model .1516 (.0093) .1792 (.0104) .7395  (.0376) .5575 (.0688) 
2 Weighted item  

difficulty  
.1616 (.0029) .1806 (.0033) .7314 (.0388) .5542 (.0688) 

Note: Standard deviations over simulations given between brackets. 1BB = Beta Binomial. 2 par. = 
parameters. 33PL = three parameter logistic. 

 

Number of items. Table 7 shows the results for varying the number of items and 

number of response categories for the different correction methods. As the results 

show these variables influenced the optimal method. Where the extended classical 

correction method was best for tests with 40 items that had four response categories, 

the classical correction was best for tests of 50 items with 3 response categories. When 

a test included 60 items the 3PLM model resulted in the lowest bias. The 3PLM, 

however, produced relatively unstable results compared to no correction, which was 

the second-best method. For tests with 20 items no correction for guessing was best, 

followed by the 3PLM model. The correlation results were more consistent. Overall, 

no correction and the classical correction methods resulted in the highest correlation. 
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Notably, the correlation became smaller as a test only included 20 items having three 

of four response categories. 

Number of students. The number of students in a cohort does not seem to influence 

which method is optimal as shown in Table 8. Overall, the extended classic correction 

resulted in the lowest bias. Similarly, no correction, the classical correction methods, 

and the lowest percentile correction resulted in the highest correlation.  
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Discussion 

In Study 1 we compared the accuracy of estimated students’ true scores for different 

correction methods: not correcting for guessing, the (extended) classical correction, 

the beta binomial correction, and the three-parameter logistic correction method. 

Overall, the extended classical method resulted in the lowest bias and the highest 

correlation. However, the results showed that the best method to correct for guessing 

did depend on the average true knowledge proportion in a cohort, the item difficulty, 

and the number of items and its number of response categories. In a cohort in which 

the true knowledge score was high and for tests with difficult items, no correction for 

guessing resulted in the least bias. This might indicate that no correction for guessing 

is better at estimating students’ true knowledge scores when a student’s ability and 

the difficulty of a test do not align. For example, students who have a low true 

knowledge score will only answer easy items on a difficult test correct. If you 

consequently would correct for guessing this might introduce bias as no guessing 

occurred (i.e., students knew the answer to the easy items). Alternatively, not 

correcting for guessing might be better in these situations. Furthermore, for tests with 

60 items, the three-parameter logistic model performed best on average. However, 

high standard deviations in the bias and correlation estimates showed these were 

unstable. Alternatively, no correction for guessing was second best for these tests and 

performed more stable. For tests with 20 items, no correction for guessing 

outperformed the other methods. Despite these minor exceptions, the overall results 

indicate that in most higher education test settings a correction for guessing is 

necessary to estimate students’ true scores accurately.  

Furthermore, as the results show, the beta binomial models performed worse than the 

other methods throughout all settings. It seems an advantage that the beta binomial 

models use the complete distribution of total scores instead of only using some 

properties of the distribution when estimating the true knowledge scores. However, 

by approaching the complete distribution, some stringent assumptions are made: 

items are assumed to be parallel with respect to difficulty, discrimination, and lower 

bound probability. The results of our simulation show that these assumptions may not 

be realistic and as a consequence the complete distribution does not reflect the true 
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distribution well. Instead, the 3PLM does a much better job of estimating accurate 

true knowledge scores by estimating the item parameters as well as an individual 

latent theta score for each student. This model, however, has the problem that the 

number of parameters is very large, requiring a large sample size to obtain stable true 

score estimates. In contrast to large-scale standardized tests in which item parameters 

are known, sufficiently large sample sizes to estimate item parameters accurately 

often lack in higher educational contexts. Consequently, the 3PLM is not an optimal 

method to estimate true score knowledge proportions.   

Still, the results of Study 1 suggest that using item information might result in more 

accurate true knowledge score estimation in these contexts. Consequently, in Study 2 

we attempt to improve the estimation of true scores by evaluating the fit of the Rasch 

model and a self-defined weighted item difficulty model, which both include item 

information but are less complex than the 3PLM and as such may require smaller 

sample sizes for obtaining stable results.  

Study 2 

Correction Methods Using Item Difficulty Information 

Rasch model. The one-parameter logistic or Rasch model (Rasch, 1960) is a simpler 

IRT model than the 3PLM as only one parameter is estimated for the item’s difficulty, 

!"#. As in the 3PLM, students’ ability is taken into account as individuals may vary with 

respect to their true knowledge score, indicated by $%. The Rasch model is defined by: 

(8) &'(# = 1+$,%, !"#. =
/01'2!3453".

67	/01	'2!3 453".)
. 

Subsequently, true knowledge scores,	$,% (latent trait scores) can be calculated using 

the vector of responses on items, j = 1. …. k , of participant i and the estimated item 

parameters, using Equation 18 in Appendix A.  

Weighted item difficulty method. In addition, a weighted item difficulty correction 

method was developed to incorporate item difficulty information. Here, credits 

students receive for correct item responses are weighted by the difficulty of the item. 

The rationale behind this method is that students who answer difficult items correctly 
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are assumed to have a higher true knowledge proportion than students who answer 

easy items correctly. Item difficulty is defined as the proportion correct and the true 

knowledge proportion of an item as the 1- the proportion correct. So, the easier an 

item and the higher the proportion correct for that item, the less weight it has in the 

estimated true knowledge proportion. The estimated true knowledge proportion is the 

sum of all item true knowledge proportions divided by the maximum score that can be 

obtained when all items are answered correctly: 

 (9) :;<=> =
∑ @#"(64@B")$
"%&
∑ (64@B")$
"%&

. 

By incorporating item difficulty information using sample information without the 

need to estimate population estimates or students’ theta values, this method is less 

complex than the Rasch model. Note that our heading might be somewhat misleading 

as the Rasch and weighted item difficulty methods are more general methods to 

estimate true knowledge proportions and do not necessarily include a guessing 

parameter. Still, all included methods share the common goal to estimate true 

knowledge proportions. While most methods do this by including a guessing 

parameter, the Rasch and weighted item difficulty method do so differently. To 

evaluate how these two methods perform under different realistic conditions, a 

second simulation study was performed. 

Method 

Study 2 employed the same methods as Study 1 with the exception of evaluating the 

Rasch correction method and a weighted item difficulty correction method.  

Results 

For comparison, the results of the methods added in Study 2 are compared to the 

classical correction, the extended classical correction, and the 3PLM correction 

method from Study 1. 

True knowledge scores. Table 3 shows the results for varying levels of the average 

true knowledge scores in a sample. As the results show, the extended classical 

correction resulted in the lowest bias in a sample with an average or low average true 
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knowledge score. In a sample where the average true knowledge score was high, the 

Rasch model resulted in the lowest bias followed by the weighted item difficulty 

correction method. Notably, the standard deviation for the latter was smaller than the 

variability in the Rasch model bias estimates. The correlation values show that for an 

average cohort the Rasch model the correlation was highest. In a cohort with low true 

knowledge the weighted item difficulty correction method performed best while in a 

cohort with a high average true knowledge score the classical correction methods 

performed best. Here, the standard deviation of the Rasch model correction method 

was smallest.  

The results of varying the variability of the true knowledge score distribution in a 

cohort are shown in Table 4. The results did not depend on the variability in true 

knowledge scores in a cohort. While the bias values were lowest for the extended 

classical correction, the correlation was highest for the Rasch model correction. As the 

results show, the bias and correlation values varied more strongly across the 

correction methods in a variable cohort.  

Item Discrimination. The results of varying the item discrimination levels are shown 

in Table 5. The mean bias results show that the extended classical correction method 

worked best, independent of the item discrimination level. Furthermore, the classical 

correction methods resulted in the highest correlation when item discrimination was 

low. In an average cohort the Rasch model resulted in the highest correlation. Here, 

the classical correction methods followed closely.  

Item Difficulty. As shown in Table 6, the weighted item difficulty correction method 

had the lowest bias and highest correlation when item difficulty was high. When item 

difficulty was low, the extended classical correction method resulted in the lowest bias 

and the Rasch model in the highest correlation, closely followed by the classical 

correction methods.  

Number of items. Table 7 shows the results for varying the number of items and 

number of response categories for the different correction methods. For a 20 item 

tests with 2 response categories, the Rasch model had the lowest bias. Here, the 

weighted item difficulty correction performed second best. Notably, the standard 
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deviation of the bias estimates was smallest for the weighted item difficulty method. 

For tests with more items the 3PLM method had the lowest bias. However, the 

variability in the estimated bias values was smaller for the Rasch and weighted item 

difficulty method. For 40 and 50 item tests the classical correction methods had the 

lowest bias. The correlation results show that the Rasch model resulted in the largest 

correlation for almost all tests. Only when a test had 20 items with 2 or 3 response 

categories, the classical correction methods performed best. 

Number of students. The results for varying the number of students in a cohort are 

displayed in Table 8. The extended classical correction method resulted in the lowest 

bias. Also, the classical correction methods had the largest correlation for cohorts with 

200 or 20 students. For the average cohort of 400 students the Rasch model 

correction had the highest correlations.   

Discussion 

In Study 2, we extended the comparison of different correction for guessing methods 

in higher education by including two additional correction methods. These alternative 

methods used item difficulty information without becoming as complex as the 3PLM 

method. Comparing the alternative methods to the 3PLM results showed that overall 

the standard deviation in the bias and the standard deviation in the correlation 

estimates for the Rasch and weighted item difficulty method were lower. In addition 

to this increased stability, the Rasch and weighted item difficulty method performed 

better than the 3PLM model in most simulated settings. Exceptions existed when the 

true knowledge in a cohort was low, the variability in true scores was high, items had 

low difficulty, and when tests had 50 or 60 items. In these settings, the average bias 

estimate was lower for the 3PLM method. For the correlation results, the alternative 

methods outperformed the 3PLM method throughout all settings. This can be 

explained by the complexity of the models. When many items are included, the 

complex 3PLM has more information to estimate $ scores adequately. However, when 

less information is provided the simpler Rasch model results in more accurate $ 

estimation. Note, however, that the 3PLM bias results are quite unstable and 

differences between the 3PLM and Rasch are consequently very small and negligible 
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in some cases. Overall, the results when varying the cohort size show that the 3PLM 

and Rasch model are not useful in practical settings with small sample sizes.   

Compared to the classical correction methods that generally performed best in Study 

1, the results of Study 2 indicate that methods using item information in some settings 

result in more accurate estimated knowledge scores. For the bias of the correction 

methods, this holds for cohorts in which the average true knowledge was high. Here, 

both the weighted item difficulty seems to produce the most stable lowest bias 

estimates. Also, when test have items with high difficulty, using the weighted item 

difficulty correction resulted in less biased estimated true knowledge scores. 

Furthermore, for tests with 20 or 60 items methods using item information had lower 

bias than the classical correction methods. The correlation results show that the 

values were quite close to those of the classical correction methods overall. In cohorts 

with high variability in the true knowledge scores, the item difficulty methods clearly 

outperformed the classical correction methods.  

Overall, from the correction methods that incorporate item difficulty, the weighted 

item difficulty correction method showed to be best and most stable.  

General Discussion 

The aim of this study was to compare the accuracy of different correction for guessing 

methods within realistic higher educational settings (i.e., small-scale non-

standardized tests) in which students’ predominant strategy is to guess instead of omit 

answers. Datasets were simulated in different settings, varying the average true 

knowledge score, the variance in the true knowledge score, the sample size, the 

number of items and the number of item response options, the mean difficulty of the 

items, and the mean discriminability of the items. Consequently, the performance of 

each method was evaluated using the mean sum of squared error (MSE) as an 

indication of the bias and by using the correlation between the estimated true scores 

and the simulated true knowledge scores.   

Overall, taking the results from Study 1 and 2 together, the results indicate that a 

correction for guessing results in lower bias than no correction in almost all situations. 

The only exception existed for a cohort in which the mean true knowledge score was 
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high. Here, the bias was lowest when no correction was used which is expected given 

that students with high true knowledge scores will guess less often. In general, the 

results show that a correction for guessing is preferable in small-scale non-

standardized MC tests. The results showed that on average, taking all sample 

characteristics into account, the optimal method in terms of lowest bias and highest 

correlation was the extended classical method. Independent of the specific context in 

terms of the item discrimination and the number of students in a cohort, the extended 

classical correction method resulted in the most accurate estimated true knowledge 

scores. 

However, in some settings other correction methods resulted in the most accurate 

estimated true scores. Which method performed best depended on the average true 

knowledge score, the variability in true knowledge, the item difficulty, and the 

number of items in a test and the number of response categories. In a cohort with a 

high average true knowledge score, the Rasch method performed best. This may be 

explained by the effect that people with high true scores may hardly guess and 

therefore no guessing parameter, such as included in the 3PLM, is required. Similarly, 

when the variability in true scores in a cohort was high, the Rasch and weighted item 

difficulty method resulted in the highest correlation. Furthermore, for tests with 

higher item difficulty the Rasch and weighted item difficulty resulted in the most 

accurate estimated true scores. Also, correction methods that incorporated item 

difficulty information resulted in lower bias for 20 and 60 item tests. Here the results 

show that estimated true scores are overall less accurate with 20 items compared to 

60 items, having less information to accurately estimate true scores.  

The purpose of this study was to compare the accuracy of the different correction 

methods. When we order the methods based on the amount of information they take 

into account we can categorize them accordingly: the classical correction method 

which does not take sample information into account, the extended classical 

correction method which incorporates the sample’s mean and variance, the beta 

binomial correction methods which take the distribution of total scores into account, 

and the methods that take into account information on item difficulty. The results 

showed that including item information is beneficial in correcting for guessing as long 
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as the methods do not become too complex. Although increased complexity might be 

useful in large-scale standardized tests, our results show that these methods give 

instable estimated true knowledge scores in the setting of small scaled non 

standardized tests, commonly used in higher education. Similarly, the beta binomial 

methods showed to be too complex and consequently did not outperform other 

correction methods. Finally, the results showed that incorporating some sample 

information as done by the extended classical correction method resulted in more 

accurate estimated true scores than the classical correction method. Only in the 

specific situation where tests did not have 40 items with four response categories, the 

classical correction method performed better than the extended classical correction 

methods. Interestingly, both classical methods performed suboptimal compared to the 

correction methods that include item difficulty information for these tests.  

