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KEY POINTS

� Lactate is a rapidly available variable that is closely linked to morbidity and mortality in
almost every critically ill patient.

� A decrease in lactate levels during initial resuscitation of a patient with circulatory dysfunc-
tion is a universally good sign.

� Lactate clearance is a function of production and uptake of lactate, mostly by liver and kid-
ney, followed by metabolism that results in a given serum lactate concentration. Lactate
clearance in clinical practice refers to the changes in lactate over time.

� Using lactate levels as a marker of tissue hypoperfusion has limitations, especially in sep-
tic shock patients, and is likely to be limited to the initial hours of resuscitation.

� When initial therapy in the first 6 to 8 hours of septic shock resuscitation is aimed to
decrease lactate levels guided by parameters of tissue perfusion this is likely to improve
outcome of the patient.
INTRODUCTION

Following the definition of a biomarker lactate seems to be the ideal one in critically ill
patients. Increased lactate levels are a universal sign of an abnormal condition. When
using the correct treatment to correct the causing mechanism, lactate levels change
quickly. A decrease in lactate levels following institution of treatment thus gives the
clinician guidance on its adequacy and may serve to adjust treatment when needed.
However, in contrast to what some guidelines suggest, lactate is not an easy to use
parameter and an advice to measure it without a clinical direction on how to respond
is not the way to go. Opinions on the clinical value of lactate levels still spur a lot of
discussion1–3 related to the many pitfalls of using lactate in critically ill.4
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In clinical conditions we characterize circulatory dysfunction by a combination of ab-
normalities in different systems. Without a particular order of importance, it may consist
of abnormal hemodynamic parameters like blood pressure and heart rate, abnormal
tissue perfusion parameters like a cold, discolored sweaty skin, altered mental state
and decreased urine production and abnormal metabolic parameters like lactate, arte-
rial pH, and base excess. Under normal conditions, oxygen demand dictates oxygen
delivery and is thus equal to oxygen consumption. Therefore, a decrease in oxygen
consumption during unchanged oxygen demand denotes a state in which the delivery
of oxygen to the tissues is inadequate to meet the demands for normal tissue function
(tissue hypoxia) that will result in tissue damage and organ dysfunction. Invariably in
both experimental and clinical conditions this situation is characterized by a sharp
rise in lactate levels.5,6 As increased lactate levels in critically ill patients have also
been associated with this phenomenon7,8 and increased lactate levels are related to
the presence and severity of organ dysfunction,9,10 increased lactate levels have
been seen as a hallmark of circulatory dysfunction and tissue damage.
In this article, we review the current states on how to appropriately use lactate levels

to that end and how they can be used to diagnose and treat circulatory dysfunction.

METABOLISM OF LACTATE

Under normal conditions, the metabolism of lactate produces a small amount of ATP in
the presence or absence of a functional Krebs cycle. However, by accelerating the pro-
cess of glucose metabolism, much more ATP can be generated.11 Therefore, a clinical
context associated with increased glucose metabolism might lead to increased lactate
levels as the capacity of the Krebs cycle is limited. Many situations and treatments in
critically ill patients lead to increased glucose metabolism. Increased sympathetic ner-
vous system activation, prominently present in shock states, is only one of them.12 In
these conditions, lactate might even serve as a fuel being exchanged between tissues
(liver, kidneys, muscles) and even cells (astrocytes, neurons) through lactate shut-
tles.13,14 In contrast with the Cori cycle (hepatic and renal gluconeogenesis) requiring
oxygen, the interorgan/cellular exchange does not make this an interesting energy
transport mechanism.15 Even exogenous lactate can be used as a fuel in this context.13

Therefore, the old concept of lactate being an indicator of thepresenceof tissue hypoxia
in shock states has been challenged and especially in sepsis, where lactate clearance is
impaired, this relationship might be more problematic than suggested in guidelines4,16

LACTATE AND TISSUE HYPOPERFUSION

Oxygen delivery is a function of hemoglobin levels, arterial oxygen saturation, and car-
diac output (and its distribution). In experimental conditions, decreasing any of these
components of oxygen delivery will result in a decrease in oxygen consumption when
a critical level is reached.6,17 This state of oxygen delivery–dependent oxygen con-
sumption is a hallmark of tissue hypoxia and further reductions in oxygen delivery
will immediately result in sharp decreases in oxygen consumption (below the baseline
level reflecting the demand for oxygen) and increases in lactate levels. Also, in clinical
conditions, this supply dependent state is characterized by increased lactate levels.7

