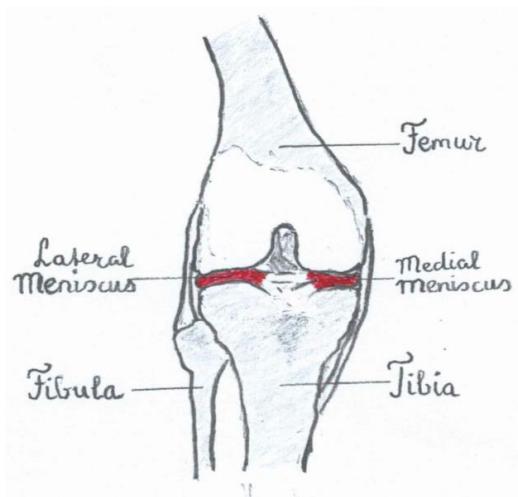
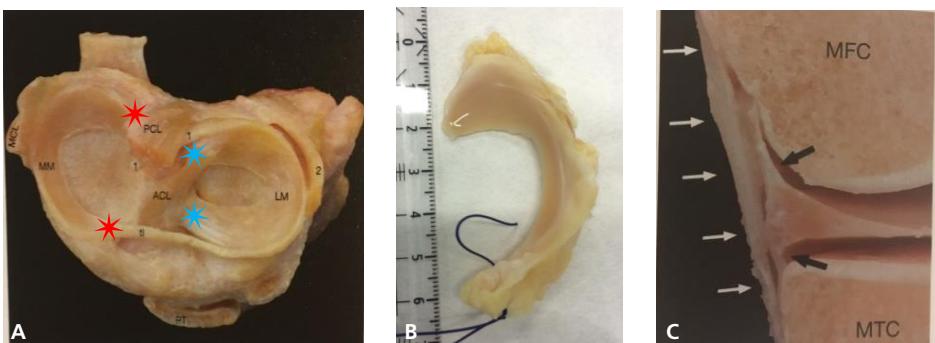


General introduction


The more I learn, the more I realize how much I don't know

– Albert Einstein


Meniscal surgery has been a default treatment for meniscal tears for generations of clinicians and patients; it remains the most frequently performed orthopedic procedure worldwide. In recent years, however, advances in imaging as well as clinical and biomechanical studies have led to progressive insights into the meniscus' major biomechanical function. The more we have learned about the meniscus, the more questions have been raised regarding the etiology of meniscal pathology, the efficacy of current treatments, and the optimal imaging techniques.

The meniscus: anatomy and function

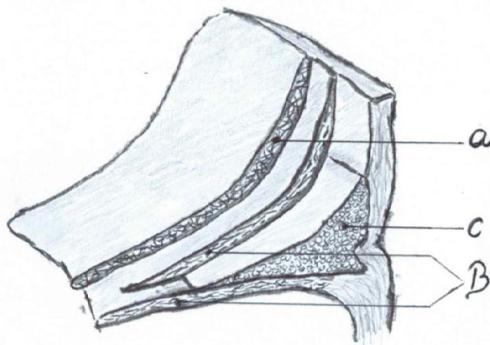

The menisci are two fibrocartilaginous structures interposed between the femoral condyles and the tibial plateau (Figure 1). The word "meniscus" is derived from the Ancient Greek term for moon, *mene*, referring to its half-moon shape (Figure 2-A, 2-B). Each human knee contains two menisci: one in the medial (i.e., medial meniscus) and one in the lateral (i.e., lateral meniscus) joint compartment (Figure 2-A). Both menisci are wedge-shaped in cross section (Figure 2-C). The peripheral base of the medial meniscus is tightly attached to the joint capsule (Figure 2-C), whereas the attachment of the lateral meniscus is more mobile. A disruption in the attachment of the capsule to the lateral meniscus, the so-called popliteal hiatus, permits the popliteal tendon to pass through¹. In addition, both menisci are attached to the tibial plateau via the anterior and posterior roots. The tibial attachments of the lateral meniscus are placed more centrally (in an anterior-posterior view) than the tibial attachments of the medial meniscus, resulting in the lateral meniscus being less fixed than the medial meniscus (Figure 2-A)¹⁻⁶.

Figure 1. Anatomy of the human menisci.
Right knee, frontal view, patella removed.
Knee is slightly flexed. Medial and lateral menisci are highlighted in red. Artwork by the author.

