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Abstract

Objectives
Fosfomycin is increasingly being prescribed for the treatment of uncomplicated urinary 

tract infections in an era of emerging drug resistance. Surprisingly, little is known of the 

urinary concentrations of fosfomycin and its interindividual variation after the standard 

single 3 gram oral dose. We aimed to gain more insight into urinary fosfomycin phar-

macokinetics to evaluate its effectiveness.

Methods
Three grams of fosfomycin trometamol was administered to 40 healthy female volun-

teers with an estimated mean glomerular filtration rate of > 90 mL/min/1.73m2. Urine 

samples were collected from every urination during 48 hours, and then twice daily for 

up to 7 days. Time, volume and pH were recorded. Concentrations were quantified 

with UPLC-MS/MS. Effectiveness was evaluated based on urinary concentrations and 

the target MIC of E. coli, the most common uropathogen.

Results
A high interindividual variability was found. Peak concentration was 1982.0 ± 1257.4 

mg/L, urinary half-life 12.4 ± 5.7 hours and excretion rate over 48 hours 29.9 ± 7.1 

mg/h. Recovery was 44.5 ± 12.6% after 48 h and 47.0 ± 10.4% after 7 days. Concentra-

tions remained above the EUCAST breakpoint of 32 mg/L in 100% of the volunteers 

over the first 24 h, 67.5% for 48 h and 30% for 72 h. A high urinary output was associ-

ated with low urinary concentrations and consequently reduced time > MIC, AUC0-7days/

MIC and Cmax/MIC values.

Conclusions
Considerable interindividual variability observed in the pharmacokinetics of fosfomycin 

signifies a risk for inadequate drug exposure in a significant proportion of the popula-

tion. The current dosing regimen should therefore be reevaluated.
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Introduction

Uncomplicated urinary tract infections (UTIs) are the most common bacterial infections 

among otherwise healthy, premenopausal, non-pregnant women (1). In most cases, 

these infections are caused by Escherichia coli (E.coli), but an increased prevalence 

of infections caused by extended-spectrum beta-lactamase (ESBL) producing Entero-

bacteriaceae and multi drug resistant (MDR) pathogens has been observed, which is a 

concerning development (2–4).

Oral fosfomycin is gaining more attention as an alternative or even a first line 

treatment due to the increased incidence of UTIs caused by ESBL-producing or MDR 

pathogens (2, 5, 6). Clinical studies have demonstrated the efficacy of fosfomycin in 

the treatment of lower UTI caused by resistant (ESBL-producing) E. coli (7, 8). However, 

only 70 – 85% of the treatments with fosfomycin result in a clinical success (9). One of 

reasons of treatment failure might be inadequate urinary concentrations and/or a large 

interindividual variation.

Despite fosfomycin having been used clinically for decades, little is known about its 

pharmacokinetic (PK) and pharmacodynamic (PD) characteristics. A few small pharma-

cokinetics studies have been conducted, however none inferred a relationship between 

urinary fosfomycin concentrations and the effectiveness of the treatment (10–13). 

Furthermore, no concentrations were measured beyond 72 hours (h) in order to fully 

describe the elimination process. This is an important limitation since the time-course 

of urinary drug concentrations directly influence the uropathogen kill-rate and thereby 

the efficacy of the antibiotic treatment (14). Knowledge of these concentrations (PK) 

serves as the base of therapy optimization and the prevention of the emergence of 

resistance (15, 16).

This study aimed to gain more insight into the population distribution of urinary 

concentrations of fosfomycin to evaluate the effectiveness of the standard treatment 

based on the expected uropathogen fosfomycin minimal inhibitory concentrations 

(MIC) .