The study by Ronco and colleagues5 showed that this phenomenon also occurs when
therapy is withdrawn during end-of-life care. In experimental conditions, reversing this
state of supply dependency, corrects lactate levels to normal baseline levels.18 Clin-
ically, Friedman and colleagues8 showed that supply dependency is present in the
early phase of septic shock, whereas in the post resuscitation phase supply depen-
dency was absent and lactate levels were normal. In addition, observational studies
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have associated increased morbidity and mortality to the presence of other markers of
tissue hypoperfusion in patients with sepsis.
In the presence of normal oxygen delivery values, abnormal microcirculatory perfu-

sion may still be present19 and thus there will be limited cellular oxygen availability.
Particularly in sepsis, microcirculatory derangement may lead to insufficient oxygen
that is delivered to the cell, thereby increasing lactate levels.17 This is indirectly illus-
trated by the observation that increased lactate levels have been associated with
abnormal microcirculatory perfusion20 and that improving capillary perfusion has
beenassociatedwith a reduction in lactate levels inpatientswith septic shock, indepen-
dent of changes in systemic hemodynamic variables.21 In addition, normalization of tis-
sueperfusionparametershasbeenassociatedwith a sharpdecrease in lactate levels.22

Nevertheless, given the abnormalmetabolism in sepsis23–25 and the decreased clear-
ance of lactate26–28 even restoration of microcirculatory perfusion in these conditions
may still be associated with increased lactate levels.29 This in contrast with low cardiac
output formsof circulatory failurewhere correction ofmicrocirculatoryperfusion is asso-
ciated with normalization of lactate levels.29 Therefore, especially in septic shock con-
ditions, the exclusive use of increased lactate levels to determine the presence of tissue
hypoxia, following the initial period of resuscitation, is limited.30 Additional parameters
reflecting tissue perfusion and metabolism have been proposed to aid in the diag-
nosis.22,31–33 Also, the lactate to pyruvate ratio has been proposed to aid in the diag-
nosis of hypoxia related tissue metabolism.34–36 Although clinically available as a
micro dialysate technique in brain tissuemonitoring,37 the interpretation in relation to tis-
sue hypoxia is not straight forward but rather a complex parameter of metabolism.38,39

CLEARANCE OF LACTATE

As the blood lactate level is a result of the production and clearance, an impairment in
the latter may thus result in increased lactate levels. Several conditions have been
associated with impaired clearance. Liver dysfunction/failure, cardiac surgery, and
sepsis have all been associated with decreased clearance capacity.24,26,40,41 In clin-
ical practice, lactate clearance has been used to describe the change in lactate levels
over time. Although technically not correct,4,42 the use of lactate clearance has been
stimulated by studies linking the relative decrease of lactate levels over time to the pa-
tient’s response to therapy and ultimately outcome.43–48 In summary, almost in any
context of critical illness, decreases in lactate levels following start of treatment are
associated with improved outcome.49 Meta-analysis of studies using decreases in
lactate as a clinical endpoint showed improved survival both in hyperlactatemic pa-
tients as in patients with severe sepsis and septic shock.50,51

GOAL-DIRECTED THERAPY USING LACTATE LEVELS

Given the strong relationship among increased lactate levels tissue perfusion, organ
failure, and ultimate outcome, this biomarker is frequently used in clinical practice
to guide therapy. However, only a limited number of randomized studies have evalu-
ated the value of this strategy.
Many studies evaluating the use of early goal-directed therapy (EGDT) aiming to

optimize blood pressure, preload status, and tissue perfusion in patients with sepsis
have shown minimal results in contrast to the first landmark study by Rivers and col-
leagues52 using this concept. Three large randomized studies53–55 randomizing more
than 4000 patients in total did, not show a survival benefit when using the broad ele-
ments of EGDT. Although there might have been a survival benefit in patients with a
high initial lactate level (>5.0 mmol/L),53 lactate levels were not used to adjust therapy
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by protocol in these studies. Important to recognize here is that the landmark study by
Rivers and colleagues52 was started in native sepsis patients without any previous
treatment, whereas the recent EGDT studies have all been done in patients who
had already received some early treatment, in most cases fluid resuscitation or
even already start of vasopressor therapy.56

In a study in patients with early sepsis by Jones and colleagues,57 therapy aimed to
normalize central venous oxygenation (ScvO2) was compared with therapy aimed to
decrease lactate levels by at least 10% in the 6-hour duration study protocol. In this
study, fluid resuscitation in both groups was aimed to increase central venous pres-
sure to 8 mm Hg or higher, vasopressors were used to maintain a mean arterial pres-
sure (MAP) of 65 mm Hg or higher, and dobutamine and blood transfusions were used
where needed to increase ScvO2. In the lactate-guided group, the same interventions
were used; however, ScvO2 was not available in these patients and substituted with
the lactate target of a 10% decrease in the first 2 hours or longer. The hospital mor-
tality in the 2 groups, of each 150 patients, was lower in the lactate-guided group
(17% vs 22%), although this difference was not statistically significant (difference 6;
95% CI �3% to 15%).
In a randomized trial in the Netherlands, Jansen and colleagues58 studied 348 pa-

tients with a lactate level of more than 3.0 mmol/L irrespective of their diagnosis.
Following the measurement of central venous oxygen saturation (ScvO2), therapy
was directed to optimize oxygen delivery and reduce oxygen demand in the lactate
group. The aim of the protocol was to decrease lactate by at least 20% every 2 hours
for the duration of the intervention period (first 8 hours of admission). The control group
received standard treatment where lactate levels were not available. This combined
use of ScvO2 and lactate decreases resulted in an improvement in hospital survival
when corrected for baseline imbalances (hazard ratio 0.61 [CI: 0.43–0.87]). When
combining the patients with sepsis from this study with the study by Jones and col-
leagues57 and two Chinese studies, using lactate to guide therapy in sepsis patients
was shown to improve outcome.50