Figure 2. Attachments of the menisci. A) Left cadaveric knee joint, top view, femur removed. Note the difference in tibial attachments of meniscal roots between medial (red stars) and lateral (blue stars) meniscus. B) Medial meniscus, ex vivo, obtained during upper leg amputation in a 53-year-old male with no previous history of knee injury. C) Cross section of cadaveric medial knee compartment in coronal plane at the level of the medial collateral ligament (white arrows). Abbreviations: MM = medial meniscus; LM = lateral meniscus; ACL = anterior cruciate ligament; PCL = posterior cruciate ligament; PT = patellar tendon; MCL = medial collateral ligament; MFC = medial femoral condyle; MTC = medial tibial condyle. Pictures 2-A and 2-C by dr. U. Zdanowicz, from *Surgery of the Meniscus*, Springer 2016; reproduced with permission.

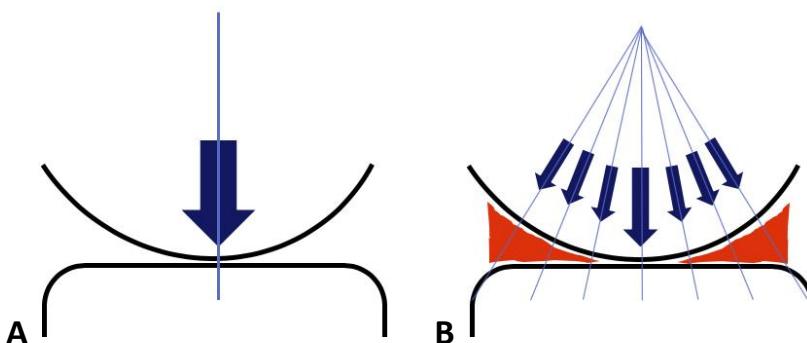


Figure 3. Cross-sectional view of the meniscus showing its collagen fiber configuration. A) Tightly woven superficial mesh layer. B) Radially oriented collagen fibers. C) Circumferentially oriented collagen fibers. Artwork by the author.

The meniscus contains 70% water and 30% organic matter. Collagen (mainly type 1) accounts for 75% of the dry mass^{2,7,8}. Menisci consist of firmly woven collagen fibers, mostly arranged in a circumferential pattern. Some of the fiber bundles in the central zone and superficial layers are radially aligned (Figure 3). This specific pattern of fiber orientation provides strength and the ability to convert compression load into tensile stress^{2,9-11}. The vascular supply is derived from branches of the inferior and superior geniculate arteries, infiltrating the peripheral zones of the menisci (often called the “red zone”). The central third

of the meniscus is avascular in adults (often called the “white zone”) and receives nutrients by diffusion of synovial fluid^{2,12,13}.

Although described as “irrelevant remains of leg muscle” in the past¹⁴, it is now clear that the menisci have an important biomechanical function in the knee. Their primary function is shock absorption and load distribution across the tibiofemoral joint (Figure 4). The menisci transmit and distribute at least 50-70% of the total load when the knee is in extension and 85-90% when in flexion^{15,16}. Moreover, they have a role in stabilization and fluid distribution within the knee joint^{11,17-21}.

Figure 4. Biomechanical function of the meniscus. Schematic view of the knee joint in sagittal plane, in absence (A) and in presence (B) of the meniscus. The menisci, highlighted in red, distribute compressive load (blue arrows) and decrease contact force throughout the knee joint.

Meniscal pathology: incidence and etiology

With a general incidence of 60-70 per 100.000 individuals per year, a meniscal tear is among the most common types of knee injury²²⁻²⁴. Clinical presentation may include knee pain, mechanical symptoms (i.e., locking complaints) and, in many cases, significant disability, thereby creating a great burden for patient and society²⁴. Meniscal tears are traditionally classified into two main categories: traumatic versus degenerative tears. This classification is mainly based on onset of complaints (i.e., traumatic or degenerative); however, the patient's age and other pathological findings in the knee (e.g., osteoarthritis and injury of other ligaments, such as anterior cruciate ligaments) play a role as well^{1,17,24-27}.

Traumatic meniscal tears have an acute onset, most often seen in young, active individuals and mostly as a result of twisting injuries. This often occurs during sports activities (soccer and field hockey are high-risk sports); however, traumatic meniscal tears resulting from minor accidents in daily life are also common. Combined traumatic injuries of the (mostly lateral) meniscus and anterior cruciate ligament are frequently observed^{28,29}. Traumatic tears are often oriented in the longitudinal or oblique direction, running parallel to the circumferentially arranged collagen fibers, although various other tear patterns are possible as well^{1,30-32}. Traumatic meniscal tears can be subdivided into 1) obstructive and 2) non-obstructive tears.