Overall, our findings apply to the specific context in which our study was placed; 

small-scale non-standardized MC tests. Consequently, they cannot be generalized to 

other situations such as large-scale standardized tests. For such tests the process of 

true score estimating is significantly different and the extent to which item 

information is available allows for more accurate true score estimation. For example, 

where omissions are observed in large-scale standardized tests, omissions may be 

imputed using answers on other items in the estimation. In the context of higher 

education tests, this is not possible and true score estimation is limited to the use of a 

correction for guessing. Furthermore, the accuracy of estimated true scores depends 

on various factors, such as, for example, the instruction of the teacher and the 

different strategies employed by the test-taker. In this study we focused on tests in 

which students’ predominant strategy is to guess instead of omit answers. As a 

consequence, we did not study different guessing strategies under different correction 

methods or for different instructions in this simulation study, which is outside the 

scope of this study. Similarly, the focus was on the accuracy of estimated true 

knowledge scores, other reasons to correct for guessing than this accuracy, such as 

discouraging students’ guessing behavior, were neither evaluated.   

Based on the current results, it would be recommended to apply an extended classical 

correction method as developed by Calandra (1941) and Hamilton (1950) to correct 
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for guessing in higher educational MC tests. Although some situations existed for 

which another method, such as the Rasch model, resulted in more accurate estimated 

true scores (i.e., fewer bias or higher correlations), the extended classical correction 

method performed best in most situations. Furthermore, even though other methods 

outperformed the extended classical correction method in some specific situations, its 

performance still was not bad in these situations. Given this and the fact that in 

practice it is difficult to specify the specific situation one is in, the extended classical 

correction method is preferred overall. Specifying the specific situation one is in is 

difficult as cohort characteristics or test characteristics are often unknown and aspects 

such as the mean true score and exam difficulty are confounded in a particular test. 

Overall, when the extended classical correction method outperformed the other 

methods, the difference in bias with the classical method was small. Still, the 

extended performed consistently better in these situations. As pointed out by 

anonymous reviewers, the classical method might consequently be preferred over the 

extended classical in terms of easiness in explaining the method to students. However, 

to our opinion, this should not be a factor in determining which method to apply. In 

the end, the fairest method is not the one that is understood by students but the one 

that most accurately measures their true knowledge. 

Both the extended classical correction method and the classical correction method, 

which performed well in our study, make use of the guessing parameter (∝) in 

correcting for guessing. Their performance suggests that correction methods might 

become even more accurate when the ∝ probability is more accurately estimated. In 

these methods ∝ is defined as one divided by the number of response categories. For 

future studies, it would be interesting to see if alternative ways of estimating ∝ lead to 

more accurate estimated true knowledge scores. For example, now it is assumed that 

students guess among all answer response categories. This, however, does not take 

into account any partial knowledge that students use to rule out one or more response 

categories when guessing. A proposed adjustment of ∝ is to estimate ∝ based on the 

number of response categories that were chosen by students in a test. In this case, 

when none of the students would choose alternative D on an item with four response 

categories, the guessing probability for this item would increase to 1/3. Another 



 

 104 

 

 

 

 

 

 

4 

 

 

 

 

 

 

 

 

 

 

 

proposition is to estimate ∝ based on the lowest scoring students, who serve as a 

reference. Hereby, it could be assumed that the, for example, ten percent lowest 

scoring students guessed on all items. Consequently, the average of the mean 

proportion correct for these students could serve as an estimate of the guessing 

probability ∝. Future studies might focus on these kinds of adjustments of ∝ by 

simulating response categories instead of correct/incorrect scores.  

Throughout the years there have been several developments in methods to correct for 

guessing. However, in practice these developments are rarely applied to higher 

education tests. Contrary to the commonly used classical correction method, our 

simulation study showed that the extended classical correction method developed by 

Calandra (1941) and Hamilton (1950) or our proposed weighted item difficulty 

correction might result in more accurate estimated true knowledge scores in a 

practical higher education setting. In practice using the extended classical correction 

method might require taking additional steps to correct for guessing, this can be easily 

done by using a web application that is under development.   
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Appendix A. Method Elaboration 

In this appendix a more detailed description of some the correction for guessing 

methods is provided. 

Beta Binomial Correction Method 

In the mixed binomial distribution heterogeneity among individuals is captured by 

assuming p has a (prior) Beta distribution with density w(p) across the population 

(Morrison & Brockway, 1979). In the mixed binomial distribution, which allows for 

differences in individual’s ability level, the probability that an individual with true 

score probability p has a number correct score D is then defined as:  

(10)	EF(D, ;) = ∫ E(D, ;, <)6
H I(<)J<.  

In order to get the probability of a number correct score R, given probability density 

w(p), the aggregated mixed binomial distribution can be approached by a beta 

binomial distribution (Keats & Lord, 1962; Kendall & Stuart, 1969) which is defined 

as: 

(11) &(D|	L, M) = 	 6
N76

O(P7Q,R7N4Q)
O(Q76,N4Q76)O(P,R)

. 

Here, L and M are estimates of the first and second moments of the beta binomial 

distribution defined as: 

(12) LS = QB

N
J 

and 

(13) M" = (1 − QB

N
)J. 

Where d equals:  

(14) J = N(64Û''()46
Û''(

. 

Here, the sample reliability,ŴXXY, is estimated by: 

(15)	WZXXY = 1 −	
QB(64)

*
$)

[)
+ . 
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Having obtained the probability of a number correct score given probability p, true 

knowledge proportions are estimated using the cumulative distribution of p. For all 

possible total scores, R, the probabilities are summed. 

(16) :;<> % = ∫ P(R)dDQ
H .  

Extended Beta Binomial Correction Method with Three Parameters 

Carlin and Rubin (1991) extended the beta binomial model as a special case of the 

one developed by Lord (1965) by only having the lower limit of the beta as a 

parameter and restricting the probability of a correct item response to be greater than 

some constant	_H: 

(17) &(D|L, M, _H) = `;
D
ab(L, M)46 ∑ c

D
d eb(L + d, M + ; − D)_H

Q4#(1 − _H)N4Q7#Q
#gH . 

Here, _H is approached by the third factorial moment of the beta binomial distribution 

(see Carlin & Rubin, 1991; eq. 24). True knowledge proportions are calculated using 

Equation 16.  

Three Parameter Logistic Model (3PLM) Correction Method  

Having obtained the probabilities to answer an item correct, conditional on the true 

score and item parameters, true knowledge scores,	$,% (latent trait scores) can be 

calculated using the vector of responses on items, j = 1. …. k, of participant i and the 

estimated item parameters. Subsequently, estimated true knowledge scores are 

obtained using: 

(18) :;<> % = − 23,#-
23,.'423,#-

+ ( 6
23,.'423,#-

∗ 	$,%). 

Here, $,i%j and $,ikX refer to the minimum and maximum possible theta values given 

the response patterns. A response pattern with all incorrect items (assuming positive 

item discrimination parameters) corresponds to $,i%j and a pattern with all correct 

items (given positive item discrimination parameters) corresponds to $,ikX. By taking 

both variability in students’ response patterns and variability in item properties into 

account, the 3PLM will, at least asymptotically, result in the most accurate estimated 

true knowledge scores.
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Abstract 

In Dutch higher education, budget and time constraints often limit the use of expert 

panels to set the standard. The aim of this study is to compare the accuracy of three 

cut-score (also referred to as standard setting) methods that are tenable for small-

scaled, non-standardized Dutch higher education tests. In the classical absolute 

method, the cut-score is set at a specific percentage of test items. Alternatively, in 

compromise methods a relative aspect is introduced and sample information is taken 

into account. Hereby, the Cohen method uses information from the best performing 

students and the Hofstee method specifies the highest and lowest scorings students. 

Simulations were performed to obtain students’ true and estimated grades and to 

obtain realistic higher education contexts by varying sample size, test difficulty, test 

discrimination, test length, and the number of response options. Both, the accuracy of 

the estimated grades and the pass/fail classification accuracy were evaluated. 

Generally, results show that the classical method mostly underestimates students’ 

ability, while the Cohen method sometimes overestimates ability. Consequently, for 

higher education tests, taking into account some sample information in terms of the 

best performing students might be beneficial in estimating students’ grades. 

Keywords: assessment, cut-score methods, grade estimation, higher education, 

standard setting.  
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Introduction 

In Dutch higher education, large-scale standardized tests are often unavailable and 

most tests are designed in-house. For these tests, the pass/fail cut-score (i.e., caesura) 

is often determined by individual academics (Sadler, 2014) because expert panels are 

most of the time not available due to time and budget constraints or because experts 

might be poor at judging item difficulty (e.g., Clauser, Clauser, & Hambleton, 2013; 

Clauser, Mee, Baldwin, Margolis, & Dillon, 2009; Impara & Plake, 1998; Van de 

Watering & Van der Rijt, 2006). As Kane (2017) explains, students with scores above 

the cut-score are assumed to have achieved an appropriate performance standard and 

those with scores below the cut-score have not. Consequently, the performance 

standard that is set at a student’s ability level is translated into test scores to be able to 

make a pass/fail decision or to assign grades to test scores (a process also referred to 

as standard setting; Beuk, 1984; Reckase, 2006).  

It is important that the chosen cut-score is valid, meaning that students who pass 

meet the performance requirements as specified in the curriculum and students who 

fail do not (Taylor, 2011). Instead of using expert panels to determine the 

performance standard on the level of students’ ability, the cut-score in Dutch higher 

education tests is often based on a certain pre-fixed percentage of test items to be 

answered correctly (Cohen- Schotanus & Van der Vleuten, 2010). In this way, the 

percentage of test items to be answered correctly is viewed as a proxy for the 

percentage of knowledge a student has (i.e., the performance level). Unfortunately, 

little attention seems to be paid to the question of whether the percentage correct is a 

valid proxy for the required performance level of students in Dutch higher education. 

Where much literature is contributed to determining performance standards and 

setting cut-scores using panels (see e.g., Blömeke & Gustafsson, 2017; Cizek & Bunch, 

2007; Hambleton & Pitoniak, 2006; Norcini, 2003; Reckase, 2006), little research has 

focused on how to determine cut-scores in this restricted higher education setting 

where panels are not used. In this study we evaluate the accuracy of different cut-

score methods that are tenable in realistic Dutch higher educational contexts (i.e., 

non-standardized, small-scaled tests). 
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Overall, cut-score methods can be divided into three categories: absolute or criterion-

referenced methods, relative or norm-referenced methods, and combinations of these 

two (Cohen-Schotanus & Van der Vleuten, 2010). While the cut-score in the absolute 

method is based on a specific ability level and in practice set at a specific percentage 

of items to answer correctly, the cut-score in the relative method is set at an ability 

level in comparison to other test-takers, operationalized as, for example, a certain 

percentile score. A compromise method combines the two. In choosing among cut-

score methods, it is important that the standards set are consistent with the purpose 

of the test (Norcini, 2003) as different type of standards fit different purposes. For 

example, when using a test for the purpose of selecting a certain number of 

examinees, such as selecting the best job candidates, a relative standard clearly fits 

best. Contrary, for tests designed to assess competence, such as the diagnostic skills 

required by a clinical psychologist, absolute standards suit best.  

In higher educational contexts, in which the purpose of tests is to determine whether 

an examinee has sufficient knowledge or skills in a particular domain, absolute cut-

scores seem most appropriate (Norcini, 2003). In contrast, a relative method would 

only provide information on the ranking of students. Unfortunately, in Dutch higher 

educational courses the absolute cut-score is hardly ever related to the performance 

standards set in the curriculum (e.g., learning goals on individual courses or end 

qualification requirements for the entire curriculum). As such, the cut-score is often 

unrelated to the content of the items and the performance standard. In most of the 

methods applied in higher education (as explained below), for example, a pre-fixed 

percentage of items to answer correct is used to determine the cut-score. In European 

higher education this percentage is often set at 55% or 60% of test items, whereas in 

the UK the cut-score is often set at 50% (Cohen-Schotanus & Van der Vleuten, 2010). 

It is hereby implied that this percentage can be interpreted as a certain knowledge 

level that is required to pass the exam. Unfortunately, however, the link between the 

required knowledge level and the number of items answered correct to pass the test is 

hardly ever explicitly motivated, rendering the percentage rather arbitrary.  
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The situation is even more complicated as tests in practice differ in difficulty and may 

be quite unreliable as they are designed in-house by individual academics. As research 

has shown, experts (such as those designing the test) are not very good at estimating 

item characteristics for a given sample (e.g., Clauser et al., 2009; Clauser et al., 2013; 

Impara & Plake, 1998; Van de Watering & Van der Rijt, 2006), which might result in 

unreliable tests. If the required percentage of correct items to pass would be explicitly 

linked to the specific content of the items, varying test difficulty would be less 

problematic. As this is hardly done and tests in practice might be quite unreliable, the 

arbitrary percentage used to set the cut-score might be problematic in practice. To 

illustrate, a difficult test might result in many false negatives, students who fail but 

truly meet the study requirements. Whereas an absolute cut-score for a very easy test 

might result in many false positives, students who pass but do not truly meet the 

performance criteria. Consequently, when many students fail a test, it is not clear 

whether the test was too difficult or the true ability of a cohort was low and whether 

the cut-score should be adapted accordingly. In an attempt to tackle this issue, some 

study programs in higher education apply a compromise method. Whereas a fully 

relative method does not fit the purpose of educational tests, compromise methods 

incorporate only some information on students’ performance on the test in the cut-

score.  