Methods

Study design and drug administration
The study was designed as a single center, open label, single dose study in the home 

setting. Volunteers received a single oral dose of 3 grams of fosfomycin trometamol 

(Monuril®, Zambon Nederland B.V., Amersfoort, the Netherlands). Fosfomycin was 

administered under supervision during the first visit with a standardized volume of 250 

mL water to rule out drug non-adherence. Urine was collected during one week after 
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fosfomycin administration. No restrictions were placed on food or fluid intake prior to 

fosfomycin administration or during the study week.

The study was approved by the ethical committee of the Erasmus Medical Center 

(MEC-2016-121) and registered with EudraCT (2015-005700-28).

Study population
Written informed consent was obtained from all volunteers prior to participation. 

Inclusion criteria were (1) female, (2) age ≥ 18 years and (3) healthy. Health status was 

assessed by taking the medical history and an interview, and was confirmed during the 

first visit before fosfomycin administration by a general blood test. To that purpose, two 

capillary blood samples of ~0.5 mL each were taken from a finger. Besides creatinine 

(50-90 µmol/L) also electrolytes and blood counts were checked.

Exclusion criteria included menstruation during the sampling week; known severe 

renal impairment (defined as eGFR < 30 mL/min1.73m2); co-medication with any anti-

microbial agent within 1 month prior or with metoclopramide; history of intolerance/

allergy to fosfomycin; pregnancy or lactation.

Sample collection
Urine samples were self-collected at home from every urination during the initial 48 

h, and then twice daily up until 7 days after fosfomycin administration. Urine was col-

lected in a 1000 mL measuring cup, subsequently 1 mL was transferred to a tube (1.5 

mL safe-lock, Eppendorf) and immediately stored in a freezer (≈-20oC). A portable 

cooling box was provided to keep the samples cool when the volunteer was not at 

home. The volume and time of the urination were recorded in a schedule. Volunteers 

measured pH of each sample with a dipstick (pH-range 0-14, Boom BV, Meppel, the 

Netherlands). After one week, all collected samples were delivered to the researchers 

and stored at -80oC until analysis. Stability of the samples at 18oC, -20oC, and -80oC 

was confirmed during the method validation (17).

Quantification of fosfomycin in urine
Fosfomycin concentrations in urine were assayed using a validated ultra performance 

liquid chromatography tandem mass spectrometric (UPLC-MS/MS) method as described 

in detail elsewhere (17). Samples expected to fall outside the validated concentration 

range (0.75 to 375 mg/L) were diluted with drug free urine as described before (17).

Pharmacokinetic analysis
Urinary concentrations from each volunteer were plotted against time after administra-

tion in a semi-logarithmic graph, from which the maximum concentration (Cmax, mg/L) 

and corresponding time (Tmax, h) were established. The mean population urinary con-
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centrations with standard deviation (SD) were plotted against time. The concentration 

elimination half-life (T1/2) was estimated from the individual concentration-time graphs. 

The fosfomycin excretion (in mg) was calculated by multiplying the urinary fosfomycin 

concentrations by the volume of urine collected for each urination and calculated for 

specific time intervals. The cumulative recovery (%) was expressed as percentage of 

the fosfomycin dose. The urinary output (mL) was defined as the total volume of the 

produced urine per time interval. Fosfomycin excretion rate (mg/h) was calculated over 

time periods of 12 h, 24 h and 48 h and calculated from the total amount fosfomycin 

excreted (mg) divided by the time interval (h).

The influence of the following volunteer characteristics: urinary output, number of 

urinations, estimated glomerular filtration rate (eGFR), BMI, urinary pH, time/type of 

the last meal prior to fosfomycin administration and fluid intake on the PK parameters 

(Cmax, Tmax, T1/2, excretion and recovery) was explored to explain the interindividual 

pharmacokinetic variability (IIV). The CKD-EPI equation was applied to estimate eGFR 

using the mean value of the two capillary creatinine measurements (18).