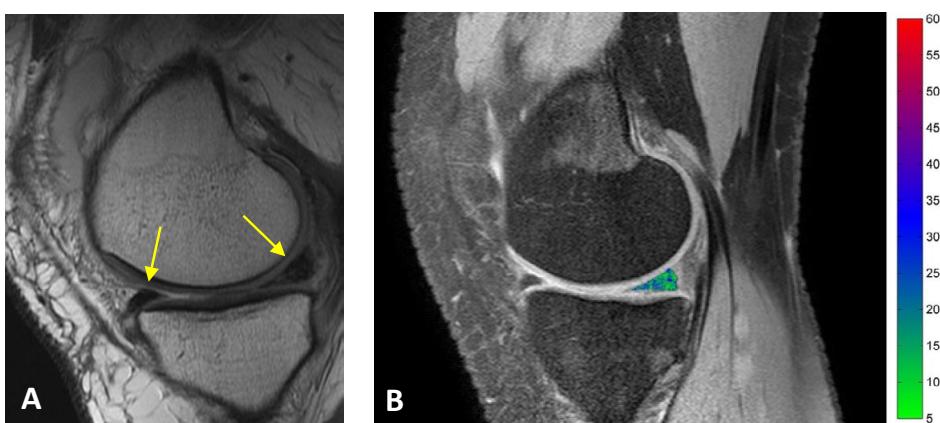
An obstructive tear is when the torn part of the meniscus is (partly) dislocated, resulting in “locking” of the knee. The remaining cases are non-obstructive tears ³³.

In contrast to traumatic tears, *degenerative meniscal tears* develop gradually. These tears are often seen in the middle-aged or the elderly, as a result of repetitive normal forces acting upon a meniscus with already ongoing degenerative tissue changes ^{1,26}. Degenerative tears are typically horizontal cleavage lesions and is often associated with pre-existing cartilage degeneration ^{25,34}. Increasing evidence suggests that a symptomatic degenerative meniscal tear is not an isolated entity but a sign of knee osteoarthritis (OA) ^{1,18,35}; however, this does not necessarily mean that pain symptoms in a patient with a degenerative tear in an osteoarthritic knee are caused by the meniscal damage. The prevalence of degenerative meniscal tears, as detected on magnetic resonance imaging (MRI) in the general population above 70 years old, is about 45% ³⁶. Remarkably, 60% of these degenerative tears on MRI are asymptomatic ³⁶ and, therefore, can be considered incidental findings on knee MRI. The biological mechanism leading to degenerative meniscal tears and the complex role of the meniscus in the pathological process in knee OA are still largely unknown.

(MR) Imaging of meniscal pathology

Since its introduction in the 1980s, conventional MRI has been the gold standard for meniscus imaging in clinical practice and research ¹. A great advantage of MRI is that multiple relevant knee structures, such as menisci, cartilage, and synovium, can be assessed within one examination ³⁷. For detecting meniscal tears, in general, spin echo based proton-density (PD) weighted sequences with an echo time around 35 ms and long repetition time, in the sagittal and coronal plane, are considered most appropriate (Figure 5-A) ³⁸. If performed correctly, MRI can detect a meniscal tear accurately in > 90% of the cases ^{26,39-41}.

Meniscal damage on MRI may comprise the following: 1) tissue degeneration (intra-substance alterations, measured by increased signal intensity or T₂ relaxation times); 2) meniscal extrusion (i.e., radial displacement of the meniscus); and 3) morphological damage, that is, meniscal tears or maceration ⁴²⁻⁴⁵. A meniscal tear is usually characterized by a linear intra-meniscal signal communicating with the meniscal surface. Maceration means a completely worn-down meniscus, defined as loss of morphological substance of the meniscus on MRI ⁴⁶.


In a clinical setting, radiologists usually describe meniscal tears in free text. In clinical research, on the other hand, a more standardized approach, in terms of reproducibility, is needed. Several semiquantitative MRI classification systems for the knee, such as the MRI Osteoarthritis Knee Score (MOAKS) ⁴⁶, have been developed for this purpose. In these classification systems, MRI findings of multiple knee structures, including cartilage and menisci, are scored.

Although sensitive to alterations of meniscal morphology, conventional MRI has limited capability to detect early changes in the meniscus before gross morphological abnormalities occur. This hampers early therapeutic interventions and disease monitoring. To overcome

this limitation, quantitative MRI (qMRI) techniques (sometimes referred to as compositional or molecular MRI techniques), such as T_2 mapping (Figure 5-B), $T_1\rho$, and ultra-short echo time T_2^* mapping (UTE- T_2^*), have been developed⁴⁷⁻⁵⁴. By quantitatively assessing key biochemical meniscus components – collagen and proteoglycans –, qMRI techniques allow the detection of early stages of meniscal degeneration and accurate follow-up^{47,55-57}. Moreover, they allow a refined grading of meniscus pathology, increasing the discriminative power to distinguish degrees of meniscus degeneration^{47,57}. Among qMRI techniques, T_2 mapping is the most widely used in the field of musculoskeletal research^{37,58,59}.