When the cut-score is determined using an arbitrary percentage of items that should 

be answered correct, whether in an absolute or compromise method, the question 

remains which cut-score method is best at calculating students’ grades as a 

representation of students’ ability level. Assuming students have a specific true grade 

on a test (i.e., the grade someone would obtain on a perfectly reliable test), the best 

cut-score method is the method that results in estimated grades on a test that are 

closest to the specific true grade the student has for that test. Several studies have 

evaluated the effects of using different cut-score methods (e.g., Cohen-Schotanus & 

Van der Vleuten, 2010; Dochy, Kyndt, Baeten, Pottier, & Veestraeten, 2009). These 

studies have compared different methods relative to each other by looking at aspects 

such as the fluctuations in cut-scores or failure rates across different methods. 

Although this provides information that might be useful to assess the practical 
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consequences of implementing a specific cut-score method, it does not provide 

information on the accuracy of each individual method. To get this information, true 

grades are required as a reference to compare to the estimated grades using the 

different cut-score methods. Since these true grades are not available in practice, 

simulations are performed to obtain them in this study. In addition, previous studies 

evaluated the dichotomous pass/fail decision instead of looking at grade accuracy 

over the entire range of grades. Where pass/fail scores are the main focus at the 

institutional level, the exact grade obtained on a test is most important at the level of 

the individual student. For example, specific grade requirements often apply for 

graduating with honors, entering a specific master program, applying for a specific 

job, or when compensation between (a cluster of) courses is allowed. Consequently, in 

comparing different cut-score methods in this study, we also focus on the accuracy of 

the estimated grades. Furthermore, this study looks at multiple choice (MC) tests.  

Method 

Methods to Calculate Grades in Higher Education Tests 

Three cut-score methods that are tenable in a Dutch higher education context are 

included in this study: the classical cut-score method, the Cohen method, and the 

Hofstee method. In light of the arbitrariness of the chosen percentages, grades were 

also calculated without the use of a cut-score, as a fourth possibility to estimate 

students’ ability level using tests scores.  

Classical cut-score method. Classically, the absolute cut-score for a Dutch higher 

education test is set by determining a pre-fixed percentage of items a student has to 

answer correct in order to pass, after correcting for random guessing: 

lm:	nloWp = lq + r(q − lq)	 

Where N refers to the total number of items in a test, c to the proportion of items 

answered correct due to guessing in the test, and x to the pre-fixed percentage of 

items answered correct at a pass. To explain this method, let’s take the Dutch higher 

education as an illustration and suppose the grading scale runs from 1 to 10 and the 

cut-score is set at 55% of the total items after correcting for guessing, which results in 

a passing grade of 5.5. Further, assume that we have a test with 40 items that each 
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have 4 answer categories. Here, 30 items would remain after we correct for guessing 

(6
s
∗ 40 = 10), of which 55% corresponds to 16.5 items. Adding the 10 items that 

should be answered correctly when students would have purely guessed, this results 

in a cut-score of 26.5 (10 + 16.5 = 26.5), for which students would receive a grade of 

5.5: 

lm:	nloWp =
1
4
∗ 40 + 0.55(40 −

1
4
∗ 40) 	= 26.5 

When we plot grades (on the y-axis) against the number of items answered correctly 

on a test (on the x-axis) a passing grade corresponds to the coordinate of (26.5, 5.5). 

A perfect 10 is scored when all items are answered correct, making the coordinate of 

the maximum possible grade achievable (40, 10) in our example. Connecting these 

two coordinates by a line (i.e., interpolating) determines the grades assigned to 

different total test scores. This is illustrated in Figure 1 by the solid line. As shown, 

grades below 1 are typically set to 1. Note that this is only one example, in the 

simulations the percentages were varied (lowering to 50% and increasing it to 60%) 

resulting in different cut-scores. 

Figure 1. Illustration of the grades assigned to total test scores using a classical or Cohen cut-
score method. 
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Cohen method. A second approach to consider in setting the cut-score in higher 

education tests is the compromise method proposed by Cohen-Schotanus & Van der 

Vleuten (2010). In the Cohen method, the cut-score is determined by using a pre-fixed 

percentage of items answered correctly for a passing grade as well. Additionally, the 

best performing students are used as a point of reference for the difficulty of the test, 

using the test score of a specific percentile score to adjust the pre-fixed percentage: 

lm:	nloWp = lq + r(q∗ − lq). 

Here, q∗ refers to the score of the nth percentile score (Cohen-Schotanus & Van der 

Vleuten, 2010). To illustrate, if the 95th percentile score would, for example, be 38 on 

a 40-item four-response-options test with items having a probability of random 

guessing of 1/4, the resulting cut-score would be 25.4: 

lm:	nloWp = 6
s
∗ 40 + 0.55 `38 − 6

s
∗ 40a = 25.4. 

As illustrated by the dashed line in Figure 1, the coordinates of the maximum grade 

(40, 10) and the cut-score (25.4, 5.5) are connected by a line to transform the total 

test scores into grades. In this method, more information on the sample characteristics 

is taken into account in setting the cut-score. However, note that when the top 

students score the maximum score of 40, the cut-score is similar to that of the classical 

method in which a similar pre-fixed percentage is chosen. Also, if the maximum test 

score is lower than 40, the maximum grade is still set at (40, 10). Hereby, this method 

assumes that the top percentage of students is a stable and therefore reliable group to 

use as a proxy for the difficulty of a test. Furthermore, Cohen-Schotanus and Van der 

Vleuten (2010) choose to set the pre-fixed percentage at 60 percent, while a 

percentage of 55 is often used in the classical cut-score method as done in our 

illustration. In the simulations in this study, the percentage was varied, as well as the 

percentile used as a reference for test difficulty.  

Hofstee method. Another compromise method included is the Hofstee method 

(Hofstee, 1983). In this method, the minimum and maximum acceptable cut-scores 

are specified (;i%j and ;ikX), as well as the minimum and maximum acceptable 

failure rates (|i%j and |ikX). Using these values, the cut-score is determined at the 

point where the line between the coordinates (|i%j, ;ikX) and (|ikX, ;i%j) intersects 
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the distribution of the observed test scores (for a detailed description of this method, 

see Hofstee, 1983). Consequently, using the cut-score as a reference, a line is drawn 

from the maximum obtainable grade through the reference point, similar to the way 

in which test scores are transformed to grades as shown in Figure 1. Whereas the 

Hofstee method requires panelist to determine the acceptable cut-scores and failure 

rates, in Dutch higher education these percentages may in practice be chosen by 

individual instructors themselves. Consequently, a set of percentages considered 

relevant was used in this study to be able to include the method as a comparison. 

From the three approaches, the Hofstee method is the most relative approach as both 

the minimum and maximum allowed failure rates are specified.  

No cut-score. As mentioned, the percentage of 55% or 60% of items to answer 

correct in order to pass a test is rather arbitrary. Consequently, one could choose to 

remove this arbitrary point and determine students’ grades without the cut-score as a 

point of reference. In this situation, a line connects two coordinates (here: (1, 10) and 

(10, 40) for the minimum and maximum points, respectively) corresponding to the 

number of correct items for both the minimum (taking random guessing into account) 

and maximum obtainable grade. Using this method, there is no cut-score to use as a 

reference point in advance. Continuing our example, the test score corresponding to a 

grade of 5.5 would be 25 (25 = }.}46.H
&/0&
1/0&/

+ 10).  

In this study we were especially interested in evaluating the classical absolute 

standard (i.e., using a pre-fixed percentage of correct items) that is often used as a 

standard in Dutch higher education. Furthermore, we were interested to assess the 

influence of the arbitrariness of the percentage used in the cut-score method on the 

accuracy of the estimated grades. In addition, cohort and test characteristics were 

varied to mimic realistic higher educational settings. Specifically, we varied the cohort 

sizes, number of items on a test, test difficulty, test discrimination, the average true 

grade in a cohort, and the variance of the true grades in a cohort.  

Simulation Procedure 

To evaluate the different cut-score methods, simulations were performed using R (R 

core Team, 2016) similar to the procedure used in Chapter 4. First, students’ 
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underlying ability levels (i.e., thetas) were simulated, where the theta scores form a 

continuous normal distribution: q~(�2, Ä2). Here �2 refers to the latent ability score 

of the sample, which was assumed to be 0 following the standard normal distribution, 

and Ä2 refers to the variation in the latent ability scores across students, which was 

assumed to be 1. A standard normal distribution was assumed because academic 

performance is the sum of multiple subparts. As stated by the central limit theorem of 

Lindeberg and Lévy (Billingsley, 1961), the sum of a large number of independent 

and equally distributed stochastic variables with finite variance approximates a 

normal distribution. 

Second, the theta scores were transformed to true grades. These true grades were 

used to evaluate the accuracy of the estimated grades across the different cut-score 

methods. A linear transformation was performed: 

:Wmp	ÅWÇJp% = EH + E6$%. 

Here, EH is the grade at the average theta score of zero ($H), this true grade average 

was set to 6.0 (on a scale of 1.0 to 10.0, Ei%j and EikX, respectively), following our 

previous illustration of Dutch higher education. Given prior education requirements, 

we assumed the probability that a student accidentally gets into higher education 

(i.e., is a false positive) with a true grade of 1.0 or smaller to be extremely small, 

about 1 in 1000 students. Assuming about 0.1% of students to have a minimum true 

grade of 1.0, E6 =
É/4É,#-
2/42,#-.

= Ñ.H46.H
H44Ö.HÜ.

. Here, -3.09 ($i%j), refers to the standard theta 

value for which the probability to obtain this theta or lower equals 0.1%. Note that for 

comparison of the true grades to the estimated grades, true grades smaller than 1.0 

were rounded to 1.0 and scores larger than 10.0 were rounded to 10. In this way both 

true and estimated grades were on the same scale. Taking these aspects into account, 

there were relatively more true grades close to the maximum score of 10 than to the 

minimum score of 1.0, which is a realistic assumption.  

The choices of the average true grade and the proportion of minimum grades in 

transforming theta scores to true grades is of course arbitrary and is hard to account 

for with practical evidence. To evaluate whether the results depended on these 

arbitrary choices, a sensitivity analysis was performed in which different theta to true 
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grade transformations were incorporated. In this sensitivity analysis, we used two 

alternative assumptions about the average true grade at a theta of zero (EH), lowering 

it to 5.5 and increasing it to 6.5. Additionally, we varied the percentage of minimum 

grades in the population, lowering it to 0.05% ($i%j = -3.29), and increasing it to 

0.5% ($i%j = -2.58), 1% ($i%j = -2.33), and 2.5% ($i%j = -1.96). In these 

alternative transformations,	E6 =
Ñ.H46.H
H44Ö.áÜ

, E6 =
Ñ.H46.H
H44á.}à

, E6 =
Ñ.H46.H
H44á.ÖÖ

, and E6 =
Ñ.H46.H
H446.ÜÑ

, 

respectively. The results of the different transformations also provided information on 

the performance of the different cut-score methods in different samples, in terms of 

the average ability level and variation thereof.  

Third, item responses were simulated for each student i for each item j, using the 

students’ theta scores. To do so, the three-parameter logistic model (3PLM; Birnbaum, 

1968) from item response theory (IRT) was applied. By using this IRT model the 

probability of giving a correct response on a test item was simulated conditional on 

the specific theta value of a student and the characteristics of the test item in terms of 

item difficulty, item discrimination, and the probability of guessing on the item: 

 & `(# = 1â$,%, !"#, ∝Z#, _SH"a = 	_SH" + (1 − _SH")
/01	(∝Z"'2!3 453".)

67/01	(∝Z"'2!3 453".)
. 

Here $,% refers to the student i’s true score, !"# to the item j’s difficulty, ∝Z# to the item j’s 

discrimination, and _SH" to the item j’s guessing probability. Table 1 shows the values 

that were used for these parameters. The item difficulty and item discriminability 

values were based on data of first year Psychology students. As most tests consist of 

four item response categories in Dutch higher education, the average guessing 

probability was set to .25 with a standard deviation of .05. This standard deviation 

was implemented to allow for less or more guessing as we believe students differ in 

their willingness to guess on items (see e.g., Budescu & Bo, 2015) and differ in the 

amount of partial knowledge they have which might let them eliminate one or two 

item response categories. The ltm package in R (Rizopoulos, 2006) was used to 

calculate the probability to answer an item correctly given the item parameters and a 

student’s true score. These probabilities were then converted into correct ((# = 1) and 
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incorrect ((# = 0) item scores using the probability to answer an item correct of .5 as 

the cut-score. See Appendix A for an example of the code that was used. 

Included Variables and Values 

Table 1 shows variables that were varied to evaluate the accuracy of the different cut-

score methods within realistic higher educational contexts, in addition to the average 

true grade and the proportion of minimum true grades. The sample sizes varied such 

that smaller classes of more specialized study programs were represented as well. 

Similarly, the number of items and response categories varied to assess the 

performance of cut-score methods for different types of realistic tests. The specific 

values were chosen according to the observation that most Dutch MC tests consist of 

40 items with each having four item response categories. If more items are included in 

a test, they generally have fewer item response categories. In the three different cut-

score methods described in the introduction, different arbitrary choices are made in 

practice, such as the percentage of items answered correctly required to acquire a 

passing grade. In this study, we were not only interested in which method was most 

accurate but also to what extent these arbitrary choices influenced the accuracy. In 

the classical and Cohen method the percentage of items to have answered correct at 

the cut-score was varied. Additionally, in the Cohen method the size of the group of 

best performing students used to determine the cut-score was varied. 
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Table 1: Overview simulated variables and values 

1Values in bold illustrate the standard value used when the specific variable was not manipulated. 

In total all these variations resulted in 18 scenarios (see Table 2) in which datasets 

were simulated. Note that only combinations that were considered relevant and 

realistic for Dutch higher education settings were simulated. For each of these 

scenarios, all possible theta to true grade transformations were evaluated and for each 

scenario 1000 datasets were simulated to obtain stable results. 