Pharmacodynamic analysis
PK/PD indices were calculated using GraphPad Prism 7.01 based on individual 

concentration-time graphs and MICs of 0.5 – 128 mg/L. This range was chosen based 

on MICs of possible uropathogens (European Committee on Antimicrobial Susceptibil-

ity Testing; EUCAST) (19). Effectiveness was defined as the ability to reach adequate 

concentrations in urine using different measures of PK/PD targets as presented for the 

EUCAST fosfomycin trometamol clinical breakpoints in the EUCAST rationale docu-

ment (20).

Safety assessment
Safety evaluations included the collection of volunteer-reported adverse events (AEs) 

and serious AEs.

Results

Study population
Forty volunteers participated in the study meeting all inclusion criteria. All completed 

the full sampling week. Their characteristics are presented in table 1. Three cases of 

diarrhea, two cases of abdominal pain, one case of headache, and one case of dizzi-

ness were reported. No serious AEs were reported.
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Sample collection
A total of 891 urine samples with a mean of 22.3 (± 2.9) samples per volunteer were 

collected. The number of collected samples was dependent of the individual urination 

rhythm. The pH of the samples was comparable between the volunteers (pH of 5.5 (± 0.5)).

Pharmacokinetic analysis
The mean concentrations for the time intervals are demonstrated in figure 1. As 

demonstrated in table 1, a high IIV was observed for all PK parameters. A log-linear 

relationship (R2=0.95) was found between mean urinary concentration and time after 

Table 1: Volunteer characteristics and pharmacokinetic parameters presented as population mean 
and standard deviation (SD).

Characteristics Mean SD

Age (years) 24.3 7.9

Height (cm) 170.0 6.4

Weight (kg) 64.1 8.4

BMI 22.1 2.4

eGFR (mL/min/1.73m2)* 112.9 72-133**

Pharmacokinetic parameter

Cmax (mg/L) 1982.0 1257.4

Tmax (h) 7.5 4.2

T1/2 (h) 12.4 5.7

*reported as > 90 mL/min/1.
**range
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Figure 1: Mean urinary fosfomycin concentration – time curve
Mean concentration-time curve with on the vertical axis the urinary fosfomycin concentration on a log scale and 
the time after the fosfomycin dose on the horizontal axis. The variability is presented as the SD (vertical bars). 
The dotted line represents the clinical breakpoint of 32 mg/L for susceptible Enterobacteriacea according to the 
EUCAST.
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dose. The Cmax obtained in the 2-4 h; 4-6 h; 6-8 h; 8-10 h; 10-12 h and > 12 h time 

intervals in respectively 23.1%; 23.1%; 20.5%; 7.7%; 7.7% and 17.9% of the volunteers. 

Urinary concentrations remained above the EUCAST breakpoint of 32 mg/L (dotted 

line in figure 1) in 100% of the volunteers for 24 h, in 67.5% for 48 h and in 30% for 72 h. 

Fosfomycin was still detectable (C7days=1.8mg/L) after 7 days in 18% of the volunteers.

The cumulative recovery over 7 days is demonstrated in figure 2. An average of 

47.0% (± 10.4%) was excreted over 7 days of which 44.5% (± 12.6%) was excreted over 

the initial 48 h. In fact, 90% of the excretion occurred within the initial 32 h, 95% within 

42 h and 99% within 60 h. Most fosfomycin (36.1%) was excreted during the first 6 h. 

Table 2 presents an overview of the excretion results. The range of urinary output was 

similar for day 1 and day 2 (Supplementary data 1).

Volunteers with a high urinary output over 48 h (6386 mL) out of a mean of 13 

samples, had a higher recovery (56.9%) and a lower Cmax (1051.0 mg/L) compared 

to the mean population (3702 mL; 12 urine samples; 44.5% recovery; Cmax of 1982.0 

mg/L). The recovery was found to be lower (43.4%) and Cmax was high (3206.8 mg/L) 

in volunteers with a lower urinary output (1850 mL) out of 10 samples. No relationship 
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Figure 2: Mean cumulative fosfomycin recovery – time curve
Mean and SD (vertical bars) of the cumulative fosfomycin recovery (%) for the specific time intervals. The recovery 
reaches a plateau of 47.0% which represents the dotted line.