The main advantage of T_2 mapping is that its implementation is relatively easy, as (contrary to most other qMRI techniques) no contrast or special MR hardware is required. What exactly is measured with T_2 mapping remains controversial, yet most researchers agree that increased T_2 relaxation times indicate an increased mobility of water protons as a result of damage to the collagen matrix of the meniscus. Matrix degradation may reflect tissue degeneration, thus providing an indirect measure for biochemical composition^{54,57,60-62}.

Before qMRI techniques, such as T_2 mapping, can find their way to clinical practice, thorough assessment of its accuracy (i.e., do we measure what we want to measure?), reliability (i.e., are measurements reproducible?) and feasibility (e.g., what are the technical requirements? And is the acquisition time acceptable?).

Figure 5. MR Imaging of the meniscus. A) Sagittal Proton-Density weighted image, medial compartment, anterior and posterior meniscal horns (yellow arrows) depicted as black triangles. B) Sagittal T_2 mapping image with colourmap of the posterior horn of the lateral meniscus.

Treatment of meniscal pathology

Treatment options for meniscal tears comprise non-operative and operative approaches. The choice of treatment strategy (i.e., non-operative or operative) depends upon the onset of complaints (i.e., traumatic or degenerative), the nature and extent of complaints, type and location of the meniscal tear, the presence of significant mechanical symptoms (i.e.,

locked knee), and the presence of additional knee pathology^{33,63,64}. Non-operative treatment comprises pain medication, relative rest and exercise therapy. The main goals of exercise therapy for meniscal tears are to reduce hydrops, to optimize range of motion, to increase muscle coordination and strength, and to restore knee function⁶⁵. Operative options to treat meniscal tears include arthroscopic partial meniscectomy (APM) or, in some cases, meniscal repair^{1,66,67}. APM means removing the torn part of the meniscus; repair means suturing the tear. Whether a meniscal tear is suitable for repair depends on the type of tear, tear length, and location of the tear, assessed on MRI⁶⁸⁻⁷⁰. Longitudinal tears in the vascularized portion (i.e., the “red zone”) of the meniscus have the highest chance of success in the context of meniscal repair^{1,69}. The growing awareness of the major biomechanical function within the knee joint has led to an increasing interest in meniscal repair, yet only about 5% of meniscal tears are sutured⁶⁸.

For the treatment of *degenerative tears*, the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA) reached a consensus in 2016, based on clinical studies. The ESSKA recommends starting with non-operative treatment for at least 3 months, “except in the case of considerable mechanical symptoms”. If this approach fails, and no signs of OA are seen on radiograph or MRI, arthroscopic partial meniscectomy may be indicated⁶³.

Regarding *traumatic meniscal tears*, there is little consensus on treatment strategy. According to the guideline “arthroscopy of the knee” of the Dutch Orthopedic Society, a traumatic tear in a “fixed locked knee” is an indication for arthroscopy within two weeks⁶⁴. For all remaining cases, no recommendation can be given as no sufficient evidence is available. In most cases, an APM or repair is chosen, despite of the fact that no evidence is available regarding operative versus non-operative therapy for traumatic tears. To fill this gap, in Erasmus MC University Medical Center, we designed a randomized controlled trial (RCT) to compare APM with non-operative treatment in patients with traumatic tears: the STARR trial.

AIMS AND OUTLINE OF THIS THESIS

The STARR trial

The *STARR trial* is a multicenter open-labeled RCT, with eight participating hospitals (e.g. Máxima MC Eindhoven and Haaglanden MC Leidschendam), funded by the Dutch government, comparing APM (resection, not repair) with standardized exercise therapy. In total, 100 patients under 45 years without knee OA are included, with selection based on a solitary meniscal tear and acute onset, without a “fixed locked knee”. Locking complaints, in general, are not an exclusion criterium. Patients are followed for two years to investigate the differences between APM and exercise therapy with regard to 1) clinical effects (pain and function of the knee), 2) early cartilage degeneration using T₂ mapping MRI, and 3) cost-effectiveness. MRI with T₂ mapping is acquired in STARR patients at baseline and after

two years follow-up to assess early cartilage degeneration, as indicator for early-stage knee OA. Although the inclusion of patients already has finished, the follow-up of the STARR trial is currently still ongoing. The outcomes of the STARR trial will be available at the end of 2020; therefore, the results are not included in this thesis.