 

 Variable Notation Value(s)1 
Sample 
properties 

Average true grade  �äUãå	çUkéå 5.5, 6.0, 6.5 
Proportion of minimum true grades  <äUãå	çUkéå	6.H 0.05, 0.1, 0.5, 1, 2.5 
Size sample è 20, 200, 400 

Test  
properties 

Number of items ; 20, 40, 50, 60 
Number of item response options Ç 2, 3, 4 
Average item difficulty �5 -.8, 0, .8 
Variability in item difficulty Ä5 .5  
Average item discriminability �P .3, .5, 1.5, 2 
Variability in item discriminability ÄP .3 
Average guessing probability �ê .25 
Variability in guessing probability Äê .05 

Method 
properties 

Percentage of items to answer correctly  50%, 55%, 60% 
Percentile reference group Cohen method  90th, 95th 
Hofstee  Min. acceptable cut-score ;i%j .50 
 Max. acceptable cut-score ;ikX .60 
 Min. acceptable failure rate |i%j 0 
 Max. acceptable failure rate |ikX 1 
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Table 2: Scenarios for Simulated Datasets 

Scenario è �5 �P k a 

Percentage Best  
Students in 
Cohen Method 

Pre-fixed Percentage 
of Items to  
Answer Correctly 

1 400 0 .5 40 4 .95 .55 
2 200 0 .5 40 4 .95 .55 
3 20 0 .5 40 4 .95 .55 
4 400 .8 .5 40 4 .95 .55 
5 400 -.8 .5 40 4 .95 .55 
6 400 0 .3 40 4 .95 .55 
7 400 0 1 40 4 .95 .55 
8 400 0 1.5 40 4 .95 .55 
9 400 0 2 40 4 .95 .55 
10 400 0 .5 20 2 .95 .55 
11 400 0 .5 20 3 .95 .55 
12 400 0 .5 20 4 .95 .55 
13 400 0 .5 60 2 .95 .55 
14 400 0 .5 60 3 .95 .55 
15 400 0 .5 60 4 .95 .55 
16 400 0 .5 40 4 .90 .55 
17 400 0 .5 40 4 .95 .50 
18 400 0 .5 40 4 .95 .60 

Note: cells in grey indicate the manipulated variable in comparison to the first scenario. 

Outcome Measures  

The accuracy of the different standard setting methods was evaluated by looking at 

different measures. First, by evaluating the square root of the mean sum of squared 

error (MSE): 

 ëíì = 	î∑ (çUkéåï #4äUãå	çUkéå#)+#%&
j

. 

Here, ÅWÇJpï % refers to the estimated grade of student i after applying one of the cut-

score methods to the simulated test score. In addition to the overall MSE measure, the 

MSE was also constructed for different grade windows to assess whether the cut-score 

methods differ in the location of (in)accuracy: grade 1-4 (low grades), grade 4-6 

(average grades), and grade 6-10 (high grades). As a descriptive, the average true and 

estimated grade were evaluated to assess the extent of the (in)accuracy between the 
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grades and see if there is an over- or underestimation. Here, the true and estimated 

grades were evaluated across the separate windows as well. Furthermore, the 

correlation between the true and estimated grades was evaluated for all grades, as 

well as for the grades in the specific windows.  

Given the pass/fail nature of cut-scores, classification rates were also evaluated. Here, 

the focus is not on the specific grade but on the dichotomous pass/fail decision that 

motivates the use of a cut-score. Specifically, we focused on the sensitivity, the 

specificity, the total proportion of misclassifications, and the positive predictive value. 

Sensitivity refers to the proportion of correctly passed students from all students that 

should have passed based on their true grade, that is: ípènñ:ñóñ:ò = ôö
ôö7õú

, where TP 

denotes the true positives and FN the false negatives. Specificity refers to the 

proportion of correctly identified failed students, given all students that should have 

failed based on their true grade, that is, í<plñ|ñlñ:ò = ôú
ôú7õö

, where TN denotes the 

true negatives and FP the false positives. The proportion of misclassifications is the 

proportion of all misclassified students given the entire cohort, ùo:Çû	üñnn =
õö7õú

ôú7ôö7õö7õú
. The positive predictive value (PPV) shows the proportion of students 

that had a true grade above the cut-score from all the students that passed: = ôö
ôö7õö

 .  

Results 

Given the vast amount of results, results for the first scenario are discussed in detail 

for each outcome measure while tables with the outcome measures for scenario 2 to 

18 as shown in Table 2 can be found at our Open Science Framework (OSF) following 

the link: https://osf.io/jgsx2/. For scenario 1, the grade accuracy and classification 

accuracy are discussed in different sections. In addition to the inspection of the grade 

accuracy for separate windows of grades (below 4, between or equal to 4 and 6, and 

above 6), the classification accuracy provides an indication of the accuracy of each 

method in two windows (below and above the cut-score). As these classification rates 

already provide us with information on two windows, the grade accuracy per window 

is only discussed in terms of relevant patterns. For the detailed results per window 

visit our OSF page to find these tables. Additionally, the most important deviations 
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from the results of scenario 1 will be discussed in the final section for each of the 

manipulated variables.  

Overall, the results showed that not using a cut-score in estimating grades resulted in 

the least accurate grades and classification rates in almost all scenarios and 

transformations. Therefore, this method is hereafter not taken into account in the 

Results section (except for the results portrayed in the tables). In discussing the 

results, we are mainly interested in which method performs best, followed by the 

influence of the specific transformation (i.e., the results of our sensitivity analysis of 

the assumptions on the average true grade and proportion of minimum 1.0 true 

grades in the cohort).  

Accuracy of Grades  

MSE. As shown in bold in Table 3, the classical cut-score method resulted in the 

highest MSE values, except for cohorts with a low average true grade of 5.5. Here, the 

Hofstee method resulted in the largest MSE. Notably, the differences in MSE values 

across the methods increased considerably (from about a 0.25 difference to a 0.92 

difference) as the average true grade increased and the differences slightly decreased 

(by 0.3 for cohorts with a high true grade and only 0.07 for cohorts with a low true 

grade) as the proportion of the true grades of 1.0 (i.e., the minimum true grade) 

increased. Overall, the MSE values became larger as the average true grade increased, 

where the increase was larger for the classical and no cut-score method (about 1.1) 

compared to the Cohen and Hofstee method (having a 0.75 increase). Also, MSE 

values increased as the proportion of minimum true grades increased (by .3-.4 for the 

classical and no cut-score method, and by .65 for the Cohen and Hofstee method). 

Evaluating the MSE per window shows the Hofstee and Cohen method have the 

highest MSE for grades below 4, while the classical method results in the highest MSE 

values for grades above 6.   
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Table 3: MSE and Correlation for Different True Grade Transformations for Scenario 1 

1Class refers to the classical method. Note: in scenario 1 N = 400, mean difficulty was set at 0, mean 
discrimination 0.5, tests had 40 items with 4 answer alternatives, the Cohen percentile was set at .95 
and the pre-fixed percentage of items to answer correct at 55% in the classical and Cohen method.  

 

Grades. Overall, the average estimated grade using the classical method was always 

lower than the average true grade, resulting in an underestimation of the true grades 

as shown in Table 4. The Cohen and Hofstee method resulted in quite similar average 

estimated grades, which were an overestimation of the true grades for the cohorts 

with a low average grade and an underestimation for cohorts with a high average true 

grade. Overall, for cohorts with a low true grade, the overestimation was largest for 

the Hofstee method. For cohorts with a higher true grade, the underestimation was 

largest for the classical method estimates. The results per window showed that the 

specific transformation only mattered slightly for the under- or overestimation of the 

cut-score methods. For grades below 4 the proportion of minimum true grades slightly 

influenced the classical methods’ accuracy as it underestimated true grades when few 

minimum grades occurred and overestimated true grades in cohorts with more 

True Grade 
Transformation MSE Correlation 

Mean 

Prop. 1.0  
true 
grades Class1 Cohen Hof None Class Cohen Hof None 

5.5 .0005 1.15 1.08 1.10 1.39 0.74 0.74 0.74 0.74 
5.5 .001 1.17  1.12 1.14 1.42 0.74 0.74 0.74 0.74 
5.5 .005 1.28 1.29 1.30 1.53 0.74 0.74 0.74 0.74 
5.5 .01 1.37 1.40 1.42 1.62 0.74 0.74 0.74 0.74 
5.5 .025 1.56 1.63 1.65 1.80 0.74 0.74 0.74 0.74 
6.0 .0005 1.47 1.02 1.02 1.82 0.74 0.74 0.74 0.74 
6.0 .001 1.50 1.09 1.09 1.85 0.74 0.74 0.74 0.74 
6.0 .005 1.61 1.30 1.30 1.96 0.74 0.74 0.74 0.74 
6.0 .01 1.70 1.44 1.44 2.04 0.74 0.74 0.74 0.74 
6.0 .025 1.88 1.69 1.70 2.19 0.74 0.74 0.74 0.74 
6.5 .0005 1.87 1.20 1.18 2.27 0.74 0.74 0.74 0.74 
6.5 .001 1.90 1.26 1.25 2.30 0.74 0.74 0.74 0.74 
6.5 .005 2.00 1.47 1.46 2.39 0.74 0.74 0.74 0.74 
6.5 .01 2.07 1.60 1.59 2.45 0.74 0.74 0.74 0.74 
6.5 .025 2.21 1.84 1.84 2.57 0.73 0.73 0.73 0.73 
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minimum grades. For grades above 6, the Cohen and Hofstee method underestimated 

grades except when the average grade and proportion of true grades were both low.  

Table 4: Mean and SD for Different  

True Grade Transformations over all Grades for Scenario 1 

Theta to True Grade Transformation True Grade 

Mean 
Proportion of 1.0  
True Grades Mean SD 

5.5 .0005 5.50 1.37 
5.5 .001 5.50 1.46 
5.5 .005 5.50 1.73 
5.5 .01 5.49 1.90 
5.5 .025 5.49 2.20 
6.0 .0005 5.99 1.52 
6.0 .001 5.99 1.61 
6.0 .005 5.98 1.90 
6.0 .01 5.98 2.07 
6.0 .025 5.95 2.37 
6.5 .0005 6.48 1.65 
6.5 .001 6.48 1.74 
6.5 .005 6.45 2.03 
6.5 .01 6.43 2.20 
6.5 .025 6.38 2.49 
Methods to 
calculate 
grades 

Classical 5.00 1.49 
Cohen 6.03 1.19 
Hofstee 6.07 1.17 
No cut-score  4.50 1.34 

 

Correlation. As can be seen in Table 3, the correlation between the true and 

estimated grades using all grades was about .74 for all cut-score methods, across all 

transformations. For the different windows, a similar pattern was observed, except for 

grades above 6. Here, the classical cut-score method resulted in lower correlation 

values compared to the other three methods.  
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Classification accuracy  

Sensitivity. In general, the sensitivity (i.e., the proportion of students that passed, 

from all those that should have passed) was lowest for grades estimated with the 

classical cut-score method, as can be seen in Table 5. The difference in sensitivity 

between the methods only slightly increased as the average true grade increased. 

Overall, sensitivity decreased a bit as the average grade increased. Only for cohorts 

with higher average true grades the sensitivity slightly increased as the proportion of 

true grades of 1.0 increased. So, the classical cut-score method resulted in the highest 

false negative rate. 

Specificity. The specificity (i.e., the proportion of students that failed, from all those 

that should have failed) was lowest for the Hofstee method, followed by the Cohen 

method as can be seen in Table 5. The difference in specificity across the methods 

decreased as the average true grade increased and slightly increased as the proportion 

of true grades of 1.0 increased in a cohort with an average true grade of 6.0 or 6.5. 

Whereas the specificity values for the grades estimated using the classical method 

were not influenced much by the transformation applied, the specificity of the Cohen 

and Hofstee method increased as the average true grade increased and slightly 

decreased as the proportion of true grades of 1.0 increased for cohorts with higher 

average true grades. So, the false positive rate was highest for the Cohen and Hofstee 

methods.  

Total proportion of misclassifications. As shown in Table 5, the total proportion of 

misclassifications was highest for the Hofstee and Cohen method when the average 

true grade was low. When the average true grade was higher the classical correction 

method resulted in the highest proportion of misclassifications. In general, the 

differences between the methods increased as the average true grade increased as 

well. Also, the difference between the methods decreased as the proportion of true 

grades of 1.0 increased for these cohorts with a higher average. Overall, the 

proportion of misclassifications increased a bit for grades estimated using the classical 

method as the true grade average increased and decreased slightly as the proportion 

of true grades of 1.0 increased in cohorts with an average of 6.0 or 6.5.  
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For the Cohen and Hofstee methods this was the other way around and the proportion 

of misclassifications decreased slightly as the average true grade increased. Overall, 

for most transformations, the Cohen method resulted in the lowest proportion of 

misclassifications.  

Positive predictive value. The positive predictive value (i.e., all students that should 

have passed from those that passed) was lowest for grades estimated using the 

Hofstee and Cohen method, as shown in Table 5. The difference in the positive 

predictive value between the methods decreased somewhat as the true average grade 

increased and the difference between the methods became slightly larger as the 

proportion of true grades of 1.0 increased in cohorts where the average was 6.0 or 

6.5. Overall, the positive predictive values increased as the average true grade 

increased, with the increase being somewhat larger for the Hofstee and Cohen method 

than the classical method. The positive predictive values slightly decreased as the 

proportion of minimum true grades increased for cohorts with an average true grade 

of 6.0 or 6.5. Overall, the classical cut-score method had the highest positive 

predictive value.  

Results per Variable 

Sample size. For smaller samples, the patterns in MSE were similar to those observed 

in scenario 1 in which 400 students were included. Only, the Cohen method showed 

differences, where it resulted in the highest MSE for some transformations in very 

small cohorts of 20 students. As sample sizes were smaller, the average estimated 

grade for the Cohen method became higher. Additionally, the Cohen method resulted 

in the largest proportion of misclassifications for cohorts with an average true grade. 

Overall, the specificity and positive predictive value were slightly lower for the Cohen 

method, thereby slightly increasing the differences between the methods for these 

classification rates. Thus, the Cohen method seems less accurate for small sample 

sizes. 