Table 2: Summary of the excretion parameters presented as population means and SD during the 
first 48 h after fosfomycin administration

Time 
interval

Excretion Number of samples Excretion rate Recovery

(h) (mL) (mg/h) (%)

0-12 1035 (501) 3.7 (1.3) 71.6 (24.1) 28.6 (9.7)

12-24 802 (451) 2.5 (1.1) 25.0 (12.5) 9.6 (5.0)

24-48 1866 (814) 6.0 (1.8) 7.8 (4.0) 6.3 (3.2)
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was found between neither the eGFR and the excretion rate nor between one of the 

other volunteer characteristics and the PK parameters.

Pharmacodynamic analysis
The mean values and ranges of the PK/PD indices are demonstrated in figure 3. An 

exponential relationship was found between the T>MIC and the MIC values (R2=0.97; 

figure 3a). Concentrations exceeded 32 mg/L for 60 h with a wide range from 33.6 h to 

111.0 h. Strains with MIC < 16 mg/L would be exposed to concentrations exceeding 

this concentration for at least 36 h (dotted line). Figure 3b demonstrates that AUC0-7days/

MIC values exceed the EUCAST breakpoint value of 3994 for bacteriostasis (dotted 
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Figure 3: Mean PK/PD index values 
for E. coli MICs
Mean and range (vertical bars) of the 
T>MIC (3a), AUC0-7days/MIC (3b) and Cmax/
MIC (3c) for all MICs with the MICs on the 
horizontal axis and the three different PK/
PD indices on the vertical axis. Both axes 
have logarithmic scale. The dotted line in 
figure 3a represents the 36 h time point 
and the dotted line in figure 3b represents 
the EUCAST AUC/MIC value for bacterio-
stasis.
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line) only for strains with MIC < 2 mg/L (20). Given the observed high IIV in urinary 

concentrations, effective killing of strains with MICs of 4-8 mg/L is questionable. Strains 

with MICs of > 16 mg/L are never exposed to concentrations exceeding the MIC so 

effective killing would be unlikely. When considering the peak concentration, strains 

with MICs of < 32 mg/L would achieve a minimal average Cmax/MIC value of 61.9 

(16.4-179.1). This is demonstrated in figure 3c.

Discussion

This study provides a full perspective of the urinary PK profile of fosfomycin and its 

interindividual variability during both the absorption and elimination phases after a 

single oral dose of 3 grams. PK parameters were calculated based on urinary concen-

trations of 40 volunteers from 7 days.

The urinary output and Cmax appeared to be correlated. High urinary output and 

number of urinations were associated with a lower Cmax and a higher recovery com-

pared to volunteers with a low urinary output and number of urinations over 48 h. This 

supports the importance of informing patients on the need to administer fosfomycin 

after emptying the bladder as stated in the product information in order to minimize 

the urge to urinate so that Cmax values could be tripled (21).

Cmax values in reported studies are comparable with our findings, but Tmax values 

were found to be somewhat lower (≈ 4 h) (10, 11, 22–25). Urinary concentrations were 

followed between 8 h and 72 h in 4-13 volunteers in these studies. This resulted in 

recovery values ranging from 25% (over 8 h) to 51% (over 48 h).

The presence of the high IIV is our most important finding. This variability might be 

a reason for the treatment failures in 15 – 30% of the patients (9). It also causes uncer-

tainties in the prediction of the PK/PD indices and therefore in the ability to evaluate 

the effectiveness of the treatment. Effectiveness was evaluated based on the clinical 

breakpoint for Enterobacteriacea (S) according to the EUCAST (≤ 32 mg/L (20)). The 

36 h time point was chosen based on the therapeutic concentration as stated in the 

product information of fosfomycin (21). Based on these two numbers and the T>MIC as 

PK/PD index, it was concluded that fosfomycin treatment should be effective for strains 

with MIC values up to 16 mg/L. The EUCAST clinical breakpoint for Enterobacteria-

ceae bacteriostasis in urine of 3994 was chosen to evaluate the therapy based on the 

AUC0-7days/MIC value as PK/PD index (20). Recent observations confirm this value (26). 