In the context of the STARR trial, several gaps in knowledge and research questions were identified concerning various aspects of meniscal pathology. The drive to answer those questions and to improve patient care was the basis of a number of research projects, the results of which are described in this thesis. This thesis is divided into two main themes: I) MR imaging and II) etiology and treatment of meniscal pathology.

PART I: MR IMAGING OF MENISCAL PATHOLOGY

How accurate is *in vivo* T₂ mapping to assess meniscal degeneration?

T₂ mapping, a quantitative MR imaging technique associated with tissue matrix degradation, is used in the *STARR trial* to measure cartilage degeneration after two years follow-up. Cartilage T₂ mapping has been widely studied and has been shown to be associated with cartilage degeneration^{61,71}. Meniscal T₂ mapping is relatively new^{47,57}. In order to use T₂ mapping as an imaging biomarker for meniscal degeneration in research and, eventually, in clinical practice, establishing its validity is essential. Validity of a technique means: does it measure what it is supposed to measure? Validation studies for meniscal T₂ mapping are limited; moreover, studies assessing *in vivo* meniscal T₂ mapping compared to histology have not yet been performed. Therefore, in this study, meniscal *in vivo* T₂ mapping was validated against the histological degree of degeneration, using meniscal tissue from patients with knee OA. The results are described in **Chapter 2**.

What is the reproducibility of T₂ mapping in a multicenter setting, such as the STARR trial?

The *STARR trial* is a multicenter study in which eight hospitals with, in total, 13 locations participate. In each of these hospitals, a “STARR MRI protocol” (comprising routine clinical knee sequences and T₂ mapping) was implemented. To interpret T₂ mapping data from all these hospitals, information on multicenter comparability and longitudinal reproducibility is essential. Therefore, we performed a prospective pilot study to assess longitudinal reproducibility of cartilage T₂ mapping in a multicenter setting. The results of this study are described in **Chapter 3** and will be important for the analysis and interpretation of the results from the STARR trial in which T₂ values are an outcome measure as an indicator for early OA.

How can efficiency in MRI acquisition be improved?

T_2 mapping and other qMRI techniques are promising tools to non-invasively assess joint health, yet efficient acquisition is challenging. Current MRI protocols for the knee, including routine clinical sequences and a T_2 mapping sequence, are time consuming: they take 30-45 minutes^{57,72}. Recently, the quantitative double-echo steady-state (qDESS) sequence was developed to increase acquisition efficiency. qDESS provides quantitative measures of cartilage and meniscus and diagnostic image quality in a single MRI scan with a scan time of only five minutes. qDESS comprises two echoes, and the combined signal of the two echoes can generate T_2 values. The sagittal qDESS images can be reformatted into coronal and axial reconstructions, thus, creating a 3D view of the knee. In collaboration with the Joint and Osteoarthritis Imaging with Novel Techniques (JOINT) lab of the Department of Radiology of Stanford University, we validated this relatively new and interesting sequence in OA patients. The results of this qDESS validation study are described in **Chapter 4**.

PART II: ETIOLOGY AND TREATMENT OF MENISCAL PATHOLOGY

The role of meniscal pathology in knee OA: cause or consequence?

As described earlier, the complex role of the meniscus in the development of knee OA is largely unknown. An important question in the etiology and disease development of knee OA concerns cartilage versus meniscus degeneration: what comes first in OA? To explore the temporal sequence of events in knee OA, a histology-based study in a mouse model for OA was performed as described in **Chapter 5**.

Is the classification “traumatic” versus “degenerative” meniscal tears as straightforward as assumed?

Or is it more like a continuum: are traumatically torn menisci already more or less degenerative? The complex role of meniscal tissue composition in the etiology of meniscal tears and the subsequent development of knee OA is not entirely clear. To test the “continuum hypothesis”, we performed a cross-sectional histology-based observational study comprising different types of meniscal tissue. The results of this study are described in **Chapter 6**.

Clinical decision making in meniscal pathology: Should a traumatic meniscal tear be resected? - The STARR trial

The design of the STARR trial, a multicenter RCT in which APM is compared to conservative treatment in patients with traumatic meniscal tears, can be found in **Chapter 7**.

Clinical decision making in meniscal pathology: What are prognostic factors for outcome after APM?