Test difficulty. Varying test difficulty showed different results for the MSE values as 

illustrated in Figure 2. With increasing test difficulty, the Cohen and Hofstee method 

performed best for most cohorts, while for easier tests, the classical method most 



 

 128 

 

 

 

 

 

 

 

 

5 

 

 

 

 

 

 

 

 

 

often resulted in the lowest MSE values. As shown, MSE values, as well as the 

difference in them across methods increased as test difficulty increased. Similarly, the 

average estimated grades decreased as test difficulty increased. Whereas the degree of 

over- and underestimation for the Cohen and Hofstee method decreased as tests were 

more difficult (depending on the specific grade window), the degree of 

underestimation increased for the classical method to a larger extent (throughout all 

windows). Furthermore, correlation values slightly decreased as test difficulty 

increased. Additionally, when test difficulty increased, sensitivity values decreased 

and more so for the classical method, thereby increasing the differences in sensitivity 

between the methods. For easier tests, sensitivity values increased, decreasing the 

differences in methods. The specificity values increased for the Cohen and Hofstee 

method as difficulty increases (decreasing the differences), and the values decreased 

for all methods as tests were easier. When test difficulty increased, the proportion of 

misclassifications was highest for the classical method, regardless of the 

transformation. Consequently, the differences between the methods increased for 

more difficult tests. For easier tests, the Hofstee method mostly resulted in the highest 

proportion of misclassifications. Finally, the positive predictive value increased as tests 

were more difficult and decreased as tests were easier. To summarize, for difficult 

tests differences between the methods become more pronounced, where the Cohen 

method outperformed the other methods, whereas the classical method was superior 

for easier tests.  

Figure 2. MSE values for varying test difficulty from -0.8, through 0, to 0.8. 
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Figure 3. MSE values for varying test discrimination from 0.30, 0.50 to 1.0. 

Item discrimination. The MSE values for varying item discrimination are shown in 

Figure 3 for three of the simulated scenarios. As can be seen, the Cohen method 

resulted in the highest MSE when item discrimination was low, for cohorts with a low 

average true grade. As item discrimination increased, the classical method resulted in 

the largest MSE values regardless of the transformation. Overall, MSE values 

increased as test discrimination decreased and MSE decreased as test discrimination 

increased (here, the differences between the methods became slightly more 

pronounced). With decreased item discrimination, the average estimated grade for the 

Cohen method increased, while that of the others remained the same estimate. This 

increased the overestimation of the Cohen method for grades below 6. As item 

discrimination increased, the average estimated grade slightly increased for the 

classical and Hofstee method, while that of the Cohen method decreased to a 

relatively larger extent. As a consequence, the Cohen method resulted in an 

underestimation and overestimation similar to that of the classical method as test 

discrimination increased. Overall, as discrimination decreased, the correlation values 

decreased as well, and vice versa. Furthermore, the classification accuracy decreased 

as discrimination decreased. For the proportion of misclassifications, the Cohen 

method had the largest proportions for cohorts with a low average true grade. 

Overall, the differences in the classification measures became larger as discrimination 

decreased. As item discrimination increased, the classification accuracy increased and 

the differences in sensitivity, specificity, and positive predictive value between the 

methods decreased. Thus, differences between methods were smaller for tests with 
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high discrimination, and for tests with lower discrimination especially the Cohen 

method was affected, resulting in weaker performance for cohorts with low average 

true grades.  

Test length and the number of response options. The results for different simulated 

tests showed different patterns compared to the first scenario where tests had 40 

items with 4 response options. As shown in Figure 4, test length was of influence as 

the classical method resulted in the highest MSE values for shorter tests, regardless of 

the transformation applied. For these short tests, the average estimated grade of the 

Cohen method decreased, while that of the Hofstee method slightly increased. For 

longer tests, the Cohen method resulted in the largest MSE values for cohorts with an 

average true grade of 5.5, as the MSE values of the classical method decreased. Here, 

the average estimated grade of the Cohen method slightly increased. Furthermore, the 

correlation values decreased for shorter tests and increased for longer tests. Overall, 

the classification accuracy decreased for shorter tests. The sensitivity and specificity 

values slightly decreased, the positive predictive value decreased only for the classical 

method, and the proportion of misclassifications increased. Overall, this showed that 

longer tests resulted in higher accuracy than shorter tests.  

Second, the number of response options showed to be of considerable influence, as 

shown by the MSE values in Figure 5 in which 60 item tests with different number of 

response options are portrayed (note that the 20 item tests showed similar results, yet 

slightly more pronounced). Overall, the MSE values increased as the number of 

response options decreased, thereby increasing the differences in MSE among the 

methods where the classical method had the highest MSE values. With fewer response 

options, the average estimated grades decreased for the classical and Cohen method 

(with a stronger decrease for the first). Furthermore, correlation values showed 

differences among the methods as the correlation values of the classical method were 

lower with fewer response options. Also, with fewer response options, the sensitivity 

values decreased considerably, while the specificity, proportion of misclassifications, 

and positive predictive value increased (relatively more for the Cohen method but not 

for the Hofstee method). Overall, the classical method had the largest proportion of 

misclassifications in tests with only few response options. So, in general more 
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response options results in higher accuracy, with this effect being most pronounced 

for the classical method. 

Figure 4. MSE values for a short test of 20 items and a long test of 60 items. 

Figure 5. MSE values for varying the number of response options in a 60 item test. 
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specificity, and positive predictive value for the Cohen method decreased, while the 

proportion of misclassifications slightly increased for cohorts with an average true 

grade of 5.5. These results show that using a smaller reference group in the Cohen 

method leads to more accurate results.  
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Cut-score percentage. Varying the percentage of items to set the cut-score in the 

classical and Cohen method also influenced the results. For cohorts with a low 

average true grade, the Cohen method had the highest MSE when the percentage was 

lowered. Alternatively, increasing the percentage resulted in the classical method 

having the highest MSE values regardless of the transformation. When the percentage 

was lower, the estimated grade of the classical method increased most. Also, for these 

situations, sensitivity values increased, while the specificity and positive predictive 

values of the classical method decreased (with the Cohen scoring the lowest positive 

predictive values). Finally, the Cohen method resulted in the largest proportion of 

misclassifications for cohorts with an average true grade of 5.5 and 6.0. For a higher 

cut-score percentage, the average estimated grades decreased (more so for the 

classical method). Furthermore, the sensitivity values for the classical method became 

larger (and slightly increased for the Cohen method) as the percentage was lowered. 

As the percentage increased, the sensitivity values decreased, while the specificity 

increased (relatively more for the classical method), as did the positive predictive 

value (more so for the Cohen method). Overall, the proportion of misclassifications 

decreased for the Cohen method and increased for the classical method, as the 

percentage was stricter. To conclude, at higher percentages the Cohen method was 

superior, whereas at lower percentages the classical method performed best.  

Discussion 

The aim of this study was to compare the accuracy of different cut-score methods that 

are tenable in a Dutch higher education context in which small-scale non-

standardized tests are used that are designed in-house. In this study we compared the 

performance of an absolute method (i.e., the classical cut-score method) and 

compromise methods (the Cohen and Hofstee method). These methods can be 

arranged according to the degree of sample information taken into account: the 

classical does not, the Cohen only takes information of the best performing students 

into account, and the Hofstee method specifies both the highest and lowest scoring 

students. To evaluate the performance of these methods, simulations were performed 

to obtain students’ true and estimated grades, thereby creating realistic higher 

education contexts by varying sample size, test difficulty, test discrimination, test 
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length and the number of response options, as well as the specific percentages used in 

the cut-score methods. Additionally, to prevent information from getting lost, 

performance was not only evaluated using the pass/ fail classification rates but also by 

evaluating the accuracy of the estimated grades throughout the entire grading scale.  

In general, the results showed that not using a cut-score method in estimating grades 

did not result in accurate grades as these severely underestimated the students’ true 

grades. Similarly, the classical method did not perform well as it underestimated the 

true grades in most simulated scenarios (to a larger extent when students’ true grades 

increased). Only for cohorts in which the true ability of students was low, this 

underestimation was less problematic and the differences with the other methods 

were smaller. In general, the Cohen and Hofstee method resulted in quite similar 

estimated grades, that were either an under- or overestimation, depending on the 

students’ true grades. Specifically, for students with low true grades, the Cohen and 

Hofstee method overestimated the true grades (the overestimation of the Hofstee 

method being slightly larger), while for students with high true grades, the Cohen and 

Hofstee method underestimated the true grades (yet to a smaller extent than the 

classical method). Furthermore, the classification rates showed that the classical 

method did not perform well at classifying the proportion of students that passed 

from those that should have passed (i.e., sensitivity), resulting in the highest false 

negative rate. Contrary, the Hofstee and Cohen method were bad at separating the 

proportion of students that failed from those that should have failed. In other words, 

using a more relative approach seems to result in higher false positive rates. This was 

also evident by the positive predictive values (i.e., all students that should have 

passed from those that passed) which were higher in the Hofstee and Cohen method 

compared to the classical method. Overall, the proportion of misclassification was 

highest in the Hofstee and Cohen method when the average true grade was low 

(having more misclassifications due to the overestimation of grades), and highest for 

the classical method when average true grade increased (having more 

misclassifications due to the underestimation of grades).  

Besides these results, varying the sample size, test difficulty, test discrimination, test 

length, and number of response options in MC items influenced the performance of 
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the cut-score methods to different degrees. With very small sample sizes, the Cohen 

method performed worse than the Hofstee method when students’ true grades were 

low, resulting in a higher MSE and more misclassifications. Given the relative nature 

of the Cohen method, selecting the best performing students in such small cohorts of 

low performing students, seems to result in an overestimation that results in worse 

performance than the classical method. An aspect that influenced the results to a 

larger extent was the test difficulty, as tests became more difficult the Cohen method 

performed better and the classical method worse. Here, the misclassification 

proportions were higher for the classical method than the Cohen method, regardless 

of the true grade in the cohort. For easier tests, the Cohen and Hofstee method 

performed worse (though differences in performance between the methods became 

smaller). Similarly, the item discrimination influenced the results. With lower item 

discrimination Cohen’s performance decreased, and in general the differences in 

classification rates between the methods became larger. On the other hand, when 

item discrimination increased, the classical method’s performance decreased. Finally, 

results for different test lengths showed that shorter tests resulted in decreased 

performance of the classical method. Longer tests resulted in decreased performance 

of the Cohen method when true grades were low. For cohorts with higher true grades, 

Cohen’s proportion of misclassification slightly decreased while that of the classical 

method increased. More so than the other variables, the number of response options 

was of influence. As fewer response options were included, performance declined 

(mostly so for the classical method), showing that tests with only two response 

options are preferably avoided.      

Additionally, varying the percentages to set the cut-score provided information on 

how to best use the Cohen and classical method. Overall, increasing the percentage of 

students to use as a reference in the Cohen method decreased its performance. In line 

with previous studies (e.g., Cohen-Schotanus & Van der Vleuten, 2010; Taylor; 2011), 

it is therefore advised to use the best five instead of ten percent as a reference group. 

Furthermore, evaluating the pre-fixed percentage of items to answer correctly in the 

classical and Cohen method, showed that lowering the percentage results in decreased 

performance of the Cohen method. Alternatively, increasing the percentage harmed 
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the performance of the classical method. This shows that when using the classical 

method, the percentage set should not be too strict, while for the Cohen method the 

percentage should not be too lenient, as in accordance with Cohen-Schotanus and Van 

der Vleuten (2010) who used 60%.  

Providing recommendations on the use of cut-score methods in higher education tests 

is complicated by the finding of our sensitivity analysis that showed that the specific 

theta to true grade transformation mattered in the comparison of the cut-score 

methods. As theta and consequently true grades are not available in practice, it is 

difficult to determine the specific situation in practice. For example, for non-

standardized tests that vary in difficulty such as those used in higher education, a 

cohort’s ability level is often unknown. Overall, though, the results show the strengths 

and weaknesses of each method that may be evaluated in light of the goal of higher 

education testing. For example, it might be preferred to have false positives in an 

educational setting, assuming that students might fail on a consequent test (or other 

subsequent academic hurdles), than to have false negatives where a student might not 

recover from an undeserved fail. From this perspective, one might prefer to apply the 

Cohen method, sometimes overestimating grades, than having a classical method in 

which student’ true grades are mostly underestimated. As a next step, a decision tree 

will be developed to provide a detailed and easily accessible overview of the results 

that were obtained. This may function as an aid in choosing the most appropriate cut-

score method in a specific higher education setting. Overall, the sensitivity analysis is 

important to perform when doing a simulation study in order to assess the tenability 

of the assumptions and assess how results depend on the researchers’ choices. While 

these assumptions may be considered a disadvantage of using simulations as a 

research method, it does have the advantage of forcing the researcher to make these 

choices explicit. Simultaneously, these are easily published and made transparent, 

thereby increasing the reproducibility of research.  

Importantly, as shortly touched upon in the introduction of this study, using a 

percentage of correctly answered items to set the cut-score as a proxy for students’ 

ability levels is questionable. Ideally, the cut-score should be set based on the 

performance standard, or student ability level, that is required for a test such that the 
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pass or fail decision implies that students meet these performance standards or not. 

This should be done at the level of students’ underlying ability (e.g., true grades). By 

only using a (arbitrary) percentage of test items to answer correctly to set the cut-

score, the pass/fail decision risks losing its meaning across different forms of the test 

(e.g., tests with varying difficulties) as the meaning of passing or failing would vary 

based on the properties of the test. This is a problematic aspect of setting the cut-score 

at a specific percentage of test items answered correct that has not received much 

attention in Dutch higher education and is an important aspect for policy makers and 

instructors to be aware of.  

Currently, our study mainly focused on MC knowledge tests for which we included a 

guessing parameter in the simulation of students’ response patterns. However, the cut-

score method that was consequently applied to the response patterns only used 

students’ total scores. In that sense, our results might also apply to open ended items. 

As the results of varying the type of test showed, increasing the guessing probability 

by decreasing response options resulted in less accuracy. Consequently, open ended 

items where guessing might be low, might result in higher accuracy levels overall, not 

taking into account any effects of subjectivity in assessing open item responses. 