In a recent study in 424 patients with septic shock, Hernandez and colleagues56

compared a strategy to decrease lactate levels similar to the study by Jansen and col-
leagues58 with a strategy to normalize peripheral capillary refill time (CRT). In both
groups, the protocol to reach the therapeutic goal was similar, with only a difference
in the ultimate therapeutic goal: CRT of 3 seconds or less or a decrease in lactate by
20% every 2 hours for the duration of the 8-hour intervention period. In this study,
there was improved survival in the group using CRT as the endpoint of resuscitation,
although this was not statistically significant (34.9% vs 43.4% 28-day mortality,
P 5 .06). However, the patients in the CRT-guided resuscitation had significantly
less positive fluid balances during the intervention period and a faster recovery of or-
gan failure when compared with the lactate-guided resuscitation.
HOW TO USE LACTATE IN CLINICAL PRACTICE

An increased lactate should always be a warning signal to the treatment team
requiring immediate attention. The first line of assessment is very straightforward:
the higher the lactate level, the higher the urgency. In the control group of the recent
study by Jansen and colleagues,58 in which patients with a suspected source of
increased lactate levels other than circulatory were excluded, survival rapidly
decreased with increasing initial lactate levels (Fig. 1). These data are compliant
with older data in which increasing lactate levels were associated with rapidly
decreasing survival.59,60



Fig. 1. Relationship between initial lactate level and survival in patients admitted with a
lactate level of 3 mmol/L or more. Patients consist of the control group in the study by Jan-
sen and colleagues.58 (From Jansen TC, van Bommel J, Schoonderbeek FJ, et al. Early Lactate-
Guided Therapy in Intensive Care Unit Patients A Multicenter, Open-Label, Randomized
Controlled Trial. Am J Respir Crit Care Med 2010;182(6):752-761.)

Lactate 119
The first line of action should then be to create context (Fig. 2). If the increased
lactate is unlikely to be associated with decreased tissue perfusion but rather meta-
bolic derangements or other causes,12 this should be investigated and appropriate
measures should be taken. In general, the urgency and line of actions in these con-
texts may be very different where generalized seizures, thiamine deficiency, and car-
bon monoxide or cyanide intoxication are extreme examples.61–64
Fig. 2. Steps to guide treatment using repeated measurements of lactate using central
venous oxygen saturation (ScvO2) and central venous-to-arterial PCO2 difference (dPCO2).
(From Hernandez G, Bellomo R, Bakker J. The ten pitfalls of lactate clearance in sepsis. Inten-
sive Care Med 2018;45(1):82-85; with permission.)
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When there are signs of impaired tissue perfusion (eg, hypotension, tachycardia,
abnormal peripheral perfusion, altered mentation), a measurement of ScvO2

should be done. When normal, adding measurements of the delta-PCO2 (differ-
ence between central venous and arterial PCO2)

22 or a surrogate of the respiratory
quotient (venous-arterial CO2 to arterial-venous O2 content difference ratio)32 or
the venous-arterial CO2 to arterial-venous O2 difference ratio65 could help to
diagnose tissue hypoperfusion that would require hemodynamic and microcircula-
tory perfusion improvements. Treatment should result in a rapid decrease or
normalization of lactate levels and the parameters of tissue hypoperfusion.30,43,66

Current evidence suggests to repeat measurements every 1 to 2 hours.49 Given
the available studies, targeting increased lactate levels by general optimization
of perfusion to improve outcome is limited to the initial hours of admission. In
the studies presented, this would be the first 6 to 8 hours of admission. Some
guidelines suggest that the patient should be resuscitated to normalize lactate
levels. Although this may be appropriate in the large community of patients, it
does not fit an individualized approach where up to 50% of surviving patients
with sepsis may still have increased lactate levels 24 hours after intensive care
unit admission.30 However, persistently increased lactate levels should urge the
clinician to review diagnosis and adequacy of the treatment of the cause of
increased lactate levels.

SUMMARY

When used correctly, lactate levels may aid in diagnosing and treating patients.
Changes in lactate can provide an early and objective evaluation of the patient’s
response to therapy. Given current evidence, increased lactate levels in the presence
of other markers of tissue hypoperfusion should require immediate hemodynamic
optimization directed to improving tissue perfusion. Lactate levels in the absence of
other marker of tissue hypoperfusion or beyond the first 8 hours of treatment should
be used with caution and should warrant reassessment of diagnosis and the adequacy
of the additional supporting treatment.
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