It seems that there is a shift occurring regarding the treatment of meniscal tears: from "APM as standard of care" towards a more evidence-based approach of clinical decision making. Besides large clinical trials such as the STARR trial, evidence-based medicine also comprises an "evidence-based patient selection" for APM. The identification of a subpopulation of patients with meniscal pathology who would likely benefit the most from APM requires knowledge of prognostic factors for the outcome after APM. To gain more insight into these prognostic factors, we performed a systematic literature review, as described in **Chapter 8**.

In **Chapter 9**, a general discussion regarding the study results in this thesis is provided. Clinical relevance, implications for research and clinical practice, future perspectives, and recommendations for further research are described. **Chapter 10** comprises a general summary of the studies and study results in this thesis.

REFERENCES

1. Hulet C PH, Peretti G, Denti M. *Surgery of the Meniscus: European Society of Sports Traumatology, Knee Surgery & Arthroscopy* / Springer 2016.
2. Brindle T, Nyland J, Johnson DL. The meniscus: review of basic principles with application to surgery and rehabilitation. *J Athl Train* 2001;36:160-9.
3. Fox AJ, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA. The human meniscus: A review of anatomy, function, injury, and advances in treatment. *Clin Anat* 2014.
4. Smigelski R, Becker R, Zdanowicz U, Ciszek B. Medial meniscus anatomy-from basic science to treatment. *Knee Surg Sports Traumatol Arthrosc* 2015;23:8-14.
5. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. *J Bone Joint Surg Am* 1983;65:538-47.
6. Greis PE, Bardana DD, Holmstrom MC, Burks RT. Meniscal injury: I. Basic science and evaluation. *J Am Acad Orthop Surg* 2002;10:168-76.
7. Pauli C, Grogan SP, Patil S, et al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. *Osteoarthritis Cartilage* 2011;19:1132-41.
8. Pereira H, Caridade SG, Frias AM, et al. Biomechanical and cellular segmental characterization of human meniscus: building the basis for Tissue Engineering therapies. *Osteoarthritis Cartilage* 2014;22:1271-81.
9. Bullough PG, Munuera L, Murphy J, Weinstein AM. The strength of the menisci of the knee as it relates to their fine structure. *J Bone Joint Surg Br* 1970;52:564-7.
10. Abraham AC, Villegas DF, Kaufman KR, Haut Donahue TL. Internal pressure of human meniscal root attachments during loading. *J Orthop Res* 2013;31:1507-13.
11. Shrive NG, O'Connor JJ, Goodfellow JW. Load-bearing in the knee joint. *Clin Orthop Relat Res* 1978;279-87.
12. Day B, Mackenzie WG, Shim SS, Leung G. The vascular and nerve supply of the human meniscus. *Arthroscopy* 1985;1:58-62.
13. Hauger O, Frank LR, Boutin RD, et al. Characterization of the "red zone" of knee meniscus: MR imaging and histologic correlation. *Radiology* 2000;217:193-200.
14. J B-S. Ligaments: Their Nature and Morphology, ed 2.: London, UK: JK Lewis; 1897.
15. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints--Part I: Tibial surface of the knee. *J Biomech Eng* 1983;105:216-25.
16. Radin EL, de Lamotte F, Maquet P. Role of the menisci in the distribution of stress in the knee. *Clin Orthop Relat Res* 1984:290-4.
17. Englund M. Meniscal tear--a feature of osteoarthritis. *Acta Orthop Scand Suppl* 2004;75:1-45, backcover.
18. Englund M, Roemer FW, Hayashi D, Crema MD, Guermazi A. Meniscus pathology, osteoarthritis and the treatment controversy. *Nature Reviews Rheumatology* 2012;8:412-9.
19. Hall M, Nielsen JH, Holsgaard-Larsen A, Nielsen DB, Creaby MW, Thorlund JB. Forward lunge knee biomechanics before and after partial meniscectomy. *The Knee* 2015;22:506-9.
20. Edd SN, Netravali NA, Favre J, Giori NJ, Andriacchi TP. Alterations in Knee Kinematics After Partial Medial Meniscectomy Are Activity Dependent. *The American Journal of Sports Medicine* 2015;43:1399-407.
21. Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. *Clin Orthop Relat Res* 1990;19-31.