Furthermore, the Dutch grading scale was used as an example and reference in this 

simulation study. This is, however, just an example of possible transformations. As 

long as the assumption of the normal standard distribution of theta and the equal 

intervals in the grading scale applies, the transformation of theta to true grades might 

mimic other grading scales where the results still apply. Notably, this may not be the 

case for situations in which instructors determine grades by strictly using normative 

information. Given the aim of higher education tests, that is, to test for a specific 

knowledge or ability level, this might also not be an appropriate method for 

transforming test scores to grades in higher education. In addition, this study 

evaluated the Cohen method in which the 5% best performing students were used as 

a reference for test difficulty. Hereby, it is assumed that his group is stable. For future 

studies, it would be interesting to assess the accuracy when using other (possibly 

more stable) groups as reference for test difficulty, such as a group of students 

between the 25th and 75th percentile.  
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Overall, the aim of our study was to evaluate the cut-score methods in small-scale 

non-standardized Dutch higher education tests that are often designed in-house. With 

this, we aim to make seemingly arbitrary choices more conscious choices. In general, 

our results show that the classical method mostly underestimates students’ ability, 

while the Cohen method sometimes overestimates students’ ability. This shows that, 

as a whole, taking into account some sample information in terms of the performance 

of the best scoring students might be beneficial in estimating students’ grades.  
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Appendix A. Detailed Outline Simulation Procedure 

In this appendix, the simulation is discussed in detail.  

Simulating Student Grades 

First, student theta scores were generated using the R function theta_sim. A sample 

of n true grades was generated from a standard normal distribution with a mean m 

and standard deviation sd using the rnorm function: 

> theta_sim <- function(n, m, sd) { 
+   theta <- rnorm(n, mint, maxt, m, sd) #sampling from normal  
           distribution 
+   return(theta)} 
 
Second, theta scores were transformed to true grades using a linear transformation in 

which it was assumed that the average true grade corresponded to an average theta 

score of zero. For this, the R function TrueGrade was applied. This function takes the 

true grades, the average true grade (mTrGr), the minimum true grade (mingrade), 

the maximum true grade (maxgrade), and the theta score at the minimum true grade 

of 1.0 that indicates a specific proportion of 1.0 true grades (mintheta): 

> TrueGrade <- function(theta, mingrade, maxgrade, mintheta){ 
+   TrGr <- c() 
+   for (i in 1:length(theta)){ #transformation theta to true grade 
+     TrGr[i] <- meanTrGr + ((mTrGr-mingrade)/(0-
mintheta)*theta[i])} 
+     TrGr[TrGr<1.0] <- mingrade #round grades  
+     TrGr[TrGr>10.0] <- maxgrade 
+     return(TrGr)} 
 
Next, correct and incorrect scores were simulated for each item based on the students’ 

theta using item response theory (IRT). Specifically, the three-parameter logistic 

model (3PLM; Birnbaum, 1968) was applied, having a parameter for each item’s 

difficulty, !", the item’s discriminability, ∝", and the lower bound probability, $%":  

(1) & '(" = 1+,-., !0", ∝1", $2%!3 = 	$2%! + (1 − $2%!)
9:;	(∝1!<="> ?@>!A)

BC9:;	(∝1!<="> ?@>!A)
. 

In the function simcorincor the item score patterns are simulated sing the ltm 

package (Rizopoulos, 2006). This function takes the k number of items in a test as an 

argument, as well as the n number of students, and the mean and standard deviation 
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of the normal distributions from which item discrimination, item difficulty, and item 

guessing parameters were sampled.  

> simcorincor <- function(k, n, meandif, sddif, meandisc, sddisc,  
         meanguess, sdguess, Theta){ 
+   beta0 <- rnorm(k, mean = meandif, sd = sddif) #simulating item  
   difficulty parameters (delta) 
+   beta1 <- rnorm(k, mean = meandisc, sd = sddisc) #simulating item  

    discrimination parameters (alpha) 
+   beta2 <- rnorm(k, mean = meanguess, sd = sdguess) #simulating  

item guessing parameters (alpha) 
+   thetas <- as.matrix(cbind(beta0,beta1,beta2)) 
+   corincorsim <- rmvlogis(n, thetas = thetas, IRT = TRUE, link =  

      c("logit"), distr = c("normal"), z.vals = theta) 
+   return(corincor)} 
 
Cut-Score Methods 
 
After obtaining students’ true scores and true knowledge proportions (which are 

linearly related) as well as students ‘observed’ item scores, different cut-score methods 

were applied to the test scores to convert them into grades.  

For the classical cut-score method the function ClassicalMethod was written. Its 

arguments are: the k number of items, the percentage of items to answer correct after 

correction for guessing at the cut-score (caesura_perc), the grade obtained at the 

cut-score (csgrade), the correct incorrect scores for each student (corincorsim) and 

the minimum (mingrade) and maximum grade that can be obtained (maxgrade). 

> ClassicalMethod <- function(k, caesura_perc, csgrade, itemdata,  
                 corincor, mingrade, maxgrade){ 
+   NrCorrect <- apply(corincor, 1, sum) #total number of correct  

    items for everyone 
+   Guess <- (itemdata[1] / 2) + (itemdata[2] / 3) + (itemdata[3]/4)  
    #determine the guessing probability based on the number of items  
    with 2 (in [1]), 3 (in [2]) or 4 (in[3]) answer alternatives 
+   Caesura <- (Guess * k) + caesura_perc * (k - (guess * k))  
    #determine cut-score taking into account correction for guessing 
+   b1 <- (maxgrade - csgrade) / (k - Caesura) #slope calculating    

     grades from total scores 
+   Grade <- round(csgrade + (NrCorrect – Caesura)*b1, 1)   
+   Grade[Grade < minTrGr] <- minTrGr #truncate grade 
+   result <- list(caesura = Caesura, grade = Grade) 
+   return(result)} 
 
The Cohen method was applied using the CohenMethod. In addition to arguments 

described before, this function takes the size of the group that is selected as the best 

performing students (perc_trim_cohen) as an additional argument. 
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> CohenMethod <- function(k, perc_trim_cohen, caesura_perc, csgrade,  
             itemdata, corincor, mingrade, maxgrade){ 
+   NrCorrect <- apply(corincor, 1, sum) #determine the total number  

   of correct items for each individual 
+   Knowlprop <- NrCorrect/k     
+   Trimknow <- Knowlprop [trunc(rank(Knowlprop))/length(Knowlprop)  
    >= perc_trim_cohen] #rankorder individuals based on  
    their knowledge proportion, determine percentile   
    rank and remove those with rank beneath percentile  
    we want to use for caesura determination. 
+   Guess <- (itemdata[1] / 2) + (itemdata[2] / 3) + (itemdata[3]/4) 
    #determine the guessing probability based on the number of items 
    with 2 (in [1]), 3 (in [2]) or 4 (in[3]) answer alternatives 
+   NrCorrectTrim <- Trimknow * k #estimate the number of correct 
      Items for the selected individuals 
+   Caesura <- (guess * k) + caesura_perc * (mean(NrCorrectTrim) - 

(guess * k)) #determine cut-score taking into account 
correction for guessing 

+   b1 <- (maxgrade - csgrade) / (k - Caesura) #slope 
+   Grade <- round(csgrade + (NrCorrect – Caesura)*b1, 1)   
+   Grade[Grade < mingrade] <- mingrade #truncate grades 
+   result <- list(caesura= Caesura, grade = Grade 
+   return(result)} 
 
For the Hofstee method the function HofsteeMethod was written. This function takes 

the following arguments not used before: the minimum acceptable cut-score (Kmin), 

the maximum acceptable cut-score (Kmax), the minimum acceptable failure rate 

(Fmin), and the maximum acceptable failure rate (Fmax).  

> HofsteeMethod <- function(Kmin, Kmax, Fmax, Fmin, csgrade, 
corincor,k) { 
+   NrCorrect <- apply(corincor, 1, sum)#determine the total number  
    of correct items for each individual 
+   Knowlprop <- NrCorrect / k 
+   hofsteefunctions <- function(knwldgrange) { 
+   cdf <- ecdf(Knowlprop) #create the cumulative density function  
   of the estimated knowledge proportion 
+   prop_failed_cdf <- cdf(knwldgrange) #determine the cumulative  
    probability of knowledge proportions tussen Kmin and Kmax. This 
    gives the probability of individuals that score lower than cut 
    off indicated by Kmin and Kmax (who fail the test) 
+   b1 = (Fmax - Fmin) / (Kmin - Kmax) 
+   b0 = -Kmin * b1 + Fmax 
+   prop_failed_lin = b0 + b1 * knwldgrange #caesura function 
+   return(matrix(c(prop_failed_lin, prop_failed_cdf), 1, 2))} #this 
    function returns the cut-score proportion and the observed 
    proportion fails for knowledge proportion.  
 
#The following lines of code are used to create a range of knowledge 
proportions for which we want to determine the cumulative 
probabilities 
+   Kmin100 = Kmin * 100  
+   Kmax100 = Kmax * 100  
+   knwldgrange <- matrix(seq(from=Kmin100, to=Kmax100, by=.1),,  
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       1)/100 
+   funct <- cbind(knwldgrange, t(apply(knwldgrange, 1,  
                      hofsteefunctions))) #create a matrix with the  
    range of cut-scores between Kmin and Kmax, the corresponding y- 
    coordinates on the caesura-line and the y-coordinates (the  
    cumulative probabilities) based on the cdf of the knowledge  
    proportions 
+   if (length(funct [funct [,3] <= Fmax & funct [,3] >= Fmin])== 0) 

{restricfunct <- matrix(NA, nrow = dim(funct)[1], ncol = 3)}  
+   else { 
+  restricfunct <- matrix(funct[funct[, 3] <= Fmax &  
       funct[, 3] >= Fmin],, 3)} #create a matrix  
  for all observations that fall between minimum and maximum  
  acceptable fail rates (Fmin and Fmax) with range of cut-scores  
  between Kmin and Kmax, the corresponding y-coordinates on the  
  caesura-line and the y-coordinates (the cumulative  
  probabilities) based on the cdf of the knowledge proportions   
+   restricfunct_dif <- cbind(restricfunct, 
    abs(restricfunct[,2] – restricfunct[, 3])) #calculate  
    difference between y-coordinate on caesura line and  
    corresponding y-coordinate based on cdf of knowledge proportions 
+   colnames(restricfunct_dif) <- c("knowledgeprop",  

"prop_failed_lin", "prop_failed_cdf", "dif")  
    #create two separate dataframes with 1) the range of 
    knowledge proportions between Kmin and Kmax and 2) The 
    proportion of individuals that fail based on either the ceasura 
    line or the estimated cdf. 
+   prop_failed_lin <- data.frame(x = restricfunct_dif[, 1], y =                         

                restricfunct_dif[, 2]) 
+   prop_failed_cdf <- data.frame(x = restricfunct_dif[, 1], y =  
         restricfunct_dif[, 3]) #select rows 
    belonging to the knowledge proportion for which the difference  
    between the caesura line and the estimated cdf are minimal 
+   min_dif <- matrix(c(restricfunct_dif[restricfunct_dif[,4] ==  

min(restricfunct_dif[, 4])]),, 4) #selects knowledge    
    levels for which difference is minimal.  
#If more than one row has the same minimal difference between the  
caesura line and the estimated cdf, the average knowledge proportion 
of these rows is determined 
+   caesur a_perc <- mean(min_dif[, 1]) 
+   b1 <- (maxgrade - csgrade) / (mingrade - caesura_perc)  
+   Grade <- round(csgrade + b1 * (Knowlprop - caesura_perc), 1) 
+   Grade [Grade < mingrade] <- mingrade 
+   Grade [Grade > maxgrade] <- maxgrade  
+   result <- list(grade = Grade, caesura = caesura_perc) 
+   return(result)} 
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Finally, the no cut-score method was applied using the NoCaesuraMethod function. 

This function uses similar arguments as mentioned before.  

> NoCaesuraMethod <- function(k, corincor, itemdata, maxgrade,    
         mingrade,) { 
+   NrCorrect <- apply(corincor, 1, sum) #determine the true  
     number of correct 
+   items for each individual 
+   Guess <- (itemdata[1] / 2) + (itemdata[2] / 3) + (itemdata[3] / 
4)   
    #determine the guessing probability based on the number of items  
    with 2 (in [1]), 3 (in [2]) or 4 (in[3]) answer alternatives 
+   b1 <- (maxgrade - mingrade) / (k) #slope 
+   Grade <- round((NrCorrect - (Guess*k)) * b1, 1) #grade 
+   Grade[Grade < mingrade] <- mingrade #truncate grades 
+   result <- list(caesura= Caesura, grade = Grade) 
+   return(result)} 
 
Note that these methods are now described such that corincor scores are used as 

input. However, to compare outcomes to true scores these methods can also be 

adjusted, such that they use the true knowledge proportion times the k items as the 

total score as input for the cut-score methods.



Chapter 6 General Discussion 

 143 

 

 

 

 

 

 

 

 

 

 

6 

 

 

 

 

 

 

 

 

6 
General Discussion 



 

 144 

 

 

 

 

 

 

 

 

 

 

6 

 

 

 

 

 

 

 

In higher education curricula, students’ performance is continuously evaluated by 

administering tests. With these tests, students’ performance is estimated, based on 

which different decisions are made. On the level of the curriculum, tests are combined 

to inform decisions to determine whether students are allowed to continue their 

studies or whether students meet the requirements to receive their diploma. 

Additionally, on the level of individual courses, students’ performance can be 

evaluated using individual tests for which decisions are made such as whether 

students meet the requirements to pass the test. The aim of this dissertation was to 

evaluate the decisions made in higher education about students’ performance, both on 

the curriculum level in which multiple tests are combined in Chapter 2 and 3, and on 

the level of individual tests in Chapter 4 and 5. To preserve the educational quality of 

a study program’s diploma, such that students who receive the diploma meet the 

requirements set by the institution, these decisions on students’ performance should 

be valid. 