When taking the IIV into account, only strains with MICs ≤2 mg/L are treatable with the 

current therapy. Cmax/MIC, with breakpoint value 32 mg/L, was also calculated to give 

a complete view of the PD. Of note, the clinical breakpoints from EUCAST are based 

High interindividual variability in urinary fosfomycin concentrations 9



on limited evidence since urinary data for fosfomycin are sparse which is important to 

keep in mind when interpreting the PD related results (20).

Urinary concentrations were followed during 7 days. This offered the opportunity to 

study the complete course of both absorption and elimination phases. We have shown 

that this was of added value since fosfomycin excretion was still not fully completed 

after 7 days in 18% of the volunteers. This is a strength of this study since previous 

studies reported PK parameters based on samples obtained after maximum 72 h (10, 

11, 22–25). The high number of 40 volunteers strengthens the results of our study. 

Since the volunteers all collected the samples based on their own urinary rhythm, varia-

tion exists in the time points on the horizontal axis in figure 1. This can be seen as a 

limitation, but we consider this as a strength since it reflects the real world situation.

Although volunteers were instructed to make notes of a possible missed urine 

sample, we cannot exclude the possibility that one or more volunteers did not report 

such an event. This could have led to results that are somewhat biased regarding 

recovery and urinary output results.

Another limitation of our study was that the group of volunteers was relatively 

homogeneous, impeding exploration of the influence of covariates such as GFR or 

food intake on the PK parameters. This will be different in the patient population were 

more variability in these characteristics can be expected. The influence of the urination 

frequency is important if our results are translated to the clinical situation. A frequent 

and strong urge to urinate resulting in a high amount of small urine portions is one 

of the effects of an UTI. Using standard PK equations, the effect of increased urinary 

frequency can be simulated in a mathematical model. This demonstrates that increased 

urinary frequency will only slightly increase the Cmax and shorten the Tmax, while only 

decreasing the AUC (which represents total drug exposure in the bladder) by less than 

5% (27). These negligible changes in PK parameters will therefore not alter the conclu-

sions regarding the effectiveness of fosfomycin treatment in this clinical scenario. When 

fosfomycin is administered to an elderly patient with renal impairment the elimination 

half-life could be longer. However, the reported half-life values are comparable with 

what is found in the elderly, indicating that the influence of renal impairment falls within 

the high variation of which we reported (13).

E.coli, the most common uropathogen, is rarely associated with micro-organism 

induced changes in urinary pH so we consider the influence of pH differences due to 

infection negligible small (28). On the contrary, pH can influence the PD effect of the 

treatment, but this was not within the scope of this research.

Our data can serve as a base for in vitro models to investigate the influence of 

the distribution of urinary concentrations on the killing-rate of pathogens. Hereby, the 

relevant PK/PD index and the corresponding breakpoints can be found in order to 

optimize patient outcomes and minimize the emergence of resistance for fosfomycin.
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In conclusion, this is the first study in a large cohort  monitoring urinary fosfomycin 

concentrations during one week. This provides more insight into the full PK profile and 

the effectiveness of the current treatment of UTIs in the population of healthy females. 

The high IIV and/or inadequate drug exposure can be an explanation for the observed 

treatment failures in part of the patient population.
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Figure S1: Distribution of the urinary output during day 1 and day 2
Scatterplot of the urinary output during day 1 and day 2 from all 40 volunteers. The mean values of each day ( − ) 
are 1836 mL on day 1 and 1866 mL on day 2. These values are not significantly different (p>0.05 in Wilcoxon 
matched pairs test).
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