22. Clayton RA, Court-Brown CM. The epidemiology of musculoskeletal tendinous and ligamentous injuries. *Injury* 2008;39:1338-44.
23. Nielsen AB, Yde J. Epidemiology of acute knee injuries: a prospective hospital investigation. *J Trauma* 1991;31:1644-8.
24. Katz JN, Smith SR, Yang HY, et al. Value of History, Physical Examination, and Radiographic Findings in the Diagnosis of Symptomatic Meniscal Tear Among Middle-Aged Subjects With Knee Pain. *Arthritis Care Res* 2017;69:484-90.
25. Englund M. The Role of the Meniscus in Osteoarthritis Genesis. *Rheum Dis Clin North Am* 2008;34:573-9.
26. Howell R, Kumar NS, Patel N, Tom J. Degenerative meniscus: Pathogenesis, diagnosis, and treatment options. *World J Orthop* 2014;5:597-602.
27. Maffulli N, Longo UG, Campi S, Denaro V. Meniscal tears. *Open Access J Sports Med* 2010;1:45-54.
28. Paletta GA, Jr., Levine DS, O'Brien SJ, Wickiewicz TL, Warren RF. Patterns of meniscal injury associated with acute anterior cruciate ligament injury in skiers. *Am J Sports Med* 1992;20:542-7.
29. Warren RF, Levy IM. Meniscal lesions associated with anterior cruciate ligament injury. *Clin Orthop Relat Res* 1983:32-7.
30. Englund M, Roos EM, Lohmander LS. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. *Arthritis Rheum* 2003;48:2178-87.
31. Jarraya M, Roemer FW, Englund M, et al. Meniscus morphology: Does tear type matter? A narrative review with focus on relevance for osteoarthritis research. *Semin Arthritis Rheum* 2017;46:552-61.
32. Fresneda MJ, Dere JJ, Yacuzzi CH, Paz MC. ISAKOS Classification of Meniscal Tears. Intra and Interobserver Reliability. *Orthopaedic Journal of Sports Medicine* 2014;2.
33. Meniscal injury of the knee. UpToDate, Nov 13, 2018. (Accessed February 6, 2019, at <https://www.uptodate.com/contents/meniscal-injury-of-the-knee>.)
34. Englund M, Guermazi A, Lohmander LS. The meniscus in knee osteoarthritis. *Rheum Dis Clin North Am* 2009;35:579-90.
35. Englund M, Guermazi A, Lohmander SL. The role of the meniscus in knee osteoarthritis: a cause or consequence? *Radiol Clin North Am* 2009;47:703-12.
36. Englund M, Guermazi A, Gale D, et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. *N Engl J Med* 2008;359:1108-15.
37. Guermazi A, Roemer FW, Burstein D, Hayashi D. Why radiography should no longer be considered a surrogate outcome measure for longitudinal assessment of cartilage in knee osteoarthritis. *Arthritis Res Ther* 2011;13:247.
38. Huysse WC, Verstraete KL, Verdonk PC, Verdonk R. Meniscus imaging. *Semin Musculoskelet Radiol* 2008;12:318-33.
39. Crawford R, Walley G, Bridgman S, Maffulli N. Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: a systematic review. *Br Med Bull* 2007;84:5-23.
40. Mink JH, Levy T, Crues JV, 3rd. Tears of the anterior cruciate ligament and menisci of the knee: MR imaging evaluation. *Radiology* 1988;167:769-74.
41. Crues JV, 3rd, Mink J, Levy TL, Lotysch M, Stoller DW. Meniscal tears of the knee: accuracy of MR imaging. *Radiology* 1987;164:445-8.