General Discussion 

As the example in the introduction of this dissertation illustrates, different 

stakeholders in higher education curricula make different decisions about students’ 

performance. Whereas, as described, objectives may differ depending on one’s 

perspective, both course instructors like Mark and policy makers like Carol wish to 

make accurate decisions about students’ performance. As available resources, such as 

time and budget, are limited in higher education curricula, the quality of tests in 

higher education may be limited, which consequently may result in inaccurate 

decisions. In Chapter 1 and Chapter 2 the accuracy and consequences of allowing 

compensation when combining multiple tests was evaluated for decisions such as the 

binding study advice (BSA; that is, the Dutch academic dismissal policy) decision 

made by Carol. As both studies show, some of the motivations to implement course 

compensation may be questioned. For example, the results of Chapter 2 showed that 

using the average grade to make decisions does not necessarily result in more 

accurate decisions than a traditional testing system in which course credits are 

assigned to individual courses. Instead, the accuracy of compensatory decision rules 

relative to conjunctive rules depends on the degree of compensation allowed (i.e., the 
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specific GPA and minimum grade that is required), as well as the context in which the 

decision is made, in terms of the average test reliability, average test correlation, and 

the number of reexaminations.  

Furthermore, the results of Chapter 3 showed that in curricula in which course 

compensation is allowed, three groups of students may be identified for which the 

relation between a first-year precursor course and second-year sequel course is 

positive. Most relevant for this dissertation, one of these classes is characterized by an 

overall low performance in the first-year on average (that is, the Psychology students 

had a low first-year average and a high number of compensations and retakes on 

average). For this group, the average grade on the precursor course was below the 

required average grade, while the average grade on the sequel course was insufficient 

considering the Dutch grading scale (i.e., a cut-score of 5.5 on a 1-10-point scale). 

These results show that when performance on a precursor course is low, performance 

on a sequel course is low as well and suggest that knowledge accumulation for this 

group of students might not be sufficient when a precursor course could be 

compensated. At the same time, the precursor course was also compensated (i.e., 

students performed low) by students whose overall first-year performance was 

moderate to high and in these groups of students the grade on the sequel course was 

on average sufficient. This seems to suggest that some of the knowledge and skills 

required to score well on a sequel course could be accumulated in other courses. In 

this sense, course compensation might be undesirable in curricula where the content 

of sequel courses, where performance may be low for a group of students whose 

overall first-year performance is low, is critical in the end qualifications of the 

curriculum.  

Given the discussion on whether to allow course compensation or not in a higher 

education curriculum, the results of Chapter 2 include a direct comparison of the 

accuracy of compensatory and conjunctive decision rules. The results of Chapter 3, 

however, only apply to students in a specific compensatory testing system. Whether 

the observed patterns generalize to students in a conjunctive testing system is unclear. 

However, if the learning processes would be similar across testing systems, the results 

might indicate that the group of students for whom performance on the precursor and 
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sequel course is both low would be larger in a testing system in which the minimum 

required grade on individual courses is lower (as is generally true for compensatory 

testing systems). Overall, the discussion on whether to allow for compensation and to 

what extent, mostly seems to be a discussion of favoring false negative over false 

positive misclassifications or the other way around. As Albers, Vermue, de Wolff, and 

Beldhuis (2018) conclude their study on the BSA decision and the requirements set 

within this decision, deciding on acceptable false positive and false negative rates is 

the primary role of policy makers in higher educational institutions. The results of 

Chapter 2 thereby provide a guideline in showing how different decision rules result 

in different type of misclassifications in what situations. Importantly, however, policy 

makers should design a testing system that fits the nature of their decision and the 

end qualification norms of a study program. That is, if compensation is allowed, this 

should be in line with the end qualification norms. For example, Psychology students 

would still be trained psychologist when they receive their bachelor degree, even 

though they were allowed to compensate courses in their first year. Furthermore, as 

Smits, Kelderman, and Hoeksma (2015) argue, course compensation should not be 

implemented to correct for imprecise individual measurements or, as the results in 

Chapter 2 show, should not be implemented because it is assumed that the average is 

more reliable. As described in the introduction of this dissertation, the context of the 

decision should thereby be considered. For example, for students to receive their 

master degree in which a high level of expertise is considered, each course should be 

passed to ensure they are experts as is prescribed by the degree. For receiving a 

bachelor diploma however, a student might still meet the end qualification 

requirements when a first-year course was compensated.    

Overall, the results from Chapter 2 show the importance of the quality of the 

individual tests for the accuracy of a decision based on the combination of tests. 

However, as mentioned, the quality of instructor-made multiple choice (MC) tests in 

higher education is often low. Focus in Chapter 4 and 5 is specifically on MC items, as 

this is a commonly used item format in higher education because of the possibility to 

efficiently assess a broad range of material and to easily score the items (Brown & 

Abdulnabi, 2017). Furthermore, choices made in transforming test scores to grades 
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often seem arbitrary and in Chapter 4 and Chapter 5 the choices for methods to 

correct for guessing and to determine the cut-score were evaluated to see if these 

could be improved. Whereas the results from Chapter 5 showed that the most 

accurate cut-score method varied across contexts, the results from Chapter 4 showed 

that in general the extended classical correction for guessing method was more 

accurate than the classical method that is often applied in Dutch higher education. 

Consequently, students’ ability levels could be estimated more accurately using test 

scores in most higher education tests and situations, by using some sample 

information in the correction for guessing and in setting the cut-score. When 

information on the sample is included in the correction for guessing or cut-score 

method, a more relative instead of absolute approach is taken. This might seem to 

contradict with the aim of higher education tests which is to measure students’ 

knowledge and skills on a specific course, instead of ranking students based on their 

relative performance. In higher education testing, however, many aspects vary 

throughout courses, such as the ability levels of students or the difficulty of tests. To 

account for these differences to some extent, some sample information could result in 

more accurate decisions. Consequently, the accuracy of the decision should also be 

taken into account in designing higher education policies. To ensure the method does 

not hinge on the relative approach too much, conditions could be introduced such 

that taking sample information into account is only allowed in certain situations (e.g., 

the minimum required sample size).  

Research in this dissertation underlines the importance of the way in which decisions 

on students’ performance are made in higher education curricula. Instead of using 

arbitrary cut-scores or classical methods for the sake of tradition, the research 

presented shows that these decisions should be considered carefully and preferably 

substantiated by (scientific) arguments. Overall, the large number of decisions on 

students’ performance made in higher education, and the differences between tests in 

higher education and those often studied in the educational measurement literature, 

show the relevance of studying tests in higher education within this field as well.   



 

 148 

 

 

 

 

 

 

 

 

 

 

6 

 

 

 

 

 

 

 

Scientific Contributions 

The aim of this dissertation was to evaluate decisions on students’ performance in 

higher education. To assess the accuracy of these decisions, simulations were 

performed. Whereas simulations are a common research method in the field of 

psychometrics, it is yet quite unknown in the field of educational sciences. When, 

however, we wish to assess the accuracy of decisions in the context of higher 

education, simulations are required to obtain true scores, as we need to compare the 

decision based on students’ true scores with the decision based on observed test scores 

to get information on the accuracy of the decision. The advantage of performing 

simulations is that one can model different contexts and easily perform sensitivity 

analyses by varying these aspects of these contexts across simulations. 

Simultaneously, researchers who perform simulations have to make their underlying 

data production processes explicit and can easily share this code, increasing the 

transparency of their research. Contrary, when using empirical data one is limited to 

one specific context. This aspect is especially difficult when studying policy changes in 

higher education as many factors influence students’ performance in such a specific 

context. Here, cross validation and increasing focus on predicting future data instead 

of explaining the dataset at hand (see e.g., Yarkoni & Westfall, 2017) might improve 

research in this field.  

On the other hand, a limitation of using simulations is that the model used to set up 

simulations is only an abstract representation of reality and might consequently not 

capture the whole truth. For example, assumptions about the distribution of students’ 

grades, students’ guessing behavior, or their choices of what courses to retake are 

made, which may not perfectly reflect reality. Still, by performing simulations a 

researcher makes its data production model explicit and can make its code easily 

available, increasing the transparency of research. If one does not agree with the 

model, one can easily adapt it and replicate the research using an adapted model. 

Overall, comparing a conjunctive and compensatory testing system empirically is 

difficult due to the many possible influences on student behavior and the lack of 

possibilities for randomized controlled trials in higher education research. In this 
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light, simulations allow for a good stepping stone for future (quasi)experimental 

studies.  

Directions for Future Studies and Practice  

In this dissertation, the accuracy of the decisions on students’ performance that are 

made in higher education was the main focus. However, as was also touched upon, 

additional motivations underlie the implementation of educational policy that were 

not addressed. For example, a compensatory decision rule was implemented at the 

Erasmus University Rotterdam to, among other motivations, direct study behavior 

such that students’ procrastination behavior would be reduced. As students’ study 

behavior was targeted by the new educational policy, not only student success should 

be evaluated in evaluating the effectiveness of the new policy but changes or 

differences in student (procrastination) behavior should also be assessed (Boevé et al., 

2017). For this purpose, new developments in data collection such as the use of 

mobile-devices for conducting diary studies (known as ecological momentary 

assessment or experience-based sampling) might be useful to assess students’ study 

behavior by means of their study time allocation.  

Furthermore, in this dissertation simulations studies were performed in which 

students’ reactive behavior was not incorporated. Instead of the view of a passive and 

naïve student who studies at the best of his or her abilities regardless of the testing 

system that is employed, students could be viewed as decision makers who 

strategically prepare for a test. Van Naerssen (1970) was one of the first to develop an 

economic decision-making model of examinations in which he describes the student 

as an agent that wishes to optimize his or her learning process such that the total 

effort for the student is minimized. This model was further developed by Wilbrink 

(1995). Although it is not clear (neither given) whether decision accuracy would vary 

when student behavior is modelled, future studies might evaluate this by extending 

the simulation model by incorporating student behavior. Budescu and Bar-Hillel 

(1993) and Budescu and Bo (2015) designed models for test taking behavior in which 

decision theory is combined with psychometric theory. Together, these approaches 

might serve as a good starting point for setting up a model of student strategic 

behavior at the level of the curriculum in which multiple tests are combined.  
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In addition, it is important for educational institutions to consider the evaluation of 

newly implemented educational policy or changes therein. In Chapter 3, data was 

obtained from the Erasmus Educational Research (EER) database, in which students’ 

test scores throughout different study programs and schools are collected. Overall, the 

collection of data across different schools for this database was challenged by 

differences in reporting students’ performance and use of definitions (aspects also 

experienced by Nakabo-Ssewanyana, 1999). To overcome such problems, the 

evaluation of new educational policy (i.e., its effectiveness) should be implemented or 

planned simultaneously. For this purpose, it is important to collect data that is 

informative and consistent and plan its collection in advance. Adopting a university-

wide policy for the reporting and collecting of students’ performance would not only 

improve comparisons across study programs for management purposes but for the 

scientific evaluation of educational policy as well. As empirical research and 

comparative research in higher education is complicated by the many influencing 

factors, additional challenges such as inconsistent data should be resolved when 

possible.  

Finally, this dissertation showed that the quality of the decisions to be taken are 

highly dependent on the quality of the tests. It would therefore be useful to invest in 

improving this quality. Apart from actions institutions could take themselves, such as, 

for example, training of staff, the quality of tests in higher education could be 

improved by combining forces across higher education institutions as well. For the 

most popular bachelor programs, offered at multiple (international) universities, it 

would be valuable for instructors to come together to design items collectively. In this 

way, coordinators of similar courses could collectively build a test item bank in which 

data on students’ performance could be collected and saved. By combining forces, 

instructors might have more time available to increase the quality of their test items 

and hence tests. Ultimately, nation-wide tests might even be constructed for specific 

study programs to safeguard the quality of these tests nation-wide. 
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In higher education curricula, students’ performance is continuously evaluated by 

administering tests. With these tests, students’ performance is estimated, based on 

which different decisions are made. On the level of the curriculum, tests are combined 

to inform decisions to determine whether students are allowed to continue their 

studies or whether students meet the requirements to receive their diploma. 

Additionally, on the level of individual courses, students’ performance can be 

evaluated using individual tests for which decisions are made such as whether 

students meet the requirements to pass the test. The aim of this dissertation is to 

evaluate the decisions made in higher education about students’ performance, both on 

the curriculum level in which multiple tests are combined (Chapter 2 and 3) and on 

the level of individual tests (Chapter 4 and 5). To preserve the educational quality of 

a study program’s diploma, such that students who receive the diploma meet the 

requirements set by the institution, these decisions on students’ performance should 

be valid. 

To evaluate the accuracy of the decision made in the academic dismissal (AD) policy 

(known as the binding study advice, BSA, in Dutch higher education) at the end of the 

first year of the bachelor, in which the decision whether a student is allowed to 

continue their studies is made, a simulation study was performed in Chapter 2. By 

performing real-data-guided simulations the accuracy of this BSA decision using 

different complex compensatory and conjunctive decision rules was evaluated. 

Additionally, simulations were performed to mimic several realistic higher education 

contexts. Overall, the results show that the accuracy depends on the degree of 

compensation allowed; on the required average, the minimum grade, as well as their 

combination. In general, within compensatory decision rules the false negative rate 

(i.e. those students who truly meet the requirements yet were not allowed to continue 

their studies) was lower and the false positive rate (i.e., students who do not truly 

meet the requirements yet are allowed to continue their studies) higher compared to 

conjunctive decision rules. Furthermore, the results showed that which rule is more 

accurate also depends on the average test reliability, the average correlation between 

tests, and the number of retakes. Together, these results show that the reason for 

allowing course compensation in higher education, namely that the average grade is 
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more reliable, does not generally hold in all situations but that the accuracy of the 

complex compensatory decision rule depends on its context. 

In Chapter 3 the consequences of allowing compensation in the first-year BSA 

decision on performance on a second-year sequel course was evaluated using data 

from a Psychology bachelor and a Law undergraduate program. In particular, sequel 

courses that build on material from precursor courses were evaluated to assess 

possible consequences of allowing course compensation in knowledge accumulation. 

Extending on previous research, students’ performance on sequel courses was 

evaluated for different groups of students by applying a latent class regression. 

Student groups were distinguished who portrayed different unobserved study 

processes by forming the latent classes based on similar patterns in first-year averages, 

variability in first-year grades, and similar average number of compensated and 

retaken tests. Across the two study programs, three classes of students were identified. 

The results showed that average performance on the first-year precursor course was 

under the required average grade (<6.0 on the Dutch 1-10 grading scale) while the 

second-year sequel course was on average a failing grade (<5.5) for students who 

were in the lowest performing class. This seems to suggest that compensating a 

precursor course might on average have negative consequences on the knowledge 

accumulation for students in the class with overall low first-year performance, such 

that performance on later courses is not sufficient. However, the results also show 

that the precursor course is compensated by students in each of the three classes, yet 

performance on the sequel course for students in the other two classes is on average 

not insufficient. This seems to suggest that students with higher first-year 

performance might not experience negative consequences in knowledge accumulation 

when they compensate a precursor course. 

The evaluation of the BSA decision in higher education in which multiple tests are 

combined showed the importance of the quality of individual tests. Consequently, a 

shift in focus was made to decisions about students’ performance and students’ true 

score estimation on individual tests in higher education. In Chapter 4 the accuracy of 

different methods to correct for guessing in estimating true scores in higher education 

were evaluated. Specifically, the focus was on multiple choice (MC) tests in which 
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incorrect answers are not directly penalized and students’ optimal and most common 

strategy therefore is to guess (as is also common in Dutch higher education). 

Classically, a correction for guessing is made using formula scoring. Alternative 

correction methods, such as the extended classical method, (extended) beta binomial 

models, and models from item response theory, incorporate sample characteristics. 

Performing simulations, the accuracy of the estimated true knowledge of students was 

evaluated for the different correction methods in different realistic higher education 

settings. Overall, the results showed that the estimation of true scores in MC tests 

might be improved for most contexts in Dutch higher education, by using the 

extended classical correction method proposed by Calandra (1941) and Hamilton 

(1950) or by using a method, such as our proposed weighted item difficulty 

correction, that incorporates item characteristics in the true score estimation.  

Finally, in Chapter 5 the decision of assigning grades to students’ test scores as well 

as the decision to give students a pass or fail in Dutch higher education study 

programs were evaluated. The accuracy of three standard setting methods (the 

classical absolute method, and the Cohen and Hofstee compromise methods; Cohen-

Schotanus & van der Vleuten, 2010; Hofstee, 1983) that are tenable in small-scaled, 

non-standardized tests were assessed. Again, simulations were performed to obtain 

students true and estimated grades and to evaluate realistic higher education 

contexts. Overall, the results showed that the classical absolute method 

underestimates students’ true ability in almost all simulated situations, while the 

Cohen and Hofstee methods overestimate ability in only some situations. Taken 

together, therefore, it might generally be beneficial to take into account some sample 

information in terms of the best scoring students. 
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Door studenten binnen een curriculum herhaaldelijk te toetsen, wordt de prestatie 

van studenten in het hoger onderwijs continu geëvalueerd. Op basis van de scores op 

deze toetsen wordt een schatting gemaakt van de bekwaamheid van studenten, waar 

vervolgens verschillende beslissingen op worden gebaseerd. Op het niveau van het 

curriculum worden toetsen gecombineerd om te beslissen of studenten verder mogen 

met hun studie of dat studenten voldoen aan de eisen om hun diploma te ontvangen. 

Op het niveau van een individuele cursus beslist de docent of de prestatie van de 

student voldoet aan de eisen om een voldoende (cijfer) te krijgen voor de cursus. Het 

doel van dit proefschrift is om de beslissingen te evalueren die in het hoger onderwijs 

genomen worden op basis van de prestaties van studenten, beslissingen zowel op het 

niveau van het curriculum waarbij meerdere toetsen gecombineerd worden 

(Hoofdstuk 2 en 3), als op het niveau van een individuele toets (Hoofdstuk 4 en 5). 

Om de kwaliteit van het diploma van een studieprogramma te waarborgen, zullen 

deze beslissingen over studenten valide moeten zijn, in die zin dat studenten die het 

diploma ontvangen daadwerkelijk bekwaam zijn en aan de eindkwalificaties voldoen 

die de hoger onderwijsinstelling hieraan heeft verbonden. 

In het Nederlands hoger onderwijs wordt op basis van het bindend studieadvies (BSA) 

aan het eind van het eerste jaar van de bachelor beslist of studenten verder mogen 

met hun studie. Om de accuraatheid van deze BSA-beslissing te evalueren onder 

verschillende complexe compensatoire en conjunctieve beslisregels in verschillende 

realistische hoger onderwijs curricula, wordt in Hoofdstuk 2 een simulatiestudie 

beschreven die is gebaseerd op empirische data. De resultaten tonen aan dat de 

accuraatheid van de BSA-beslissing afhankelijk is van de mate waarin compensatie is 

toegestaan. Zowel het vereiste gemiddelde cijfer, het vereiste minimum cijfer per 

toets, als de combinatie hiervan zijn hierbij van belang. Over het algemeen zijn er 

binnen een compensatoire beslisregel minder fout-negatieven (d.w.z. studenten die in 

werkelijkheid bekwaam zijn, maar op basis van hun toetsscores een negatief BSA 

krijgen en niet door mogen met hun studie) en meer fout-positieven (d.w.z. studenten 

die in werkelijkheid niet bekwaam zijn maar op basis van hun toetsscores een positief 

BSA krijgen en toch door mogen met hun studie), vergeleken met conjunctieve 

beslisregels. Ook laten de resultaten zien dat de meest accurate beslissing afhankelijk 
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is van de gemiddelde betrouwbaarheid van de toetsen, de gemiddelde correlatie 

tussen de toetsen, en het aantal herkansingen dat is toegestaan. Uit de resultaten 

blijkt dat één van de redenen om compensatie tussen cursussen toe te staan, namelijk 

dat het gemiddelde cijfer betrouwbaarder is, niet opgaat in alle situaties, maar dat de 

accuraatheid van de complexe compensatoire beslisregel afhankelijk is van de context.  

In Hoofdstuk 3 zijn de consequenties van het toestaan van compensatie in de 

eerstejaars BSA-beslissing op de prestatie in een tweedejaars vervolgvak bekeken. 

Hiervoor zijn data van een Bacheloropleiding Psychologie en een Bacheloropleiding 

Rechten gebruikt. Specifieke vervolgvakken, waarin de cursusstof voortbouwt op 

materiaal uit een (eerstejaars) voorgaand vak, zijn hierbij interessant, omdat ze 

inzicht geven over de gevolgen van het toestaan van compensatie tussen cursussen op 

kennis-accumulatie. Onze studie ligt hierbij in het verlengde van eerdere studies, 

waarbij er in deze studie gekeken wordt naar prestaties op vervolgvakken voor 

verschillende groepen studenten met een latente klasse regressieanalyse. Hierbij werd 

onderscheid in de latente klasse gemaakt op basis van studenten die gelijke latente 

studieprocessen lieten zien in het gemiddelde cijfer in het eerste jaar, de spreiding in 

eerstejaars cijfers, het aantal gecompenseerde cursussen en het totale aantal 

herkansingen in het eerste jaar. In de twee bacheloropleidingen werd onderscheid 

gemaakt tussen drie klassen studenten. Voor de klasse met studenten wiens 

eerstejaars prestatie laag was, was het gemiddelde cijfer op het eerste vak onder het 

vereiste gemiddelde cijfer (< 6.0), terwijl het gemiddelde cijfer op het vervolg-vak 

voor deze groep onvoldoende was (<5.5). Deze resultaten lijken te suggereren dat 

het compenseren van een eerste vak voor studenten met slechte prestaties in het 

eerste jaar negatieve gevolgen zou kunnen hebben in hun kennis-accumulatie, waarbij 

de prestatie op een vervolg-vak onvoldoende zou kunnen zijn. Echter, de resultaten 

laten ook zien dat het eerste vak gecompenseerd wordt door studenten in elk van de 

drie klassen, maar dat de gemiddelde prestatie op het vervolg-vak voor studenten in 

de twee overige klassen niet onvoldoende is. Dit zou erop kunnen duiden dat 

studenten met hogere prestaties in het eerste jaar geen negatieve gevolgen in kennis-

accumulatie ervaren wanneer zij een eerste vak compenseren. 
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De evaluatie van de BSA-beslissing in het hoger onderwijs, waarbij meerdere toetsen 

gecombineerd worden, laat zien hoe belangrijk de kwaliteit van de individuele toetsen 

is voor de accuraatheid van de beslissing. Derhalve hebben we de focus vervolgens 

verlegd naar beslissingen op basis van de prestaties van studenten en het schatten van 

studenten hun ware score op individuele toetsen in het hoger onderwijs. In Hoofdstuk 

4 is de accuraatheid van verschillende correctiemethoden voor gokken bij 

meerkeuzetoetsen geëvalueerd. Hierbij lag de focus specifiek op meerkeuzetoetsen 

waarin incorrecte responses niet direct werden bestraft door minpunten en studenten 

hun optimale en meest gebruikelijke strategie daarom is om te gokken (zoals 

gewoonlijk in het Nederlands hoger onderwijs). Klassiek gezien wordt er gecorrigeerd 

voor gokken middels formula scoring. Alternatieve correctie-methoden, zoals de 

extended klassieke methode, de (extended) beta binomiale modellen en modellen 

vanuit de item response theorie maken gebruik van kenmerken uit de steekproef. 

Door middel van simulaties is de accuraatheid van de geschatte ware kennis van 

studenten beoordeeld voor de verschillende correctie-methoden in verschillende 

realistische hoger onderwijs curricula. De resultaten tonen aan dat het schatten van 

ware scores in meerkeuzetoetsen verbeterd zou kunnen worden door de extended 

klassieke correctie methode voorgedragen door Calandra (1941) en Hamilton (1950) 

te gebruiken, of door een methode te gebruiken die item kenmerken meeneemt in het 

schatten van ware scores, zoals de door ons voorgestelde gewogen correctie voor item 

moeilijkheid.  

Ten slotte zijn in Hoofdstuk 5 de beslissingen onderzocht om cijfers toe te kennen aan 

de toetsscores (d.w.z. standard setting) van studenten en om op basis daarvan te 

beslissen of een student geslaagd of gezakt is. De accuraatheid van drie standard 

setting methoden (de klassieke absolute methode, en de Cohen en Hofstee compromis 

methoden; Cohen-Schotanus & van der Vleuten, 2010; Hofstee, 1983) die elk 

houdbaar zijn in kleinschalige, niet-gestandaardiseerde toetsen werd beoordeeld. Ook 

hiervoor is een simulatiestudie uitgevoerd om studenten hun ware en geschatte cijfers 

te verkrijgen en om realistische contexten in het hoger onderwijs na te bootsen. De 

resultaten laten zien dat de klassieke absolute methode de ware score van studenten 

in bijna alle gesimuleerde situaties onderschat, terwijl de Cohen en Hofstee methoden 



Samenvatting 

 169 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S 

 

 

 

de ware score in slechts enkele situaties overschat. De resultaten laten zien dat het 

gunstig zou kunnen zijn om informatie van de steekproef in de vorm van de best 

scorende studenten mee te nemen in het toewijzen van cijfers.  
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in het bijzonder Marit, Gertjan, Vincent, Mario, Gerdien, Tamara, Wim, en Martine.  

Ook ben ik mijn (PhD) collega’s bij het IOPS dankbaar. Als enige Rotterdammer heb 

ik met veel van jullie mee mogen liften (letterlijk zelfs, bedankt Nikky) op onze 

congressen, cursussen, workshops, en borrels, bedankt voor jullie open- en 

gezelligheid! 

Naast werken moet er natuurlijk ook ontspannen en genoten worden, in sommige 

tijden was dat wat meer nodig dan in andere. Gelukkig maakte ik daar ook altijd tijd 

voor en kon ik zo alle (wellicht ietwat lange) verhalen over mijn leven als PhD 

student kwijt, stoom afblazen, op z’n tijd doen aan wat zelfreflectie, of simpelweg 

kaas eten; bedankt Suze, Annick, mijn IBA-vrienden, mijn oud-huisgenoten en my 

fellow psychos! Jullie verhalen, humor, en tips als niet-wetenschappers hielpen mij de 

boel altijd weer te relativeren.  

Voor de eindsprint van dit proefschrift heb ik veel inspiratie opgedaan en mijn drive 

hervonden in mijn tweede thuisland Griekenland, bedank Artisa en Villa Mariëlle voor 

de goede verzorging.  
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Ten slotte gaat de meeste dank uit naar mijn familie, ik bof maar. Lieve zussen, 

bedankt dat jullie er altijd voor mij zijn en mij inspireren. Niki je hebt mij laten zien 

dat als ik het (onderzoek) ooit zat mocht zijn, het roer altijd om kan: no spang. Xenia, 

jouw drive om alles uit het leven te halen lijkt onuitputtelijk en is bijzonder: yolo. 

Alexi, jouw ontwikkeling is indrukwekkend, je laat zien dat de mogelijkheden 

eindeloos zijn, als je het maar probeert. Ik ben een hele trotse grote zus! 

Lieve papa en mama, van het kiezen van witte muurverf tot het vertalen van mijn 

(soms chaotische) gedachten, bedankt dat jullie altijd luisteren en mij eindeloos 

steunen. Dankzij de vrijheid die jullie mij gaven om mijn eigen keuzes te maken en de 

wereld te ontdekken kon ik mijn nieuws-en leergierigheid achterna. Mama, zonder 

jouw doorzettingsvermogen en (nochtans bijna Rotterdamse) niet-lullen-maar-

poetsen mentaliteit als voorbeeld was ik niet geslaagd als onderzoeker. Papa, bedankt 

dat ik altijd over je schouder mocht meekijken. Dankzij jou beheers ik nu een perfecte 

balans van plannen en probleemoplossend vermogen, wat niet alleen handig is tijdens 

het klussen maar ook in mijn onderzoekswerk. Bedankt dat ik alvast even kennis 

mocht maken met het gepensioneerde leven, ik kijk er zeker niet tegen op.   



 