42. Hunter DJ, Arden N, Conaghan PG, et al. Definition of osteoarthritis on MRI: results of a Delphi exercise. *Osteoarthritis Cartilage* 2011;19:963-9.
43. Davis KW, Rosas HG, Graf BK. Magnetic resonance imaging and arthroscopic appearance of the menisci of the knee. *Clin Sports Med* 2013;32:449-75.
44. Helms CA. The meniscus: recent advances in MR imaging of the knee. *AJR Am J Roentgenol* 2002;179:1115-22.
45. Berthiaume MJ, Raynauld JP, Martel-Pelletier J, et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. *Ann Rheum Dis* 2005;64:556-63.
46. Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). *Osteoarthritis Cartilage* 2011;19:990-1002.
47. Rauscher I, Stahl R, Cheng J, et al. Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. *Radiology* 2008;249:591-600.
48. Bolbos RI, Link TM, Ma CB, Majumdar S, Li X. T1rho relaxation time of the meniscus and its relationship with T1rho of adjacent cartilage in knees with acute ACL injuries at 3 T. *Osteoarthritis Cartilage* 2009;17:12-8.
49. Du J, Carl M, Diaz E, et al. Ultrashort TE T1rho (UTE T1rho) imaging of the Achilles tendon and meniscus. *Magn Reson Med* 2010;64:834-42.
50. Krishnan N, Shetty SK, Williams A, Mikulis B, McKenzie C, Burstein D. Delayed gadolinium-enhanced magnetic resonance imaging of the meniscus: an index of meniscal tissue degeneration? *Arthritis Rheum* 2007;56:1507-11.
51. Lee YH, Suh JS, Grodzki D. Ultrashort echo (UTE) versus pointwise encoding time reduction with radial acquisition (PETRA) sequences at 3 Tesla for knee meniscus: A comparative study. *Magn Reson Imaging* 2016;34:75-80.
52. Tsai PH, Chou MC, Lee HS, et al. MR T2 values of the knee menisci in the healthy young population: zonal and sex differences. *Osteoarthritis Cartilage* 2009;17:988-94.
53. Wang L, Chang G, Bencardino J, et al. T1rho MRI of menisci in patients with osteoarthritis at 3 Tesla: a preliminary study. *J Magn Reson Imaging* 2014;40:588-95.
54. Son M, Goodman SB, Chen W, Hargreaves BA, Gold GE, Levenston ME. Regional variation in T1ρ and T2 times in osteoarthritic human menisci: Correlation with mechanical properties and matrix composition. *Osteoarthritis Cartilage* 2013;21:796-805.
55. Nebelung S, Tingart M, Pufe T, Kuhl C, Jahr H, Truhn D. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration. *Skeletal Radiol* 2016;45:1649-60.
56. Kim SJ, Lee SK, Kim SH, et al. Does Decreased Meniscal Thickness Affect Surgical Outcomes After Medial Meniscectomy? *Am J Sports Med* 2014;2015:937-44.
57. Zarins ZA, Bolbos RI, Pialat JB, et al. Cartilage and meniscus assessment using T1rho and T2 measurements in healthy subjects and patients with osteoarthritis. *Osteoarthritis Cartilage* 2010;18:1408-16.
58. MacKay JW, Low SBL, Smith TO, Toms AP, McCaskie AW, Gilbert FJ. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. *Osteoarthritis Cartilage* 2018;26:1140-52.
59. Welsch GH, Scheffler K, Mamisch TC, et al. Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla. *Magn Reson Med* 2009;62:544-9.
60. Oei EH, van Tiel J, Robinson WH, Gold GE. Quantitative radiologic imaging techniques for articular cartilage composition: toward early diagnosis and development of disease-modifying therapeutics for osteoarthritis. *Arthritis Care Res (Hoboken)* 2014;66:1129-41.

61. Kim T, Min BH, Yoon SH, et al. An in vitro comparative study of T2 and T2* mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference. *Skeletal Radiol* 2014;43:947-54.
62. Braun HJ, Gold GE. Diagnosis of osteoarthritis: imaging. *Bone* 2012;51:278-88.
63. ESSKA Meniscus Consensus Project: Degenerative meniscus lesions. ESSKA, 2016. 2019, at <http://www.esska.org/resource/resmgr/Docs/meniscus-consensus-project-s.pdf>.
64. Richtlijn Artroscopie van de Knie: Indicatie en Behandeling. Nederlandse Orthopaedische Vereniging (NOV), 2010.
65. Skou ST, Thorlund JB. A 12-week supervised exercise therapy program for young adults with a meniscal tear: Program development and feasibility study. *J Bodyw Mov Ther* 2017.
66. Beaufils P, Pujol N. Management of traumatic meniscal tear and degenerative meniscal lesions. *Save the meniscus. Orthopaedics & Traumatology: Surgery & Research* 2017.
67. Lutz C, Dalmay F, Ehkirch FP, et al. Meniscectomy versus meniscal repair: 10 years radiological and clinical results in vertical lesions in stable knee. *Orthopaedics & Traumatology: Surgery & Research* 2015;101:S327-S31.
68. McCarty EC, Marx RG, DeHaven KE. Meniscus repair: considerations in treatment and update of clinical results. *Clin Orthop Relat Res* 2002;122-34.
69. Rubman MH, Noyes FR, Barber-Westin SD. Arthroscopic repair of meniscal tears that extend into the avascular zone. A review of 198 single and complex tears. *Am J Sports Med* 1998;26:87-95.
70. Vaquero-Picado A, Rodriguez-Merchan EC. Arthroscopic repair of the meniscus: Surgical management and clinical outcomes. *EFORT Open Rev* 2018;3:584-94.
71. Pedoia V, Su F, Amano K, et al. Analysis of the articular cartilage T1 and T2 relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. *J Orthop Res* 2017;35:707-17.
72. Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. *Osteoarthritis Cartilage* 2008;16:1433-41.